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Abstract
In mean-variance portfolio optimization, multi-index models often accelerate computation,
reduce input requirements, facilitate understanding, and allow easy adjustment to changing
conditions more effectively than full covariance matrix estimation in many situations. In
this paper, we develop a multi-index model-based portfolio optimization approach that takes
into account aspects of the environment, social responsibility and corporate governance
(ESG). Investments in assets related to ESG have recently grown, attracting interest from
both academic research and investment fund practice. Various literature strands in this area
address the theoretical and empirical relation among return, risk and ESG. Our portfolio
optimization approach is flexible enough to take these literature strands into account and
does not require large-scale covariance matrix estimation. An extension of our approach
even allows investors to empirically discriminate among the literature strands. A case study
demonstrates the application of our portfolio optimization approach.

Keywords Portfolio optimization · Sustainable investment · Investor preferences

1 Introduction

Financial investment decisions that must take environmental, social, and corporate gover-
nance (ESG) issues into consideration constitute a fast-growing area in the investment and
banking industry. This growth is driven by the desire of investors to assess the ESG aspects
of firm conduct using nonfinancial data and institutional investors’ direct engagement in
ESG issues (Gillan & Starks, 2000; Grewal et al., 2016). Motivated by the increasing pop-
ularity of sustainable investments, various approaches have been proposed to incorporate
ESG measures into the investment decision-making process (e.g. Bilbao-Terol et al., 2012;
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Bilbao-Terol et al., 2013; Gasser et al., 2017; Pástor et al., 2021; Steuer & Utz, 2023; Liagk-
ouras et al., 2020; Benedetti et al., 2021). A common approach is to extend the traditional
mean-variance approach (e.g., Hirschberger et al., 2013; Gasser et al., 2017; Pedersen et al.,
2021). We will refer to this approach as the extended mean-variance approach.

Investors face various challenges when applying the extended mean-variance approach
from the literature (e.g., Mynbayeva et al., 2022). In this paper, we will focus on three chal-
lenges. The first challenge is that the extended mean-variance approach requires investors
to provide preference parameters for return, risk and ESG. However, for an empirical and
practical application of the extended mean-variance approach, knowledge of investors’ pref-
erences and their parameters is key to implementing utility maximizing portfolios. From a
practical perspective, the choice of preference parameters is unclear. A strand of the liter-
ature estimates the preference parameters from market data (e.g., Bollerslev et al., 2011).
Nevertheless, the estimated risk aversions describe an average investor and hence cannot
be easily adapted to a single investor. Another strand of the literature that we follow links
the preference parameters to levels of risk and returns (e.g., Das et al., 2010; Bodnar et al.,
2018a). For example, Das et al. (2010) impose a risk constraint in portfolio optimization
and determine the implied risk aversion coefficient. It seems that the orientation toward risk
can be more easily specified by using the level of risk than by determining the risk aversion
coefficients, which are abstract measures for most investors.

The second challenge is that the extendedmean-variance approach incorporates investors’
attitudes toward specific firmESGcharacteristics. For empirical and practical portfolio imple-
mentation, investors must assume a relation among ESG, return and risk. A first strand of the
literature argues that there is a direct relation between ESG characteristics and stock returns
(e.g., Friedman & Heinle, 2016; Bolton & Kacperczyk, 2020). For example, investors could
favor firms with high environmental standards. A second strand of literature argues that ESG
is related to a (systematic) risk factor (see Luo & Balvers, 2017; Pedersen et al., 2021; Pástor
et al., 2021; Hoepner et al., 2024). For example, there could be an environmental risk factor
(Bolton &Kacperczyk, 2020), and firms with high (low) exposure to such environmental risk
factor will offer high (low) expected returns. The main difference between the two strands of
the literature is their assumption of the relation between ESG and firm risk. The first strand
of the literature assumes that the ESG characteristic (e.g., CO2 emissions) is related only to
the expected return but not to the risk of firms. The second strand of the literature assumes
that exposure to an ESG risk factor is related to firms’ expected return and risk. If the latter
literature is correct, investors will want to explicitly control this source of risk, which is
not necessary if the first strand of literature is correct. The challenge for investors is how to
empirically decide which literature strand is correct and whether their sustainable portfolios
need to be managed by ESG characteristics or by ESG factor loadings. The literature does
not provide an easy solution for how to decide whether the first or the second strand of the
literature, or possibly a combination of the strands, should be followed by investors when
they prefer to consider ESG aspects in their portfolio formation.

Finally, the third challenge is that due to the necessary covariance matrix estimation,
the extended mean-variance approaches discussed in the literature cannot be easily adapted
to unbalanced panels or an investment universe with a large number of assets because the
estimated covariance matrix is unreliable (e.g., Bajeux-Besnainou et al., 2012). When the
number of stocks is larger than the number of historical return observations per stock, the
sample covariance matrix becomes singular (e.g., Ledoit & Wolf, 2003; Bajeux-Besnainou
et al., 2012). This challenge is also faced by mean-variance investors, but extended mean-
variance investors must still overcome the hurdle of estimating the covariance matrix. The
literature develops a large variety of approaches for covariance regularization to improve
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the quality of large-scale covariance estimation (e.g., Laloux et al., 1999; Ledoit & Wolf,
2003, 2004; Bajeux-Besnainou et al., 2012; Bodnar et al., 2018b; Plachel, 2019; Nguyen et
al., 2022; Mynbayeva et al., 2022; Costola et al., 2022). However, the estimation of large-
scale covariance matrices remains a common challenge for adopting traditional or extended
mean-variance approaches.

In this paper, we propose a simple newportfolio optimization approach to incorporate ESG
into portfolio formation addressing the three challenges discussed above. Our contribution to
the literature is threefold. Our first contribution is that our approach allows investors to follow
the abovementioned individual strands of literature, or a combination thereof, regarding the
relation among ESG, risk and return. Our approach links return, risk and ESG preferences to
the investor-desired levels of return, risk and ESG, enabling easy adoption of our portfolio
optimization approach in practice. The second contribution is that after mild modifications
of our portfolio optimization approach, we develop a formal test that can help investors
disentangle the strands of literature. This formal test allows investors to determine whether a
firm’s factor loading to an ESG risk factor or ESG characteristic or both ESG factor loading
and ESG characteristic explains stock return variations. It also allows investors to specify
before portfolio optimization whether ESG factor loading or ESG characteristic, or both or
neither, are important for the formation of their specific portfolios. Our third contribution
is that we show how the challenging estimation of a very large covariance matrix can be
circumvented and thus allows portfolio formation for mean-variance and extended mean-
variance investors to be applied, even to unbalanced panels and in situations with larger
numbers of assets than time-series observations.

Our paper develops a general methodology to form portfolios relying on the assumption
of an asset return model. In our derivations and applications in the main text, we use a single-
index model (e.g., the CAPM), which gives us the advantages of concreteness and simplicity.
However, the optimized portfolio approach is suitable for more general environments, as
shown in the Appendix for multi-index models (e.g., APT). Additionally, for the sake of
concreteness, in the main part of the paper, the optimized portfolio approach considers a
single ESG firm characteristic. However, as shown in the Appendix, the optimized portfolio
approach can address numerous firm characteristics. Examples of characteristics and risk
factors other than ESG that are discussed in the literature include size, value and momentum
(e.g., Fama & French, 1993, 2007). Even with a large number of assets, risk factors and
characteristics, the optimized portfolio approach is simple to implement.

The paper proceeds as follows: Sect. 2 discusses the relation among risk, return and
ESG and, based on this discussion, develops our portfolio optimization approach. Section3
describes a formal test as amodificationof the optimizedportfolio approach. Section4demon-
strates the empirical application of portfolio optimization and the test based on stocks from
the S&P 500 index. The empirical section presents a case studywith the aim of demonstrating
the application of the portfolio approach. Section5 summarizes and concludes.

2 Portfolio selection and asset returnmodel

2.1 Extendedmean-variance optimization program

Among others, Hirschberger et al. (2013), Utz et al. (2014), Gasser et al. (2017), Liagkouras
et al. (2020), Qi et al. (2017), Qi and Steuer (2020) and Pedersen et al. (2021) proposed the
objective function (1), which assumes a sustainable investor whose objective function with
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regard to portfolio formation incorporates return, risk and an ESG characteristic.

max
w

αμp − 1

2
λσ 2

p + εθp (1)

μp is the portfolio return withμp = wᵀμ, wherew is an N ×1 vector of portfolio weights of
N risky assets with

∑
i wi = 1; andμ is a N×1 vector of the expected excess returnsμi over

the risk-free rate on N risky assets. σ 2
p is the portfolio return variance with σ 2

p = wᵀVw,
where V is an N × N positive semidefinite covariance matrix of asset returns across N
firms. θp is the portfolio ESG rating with θp = wᵀθ , where θ is an N × 1 vector of the
ESG characteristic of each single asset. Consistent with the literature, the additivity of the
ESG characteristic is assumed (e.g., Drut, 2010; Gasser et al., 2017; Pedersen et al., 2021).
α, λ and ε (α, λ, ε ∈ R) are scalars that represent investor preferences for return, risk and
ESG, respectively. In line with the literature, the inputs μ, V and θ of the optimization are
assumed to be given, and the investors must specify their preferences (α, λ, ε). The solution
of optimization (1) for optimal weights is given in Equation (2),

w = α

λ
V−1μ + ε

λ
V−1θ + h

λ
V−11 (2)

where h is the Lagrangian multiplier with

h = λ
(
1ᵀV−11

)−1 − α1ᵀV−1μ
(
1ᵀV−11

)−1 − ε1ᵀV−1θ
(
1ᵀV−11

)−1

2.2 Linking preferences to levels

This section reformulates the optimization program (1). The reformulation is motivated by
the challenges of specifying investor preferences for return, risk and ESG.Many investors are
unable to consistently specify their preferences and have difficulty quantifying the values for
α, λ, and ε. Without these specific quantities, the optimization program (1) will not lead to a
portfolio that maximizes investors’ utility. Instead of specifying preference values, investors
find it easier to formulate desired portfolio properties in terms of expected return, risk and
ESG. Even the determination of the preferences in experiments requires (in the first step) that
the investors state their desired levels of return, risk and ESG (Harrison & Rutström, 2008).

The idea of linking the risk aversion coefficient to the risk level is not new (Das et al., 2010;
Merton, 1972).The literature suggests that the attitude toward risk canbemore easily specified
by using the risk level than by determining an abstract risk aversion coefficient. We extend
this literature by linking ESG preferences to the level of an ESG characteristic. Specifically,
we consider the levels for return and ESG as constraints of the reformulated optimization. The
constraints must satisfy the condition that the portfolio return and portfolio ESG reflect the
respective preferences. Since portfolio return and portfolio ESG are constraints, the objective
function in (3) includes only the portfolio variance:

min
w

1

2
wᵀVw (3)

s.t. wᵀ1 = 1 (4)

wᵀμ = μ∗
p (5)

wᵀθ = θ∗
p (6)

The levels of portfolio returnμ∗
p and portfolio ESG rating θ∗

p are investor specific and chosen
by each investor individually. Intuitively, the portfolio obtained by (3)–(6) is a minimum
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variance portfolio with a desired level of return μ∗
p and ESG characteristic θ∗

p , i.e., it is an
efficient portfolio. If the levels μ∗

p and θ∗
p are consistently set to the investor’s preferences

α and ε, the optimization program (3)–(6) is equivalent to maximization program (1). The
intuition behind the equivalence is that after the optimal portfolio weights from (1) are
found, we can calculate the values for the return, variance and ESG of the optimal portfolio.
To illustrate this point, based on the solution (2), we can write the expected excess return of
an investor’s portfolioμ∗

p asμ∗
p = μᵀw = α

λ
μᵀV−1μ+ ε

λ
μᵀV−1θ + h

λ
μᵀV−11. Similarly,

the portfolio ESG characteristic is θ∗
p = θᵀw = α

λ
θᵀV−1μ + ε

λ
θᵀV−1θ + h

λ
θᵀV−11 and

the portfolio variance is σ 2∗
p = wᵀVw = 1

λ2
(αμ + εθ + h1)ᵀV−1(αμ + εθ + h1). The

key insight is that if an investor specifies the desired levels of return, risk and ESG for a
portfolio, μ∗

p , θ
∗
p and σ 2∗

p , i.e., the left-hand side of the equations, and solves for the optimal
weights, then the corresponding preferences α, λ and ε are also determined. It follows that the
investor’s consistent indication of both, either her preferences or her desired level for return,
risk and ESG, will lead to the same portfolio. The equations for μ∗

p , θ
∗
p and σ 2∗

p can be used
to solve for three unknown parameters based on the desired levels of return, risk and ESG or
based on the corresponding preferences. The preferences (α, λ, ε) and portfolio properties
(μ∗

p, σ
2∗
p , θ∗

p) must be consistent because otherwise, the portfolio would not be optimal.
By this equivalence,we refer to our reformulationof the approach inEquation (1), as shown

by the optimization program in Eqs. (3)–(6). The reformulation of the portfolio optimization
(1) allows for the preferences for return, risk and ESG to be replaced by the desired levels of
return and ESG in the determination of a minimum variance portfolio.

2.3 Asset returnmodels and portfolio optimization for sustainable investors

2.3.1 The relation among risk, return and ESG: a qualitative description

This section describes two strands of the literature regarding the relation among risk, return
and ESG. The aim is to introduce two views on ESG from the literature and to discuss their
consequences for portfolio formation. The first strand of the literature argues that there is a
direct relation between ESG characteristics and stock returns (e.g., Friedman&Heinle, 2016;
Li et al., 2019). For example, investors could favor firms with high environmental standards.
A second strand of the literature argues that ESG is related to a (systematic) risk factor (see
Luo & Balvers, 2017; Pedersen et al., 2021; Pástor et al., 2021; Hoepner et al., 2024). For
example, there could be an environmental risk factor (Bolton&Kacperczyk, 2020), and firms
with high (low) loadings to the environmental risk factor offer high (low) expect returns.

The key difference between these two strands of literature is easiest to explain with an
example. Suppose that Firm A has a low ESG characteristic. Firm A is a supplier to a high
ESG firm and consequently has cash flows that are highly correlated with the ESG risk factor.
Due to the correlation, the firm has a high factor loading to the ESG risk factor with a positive
risk premium. Firm B also has a high ESG characteristic and low factor loading on the ESG
risk factor. Firm B engages in sustainability, but its cash flow does not depend on the ESG
risk factor. Except for ESG risk factor loadings and characteristics, both firms are exposed to
the same risk factors with the same factor loading values. If the first strand of the literature is
correct, then Firm B will have higher returns relative to Firm A. If instead, the second strand
of literature is the correct description of empirical returns, then Firm A will have higher
returns relative to Firm B. However, in this case, Firm A will contribute more to portfolio
risk, and consequently, investors prefer to control for this source of risk explicitly in their
portfolio optimization, which is not necessary if the first strand of the literature is correct.
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Each case has a considerable influence on portfolio formation. Furthermore, each case will
result in completely different portfolio allocations depending onwhich strand of the literature
an investor follows.

The first strand of the literature assumes that there is a direct relation between ESG
characteristics and asset returns (e.g., Friedman & Heinle, 2016; Li et al., 2019). According
to this view, there is an ESG reward that is significantly different from zero, and there is no
ESG risk premium. The covariance matrix and hence the asset risk is not related to the ESG
characteristic. Consequently, a firmwith a high value of ESGoffers different (higher or lower)
returns and the same risk relative to an otherwise identical firm with a low value of ESG. In
this vein, Friede et al. (2015) conduct a meta-analysis of 60 meta-studies including more than
2,000 single studies. They document that 90% of the empirical studies found a nonnegative
relation between the ESG characteristic and financial performance.1 Based on the list of “100
Best CSR companies in the world”, Li et al. (2019) construct a value-weighted portfolio that
offers statistically significant annual abnormal returns of 1.81% and 1.26% by controlling for
Carhart four factors and the Fama-French five-factors model, respectively. There are several
approaches in the literature to explain why firms with high values of ESG characteristics earn
higher returns. Bénabou and Tirole (2010) argue that the ESG activity of a firm can affect
its value in three ways: (1) firms can “do well by doing good” (e.g., reducing workplace
injury); (2) firms can maximize shareholder value when they exercise ESG behavior on
behalf of stakeholders (e.g., customers paying more for high-priced fair-trade products); and
(3) firms can destroy value when they engage in projects for the benefit of managers (e.g.,
managers donate to their favorite charities to benefit privately). Edmans (2011) observe that
high ESG firms may enjoy satisfied employees, fewer environmental risks, good governance
or loyal customers. Such firms generate higher than expected earnings due to their greater
efficiency. Due to the higher earnings, these firms offer higher returns. Investors following
this strand of the literature want to include assets with ESG characteristics with a positive
relation to return in their portfolio. However, they do not need to control for ESG risk since
the ESG characteristic is assumed to have no relation to asset comovements. In portfolio
optimization, we can expect to overweight firms with high ESG characteristics because such
firms contribute only to higher portfolio returns without increasing portfolio risk.

The second strand of the literature follows the idea of traditional asset pricing and assumes
an ESG risk factor that governs the expected return and the covariances among assets (see
Luo & Balvers, 2017; Pedersen et al., 2021; Pástor et al., 2021; Hoepner et al., 2024).
Accordingly, there is an ESG risk premium, which is significantly different from zero, but
no ESG characteristic reward. There are different explanations for the existence of an ESG
risk factor in the literature. Bolton and Kacperczyk (2020) suggest that an ESG risk factor
reflects investors’ ESG preferences that affect their portfolio formation. Investor preferences
for specific ESG characteristics can lead to excess demand for some stocks. Among others,
Luo and Balvers (2017) and Hoepner et al. (2024) argue that a permanent shift in ESG
preferences will permanently change the efficiency frontier and can lead to an ESG risk
factor premium. Maiti (2021) suggests forming risk factors based on sorts on size and ESG
dimensions and finds improvement inmodel performance for EUROStoxx constituents when
an ESG risk factor is added to Fama and French (1993) three- and four-factor models. Pástor
et al. (2021) and Pedersen et al. (2021) show that a sufficiently large number of investors with
preferences for ESG will lead to risk factor premiums. Thus, as long as empirical studies do
not incorporate an appropriate ESG risk factor, they will observe positive abnormal returns

1 In the subsequent text, we will assume a positive reward for the ESG characteristic. However, the ESG
reward can also be negative. For example, firms with high CO2 emissions may be avoided by investors (e.g.,
Bolton & Kacperczyk, 2020).
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for ESG stocks while in reality, these stocks earn a risk premium (Sharfman & Fernando,
2008; Albuquerque et al., 2019; Flammer, 2015). In portfolio optimization, firms with high
loadings on an ESG risk factor are not necessarily overweighted because such firms increase
portfolio return and risk simultaneously. Here, it depends on the return-risk trade-off of
whether these firms enter the portfolio. The consequences for portfolio allocation are quite
different from the first strand of the literature. In Sect. 3, we describe a formal test that helps
investors empirically decidewhich strand of the literature they should follow in their portfolio
formation because this heavily influences portfolio allocation.

2.3.2 The relation among risk, return and ESG: the formal description

This section describes our asset return model. The introduction of the asset return model
helps to capture the discussion from the literature about the relation among return, risk and
ESG.

Let R denote an N × F matrix of F observations of a system of N random variables,
representing F returns on a universe of N stocks. Our assumptions follow the literature
dealing with the estimation procedure for large covariance matrices in the portfolio context
(e.g., Ledoit & Wolf, 2003; Bodnar et al., 2018b; Kremer et al., 2018; Plachel 2019).

Assumption 1 The number of stocks N and the number of observations F are fixed and
finite.

Assumption 2 Asset returns have finite first and second moments.

Assumption 3 The return rit on an asset i at time t is described by the factor model (7).

rit = Et−1(rit ) +
K−1∑

k=1

βik f̃kt + ei f̃et + uit (7)

where βik is the loading of asset i on factor k, f̃kt ∼ N (0, σ 2
fk
) is the innovation of factor

k at time t , ei is the asset i’s loading on the ESG risk factor, and f̃et ∼ N (0, σ 2
fe
) is the

factor innovation of the ESG risk factor at time t. Finally, uit ∼ N (0, σ 2
u ) is the residual

asset return. According to (7), there are K risk factors, where the K -th risk factor is the ESG
risk factor. The expected return is

Et−1(rit ) = r f t +
K−1∑

k=1

βikμk + eiμe + θi c (8)

whereμk (μe) is the premiumon the risk factor k (ESG risk factor), θi is theESGcharacteristic
of the asset i , and c ∈ R is the ESG reward. The covariance matrix for the asset return is

V = BV f Bᵀ + RV (9)

where V f is the K ×K diagonal covariancematrix of orthogonal factor returns, B is a N×K
matrix of asset factor loadings to K risk factors and RV is the N × N covariance matrix
of residual asset returns. The residual returns are identically and independently distributed
(i.i.d. residual returns) and hence Cov(ui , u j ) = 0,∀i �= j and Cov(ui , u j ) = σ 2

u ,∀i = j .2

2 There are some remarks on the assumption 3. For our portfolio approach, the i.i.d. residual returns are an
important feature of the asset return model (7). We only need that the risk factors explain a significant part of
the asset variances and covariances to approximate the i.i.d. assumption. The i.i.d. assumption is a standard
assumption in the literature (e.g., Pedersen et al., 2021; Daniel et al., 2020; Ledoit & Wolf, 2003).

123



1158 Annals of Operations Research (2024) 341:1151–1176

Assumption 4 The risk factors have positive variances, that is, Var( fk) > 0,∀k.
In the last subsection, we described two strands of the literature about the relation among

risk, return and ESG. Applying the Eqs. (7)–(9), we can show the differences between the
views in the literature in a formal way. The first strand of the literature argues that the ESG
characteristic is important to investors and that there is no ESG risk factor. Consequently, we
remove the ESG risk factor from the factor model (7). Then, the expected return for firms is

Et−1(rit ) = r f t +
K−1∑

k=1

βikμk + θi c

and the covariance σi j between assets i and j is

σi j =
K−1∑

k

βikβ jkσ
2
rk + σui j

where σ 2
rk describes the variance of the k-th risk factor return, σui j = 0,∀i �= j and σui j =

σ 2
u ,∀i = j . Thus, the ESG characteristic affects the expected return but not the risk. Note

that since the ESG risk factor is not included, it affects neither the returns nor the covariances.
The second strand of the literature assumes an ESG risk factor. Accordingly, the expected

return of an asset is

Et−1(rit ) = r f t +
K−1∑

k=1

βikμk + eiμe

and the covariance σi j between assets i and j is

σi j =
K−1∑

k

βikβ jkσ
2
rk + ei e jσ

2
re + σui j

where σ 2
re describes the variance of the ESG risk factor return. Thus, in this literature, the

asset loading to the ESG risk factor drives its expected return and risk.

2.3.3 Implications for portfolio formation

Theasset returnmodel (7)–(9) helps develop ageneral portfolio optimizationprogramwithout
the need to estimate expected returns or the covariance matrix. For the sake of simplicity and
concreteness, in this subsection, we rely on a return model that is described by the market
risk factor (CAPM), an ESG risk factor and an ESG characteristic reward.3 We start with
the general setting where we allow for an ESG reward and an ESG risk factor premium
simultaneously (which might be the case in reality), although the literature usually assumes
the one or the other case. Accordingly, the expected return is

Et−1(rit ) = μi = r f t + βiμrm + eiμe + θi c (10)

and the covariance between the assets i and j is

σi j = βiβ jσ
2
rm + ei e jσ

2
re + σui j (11)

For the sake of simplicity, it is assumed that the investors know the true βi and ei to avoid
addressing estimation errors in the presentation of the optimized portfolio framework. The

3 The description of general cases with K risk factors and M characteristics is left to our Appendix A.
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variance of investors’ portfolio, which is the objective function of the optimization program
(3)–(6), can be written according to the Eq. (11) as

σ 2
p = wᵀVw

= wᵀ (
βσ 2

rmβᵀ + eσ 2
re e

ᵀ + RV
)
w

= wᵀβσ 2
rmβᵀw + wᵀeσ 2

re e
ᵀw + wᵀRVw

= βpσ
2
rmβp + epσ

2
re ep + σ 2

u wᵀ Iw

where β is the N × 1 vector of asset factor loadings to the market risk factor, e is N × 1
vector of asset factor loadings to the ESG risk factor and I is an N × N identity matrix. If
the portfolio factor loadings βp = ∑N

i=1 wiβi and ep = ∑N
i=1 wi ei are constrained in the

portfolio optimization to be at the investor-desired levels β∗
p and e

∗
p , then the terms βpσ

2
rmβp

and epσ 2
re ep from the portfolio variance calculation become constants in the optimization.

Adding a constant to the objective function will not change the optimal solution for the asset
weights. Consequently, we can remove the terms β∗

pσ
2
rmβ∗

p and e∗
pσ

2
re e

∗
p from the objective

function. Additionally, the scaling of the sum of squared asset weights with the constant
residual variance (σ 2

u wᵀ Iw) does not change the optimal solution for the asset weights since
σ 2
u is a constant and identical for all assets due to the i.i.d. assumption in the asset return

model. Therefore, the objective function of our optimization approach in (3)–(6) simplifies
to wᵀw.

Similarly, the investor-specific levels β∗
p , e

∗
p and θ∗

p determine the portfolio return since

μ∗
p =wᵀμ = wᵀ (

r f t1 + βμrm + eμr + θc
)

=r f tw
ᵀ1 + wᵀβμrm + wᵀeμre + wᵀθc

=r f t + βpμrm + epμre + θpc

Instead of specifying the level of expected return μ∗
p (see constraint (5)), we can also control

for the portfolio factor loadings to the market risk factor (i.e., β∗
p) and to the ESG risk factor

(i.e., e∗
p) as we already control for the portfolio ESG θ∗

p in the optimization program (3)–(6)
(see constraint (6)).

Thus, by assuming the asset return model (7)–(9), the portfolio optimization program
(3)–(6) results in

min
w

1

2
wᵀw (12)

s.t. wᵀ1 = 1 (13)

wᵀβ = β∗
p (14)

wᵀθ = θ∗
p (15)

wᵀe = e∗
p (16)

where the constraint (14) constrains the loading to themarket risk factorβ∗
p , and the constraint

(16) constraints the portfolio loading to the ESG risk factor.
For the sake of clarity, we gather the variables on the left-hand side of the constraints

(13)–(16) into a N × 4 matrix X with

X = [1,β, θ , e]
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and the variables on the right-hand side of the constraints are gathered into a 4 × 1 vector b
with

b = [1, β∗
p, θ

∗
p, e

∗
p]ᵀ

yielding the refined optimization program in Equations (17)–(18).

min
w

1

2
wᵀw (17)

s.t. Xᵀw = b (18)

The optimal portfolio weights are obtained by minimizing the Lagrange function L(w, κ) ≡
1
2w

ᵀw − κᵀ (Xᵀw − b), where κᵀ is the Lagrange multiplier. The solution for the optimal
portfolio weights is given in equation (19).

wᵀ = bᵀ (
XᵀX

)−1 Xᵀ (19)

The optimal solution of Eq. (19) differs across investors because they can choose different
values for the elements of b. Notably, vector b can account for any other investor-specific
portfolio. Thus, if vector b is

b = [
1 0.66 0.5 1.8

]ᵀ

the investor aims to determine a portfolio that is fully invested and exhibits a beta to the
market of 0.66, an ESG factor loading of 1.8 and an ESG portfolio characteristic of 0.5. The
example highlights the property of the proposed portfolio optimization program to include
the combination of the strands of the discussed literature. According to our example, the
assumed investor believes that both ESG characteristics and ESG factor loading are important
to explain the variation of the empirical returns. The two described strands of the literature
assume that either ESG characteristics or ESG risk factors are important. The portfolio
formation for these investor types is described in the next subsection.

Assumptions 1–4 in Sect. 2.3.2 and the resulting asset return model (7)–(9) thus simplify
the optimization problem considerably. Our assumptions follow a strand of the literature
that addresses the estimation of large covariance matrices where the number of assets N
exceeds the number of observations F . In contrast to the literature on the regularization of
covariance matrices, our approach does not improve the estimation of the covariance matrix,
but it shows that for the purpose of portfolio formation, the inclusion of the covariance matrix
in the objective function is not necessary as long as the portfolio risk is constrained by the
portfolio factor loadings.

Additionally, the reformulated optimization program (12)–(16) allows easier adaptation
because the reformulated optimization relies only on the desired levels of risk factor loadings
and ESG characteristics of the portfolio. For investors, the specification of these quantities is
often easier than the determination of the corresponding preferences. Our portfolio approach
allows investors to find an optimal portfolio for unbalanced panels and a large number of
assets because the estimation of the expected returns μ and the covariance matrix V is
circumvented. All we need is that the factor loadings can be estimated in such a way that
the residual returns are approximately i.i.d. Consequently, as long as the factor loadings can
be estimated, neither a balanced data panel with the same observation number nor a larger
number of observations than assets, i.e., N < F , is necessary.
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2.3.4 ESG characteristic and ESG risk factor portfolios

The optimization program (12)–(16) follows from our general asset return model (7)–(9).
However, the two strands of the literature assume investors that must care about either an
ESG characteristic (e.g., CO2 emissions) or an ESG risk factor (e.g., carbon risk factor as
proposed by Bolton and Kacperczyk (2020)). For each investor type, a slightly different
optimization program is needed.

If the investors must care about an ESG characteristic but not an ESG risk factor, then
they solve

min
w

1

2
wᵀw (20)

s.t. wᵀ1 = 1 (21)

wᵀβ = β∗
p (22)

wᵀθ = θ∗
p (23)

The solution for optimal weights w
ᵀ
θ from optimization program (20)–(23) is

w
ᵀ
θ = bᵀ

θ

(
Xᵀ

θ Xθ

)−1 Xᵀ
θ (24)

where bθ = [1, β∗
p, θ

∗
p] and Xθ = [1, β, θ ].

If the investors must care about an ESG risk factor but not about an ESG characteristic,
then they solve

min
w

1

2
wᵀw (25)

s.t. wᵀ1 = 1 (26)

wᵀβ = β∗
p (27)

wᵀe = e∗
p (28)

The solution for optimal weights w
ᵀ
e from optimization program (25)–(28) is

wᵀ
e = bᵀ

e

(
Xᵀ
e Xe

)−1 Xᵀ
e (29)

where be = [1, β∗
p, e

∗
p] and Xe = [1, β, e].

3 The disentangling test between the competing ESG explanations

In the last section, the asset return model (Eqs. (7)–(9)) can incorporate views from the
literature that assume that either ESG characteristics or ESG factor loading is important for
the cross-section of asset returns. Our portfolio optimization program (12)–(16) even allows
the investor to follow a mixed model, where ESG characteristics and ESG factor loadings are
important. From an investor’s perspective, it is empirically unclear what the actual relation
among risk, return and ESG looks like. Making matters even worse, Berchicci and King
(2020) show that the relation among return, risk and ESG is sensitive to the period, market,
data provider and methods applied in the literature. Whether the first or the second strand of
the literature, or a combination thereof, describes the expected returns in the cross-section
of asset returns thus requires an empirical clarification. However, this distinction is crucial
for the specification of the optimization problem because it determines the final portfolio
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allocation. In this section, we show how our proposed portfolio optimization (12)–(16) can
be applied to empirically decide whether the first (ESG characteristic) strand of the literature,
the second (ESG risk factor), both strands or neither are important for asset return variation.
Additionally, knowledge of the correct model can help in building more appropriate models
for return and riskmanagement for practical portfoliomanagement and research. For example,
suppose there is an ESG risk factor, but investors specify the portfolio ESG characteristic
and not the portfolio factor loading to the ESG risk factor. Then, they will probably not
attain the desired expected return μ∗

p because they do not consider portfolio ESG factor
loading to be an important part of the expected return. The investors assume their portfolio
return is μp = βpμrm + θpc, but the actual portfolio return is μp = βpμrm + epμresg .
Consequently, the expected portfolio returns will vary depending on the portfolio ESG factor
loading (

∑
wi ei ). It is important to note that this fluctuation of the expected portfolio return

is due to the unconsidered ESG risk factor. Additionally, the realized portfolio return will
fluctuate around the expected value (i.e., it has a standard deviation). Similarly, investors do
not control for a potential source of systematic risk because portfolio variance will depend
on the variance of the ESG risk factor. Since the investors’ portfolio is exposed to ESG risk,
the true portfolio variance (σ 2

p = β2
pσ

2
rm + e2pσ

2
re ) will always be greater than the expected

portfolio variance (σ 2
p = β2

pσ
2
rm ) because according to our assumption 4, the risk factor

variance is always positive.
To derive the disentangling test, for the sake of simplicity and concreteness, we rely on the

optimization program (12)–(16) and maintain the assumption of a single ESG characteristic
and two risk factors (market portfolio and an ESG risk factor). However, the presented
disentangling test is not limited to this setup. Appendix B shows the implementation of the
test for a large number of risk factors and characteristics. The solution for the optimal weights
of the optimization program (12)–(16) is given in equation (19) and repeated here

wᵀ = bᵀ (
XᵀX

)−1 Xᵀ

The solution will vary across investors depending on the choices of the elements of vec-
tor b. For the purpose of empirical application of the disentangling test, we must consider
two additional aspects. First, we consider the time dimension of portfolio returns. Second,
we form several portfolios with varying values of factor loadings to risk factors and ESG
characteristics. Our optimization approach is sufficiently flexible to easily incorporate both
aspects. We define W t as an N × P matrix of the optimal weights of P portfolios at time
t, t ∈ {1, 2, . . . , F} and r t as the vector of realized asset returns at time t . The realized,
out-of-sample returns on the portfolios at time t are

λt = Wᵀ
t−1r t = D

(
Xᵀ
t−1X t−1

)−1 Xᵀ
t−1r t (30)

where X t is the matrix X at time t , and λt is a consistent vector of the realized returns of each
of the considered portfolios in t . D is a P × 4 matrix, the rows of which are the right-hand
sides of the optimization constraints (bᵀ). Equation (30) can thus determine the returns for
P different portfolios in a single step at time t . For convenience, we define a P × F matrix
�. Each row of � represents a time series of realized returns on one of P portfolios at time
t, t ∈ {1, 2, . . . , F}.

Our disentangling test builds on the idea of trackingportfolios. In our optimizationprogram
(12)–(16), we can easily form tracking portfolios by setting one value in the vector b to one
and all other values to zero. If we set the first value of b to 1, then the tracking portfolio has
zero loading to the market risk factor and to the ESG risk factor, and its ESG characteristic is
also zero. Such a portfolio earns a risk-free rate at time t for the investors (see Eq. (8)). If we
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set only the second (third, fourth) element of b to 1 and the others to zero, then the portfolio
tracks the market risk premium (ESG characteristic reward, ESG risk factor premium) and
is a zero-net-investment portfolio. While zero-net-investment portfolios are rare in practical
portfolio management, they are useful for our disentangling test. Under the null hypothesis
of a true risk factor model, the traditional approach is to test whether the regression constant
from a regression of portfolio returns on risk factors is significantly different from zero
(e.g., Li et al., 2019). By forming zero-net-investment tracking portfolios, we can always
directly test this hypothesis because the returns on such portfolios are always without the
risk-free return component of asset returns. This is also true when asset returns are not excess
returns. Consequently, the realized returns on zero-net-investment tracking portfolios can be
used directly in traditional approaches to test whether the regression constant is significantly
different from zero.4 By means of zero-net-investment, we obtain tracking portfolio returns
that are easily tested in the regression framework.

Consequently, the choice for the matrix D as a 4× 4 identity matrix in our disentangling
test allows the calculation of the tracking portfolio returns μ for 4 portfolios at time t ,5 i.e.,

λt = (
Xᵀ
t−1X t−1

)−1 Xᵀ
t−1r t∀t (31)

where the elements of the 4 × 1 vector λt represent the returns of tracking portfolios for the
risk-free rate, the market risk factor realizations, the realization of the ESG characteristic
reward and the realizations of the ESG risk factor premium, respectively.

Specifically, the literature proposes applying spanning tests (e.g., Black et al., 1972; Fama
&French, 1993) to test whether (arbitrarily formed) portfolios are priced by amodel. Assume
that each time series of the four portfolios is regressed on the two risk factor returns rm and
re

� =

⎡

⎢
⎢
⎣

rp1,t = b0,p1 + b1,p1rm,t + b2,p1resg,t + εp1,t , . . . ,∀t
r p2,t = b0,p2 + b1,p2rm,t + b2,p2resg,t + εp2,t , . . . ,∀t
r p3,t = b0,p3 + b1,p3rm,t + b2,p3resg,t + εp3,t , . . . ,∀t
r p4,t = b0,p4 + b1,p4rm,t + b2,p4resg,t + εp4,t , . . . ,∀t

⎤

⎥
⎥
⎦

= BF Fᵀ + E

(32)

where each row of � represents a time series of realized returns on one of the four portfolios
at time t, t ∈ {1, 2, . . . , F}; F is a F × 3 matrix of ones (constant) and two columns of
returns for the market portfolio and the ESG risk factor, respectively. BF is a 4× 3 matrix of
the regression coefficients, i.e., the constant and two risk factor loadings b1 and b2 from the
spanning test (32) for the four portfolios. Again, the four specific portfolios are considered
for simplicity and concreteness. The Appendix shows a general case with many risk factors
and/or characteristics. E is a 4 × F matrix of the random residual returns.

The important consequence from the choice of the values in D as the identity matrix is
that we know the expected values for the factor loadings from the spanning tests (32). If the
two risk factor model is valid, the expected values (E) of the coefficients in BF are

E (BF ) =

⎡

⎢
⎢
⎣

b0,p1 = r f 0 0
0 b1,p2 = 1 0

b0,p3 = 0 0 0
0 0 b2,p4 = 1

⎤

⎥
⎥
⎦ (33)

4 On the other hand, a full-investment tracking portfolio earns the risk-free rate and the risk premiums. Then,
in the traditional approach, we must test whether the regression constant is significantly different from r f ,
i.e., the test would be b0 − r f = 0, where b0 is the regression constant.
5 Our Appendix B elaborates in more detail why the identity matrix for the purpose of the disentangling test
is an appropriate choice.
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The disentanglement between the two strands of the literature regarding the relation among
return, risk and ESG is mainly determined by the values of b2,p4 and b0,p3 . Accordingly, we
expect to observe no significant coefficients on the risk factor (b1,p1, b2,p1, first row in BF ),
with the first portfolio and a regression constant being close to the risk-free rate.6 Regarding
the second portfolio,we expect a factor loading of 1 to themarket portfolio returns (b1,p2 = 1)
and zero for the remaining coefficients (b0,p2, b2,p2). If the first strand of the literature (ESG
characteristics) is correct, then we expect to see a significant regression constant for portfolio
three (b0,p3). Since the portfolio is formed to have no loadings on the market or ESG risk
factors but a positive ESG characteristic, a significant regression coefficient likely indicates
that there is a relation between return and ESG characteristic. A positive (negative) constant
b0,p3 suggests that investors are asking (bidding on) ESG stocks in excess. For the second
strand of the literature to be correct, the regression constant b0,p3 for the third portfolio
must be zero. Similarly, if the second strand of the literature (ESG factor loading) is a valid
description of asset return variations, we expect for the fourth portfolio a factor loading of
1 to the ESG risk factor (b2,p4 = 1) and zero for the remaining coefficients (b0,p4, b1,p4).
Consequently, the constant (b0,p3) and the risk factor factor loadings (b1,p3, b2,p3) will be
zero since the portfolio is formed to have factor loadings of zero for the ESG and market risk
factors. In empirical applications, it is possible that both ESG characteristics and ESG factor
loading add to the explanation of asset returns. If such a mixed model is correct, then we
expect to see a significant regression constant b0,p3 for the third portfolio and a significant
regression coefficient for the ESG risk factor with a value of one (b2,p4 = 1) for the fourth
portfolio.

The use of our optimized portfolios as test assets has a key advantage compared to the
common use of the Black et al. (1972) test since we can provide the expected values of
the regression slope coefficients. The traditional (Black et al., 1972) test focuses only on
an evaluation of the regression constant b0. Our approach allows us to interpret both the
regression constant b0 and the slope coefficients (b1 and b2) for the congruent risk factors.

4 Empirical application

4.1 Data sample

This section aims to demonstrate the empirical application of our portfolio optimization
program in a case study. The case study also shows how to apply and interpret the results
from our disentangling test. Importantly, the aim of the case study is to demonstrate the
application and not to decide whether the cross-section of asset returns is described by
an ESG characteristic or by an ESG risk factor. The case study assumes extended mean-
variance investorswhoare seeking tomaximize their utility. These investorswill first apply the
disentangling test to analyze whether there is a relation of asset returns to ESG characteristics
and/or to ESG factor loading. After the type of relation is determined, these investors form
their portfolios accordingly.

For the case studies, we rely on the database “Refinitiv ASSET4” (ASSET4) to acquire an
independent external ESGmeasure (e.g., Gasser et al., 2017; Hoepner et al., 2024). ASSET4
offers more than 250 key indicators of environmental, social and governance performance.
The key indicators from these areas are aggregated into an overall ESG measure (TESGS).
We follow the literature and use the aggregated ESG measure as the ESG characteristic of

6 If we were to use excess returns, then the regression constant would be zero.
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an asset (e.g., Gasser et al., 2017; Pedersen et al., 2021). The ESG characteristic has values
ranging between 0 and 100, indicating the lowest and highest scores, respectively. Due to the
demonstrative character of our case study to show the application of our portfolio optimization
and the disentangling test, we assume that the ESG characteristics from ASSET4 correctly
indicate the ESG level of a firm.However, Berg et al. (2022) show that the correlation between
ESG characteristics from different data providers is low; hence, the results from empirical
studies, including our case studies, are not comparable if they use different data providers.

We conduct our empirical study with the constituents of the S&P 500 index. The data
of firms from the S&P 500 index are obtained from “Refinitiv Datastream”. To obtain the
ESG characteristics, we match firms from the S&P 500 index that have data in the ASSET4
database.Weacquire themonthly constituent list, themonthly total return index and the aggre-
gated ESG characteristics via the Refinitiv Datastream from December 1989 to December
2019. Themonthly asset excess returns are calculated based on the total return indices, which
include dividend payments and the risk-free rate. The time series length in our final data sam-
ple is limited due to the availability of ESG data. The ESG characteristics are available from
January 2001 to December 2019.

The constituents of the S&P 500 index are regularly updated because the index includes
shares of the 500 largest US firms by market valuation. The number of firms in the index in a
givenmonth is always 500. As the constituents of the index change over time, our data sample
becomes unbalanced. However, our optimized portfolio approach does not require balanced
data samples because at time t , we do not need the covariance matrix, which is otherwise
estimated over the last t − H observations, whereas H typically indicates the last 5 years. It
requires to include the factor loadings to risk factors and the ESG characteristics. The ESG
characteristic is known at time t , and the factor loadings at time t can be estimated for each
asset even if the time series of the observations do not have the same length. The solution for
our portfolio optimization program requires the data on ESG characteristics and on factor
loadings to be available at time t to calculate the portfolio return at time t +1. Consequently,
the number of assets in the portfolio may vary over time due to the data availability of the
ESG characteristic. Our final sample consists of 686 individual assets with an ESG rating that
were members of the S&P 500 index during the 2001–2019 period. The data sample includes
assets without a full time series of observations. Table 1 classifies the stocks included in
the data sample by ESG score levels and provides the descriptive statistics of the returns.
According to Table 1, numerous assets are assigned ESG scores between 21 and 80. The
return-risk reward (μ/σ ) increases with the ESG characteristic because the portfolio risk
decreases as the values of the ESG characteristic increase.

We assume a two-risk factor world. The risk factors are a market portfolio and an ESG risk
factor. Regarding the market portfolio, we define its returns as the value-weighted returns of
all assets available at the time of portfolio formation. Regarding the ESG risk factor, Maiti
(2021) proposes forming a zero-net-investment portfolio in line with the factor construction
of Fama and French (1993). In line with Maiti (2021), in each month, the ESG risk factor-
mimicking portfolio goes long into a high-ESG portfolio and short into a low-ESG portfolio.
The high-ESG portfolio consists of assets with an ESG characteristic greater than the 75th
percentile in the month of portfolio formation, and its return is a simple average of the asset
returns. Similarly, the low-ESG portfolio consists of assets with an ESG characteristic less
than the 25th percentile in themonth of portfolio formation, and its monthly return is a simple
average of the asset returns.

Table 2 reports the descriptive statistics of our two risk factors, ESG characteristics θ ,
factor loadings to the market portfolio β and ESG risk factor e. The mean μ and the standard
deviation σ are time series values in% for the risk factors (rm and rESG ) and panel data values
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Table 1 Descriptive statistics of
monthly returns of assets at
different ESG score levels in %

ESG Median μ σ P(25) P(75) μ/σ N

0–20 1.53 1.14 6.69 −2.09 5.12 0.170 5

21–40 1.23 1.02 5.11 −1.51 3.55 0.199 131

41–60 1.21 0.97 4.81 −1.30 3.67 0.202 238

61–80 1.29 1.08 4.71 −1.00 3.55 0.229 258

81–100 1.36 1.01 4.19 −0.95 3.46 0.241 54

μ is the simple average return;σ is its standard deviation; P(25) andP(75)
report the 25th and 75th percentiles, respectively; andN is the time series
average number of assets in each portfolio. The statistics Median, μ, σ ,
P(25), P(75), μ/σ and N are calculated for equally weighted portfolios,
monthly sorted onESGcharacteristics into portfolioswithESG ranges as
indicated in the first column.Weuse the actual ESGvalues of each firm in
month t. For example, a firm with an actual ESG value between 0 and 20
inmonth t will be assigned to the first portfolio with the ESG range 0–20.
Since the firm’s ESG values can change over time and become greater
or less than 20, the constituents of the ESG portfolio can change over
time. Then, we calculate the average return in month t for the portfolio
and repeat the exercise until the last period. The procedure results in a
time series of monthly portfolio returns

Table 2 Descriptive statistics of
the risk factor returns, ESG
characteristics, and factor
loadings to the risk factors

rm rESG θ β e

μ 0.74 0.15 58.94 1.08 −0.49

σ 4.06 1.72 17.75 0.51 1.30

Correlation of the risk factor time series

rm 1.00

rESG −0.35 1.00

θ β e

Correlation of factor loadings and ESG characteristic

θ 1.00

β −0.03 1.00

e 0.16 −0.26 1.00

The return values are in%. rm is the return on themarket portfolio, rESG
is the return on the ESG risk factor, θ is the firm’s ESG characteristic, β
is the firm’s factor loading to the market return, and e is the firm’s factor
loading to the ESG risk factor. μ is the average, while σ is its standard
deviation. The correlations are calculated for the time series (rm , rESG )
and in panel (θ , β, e) variables

for the asset- and time-specific θ , β and e. The factor loadings β and e are calculated in each
month in simple time series regressions based on the previous five years of observations. The
monthly average return of 0.74% and its standard deviation of 4.06% are considerably higher
for the market portfolio relative to the ESG risk factor (0.15% and 1.72%, respectively). The
average firm in our sample has an ESG characteristic greater than 50, a factor loading to
the market portfolio of approximately 1 and a negative factor loading to the ESG risk factor
of approximately −0.5. The time series correlation between the variables is calculated for
the two risk factors and is found to be negative. The panel correlations are calculated for
the asset- and time-specific variables θ , β and e and are found to be low, particularly the
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Table 3 Results of the test of the
four portfolios based on Eq. (30)
based on empirical data

b0 b1 b2 R2

rp1 0.00 − 0.38 − 2.26 0.10

rp2 − 0.01 0.78 0.09 0.72

rp3 0.00 0.01 0.03 0.12

rp4 0.00 0.01 0.54 0.52

The table columnsb0,b1,b2 and R2 show the estimatedOLScoefficients
from the regression (32), where the portfolio excess returns are regressed
on the risk factors. The values of the regression coefficients marked in
bold are statistically significantly different from zero at the 5% level and
are calculated with HAC-robust standard errors. The standard errors are
Newey-West corrected with a lag number of 4. R2 is the adjusted R2

correlation between the ESG characteristic and ESG factor loading. The correlation values
suggest that the ESG characteristic does not simply translate into a specific value of ESG
factor loading. For example, assets with high ESG values do not automatically have high
ESG factor loadings.

4.2 Case study

This subsection presents the application of the disentangling test and of the portfolio optimiza-
tion program. In the first step, we will test the relation of asset returns to ESG characteristics
and to ESG factor loading by applying our disentangling test, which is presented in Sect. 3.
In the second step, depending on the results from the disentangling test, we will form the
portfolios either according to the first strand of the literature (ESG characteristic) or the
second strand of the literature (ESG factor loading) or a combination of both strands of the
literature or neither of them.

Table 3 reports the results from the first step, which is the disentangling test shown in Eq.
(32). In each month, we determine the weights of the out-of-sample excess returns on four
portfolios in the subsequent month (as specified by Eq. (30)).

Table 3 shows the coefficients from a time series regression of optimized portfolio excess
returns on the two risk factors. The reported coefficients in the table are OLS coefficients,
but the standard errors are corrected for heteroscedasticity and autocorrelation (HAC cor-
rected). Due to our disentangling optimization approach, we know the expected values of
the regression coefficients. If the first strand of the literature is in line with the data, then we
expect to see a significant regression constant (b0) for portfolio 3 and insignificant regression
coefficients b2 for portfolios 3 and 4. If the second strand of the literature correctly describes
the asset return variation, then the risk factor model must be true, and accordingly, we expect
to observe significant coefficients close to one for the market portfolio (b1) and the ESG risk
factor (b2) in portfolios 2 and 4, respectively, and insignificant regression constants (b0). A
mix of the results would indicate that a mixed model of ESG characteristics and ESG factor
loading could be true. If no regression coefficients for portfolios 3 and 4 are significant,
neither strand of the literature with respect to ESG is a correct description of asset return
variation.

There are three notable results of our test. First, the regression constant of portfolio 2
is significant, which suggests that the risk factor model cannot fully price portfolio returns.
However, the constant is economically less relevant. Second, the returns on portfolios 1
(zero-beta portfolio) and 3 (ESG characteristic portfolio) are not significantly exposed to the
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Table 4 Descriptive statistics of the monthly returns of portfolios for investors following second strand of the
literature at different ESG risk factor factor loadings in %

A. Investors’ setting (pre-formation) B. Portfolio statistics (post-formation)
P Budget β e μ σ SR

1 1 0.66 − 1.25 0.73 3.47 0.21

2 1 0.66 − 0.5 0.77 3.25 0.24

3 1 0.66 0.25 0.82 3.08 0.27

“P” is the number of the portfolio. “Budget” is the sum of the portfolio weights, β is the factor loading to the
market factor and e is the factor loading to the ESG risk factor. “Budget”, β and e define the investor-specific
portfolio. μ, σ and “SR” are the mean, standard deviation and Sharpe ratio of the out-of-sample portfolio
returns, respectively

market risk factor. However, both portfolios are somewhat exposed to the ESG risk factor.
Interestingly, the factor loading of portfolio 1 to the ESG factor is high and insignificant,
while the factor loading of portfolio 3 to the ESG factor is significant but economically
rather low. Third, the returns on portfolios 2 and 4 are exposed to congruent risk factors
and significantly different from zero. However, our disentangling test suggests that the factor
loadings are expected to be 1. Since the (untabulated) HAC standard errors are 0.08 and 0.14
for the coefficient to the market factor for portfolio 2 (b1) and the coefficient to the ESG risk
factor for portfolio 4, respectively, only the former is statistically insignificantly different from
1. The coefficient b2 for the ESG risk factor is significantly less than 1,which is not in linewith
our expectation. According to the disentangling test, the coefficient must be insignificantly
different from 1. There are several explanations for the result. First, an explanation for the
lower than 1 value might be that the optimization relies on the estimated factor loadings e,
which are subject to the errors-in-variable problem, i.e., they are not perfectly correlated with
the true factor loadings. Second, the reason for the result might be our formation of the ESG
risk factor. We form the ESG risk factor in line with the literature, but it may not fully capture
an ESG risk premium. Third, our model includes only two risk factors, the market and ESG
risk factors. There could be additional important risk factors or characteristics that we did
not include in our illustrative case study.

The results of the disentangling test suggest that the ESG characteristics do not add to
the explanation of stock returns in the cross-section. However, the two risk factor models
cannot fully explain the time series of the estimated risk factor premiums. Nevertheless,
notably, the empirical investigation presented here is only of a demonstrative nature. In a
real-world application, additional tests would be necessary to determine the additional drivers
of the asset return variation. For our illustrative example, we will refrain from conducting
additional tests and assume that the ESG characteristics do not add to the explanation of the
return variation in our sample and that the risk factor model performs sufficiently well for
our purpose. Accordingly, extended mean-variance investors will follow the second strand
of the literature and consider the ESG factor loading only in the portfolio formation.

Table 4 reports descriptive statistics for three portfolio returns. The portfolios are formed
according to the optimization program (25)–(28). The three portfolios are for illustrative
purposes only. In portfolios one to three, the loadings to the ESG risk factor are arbitrarily
set to −1.25, −0.5 and 0.25. The mean value of the ESG exposure is −0.49 for our data
sample, and our choice of −0.5 roughly mimics investors with an average exposure to ESG
risk. The values −1.25 and 0.25 for ESG loadings are set equidistant from the mean value.
Then, in each month, we determine the weights of three portfolios according to Eq. (29)
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and calculate the out-of-sample return in the next month. We calculate the weighted average
return according to Eq. (30) and repeat the calculations for all months t = 1, 2, . . . , F − 1.
We obtain for each portfolio a time series of portfolio returns. These time series of portfolio
returns are used to calculate descriptive statistics in Table 4.

Part A of Table 4 reports the setting of the portfolio optimization. Part B of Table 4 shows
the out-of-sample descriptive statistics of the portfolio returns. We present the monthly aver-
age out-of-sample return (column μ), the standard deviation of the portfolio return (column
σ ) and the Sharpe ratio (column SR), which is calculated as μ/σ . In Table 4, all of the
portfolios are set to be fully invested (column Budget) and have an arbitrarily chosen beta of
0.66 (column β). We assume risk-averse investors who are only willing to accept portfolio
risks less than the market risk. The portfolios differ in how the factor loadings to the ESG
risk factor (column e) are set. While these values are chosen arbitrarily, the ascending order
of the factor loadings to the ESG risk factor can confirm by example the relation between
the ESG factor loading and portfolio return from the disentangling test.

We observe that the portfolio return (column μ) increases with increasing values of the
ESG factor loading from portfolios 1 to 3. Based on the results from the disentangling test, the
increasing portfolio return is indeed not surprising. Similarly, the portfolio risk decreases from
portfolios 1 to 3. Because themarket factor loading is held constant and the portfolio variances
increase with the squared value of the factor loading (i.e., Var(rp) = β2

pσ
2
rm + e2pσ

2
re ), the

result is plausible and is in line with the observation from the disentangling test that the
returns are exposed, however not perfectly, to the ESG risk factor.

Our case study and the presented results, which are purely demonstrative, reflect the
ongoing discussion in the academic literature. Our results indicate that the inclusion of ESG
aspects in portfolio optimization may be beneficial for the out-of-sample return and Sharpe
ratio. However, our results from the disentangling test are inconclusive. The results do not
support the first strand of the literature, where ESG characteristics are important for the
explanation of the asset returns. The results are only weakly in favor of the second strand
of the literature, which assumes the existence of an ESG risk factor. More research than
an illustrative case study is needed to determine whether the ESG characteristic, the factor
loading to an ESG risk factor, a mixture of the two or neither explains the asset returns. This
is all the more important as Berchicci and King (2020) show that the relation among return,
risk and ESG is sensitive to the period, market, data provider and methods applied in the
literature.

5 Conclusion

This paper makes several contributions to the literature. First, motivated by the increasing
popularity of ESG aspects in the investment fund- and banking industries, we introduce and
demonstrate an optimized portfolio approach that has technical and practical advantages over
the incorporation of ESG into the traditional mean-variance approach. Additionally, based
on the assumption of i.i.d. residual returns, we show how portfolio optimization is conducted
without the estimation of the covariance matrix. Second, based on the proposed portfolio
formation, we introduce a simple test that allows investors to distinguish between competing
explanations for the relation among ESG, risk and return.

The paper uses the two-risk factormodel and a single (ESG) characteristic for concreteness
and simplicity. Our optimized portfolio approach is suitable for more general environments,
as shown in the Appendix for arbitrage pricing theory (APT). In fact, the optimized portfolio
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approach can address a very large number of (arbitrarily chosen) firm characteristics. Even
with a large number of assets, risk factors and characteristics, the optimizedportfolio approach
is simple to implement. Additionally, our approach can easily be adopted to create factor
tracking portfolios (by setting the respective factor loading constraint to one), factor neutral
portfolios (by setting the respective factor loading constraint to zero), style tracking portfolios
(by setting the respective characteristic constraint to one), style neutral portfolios (by setting
the respective characteristic constraint to zero) or mixtures of these approaches. Another
appealing feature of our optimization approach is that an analytical solution can be derived.
For practical applications, where additional constraints and subset selection out of investment
universe are important, the investors need to implement numerical portfolio optimization
problems, which may be considerably more difficult so solve. Our test can also help with the
more general debate (e.g. Fama & French, 1993; Daniel & Titman, 1997; Daniel et al., 2020)
regarding whether the factor loadings to risk factors (such as SMB or HML) or congruent
characteristics (such as firm size and the book-to-market-equity ratio) explain returns.

The models and corresponding portfolio optimizations presented in our paper consider
a broad range of empirical and theoretical literature. However, there are still limitations
to our approach. There is empirical evidence that tail-risk measures are related to ESG
characteristics since companieswith highESGcharacteristics are less vulnerable to company-
specific negative events (e.g., Diemont et al., 2016). Since portfolio optimization assumes an
investor who accepts variance as the appropriate risk measure, our approach cannot account
for alternative risk measures (e.g., expected shortfall, value at risk).

Appendices

A Portfolio optimization with K risk factors andM characteristics

Let asset returns be generated by the asset return model under assumptions 1, 2 and 4 and
the refined Assumption 3a (Eqs. (34)–(36)).

Assumption 3a The return rit on asset i at time t is described by the factor model (34).

rit = Et−1(rit ) +
K∑

k=1

βik f̃kt + uit (34)

where βik is the loading of asset i on factor k and f̃kt ∼ N (0, σ 2
fk
) is the factor’s k innovation

at time t . uit ∼ N (0, σ 2
u ) is the residual asset return. The expected return is

Et−1(rit ) = r f t +
(

K∑

k=1

βikμk +
M∑

m=1

θi cm

)

︸ ︷︷ ︸
excess return

(35)

where r f t is the return on the risk-free asset at time t , μk is the premium on risk factor k, θi
is the characteristic of asset i and cm ∈ R is the reward for characteristic m. The covariance
matrix for the asset return is

V = BV f Bᵀ + RV (36)

where V f is the K × K diagonal covariance matrix of orthogonal factor returns, B is the
N×K matrix of asset factor loadings to K risk factors, and RV is the N×N covariancematrix
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of residual asset returns. The residual returns are identically and independently distributed
(i.i.d. residual returns); hence, Cov(ui , u j ) = 0,∀i �= j and Cov(ui , u j ) = σ 2

u ,∀i = j .

We again reformulate the portfolio optimization program (3)–(6). The variance of the
portfolio is

σ 2
p = wᵀ (

BV f Bᵀ + RV
)
w

= wᵀBV f Bᵀw + wᵀRVw

= βᵀV f β + σεw
ᵀ Iw

where I is the N × N identity matrix and β is a K × 1 vector, whose elements represent
factor loading values of the portfolio.

Similarly, the investor-specific levels b and θ determine the portfolio return since

μ∗
p = wᵀμ = wᵀ (

r f 1 + Bμk + �c
) = r f w

ᵀ1 + wᵀBμk + wᵀ�c = r f + βᵀμk + θᵀc

whereμk is the K ×1 vector of risk factor premiums, B is a N ×K matrix of factor loadings,
c is the M × 1 vector of characteristic rewards, � is the N × M matrix of characteristics and
θ is the M × 1 vector, whose elements represent characteristic values of the portfolio.

By the same arguments as given in Sect. 2.2 (linking preferences to levels), the portfolio
optimization program (3)–(6) results in

min
w

1

2
wᵀw (37)

s.t. wᵀ1 = 1 (38)

wᵀB = βᵀ (39)

wᵀ� = θᵀ (40)

where the constraint (39) constrains the loadings to risk factors and the constraint (40)
constrains the portfolio characteristics.

For the sake of clarity, we gather the variables on the left-hand side of the constraints
(38)–(40) into a N × (1 + K + M) matrix X with

X = [1, B,�]
and the variables on the right-hand side of the constraints are gathered into a (1+K +M)×1
vector g with

g = [1,βᵀ, θᵀ]ᵀ

yielding the refined optimization program in Eqs. (41)–(42).

min
w

1

2
wᵀw (41)

s.t. Xᵀw = g (42)

The solution for the optimal portfolio weights is given in Eq. (43).

wᵀ = gᵀ (
XᵀX

)−1 Xᵀ (43)

The optimal solution of Eq. (43) differs across investors because they can choose different
values for the elements of g.
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B Disentangling test with M risk factors andM characteristics

For the purpose of the disentangling test, we must calculate the portfolio returns at time t ,
t = 1, 2, . . . , F . Based on the solution for optimal portfolio weights in Eq. (43), the return
rpt on portfolio p at time t is

rpt = w
ᵀ
t−1r t = gᵀ (

Xᵀ
t−1X t−1

)−1 Xᵀ
t−1r t (44)

By the choices of the elements in vector g, the investors can specify the desired portfolio
features and earn different returns.

We can calculate the returns on P different portfolios in one step when we observe
that the portfolios for one investor differ only with respect to the values in g. Let G =
[g1, g2, . . . , gP ] be a (1 + K + M) × P matrix of right-hand-side values of portfolio
constraints. The number of portfolios P can be greater than, less than or equal to (1 +
K + M). For the purpose of the disentangling test, we are interested in the special case
P = 1 + K + M because we test whether the K risk factors and the M characteristics are
priced while one portfolio tracks the risk-free return. In “Appendix” section A Eq. (43), we
show how the optimization for a single portfolio works for the general case of K risk factors
and M characteristics. We can calculate the realized return for all (1+ K + M) portfolios at
time t as

λt = Wᵀ
t−1r t = Gᵀ (

Xᵀ
t−1X t−1

)−1 Xᵀ
t−1r t∀t (45)

where λt is a P = (1 + K + M) × 1 vector of portfolio returns at time t , and W t is for
the purpose of the disentangling test a N × (1+ K + M) matrix of asset weights. Note that
the dimensions of λt and W t are P × 1 and N × P , respectively, if we simply calculate the
return on P portfolios.

To test whether the K risk factors and M characteristic portfolios are priced, among a
large number of potential approaches, presumably the easiest approach is to create tracking
portfolios and to test whether the created tracking portfolio loads on the corresponding risk
factor. In our portfolio optimization program, the tracking portfolios are easily obtained by
setting the respective element of the constraints (g) to the value 1 and all other elements to
zero. For example, if we set the first value of g to 1, then the portfolio is a zero-factor-loading
and zero-characteristic portfolio, which earns the risk-free rate at time t for the investors.
If we set the second (K + 2) element of g to 1, then the portfolio tracks the risk premium
(characteristic reward) of the first risk factor (first characteristic).

By setting the constraint for the factor loading or the characteristic to 1 in vector g, and
all other elements of g being zero, the resulting tracking portfolio is a zero-net-investment.
While zero-net-investment portfolios are rare in practical portfolio management, they are
useful for our disentangling test. Under the null hypothesis of the true risk factor model, the
traditional approach is to test whether the regression constant from a regression of portfolio
returns on risk factors is significantly different from zero. As we form zero-net-investment
tracking portfolios, we can always directly test this hypothesis because the returns on such
portfolios are always without the risk-free return component of asset returns. To understand
this point, consider a two-assets zero-investment portfolio that tracks the first risk factor.
The tracking portfolio is formed to be exposed only to the first risk factor. The sum of asset
weights is zero; hence, the portfolio weights are w1 + w2 = 0 ⇔ w2 = −w1. According to
the risk factor model (34), the realized return on this portfolio is
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rp = w1

(
r f t + β11μ1 + β11 f̃1t

)
− w1

(
r f t + β21μ1 + β21 f̃1t

)

= (w1 − w1) r f t + w1

(
β11μ1 + β11 f̃1t − β21μ1 − β21 f̃1t

)

= μ1 (w1β11 − w1β21) + f̃1t (w1β11 − w1β21)

= μ1βp1 + f̃1tβp1 = μ1 + f̃1t

The realized returns on such a portfolio can directly be used in traditional approaches to test
whether the regression constant is significantly different from zero. On the other hand, if we
use the full-investment portfolio, i.e., w1 + w2 = 1, the return on such a portfolio is

rp = w1

(
r f t + β11μ1 + β11 f̃1t

)
+ w2

(
r f t + β21μ1 + β21 f̃1t

)

= (w1 + w2) r f t + w1

(
β11μ1 + β11 f̃1t

)
+ w2

(
β21μ1 + β21 f̃1t

)

= r f t + μ1 (w1β11 + w2β21) + f̃1t (w1β11 + w2β21)

= r f t + μ1βp1 + f̃1tβp1 = r f t + μ1 + f̃1t

In this example, the full-investment tracking portfolio earns the risk-free rate and the risk
premiums. Then, in the traditional approach, we need to test whether the regression constant
is significantly different from r f , i.e., the test would be b0 − r f = 0 with b0 being the
regression constant. By means of zero-net-investment, we obtain portfolio returns that are
easily tested in the regression framework.

Consequently, the choice for the matrix G as the (1 + K + M) × (1 + K + M) identity
matrix in our disentangling test allows the calculation of the tracking portfolio returns μ for
(1 + K + M) portfolios at time t , i.e.,

λt = (
Xᵀ
t−1X t−1

)−1 Xᵀ
t−1r t∀t (46)

where the elements of the (1 + K + M) × 1 vector λt represent the returns of tracking
portfolios for the risk-free rate, the k-th factor return realizations and the m-th characteristic
reward realizations, respectively. For example, the APT factor premium μk is the return on
a portfolio that mimics the k-th risk factor such that μk = ∑N

i=1 wikri , where wik is the
weight of asset i in portfolio k + 1. As the calculation of realized returns λt is done in each
time period t , we can define a (1 + K + M) × F matrix � = [λ1,λ2, . . . ,λF ].

After forming the tracking portfolio for each time t according to Eq. (46), the next step
in our disentangling test is the regression of the portfolio returns in � on the risk factor
realization as in Eq. (34), i.e.,

� = BF Fᵀ + E (47)

where each row of � represents a time series of realized returns on one of the (1+ K + M)

portfolios at time t, t ∈ {1, 2, . . . , F}; F is a F × (K + 1) matrix of ones (constant) and K
columns of returns of risk factors. BF is a (1 + K + M) × (K + 1) matrix of regression
coefficients, i.e., the constant and the risk factor factor loadings β from the spanning test
(47). E is a (1 + K + M) × F matrix of the random residual returns.

The important consequence from the choice of the values in G as identity from Eq. (46)
is that we know the expected values for the factor loadings from the spanning tests (32). If
the risk factor model is valid, the expected values (E) of the coefficients in BF from the
regression of portfolio returns are
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E (BF ) =

⎡

⎢
⎢
⎣

r f 0 0 . . . 0
0 β1,p2 = 1 0 . . . 0
0 0 β3,p3 = 1 . . . 0
0 0 0 . . . βK ,p(1+K+M)

⎤

⎥
⎥
⎦ (48)

or, if we use excess asset returns

E (BF ) =

⎡

⎢
⎢
⎣

0 0 0 . . . 0
0 β1,p2 = 1 0 . . . 0
0 0 β3,p3 = 1 . . . 0
0 0 0 . . . βK ,p(1+K+M)

⎤

⎥
⎥
⎦ (49)
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