
Schulz, Arne

Article  —  Published Version

Efficient neighborhood evaluation for the maximally
diverse grouping problem

Annals of Operations Research

Provided in Cooperation with:
Springer Nature

Suggested Citation: Schulz, Arne (2024) : Efficient neighborhood evaluation for the maximally diverse
grouping problem, Annals of Operations Research, ISSN 1572-9338, Springer US, New York, NY, Vol.
341, Iss. 2, pp. 1247-1265,
https://doi.org/10.1007/s10479-024-06217-9

This Version is available at:
https://hdl.handle.net/10419/315283

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10479-024-06217-9%0A
https://hdl.handle.net/10419/315283
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Annals of Operations Research (2024) 341:1247–1265
https://doi.org/10.1007/s10479-024-06217-9

ORIG INAL-COMPARATIVE COMPUTAT IONAL STUDY

Efficient neighborhood evaluation for the maximally diverse
grouping problem

Arne Schulz1,2

Received: 23 October 2023 / Accepted: 5 August 2024 / Published online: 21 August 2024
© The Author(s) 2024

Abstract
The Maximally Diverse Grouping Problem is one of the well-known combinatorial opti-
mization problems with applications in the assignment of students to groups or courses. Due
to its NP-hardness several (meta)heuristic solution approaches have been presented in the
literature. Most of them include the insertion of an item of one group into another group
and the swap of two items currently assigned to different groups as neighborhoods. The
paper presents a new efficient implementation for both neighborhoods and compares it with
the standard implementation, in which all inserts/swaps are evaluated, as well as the neigh-
borhood decomposition approach. The results show that the newly presented approach is
clearly superior for larger instances allowing for up to 160% more iterations in comparison
to the standard implementation and up to 76% more iterations in comparison to the neigh-
borhood decomposition approach. Moreover, the results can also be used for (meta)heuristic
algorithms for other grouping or clustering problems.

Keywords Combinatorial optimization · Grouping · Local search · Computational
efficiency

1 Introduction

The Maximally Diverse Grouping Problem (MDGP) is a well-known and well-investigated
combinatorial optimization problem. Given a set of items i ∈ I with a pairwise diversity
di j ≥ 0, the task is to assign the items to groups g ∈ G such that each group g gets at least lg
and at most ug items assigned and the within group diversity is maximized over all groups.
The MDGP is an important combinatorial optimization problem for two reasons: First, it has
a wide field of applications such as the assignment of students to project groups (Beheshtian-
Ardekani & Mahmood, 1986) or teams (Dias & Borges, 2017), the assignment of pupils to
tutor groups (Baker & Benn, 2001) or of children to equally strong sport teams (Rubin &
Bai, 2015). Moreover, there are applications in final exam scheduling, VLSI design (Weitz &
Lakshminarayanan, 1998), and anticlustering.Anticlustering aims like theMDGP to partition

B Arne Schulz
arne.schulz@uni-hamburg.de ; arne.schulz@hsu-hh.de

1 Institute of Operations Management, Universität Hamburg, Moorweidenstraße 18, 20148 Hamburg,
Germany

2 Institute of Quantitative Logistics, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-024-06217-9&domain=pdf
http://orcid.org/0000-0002-3088-2820


1248 Annals of Operations Research (2024) 341:1247–1265

items into disjoint groups such that groups are similar but within-group heterogeneity is high
(Brusco et al., 2020; Papenberg, 2024). Applications are in the assignment of participants to
groups (Batista et al., 2023) and in dividing data sets for cross validation (Papenberg & Klau,
2021). Second, the MDGP is NP-hard to solve (Feo & Khellaf, 1990) although it can be
formulated as a short integer program, which can easily be linearized (compare e.g. (Gallego
et al., 2013)):

max
∑

g∈G

∑

i∈I

∑

j∈I : j>i

di j xigx jg

with the constraints (1)
∑

g∈G
xig = 1 ∀i ∈ I (2)

lg ≤
∑

i∈I
xig ≤ ug ∀g ∈ G (3)

xig ∈ {0, 1} ∀i ∈ I , g ∈ G (4)

In the study by Gallego et al. (2013), only instances with up to 12 items could be solved to
optimality. Given that di j values often have a certain structure in practice, e.g. they are the
difference of attribute values (Schulz, 2021) or binary values (Mingers & O’Brien, 1995),
instances of up to 30–70 items can be solved to proven optimality (Schulz, 2022). If at most
two attributes are considered, Schulz (2021) proved that even large instances can be solved
efficiently.

However, if we want to solve large instances or instances with general di j ≥ 0 (dii = 0
for all i ∈ I ), efficient heuristic solution methods are required. While earlier approaches
focussed on construction and local search improvement heuristics (compare the overview
by Weitz and Lakshminarayanan (1998)), later papers focussed on different metaheuristic
solution approaches. In the last years, Brimberg et al. (2015) developed a skewed general
variable neighborhood search, Palubeckis et al. (2015) an iterated tabu search approach,
Lai and Hao (2016) an iterated maxima search heuristic, Lai et al. (2021a) a neighborhood
decomposition based variable neighborhood search and tabu search, and Yang et al. (2022)
a three-phase approach with a dynamic population size. These are the most recent and suc-
cessful approaches. Please see Lai and Hao (2016) for a more depth review of metaheuristic
solution approaches for the MDGP.

The focus of the paper at hand is not to develop a new advanced metaheuristic solution
approach but to consider the evaluation of neighborhoods, especially insertions and swaps,
within these approaches. We present a new method to evaluate these neighborhoods more
efficiently. In doing so, the paper is inspired by the neighborhood decomposition approach
by Lai et al. (2021a).

Given a feasible solution for the MDGP, i.e. an assignment of each item to exactly one
group such that each group has a number of items between lg and ug assigned, the insertion
neighborhood contains all feasible solutions such that exactly one item is assigned to a differ-
ent group. Thus, given solution y, whereat yi indicates the group of item i , the neighborhood
includes all solutions ȳ such that (2)–(4) are fulfilled and yi = ȳi for all but exactly one
item i ∈ I . Correspondingly, the swap neighborhood of y includes all solutions ȳ such that
(2)–(4) are fulfilled, yi = ȳi for all items i ∈ I\{ j, j ′}, ȳ j ′ = y j , and ȳ j = y j ′ . These two
neighborhoods are used in most of the advanced solution methods for the MDGP, includ-
ing the five advanced algorithms mentioned before as well as for example Baker and Powell
(2002), Chen et al. (2011), Fan et al. (2011), Palubeckis et al. (2011), Rodriguez et al. (2013),

123



Annals of Operations Research (2024) 341:1247–1265 1249

Urošević (2014), and Schulz (2023). In the paper at hand, we present a new efficient method
enhancing the neighborhood decomposition (ND) method described in Lai et al. (2021a) to
evaluate the two neighborhoods faster than in the standard implementation, which simply
evaluates the entire neighborhood, and the ND implementation.

The presented neighborhood evaluation can also be applied to other grouping or clustering
problems. These include clustering problems like the capacitated clustering problem (Lai et
al., 2021b) and the capacitated p-median problem (Zheng et al., 2021). It can also be applied
to the ratio cut and normalized cut graph partitioning problem (Palubeckis, 2022), to vehicle
routing problems (e.g. Pfeiffer and Schulz (2022) or Zhou et al. (2023)) or to parallel machine
scheduling (Yalaoui & Chu, 2002).

The paper is constructed as follows: All three implementations are introduced in the
following Sect. 2. Section3 presents the general framework used in the computational study,
in which all three implementations are evaluated on benchmark instances (Sect. 4). The paper
closes with a conclusion (Sect. 5).

2 Implementation of neighborhoods

In this section, we present the three implementations standard, ND, and efficient ND to
implement the insertion and the swap neighborhood.

2.1 Standard implementation

In the standard implementation, simply all solutions of the neighborhoods are evaluated.
Thereby, a solution is encoded by parameters yi and additionally by sets Ig = {i ∈ I :
yi = g}, g ∈ G, i.e. Ig is the set of items assigned to group g in the current solution. The
pseudo-code for the insertion neighborhood can be found in Algorithm 1.

Algorithm 1 [standard insertion]
1: Let a solution y be given.
2: for all g ∈ G : lg < |Ig| do
3: for all g′ ∈ G : g′ �= g ∧ |Ig′ | < ug′ do
4: for all i ∈ Ig do
5: Evaluate insert of i in group g′ and save it if it is the best found so far.
6: end for
7: end for
8: end for
9: Realize best insert if one improving the objective value of y was found.

By using Ig , we only once have the check for each pair of groupswhether they are identical
(Line 3). Often authors replace the three for-loops starting in Lines 2–4 by a for-loop over
all items, a for-loop over all groups, and an if-statement checking whether the item is in
the group or not. Thus, the if-check needs to be done |I | · |G| times while in the above
implementation the check in Line 3 is only done |G|2 times, whereat |G| << |I | holds
typically. We use this implementation for Algorithms 1 and 2 (swap neighborhood) also
to ensure that the neighborhoods are always evaluated in the exact same way in the three
different implementations presented in this paper. By this, we ensure that the search is the
same for all three implementations. Thus, if one implementation leads to a higher number of

123



1250 Annals of Operations Research (2024) 341:1247–1265

operated iterations due to its more efficient implementation, the best found solution cannot
be worse than the best one found with the other two implementations.

Algorithm 2 presents the pseudo-code for a full evaluation of the swap neighborhood.

Algorithm 2 [standard swap]
1: Let a solution y be given.
2: for all g ∈ G do
3: for all g′ ∈ G : g′ > g do
4: for all i ∈ Ig do
5: for all j ∈ Ig′ do
6: Evaluate swap of items i and j , i.e. reassign item i to group g′ and

item j to group g and save it if it is the best found swap so far.
7: end for
8: end for
9: end for
10: end for
11: Realize best swap if one improving the objective value of y was found.

It is well-known in the literature (see e.g. Brimberg et al. (2015)) that inserts and swaps
can be evaluated effectively by using matrix (Dig)i∈I ,g∈G with

Dig =
∑

j∈Ig
di j

which indicates the sum of diversities of item i with all items assigned to group g. By this, the
change in the objective value due to a move of item i from group g to group g′ can directly
be computed as

Dig′ − Dig. (5)

For a swap of the groups of items i and j currently assigned to groups g and g′ we obtain
the change in the objective value by

Dig′ − Dig + Djg − Djg′ − 2 · di j . (6)

As di j is included in Dig′ and Djg , but i is removed from g and j is removed from g′, we
have to subtract di j twice. After realizing an insert or a swap Dig needs to be updated for
all items and the involved two groups g and g′ by subtracting the diversity with the removed
item and adding the diversity with the added item.

2.2 Neighborhood decomposition implementation

Lai et al. (2021a) recognized that it is not necessary to evaluate the entire neighborhood in
every iteration. In every iteration, the assignment to only two groups is changed. Thus, if
we found out that there is no promising insert of an item from group g into group g′ or no
promising swap between items of groups g and g′, we do not need to evaluate these inserts
or swaps again until at least one of the two groups is changed by removing or adding an item.

As evaluating all inserts of items of group g into group g′ or all swaps between items
of groups g and g′ is independent of the evaluation of all inserts/swaps of all other group
pairs, Lai et al. (2021a) call the part of the neighborhood containing these inserts/swaps the
neighborhood block of groups g and g′. Note that the neighborhood block of g and g′ is

123



Annals of Operations Research (2024) 341:1247–1265 1251

identical to the one of g′ and g for the swap neighborhood, but there is a difference for the
insertion neighborhood. In both cases, all neighborhood blocks g, g′ ∈ G (for swap with
g < g′) are disjunct and their union is the entire neighborhood.

Lai et al. (2021a) introduced two zero–one matrices W 1 = (W 1
gg′)g,g′∈G and W 2 =

(W 2
gg′)g,g′∈G to picture whether the neighborhood block including groups g and g′ needs to

be evaluated. If an entry of the matrices is 1, the inserts/swaps between the corresponding
groups need to be evaluated. If an entry is 0, the neighborhood block can be skipped, as we
know already that it does not contain any promising insert/swap.

Note that W 2 is symmetric while W 1 is not. It might be that there is no promising insert
of an element of group g into group g′, but there is one in the opposite direction. If an item
is added to or removed from a group g, W 1

gg′ , W 1
g′g , W

2
gg′ , and W 2

g′g are set to 1 for all
g′ ∈ G\{g}, i.e. they have to be re-evaluated (last line of Algorithm 3 and 4, respectively).
Lai et al. (2021a) call the procedure neighborhood decomposition, as the neighborhoods
are decomposed for each pair of groups g, g′ ∈ G into one independent block (swap) and
two independent blocks (insert), respectively.Wewrite for shortND instead of neighborhood
decomposition in the following. The pseudo-code for the insertion and the swap neighborhood
using the ND implementation are presented in Algorithms 3 and 4, respectively.

Algorithm 3 [ND insertion]
1: Let a solution y be given.
2: for all g ∈ G : lg < |Ig| do
3: for all g′ ∈ G : g′ �= g ∧ |Ig′ | < ug′ do
4: if W 1

gg′ = 1 then

5: W 1
gg′ = 0

6: for all i ∈ Ig do
7: Evaluate insert of i in group g′, save it if it is the best found so far,

and set W 1
gg′ = 1 if it improves the objective value of y.

8: end for
9: end if
10: end for
11: end for
12: Realize best insert if one improving the objective value of y was found.
13: Update matrices W 1 and W 2 if an insert was realized.

Algorithm 4 [ND swap]
1: Let a solution y be given.
2: for all g ∈ G do
3: for all g′ ∈ G : g′ > g do
4: if W 2

gg′ = 1 then

5: W 2
gg′ = 0

6: for all i ∈ Ig do
7: for all j ∈ Ig′ do
8: Evaluate swap of items i and j , i.e. reassign item i to group g′

item j to group g, save it if it is the best found swap so far, and
set W 2

gg′ = 1 if it improves the objective value of y.
9: end for
10: end for
11: end if
12: end for

123



1252 Annals of Operations Research (2024) 341:1247–1265

13: end for
14: Realize best swap if one improving the objective value of y was found.
15: Update matrices W 1 and W 2 if an insert was realized.

It can clearly be seen that the neighborhoods can be evaluated more efficiently than in the
standard implementation if the block of a group pair g and g′ does not need to be evaluated
(Line 4 in both algorithms). However, the benefit depends on the number of blocks which can
be skipped. In contrast, there is the drawback that matrices W 1 and W 2 need to be updated
after every change in the solution (Lines 13 and 15, respectively) although this requires
only a linear effort (W 1

gḡ , W
1
ḡg , W

2
gḡ , W

2
ḡg , W

1
g′ ḡ , W

1
ḡg′ , W 2

g′ ḡ , and W 2
ḡg′ are set to 1 for all

ḡ ∈ G\{g, g′} whereat g and g′ are the two groups with removed/added items).
Moreover, the approach still has the disadvantage that a block is evaluated in an iteration

and again in the next iteration if there is a promising insert/swap, but another one comprising
two other groups was realized.

2.3 Efficient neighborhood decomposition implementation

We present now an improved version to overcome this drawback. Therefore, we replace
matrices W 1 and W 2 by new three-dimensional matrices M1 = (M1

gg′h)g,g′∈G,h=1,2 and

M2 = (M2
gg′h)g,g′∈G,h=1,2,3, respectively. For each pair of groups g and g′ we evaluate all

inserts of an item of group g into group g′ (analogously to conduct Lines 6–8 of Algorithm
3). If there is a promising one, we save the change in the objective function for the best one if
the insert would be conducted in M1

gg′1 (value of (5)) and the corresponding item number i in

M1
gg′2. If there is no promising insert, we simply set M1

gg′1 = M1
gg′2 = 0. Thus, M1 gives us

the best insert of an item of group g into group g′ if there is one such that the neighborhood
evaluation reduces as can be seen in Lines 8–10 of Algorithm 5.

Algorithm 5 [efficient ND insertion]
1: Let a solution y be given.
2: max = 0.
3: for all g ∈ G : lg < |Ig| do
4: for all g′ ∈ G : g′ �= g ∧ |Ig′ | < ug′ do
5: if M1

gg′1 < 0 then
6: Evaluate all inserts of items of group g into group g′ and save the best

found in M1
gg′1 and M1

gg′2.
7: end if
8: if M1

gg′1 > max then

9: max = M1
gg′1 and i = M1

gg′2.
10: end if
11: end for
12: end for
13: Realize best insert if max > 0, i.e. insert item i in group g′.
14: Update matrices M1 and M2 if an insert was realized.

Whenever a change occurs in groups g or g′, we need to update M1
gg′h and M1

g′gh
analogously to the ND method. We simply set M1

gg′1 = M1
g′g1 = −1 indicating that the

neighborhood block containing groups g and g′ needs to be re-evaluated (Line 14 of Algo-
rithm 5). We cannot set M1

gg′1 and M1
g′g1 to 0, as 0 indicates that the neighborhood block

123



Annals of Operations Research (2024) 341:1247–1265 1253

has been evaluated, but no promising insert was found. Matrix M2 is updated analogously. If
M1

gg′1 = −1, all inserts of items of group g into group g′ are evaluated and the best promising

one is again saved in M1
gg′1, M

1
gg′2, and M1

gg′3 (Lines 5–7).
As we can replace Lines 4–9 of Algorithm 3 by Lines 5–10 of Algorithm 5, evaluating

the neighborhood is more efficient now. We only need to evaluate neighborhood blocks
which have not been evaluated since the last change in their group assignment (Line 5), but
these neighborhood blocks would also be evaluated in the ND implementation. Additionally,
further promising neighborhood blocks might be re-evaluated in the ND implementation but
are not in the efficient ND implementation.

For the swap neighborhood we analogously save the value the objective function changes
in entryM2

gg′1 (value of (6)) and the item i removed fromgroup g in entryM2
gg′2. Additionally,

we save the item j removed from group g′ in entry M2
gg′3. Again, all three entries are 0 if

there is no promising swap between groups g and g′ and M2
gg′1 = −1 if the neighborhood

block has not been evaluated since the last change in the assigned items to group g or g′. The
swap neighborhood can then be evaluated by Algorithm 6.

Algorithm 6 [efficient ND swap]
1: Let a solution y be given.
2: max = 0.
3: for all g ∈ G do
4: for all g′ ∈ G : g′ > g do
5: if M2

gg′1 < 0 then
6: Evaluate all pairwise swaps of items of group g with items of group g′ and

save the best found in M2
gg′1, M

2
gg′2, and M2

gg′3.
7: end if
8: if M2

gg′1 > max then

9: max = M2
gg′1, i = M2

gg′2, and j = M2
gg′3.

10: end if
11: end for
12: end for
13: Realize best swap if max > 0, i.e. insert item i in group g′ and item j in group g.
14: Update matrices M1 and M2 if a swap was realized.

2.4 Comparison of the three implementations

Comparing the three implementations, the standard implementation fully evaluates the neigh-
borhoods in every iteration. The ND implementation saves some computations by evaluating
only those parts which might be promising but always evaluates a neighborhood block if
anything has changed in the assignment of one of the two involved groups. The efficient ND
implementation saves the best insert/swap which can be realized between two groups such
that the neighborhood block only needs to be re-evaluated if anything changes in one of the
two groups. In other words, every part of the neighborhoodwhich needs to be evaluated in the
efficient ND implementation needs also to be evaluated in the ND implementation and every
part of the neighborhood which needs to be evaluated in the ND implementation needs to be
evaluated in the standard implementation. Thus, we have a clear hierarchy in the efficiency
of the implementations.

Concretely, we need to evaluate |I | · (|G|−1) = (|I1|+ . . . |I|G||) · (|G|−1) inserts in the
standard implementation while we only need to evaluate up to (|Ig1 |+|Ig2 |)·(|G|−1) inserts

123



1254 Annals of Operations Research (2024) 341:1247–1265

in the efficient ND implementation whereat g1 and g2 are the two groups which were changed
by an insert/swap in the previous iteration. All items of these two groups (|Ig1 | + |Ig2 |) need
to be reinserted into all remaining |G| − 1 groups. It can clearly be seen that the efficient
ND implementation requires fewer evaluated inserts than the standard implementation if
|G| > 2 while the difference is the larger the larger |G| is. The ND implementation is in the
best case as efficient as the efficient ND implementation, but in the worst case as inefficient
as the standard implementation.

If the swap neighborhood is considered, we need to evaluate
∑

g∈G |Ig| · (|I |\|Ig|)/2
swaps in the standard implementation, i.e. for every item of a group (|Ig|) the swap with
any item assigned to another group (|I |\|Ig|). As the swap of two items only needs to be
evaluated once, we divide the result by two. In the efficient ND implementation, we only need
to update swaps of the items assigned to a group g with the items assigned to all other groups
if group g was changed in the previous iteration. As in one iteration at most two groups g1
and g2 are changed, we need to evaluate at most

∑
g∈{g1,g2} |Ig| · (|I |\|Ig|) − |Ig1 | · |Ig2 |

swaps whereat |Ig1 | · |Ig2 | subtracts the swaps between the two groups g1 and g2 which
are otherwise counted twice. Again, the efficient ND implementation is more efficient than
the standard implementation if |G| > 2 and the difference is the larger the larger |G| is.
Moreover, the ND implementation is again in the best case as efficient as the efficient ND
implementation, but in the worst case as inefficient as the standard implementation.

The difference is even clearer if one of the neighbourhoods is called without having any
change in the group assignment since the last call of the algorithm. Then, matrices M1 and
M2, respectively, are up to date such that the efficient ND implementation does not need to
re-evaluate any part of the neighborhood. It only has an effort of up to |G| · (|G| − 1) to find
the best neighbouring solution. This is clearly less effort than in the standard implementation
requiring |I | · (|G| − 1) for the insertion neighborhood and |I |2 for the swap neighborhood.
We are certainly in this situation if we are in a local optimum for both neighborhoods. Then,
we need to re-evaluate both neighborhoods before we know that we are in a local optimum,
but for the one leading to the local optimal solution nothing hast changed since the last call.

Of course we do not want to stay in a local optimum. To not stick there, we introduce a
variable neighborhood search (VNS) based framework with perturbation in the next section
which is used to evaluate the introduced neighborhood implementations in the computational
study.

3 Variable neighborhood search framework

Before we introduce the overall framework we first introduce the used perturbation methods
to avoid sticking in local optimal solutions. We use the weak and strong perturbation method
presented in Lai andHao (2016). They are presented inAlgorithms 7 and 8. As in Lai andHao
(2016) we set ηw = 3 and ηs = � · |I |/|G|, whereat � = 1 if |I | ≤ 400 and 1.5 otherwise.
In Algorithm 7, we determine 5 solutions in the for-loop starting in Line 4. Lai and Hao
(2016) determined |I | solutions in the for-loop. However, in our preliminary evaluations this
resulted in a very significant time spent for the weak perturbation. Therefore, we decreased
the value such that the algorithm spends much more time for the neighborhood evaluation
and we can perform clearly more iterations.

Algorithm 7 [Weak perturbation]
1: Let a solution y be given.
2: for all n = 1 to ηw do

123



Annals of Operations Research (2024) 341:1247–1265 1255

3: Randomly pick a neighbour solution ȳ of y (probability 0.5 for an insertion and
0.5 for a swap, uniformly within the neighborhood).

4: for all i = 1 to 5 do
5: Randomly pick a neighbour solution ŷ of y (probability 0.5 for an insertion

and 0.5 for a swap, uniformly within the neighborhood).
6: if objective value of ŷ is higher than of ȳ then
7: Replace ȳ by ŷ.
8: end if
9: end for
10: Replace y by ȳ.
11: end for
12: Return perturbed solution y.

Algorithm 8 [Strong perturbation]
1: Let a solution y be given.
2: for all n = 1 to ηs do
3: Randomly pick a neighbour solution ȳ of y (probability 0.5 for an insertion and

0.5 for a swap, uniformly within the neighborhood).
4: Replace y by ȳ.
5: end for
6: Return perturbed solution y.

With the weak and the strong perturbation we have all components for the variable neigh-
borhood search framework in Algorithm 9.

Algorithm 9 [VNS framework]
1: Find an initial solution and save it as best found solution so far ybest .
2: Set best_objective_value to the objective value of ybest .
3: Set neighborhood = 1 and last_improvement = 0.
4: while time limit is not reached do
5: Set objective_value_weak = 0 and counter = 0.
6: while counter < α and time limit is not reached do
7: Set objetive_value_old = current_objective_value.
8: if neighborhood = 1 then
9: Call insertion procedure (Algorithm 1, 3, and 5, respectively).

Update current_objective_value.
10: else if neighborhood = 2 then
11: Call swap procedure (Algorithm 2, 4, and 6, respectively).
12: Update current_objective_value.
13: end if
14: if current_objective_value ≤ objective_value_old then
15: last_improvement += 1.
16: else last_improvement = 0.
17: end if
18: if current_objective_value > best_objective_value then
19: Update best_objective_value and ybest .
20: end if
21: if last_improvement = 2 then
22: if current_objective_value > objective_value_weak then
23: counter = 0 and objective_value_weak = current_objective_value.

123



1256 Annals of Operations Research (2024) 341:1247–1265

24: else counter += 1.
25: end if
26: Perform weak perturbation (Algorithm 7).
27: end if
28: end while
29: Perform strong perturbation (Algorithm 8).
30: end while
31: Return ybest .

Algorithm 9 summarizes the entire procedure. The algorithm starts with an initial solution.
In line with the literature (Lai & Hao, 2016), we add uniformly lg items to all groups g in the
first step before the remaining items are uniformly distributed over all groups such that no
group exceeds its capacity ug . Then, we improve this solution with the swap neighborhood
(Algorithm 6) until no improvement is found any more. We do this ten times, i.e. generate
ten initial solutions. The best one of them is used in Line 1 of Algorithm 9 as initial solution.

The rest of the algorithm is also closely oriented at the procedure by Lai and Hao (2016).
The core of the algorithm comprises two while-loops. The outer one (Lines 4–31) steers the
strong perturbation (Line 30). Strong perturbation is performed if for α iterations of the inner
while-loop no improved solution was found (objective_value_weak; Lines 23–26). The value
of α is set to 5 if |I | ≤ 400 or |I |/|G| ≤ 10. Otherwise, it is set to 3 (compare Lai and Hao
(2016)). In the inner while-loop, we call the insertion and the swap neighborhood alternately
(Lines 8–14). If the solution has not improved after calling both (Lines 7, 15–17), i.e. if we
are in a local optimum of both neighborhoods, we perform a weak perturbation (Lines 22–
28). To avoid sticking in local optima, we first perform a weak perturbation to still evaluate
the nearer environment of the current solution (intensification). If we could not find a better
solution for α runs of the weak perturbation procedure, the strong perturbation procedure is
executed to reach different areas of the solution space (diversification). Whenever a new best
solution is found, it is saved as ybest in Lines 19–21. When the algorithm terminates after the
time limit is reached, the best solution ybest is returned (Line 32).

In line with the aim of the paper to evaluate the different implementations of the insertion
and the swap neighborhood, Algorithm 9 is a basic variable neighborhood search evaluating
both neighborhoods alternately like it is done in Lai and Hao (2016). In difference to their
paper, we fully evaluate the neighborhoods and except the best solution found instead of
accepting every improvement. If we would accept every improved solution, matrices W 1,
W 2, M1, and M2 would be updated more often meaning that the ND and efficient ND
implementations cannot fully use their advantage. Thus, we would not be able to evaluate
their full potential.

4 Computational study

In this section, we evaluate the different implementations of the insertion and the swap
neighborhood. All algorithms were implemented in C++. The code was executed on a single
AMD EPYC 7542 32 core with 2.90GHz. All three implementations (call Algorithms 1, 3,
and 5 in Line 9 and Algorithms 2, 4, and 6 in Line 12 of Algorithm 9, respectively) were
evaluated on the three standard benchmark sets Geo, RanInt, and RanReal all containing
160 instances where half of them have equal-sized (ss) groups and half of them not (ds).
The number following the letter n in the instance’s name indicates the number of items
considered. In the Geo set, diversities are Euclidean distances between pairs of points with

123



Annals of Operations Research (2024) 341:1247–1265 1257

random coordinates in the interval [0,10]. In the RanReal set, diversities are real uniformly
generated numbers in (0,100). In the RealInt set, diversities are integer uniformly generated
in the interval [0,100]. The instances are available under the following link: https://grafo.
etsii.urjc.es/optsicom/mdgp.html. For a single run the computation time was set to 3s for
n smaller or equal to 120, 20s for n = 240, 120s for n = 480, and 600s for n = 960.
We conducted 20 runs with different seeds for all three implementations. The code for the
efficient ND implementation is available under the following link: http://doi.org/10.25592/
uhhfdm.14613. The results presented in the following are average values over all 20 runs.

The aim of the computational study is to evaluate the different implementations of the
insertion and the swap neighborhood. As the focus of our algorithm is on the evaluation
of the neighborhood implementations, it is not that advanced as other approaches in the
literature (compare Yang et al. (2022)). Moreover, the different implementations were always
started with the same seed such that all of them conduct the same search. This means that
an implementation leading to a larger number of executed iterations cannot lead to a worse
objective value. Together, objective values are not that interesting for this study.We therefore
do not report them in detail. However, note that the best objective value we found for an
instance is on average 0.3% worse than the best found in the study by Yang et al. (2022). The
maximum difference was 0.85%.

As already said, given a seed, the search is the same for all three implementations. Thus,
a higher number of iterations cannot lead to a worse objective value but gives the chance to
evaluate new and possibly better solutions. Hence, it is desirable to increase the number of
performed iterations. Table 1 presents the average number of iterations over all 20 runs and
all 10 instances of the instance type performed by the three implementations as well as the
percentaged increase if ND was superior in comparison to standard and if efficient ND was
superior in comparison to one of the other two. The results show that the standard implemen-
tation is superior for smaller instance sizes of up to 60 items while the ND implementation
is superior for medium-sized instances with unequal group sizes. Finally, the efficient ND
implementation is clearly superior for the large instances.

Reasons for the good performance of the standard implementation on small instances are
that a smaller number of items goes along with a smaller number of groups such that the other
two implementations cannot use the full potential of their advantage. As an example consider
the smallest instances with ten items. They only have two groups. Thus, any insert or swap
always changes both groups and all groups have to be evaluated in all three implementations.
Moreover, matrices W 1, W 2, M1, M2 need to be updated which leads to a higher demand
for memory access for the ND and the efficient ND implementation. A higher demand for
memory access is also a reason for the better performance ofND in comparison to efficient ND
for the smaller instances. For larger instances with a higher number of groups the advantage
of fewer parts of the neighborhoods which need to be evaluated exceeds the disadvantage of
a higher memory access. Thus, ND and efficient ND clearly outperform standard. Moreover,
the advantage of efficient ND to only evaluate a neighborhood block once until a change
is done becomes relevant such that efficient ND clearly outperforms ND. This results in an
increase of performed iterations of up to 170% in comparison to standard and up to 76% in
comparison to ND.

The extent of skipped neighborhood blocks is shown in Table 2. For smaller instances
only a small number of neighborhood blocks can be skipped without evaluation due to the
small number of groups. If we consider the example of the smallest instances with ten items
and two groups again, we can only skip them in an iteration where no improvement was
found, i.e. if we are in a local optimum. In contrast, for the instances with 960 items assigned
to 24 groups only 45 of the 276 neighborhood blocks need to be evaluated after a change.

123

https://grafo.etsii.urjc.es/optsicom/mdgp.html
https://grafo.etsii.urjc.es/optsicom/mdgp.html
http://doi.org/10.25592/uhhfdm.14613
http://doi.org/10.25592/uhhfdm.14613


1258 Annals of Operations Research (2024) 341:1247–1265

Ta
bl
e
1

C
om

pa
ri
so
n
of

nu
m
be
r
of

ite
ra
tio

ns

N
um

be
r
of

ite
ra
tio

ns
N
D

>
E
ffi
ci
en
tN

D
>

E
ffi
ci
en
tN

D
>

In
st
an
ce

ty
pe

St
an
da
rd

N
D

E
ffi
ci
en
tN

D
St
an
da
rd

[%
]

St
an
da
rd

[%
]

N
D
[%

]

G
eo
_n

01
0_

ds
13

28
76

0.
4

12
53

91
7.
3

11
64

17
2.
3

–
–

–

G
eo
_n

01
0_

ss
91

25
85

.8
87

87
42

.0
80

74
44

.0
–

–
–

G
eo
_n

01
2_

ds
13

97
13

5.
4

13
03

22
6.
5

11
48

17
3.
0

–
–

–

G
eo
_n

01
2_

ss
93

00
57

.0
88

38
17

.3
75

77
74

.0
–

–
–

G
eo
_n

03
0_

ds
10

88
66

2.
3

96
24

70
.9

86
06

66
.3

–
–

–

G
eo
_n

03
0_

ss
69

59
85

.0
64

27
00

.0
56

87
57

.2
–

–
–

G
eo
_n

06
0_

ds
52

25
77

.8
46

51
37

.7
42

62
60

.2
–

–
–

G
eo
_n

06
0_

ss
30

59
49

.8
29

02
42

.7
27

20
54

.7
–

–
–

G
eo
_n

12
0_

ds
16

81
59

.8
18

32
16

.9
17

81
28

.0
8.
95

5.
93

–

G
eo
_n

12
0_

ss
94

27
2.
6

11
08

49
.4

11
62

01
.3

17
.5
8

23
.2
6

4.
83

G
eo
_n

24
0_

ds
34

60
26

.2
41

44
77

.1
46

05
35

.0
19

.7
8

33
.0
9

11
.1
1

G
eo
_n

24
0_

ss
17

88
00

.2
21

87
76

.1
27

77
23

.2
22

.3
6

55
.3
3

26
.9
4

G
eo
_n

48
0_

ds
49

53
84

.1
86

03
30

.6
10

51
35

9.
6

73
.6
7

11
2.
23

22
.2
0

G
eo
_n

48
0_

ss
25

37
88

.5
41

36
58

.4
63

36
16

.3
62

.9
9

14
9.
66

53
.1
7

G
eo
_n

96
0_

ds
52

28
87

.5
92

25
81

.0
12

15
26

3.
1

76
.4
4

13
2.
41

31
.7
2

G
eo
_n

96
0_

ss
26

52
69

.5
42

13
54

.7
71

80
06

.1
58

.8
4

17
0.
67

70
.4
0

R
an
In
t_
n0

10
_d

s
12

70
30

4.
7

12
11

08
2.
2

11
27

57
2.
6

–
–

–

R
an
In
t_
n0

10
_s
s

94
42

38
.6

90
42

55
.5

83
59

03
.7

–
–

–

R
an
In
t_
n0

12
_d

s
12

34
99

5.
3

11
58

36
9.
6

10
25

39
3.
1

–
–

–

R
an
In
t_
n0

12
_s
s

90
93

33
.9

86
72

43
.0

74
36

89
.3

–
–

–

R
an
In
t_
n0

30
_d

s
94

07
09

.9
84

19
26

.9
74

51
16

.0
–

–
–

R
an
In
t_
n0

30
_s
s

66
03

05
.6

61
56

83
.0

54
41

53
.1

–
–

–

R
an
In
t_
n0

60
_d

s
47

55
82

.2
42

46
03

.8
37

74
43

.1
–

–
–

123



Annals of Operations Research (2024) 341:1247–1265 1259

Ta
bl
e
1

co
nt
in
ue
d

N
um

be
r
of

ite
ra
tio

ns
N
D

>
E
ffi
ci
en
tN

D
>

E
ffi
ci
en
tN

D
>

In
st
an
ce

ty
pe

St
an
da
rd

N
D

E
ffi
ci
en
tN

D
St
an
da
rd

[%
]

St
an
da
rd

[%
]

N
D
[%

]

R
an
In
t_
n0

60
_s
s

29
95

98
.9

28
77

12
.8

26
74

80
.4

–
–

–

R
an
In
t_
n1

20
_d

s
15

75
41

.7
16

96
80

.9
15

28
40

.9
7.
71

–
–

R
an
In
t_
n1

20
_s
s

90
50

5.
1

10
91

80
.8

10
95

19
.9

20
.6
3

21
.0
1

0.
31

R
an
In
t_
n2

40
_d

s
33

39
62

.9
39

36
49

.1
37

32
33

.3
17

.8
7

11
.7
6

–

R
an
In
t_
n2

40
_s
s

17
62

23
.6

22
60

23
.4

26
67

66
.3

28
.2
6

51
.3
8

18
.0
3

R
an
In
t_
n4

80
_d

s
49

08
97

.1
81

59
54

.1
82

76
02

.0
66

.2
2

68
.5
9

1.
43

R
an
In
t_
n4

80
_s
s

25
01

40
.0

41
26

41
.6

59
09

38
.2

64
.9
6

13
6.
24

43
.2
1

R
an
In
t_
n9

60
_d

s
50

81
46

.2
85

75
79

.6
91

53
46

.5
68

.7
7

80
.1
3

6.
74

R
an
In
t_
n9

60
_s
s

25
45

02
.4

37
83

63
.3

66
50

10
.9

48
.6
7

16
1.
30

75
.7
6

R
an
R
ea
l_
n0

10
_d

s
12

32
72

4.
4

11
76

37
4.
7

10
95

79
1.
2

–
–

–

R
an
R
ea
l_
n0

10
_s
s

92
77

78
.8

88
81

13
.7

82
02

66
.1

–
–

–

R
an
R
ea
l_
n0

12
_d

s
12

51
14

8.
4

11
73

53
9.
6

10
37

24
7.
8

–
–

–

R
an
R
ea
l_
n0

12
_s
s

87
58

99
.6

83
55

46
.1

71
86

89
.0

–
–

–

R
an
R
ea
l_
n0

30
_d

s
90

85
23

.6
81

56
44

.6
72

49
42

.5
–

–
–

R
an
R
ea
l_
n0

30
_s
s

65
73

60
.8

61
36

79
.1

54
27

23
.4

–
–

–

R
an
R
ea
l_
n0

60
_d

s
47

52
60

.9
42

46
45

.5
37

72
41

.2
–

–
–

R
an
R
ea
l_
n0

60
_s
s

29
99

21
.9

28
76

80
.1

26
75

70
.4

–
–

–

R
an
R
ea
l_
n1

20
_d

s
15

76
67

.6
17

00
07

.8
15

30
22

.0
7.
83

–
–

R
an
R
ea
l_
n1

20
_s
s

90
67

2.
7

10
94

91
.0

10
97

82
.7

20
.7
5

21
.0
8

0.
27

R
an
R
ea
l_
n2

40
_d

s
33

41
65

.0
39

31
28

.0
37

29
90

.4
17

.6
4

11
.6
2

–

R
an
R
ea
l_
n2

40
_s
s

17
54

51
.4

22
57

13
.6

26
62

63
.8

28
.6
5

51
.7
6

17
.9
7

R
an
R
ea
l_
n4

80
_d

s
48

98
14

.2
81

37
09

.1
82

41
49

.1
66

.1
3

68
.2
6

1.
28

R
an
R
ea
l_
n4

80
_s
s

24
95

59
.2

41
12

74
.7

58
85

23
.1

64
.8
0

13
5.
83

43
.1
0

R
an
R
ea
l_
n9

60
_d

s
49

96
33

.3
84

67
39

.4
90

69
03

.0
69

.4
7

81
.5
1

7.
11

R
an
R
ea
l_
n9

60
_s
s

24
83

28
.1

37
00

02
.0

65
27

05
.5

49
.0
0

16
2.
84

76
.4
1

123



1260 Annals of Operations Research (2024) 341:1247–1265

Table 2 Evaluation of
neighborhood evaluations

Skipped block evaluations [%]
Instance type W 1 W 2 M1 M2

Geo_n010_ds 2.07 2.07 2.07 2.07

Geo_n010_ss – 30.62 – 30.63

Geo_n012_ds 7.44 9.83 7.45 12.02

Geo_n012_ss – 28.53 – 30.93

Geo_n030_ds 16.16 18.69 16.23 24.26

Geo_n030_ss – 29.90 – 35.91

Geo_n060_ds 25.25 25.09 25.45 32.36

Geo_n060_ss - 34.55 – 43.21

Geo_n120_ds 46.95 44.58 47.58 54.00

Geo_n120_ss – 49.23 – 61.77

Geo_n240_ds 55.69 47.76 56.65 61.86

Geo_n240_ss – 48.99 – 67.41

Geo_n480_ds 71.07 62.40 72.49 76.07

Geo_n480_ss – 59.52 – 79.49

Geo_n960_ds 76.81 62.77 78.34 80.68

Geo_n960_ss – 58.94 – 82.81

RanInt_n010_ds 2.59 2.75 2.59 2.76

RanInt_n010_ss - 29.86 – 29.86

RanInt_n012_ds 6.21 9.46 6.25 10.72

RanInt_n012_ss – 29.82 – 31.81

RanInt_n030_ds 10.20 16.88 10.49 19.81

RanInt_n030_ss – 31.09 – 36.51

RanInt_n060_ds 18.54 22.70 19.22 26.55

RanInt_n060_ss – 34.82 – 43.51

RanInt_n120_ds 38.79 42.44 40.39 47.46

RanInt_n120_ss – 50.50 – 61.68

RanInt_n240_ds 43.79 45.74 46.86 53.41

RanInt_n240_ss – 50.42 – 67.14

RanInt_n480_ds 59.26 59.92 63.91 69.49

RanInt_n480_ss – 59.19 – 78.80

RanInt_n960_ds 64.15 60.59 70.65 74.71

RanInt_n960_ss – 55.05 – 82.39

RanReal_n010_ds 2.60 2.76 2.60 2.76

RanReal_n010_ss – 30.25 – 30.26

RanReal_n012_ds 6.68 9.85 6.71 11.22

RanReal_n012_ss – 30.09 – 32.04

RanReal_n030_ds 10.19 16.88 10.47 19.77

RanReal_n030_ss – 31.13 – 36.52

RanReal_n060_ds 18.73 22.79 19.40 26.69

RanReal_n060_ss – 34.80 – 43.51

123



Annals of Operations Research (2024) 341:1247–1265 1261

Table 2 continued Skipped block evaluations [%]
Instance type W 1 W 2 M1 M2

RanReal_n120_ds 38.75 42.40 40.35 47.41

RanReal_n120_ss – 50.50 – 61.67

RanReal_n240_ds 43.89 45.80 46.94 53.49

RanReal_n240_ss – 50.41 – 67.14

RanReal_n480_ds 59.33 59.95 63.95 69.52

RanReal_n480_ss – 59.17 – 78.80

RanReal_n960_ds 64.23 60.64 70.69 74.76

RanReal_n960_ss – 55.05 – 82.39

If we use the ND implementation, we moreover need to evaluate all of the others if there is
a promising insert/swap. Consequently, the share of skipped block evaluations increases to
more than 82% for the swap neighborhood and over 70% for the insertion neighborhood if
we use the efficient ND implementation.

The values are smaller if the swap as well as the insertion neighborhood are used, i.e.
for the instances with unequal-sized groups. One reason is that both neighborhoods are
evaluated alternately. Thus, up to four groups were changed instead of up to two before the
same neighborhood is evaluated next (can be more if perturbation is executed meanwhile).

Table 3 shows the success rates of the two neighborhoods as well as the average number of
iterations between two consecutive calls of the perturbation algorithms 7 and 8, respectively.
The success rate is the percentage of calls of the neighborhood in which an improved solution
was found. It is not surprising that more iterations were performed before the algorithm
reaches a local optimum, i.e. perturbation is required, if the instance size is larger. Thus,
the success rates of both neighborhoods increase with the instance size. Especially the swap
neighborhood with a success rate of up to 91% is very effective.

The insertion neighborhood reaches a success rate of only about 50%. Thus, there are
more iterations without any change in the current solution which explains why the ND
implementation is more effective for instances with unequal group sizes. If an iteration is
unsuccessful, no promising neighborhood block exists. This also means that in the next call
of the insertion neighborhood only those neighbourhood blocks need to be evaluated which
were changed due to a swap in the swap neighborhood which was called in the meantime.
Thus, ND is as effective as efficient ND and clearly superior to standard in this case. Our
implementation with the alternate calls of both neighborhoods follows Lai and Hao (2016).
The small success rate of the insertion neighborhood, however, might be an argument to
follow another policy in future approaches.

5 Conclusion

The paper compares the three implementations called standard, ND, and efficient ND of the
insertion and the swap neighborhood for the MDGP. The efficient ND implementation is
newly introduced and based on the ND implementation. Both implementations use the idea
that the neighborhoods can be divided into independent blocks containing the inserts/swaps
between two groups. While the ND implementation evaluates a block if there is a promising,

123



1262 Annals of Operations Research (2024) 341:1247–1265

Table 3 Evaluation of algorithm design

Success rate Success rate Perturbation (no. it.)
Instance type Insertion [%] Swap [%] Weak Strong

Geo_n010_ds 3.41 60.42 5.1 32.9

Geo_n010_ss – 41.77 3.4 22.6

Geo_n012_ds 19.29 70.48 6.9 51.2

Geo_n012_ss – 58.42 4.8 32.8

Geo_n030_ds 13.53 80.92 10.5 95.0

Geo_n030_ss – 72.06 7.2 69.7

Geo_n060_ds 19.86 82.75 11.7 101.4

Geo_n060_ss – 74.49 7.8 75.4

Geo_n120_ds 21.25 85.59 14.0 104.0

Geo_n120_ss – 78.81 9.4 77.9

Geo_n240_ds 18.32 89.83 19.8 143.6

Geo_n240_ss – 83.96 12.5 89.9

Geo_n480_ds 17.61 93.61 31.4 134.4

Geo_n480_ss – 90.43 20.9 86.2

Geo_n960_ds 13.43 96.77 62.0 276.7

Geo_n960_ss – 95.08 40.7 170.9

RanInt_n010_ds 18.88 54.95 4.8 31.4

RanInt_n010_ss – 43.59 3.5 21.7

RanInt_n012_ds 32.06 63.80 6.1 47.5

RanInt_n012_ss – 56.00 4.5 30.8

RanInt_n030_ds 38.54 74.29 8.5 72.0

RanInt_n030_ss – 69.37 6.5 57.1

RanInt_n060_ds 45.67 76.91 9.3 74.6

RanInt_n060_ss – 72.29 7.2 55.9

RanInt_n120_ds 46.63 78.78 10.1 74.4

RanInt_n120_ss – 74.29 7.8 51.5

RanInt_n240_ds 52.38 81.73 11.8 87.1

RanInt_n240_ss – 78.84 9.5 59.4

RanInt_n480_ds 51.82 87.45 17.0 76.2

RanInt_n480_ss – 84.14 12.6 51.0

RanInt_n960_ds 51.09 91.39 24.5 110.6

RanInt_n960_ss – 88.78 17.8 71.8

RanReal_n010_ds 17.83 53.61 4.7 31.2

RanReal_n010_ss – 42.79 3.5 21.8

RanReal_n012_ds 27.78 65.44 6.1 48.4

RanReal_n012_ss – 55.33 4.5 30.6

RanReal_n030_ds 39.00 74.17 8.5 71.1

123



Annals of Operations Research (2024) 341:1247–1265 1263

Table 3 continued

Success rate Success rate Perturbation (no. it.)
Instance type Insertion [%] Swap [%] Weak Strong

RanReal_n030_ss – 69.35 6.5 56.4

RanReal_n060_ds 45.06 77.13 9.4 75.0

RanReal_n060_ss – 72.34 7.2 56.0

RanReal_n120_ds 46.86 78.76 10.1 74.5

RanReal_n120_ss – 74.30 7.8 51.4

RanReal_n240_ds 52.06 81.82 11.9 87.2

RanReal_n240_ss – 78.87 9.5 59.5

RanReal_n480_ds 51.68 87.49 17.0 76.4

RanReal_n480_ss – 84.14 12.6 51.0

RanReal_n960_ds 50.78 91.43 24.6 111.0

RanReal_n960_ss – 88.79 17.8 71.8

i.e. an improving insert/swap, the efficient ND implementation evaluates each block only if
the assignment to at least one of its groups has changed.

All three neighborhood implementations were compared in an extensive computational
study on the classical benchmark sets. The results show that the standard implementation is
superior for small instance sizes while the efficient ND implementation is superior for large
instance sizes. The ND implementation performed best for medium sized instances with
unequal group sizes. A reason for it is that the insertion neighborhood found only in around
half of the cases an improved solution. For the large instances the efficient ND implementation
could perform up to 160% more iterations in comparison to standard and up to 76% more
iterations in comparison to ND.

Our results lead to several directions for future research. First, the new neighborhood
implementation can be used for other grouping or clustering problems. These include asmen-
tioned in the introduction problems like the capacitated clustering problem or the capacitated
p-median problem as well as the ratio cut and normalized cut graph partitioning problem,
vehicle routing problems, or parallel machine scheduling (Yalaoui &Chu, 2002). Second, we
found that the insertion neighborhood has a success rate of only about 50% if both neighbor-
hoods, insertion and swap, are called alternately. Future research could evaluate other policies
to increase the neighborhoods’ success rates. Finally, future research can extend our approach
by using the matrices M1 and M2 to determine more than one promising insert/swap per
iteration. The matrices indicate the best insert/swap between two groups. As long as group
pairs are disjunct one could also realize additional neighborhoodmoves in the same iteration.
The best selection can be determined by a maximum weighted matching.

Funding Open Access funding enabled and organized by Projekt DEAL. No funding was received for con-
ducting this study.

Declaration

Conflict of interest The author has no Conflict of interest to declare that are relevant to the content of this
article.

123



1264 Annals of Operations Research (2024) 341:1247–1265

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Baker, B. M., & Benn, C. (2001). Assigning pupils to tutor groups in a comprehensive school. Journal of the
Operational Research Society, 52(6), 623–629.

Baker, K. R., & Powell, S. G. (2002).Methods for assigning students to groups: A study of alternative objective
functions. Journal of the Operational Research Society, 53, 397–404.

Batista, R. M., Mao, E., & Sussman, A. B. (2023). Keeping cash and revolving debt: Examining co-holding
in the field and in the lab. Available at SSRN 4558490

Beheshtian-Ardekani, M., & Mahmood, M. A. (1986). Education development and validation of a tool for
assigning students to groups for class projects. Decision Sciences, 17(1), 92–113.

Brimberg, J., Mladenović, N., & Urošević, D. (2015). Solving the maximally diverse grouping problem by
skewed general variable neighborhood search. Information Sciences, 295, 650–675.

Brusco,M. J., Cradit, J.D.,&Steinley,D. (2020).Combining diversity anddispersion criteria for anticlustering:
A bicriterion approach. British Journal of Mathematical and Statistical Psychology, 73(3), 375–396.

Chen, Y., Fan, Z. P., Ma, J., & Zeng, S. (2011). A hybrid grouping genetic algorithm for reviewer group
construction problem. Expert Systems with Applications, 38(3), 2401–2411.

Dias, T. G., &Borges, J. (2017). A new algorithm to create balanced teams promotingmore diversity.European
Journal of Engineering Education, 42(6), 1365–1377.

Fan, Z. P., Chen, Y., Ma, J., & Zeng, S. (2011). Erratum: A hybrid genetic algorithmic approach to the
maximally diverse grouping problem. Journal of the Operational Research Society, 62(7), 1423–1430.

Feo, T. A., & Khellaf, M. (1990). A class of bounded approximation algorithms for graph partitioning. Net-
works, 20(2), 181–195.

Gallego, M., Laguna, M., Martí, R., & Duarte, A. (2013). Tabu search with strategic oscillation for the
maximally diverse grouping problem. Journal of the Operational Research Society, 64(5), 724–734.

Lai, X., & Hao, J. K. (2016). Iterated maxima search for the maximally diverse grouping problem. European
Journal of Operational Research, 254(3), 780–800.

Lai, X., Hao, J. K., Fu, Z. H., & Yue, D. (2021). Neighborhood decomposition based variable neighborhood
search and tabu search for maximally diverse grouping. European Journal of Operational Research,
289(3), 1067–1086.

Lai, X., Hao, J. K., Fu, Z. H., & Yue, D. (2021). Neighborhood decomposition-driven variable neighborhood
search for capacitated clustering. Computers & Operations Research, 134, 105362.

Mingers, J.,&O’Brien, F.A. (1995). Creating student groupswith similar characteristics:A heuristic approach.
Omega, 23(3), 313–321.

Palubeckis, G. (2022). Metaheuristic approaches for ratio cut and normalized cut graph partitioning.Memetic
Computing, 14(3), 253–285.

Palubeckis, G., Karčiauskas, E., & Riškus, A. (2011). Comparative performance of three metaheuristic
approaches for the maximally diverse grouping problem. Information Technology and Control, 40(4),
277–285.

Palubeckis, G., Ostreika, A., & Rubliauskas, D. (2015). Maximally diverse grouping: An iterated tabu search
approach. Journal of the Operational Research Society, 66(4), 579–592.

Papenberg, M. (2024). K-plus anticlustering: An improved k-means criterion for maximizing between-group
similarity. British Journal of Mathematical and Statistical Psychology, 77(1), 80–102.

Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition data sets into equivalent parts. Psy-
chological Methods, 26(2), 161.

Pfeiffer, C., & Schulz, A. (2022). An alns algorithm for the static dial-a-ride problem with ride and waiting
time minimization. OR Spectrum, 44(1), 87–119.

Rodriguez, F. J., Lozano, M., García-Martínez, C., & González-Barrera, J. D. (2013). An artificial bee colony
algorithm for the maximally diverse grouping problem. Information Sciences, 230, 183–196.

Rubin, P. A., & Bai, L. (2015). Forming competitively balanced teams. IIE Transactions, 47(6), 620–633.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research (2024) 341:1247–1265 1265

Schulz, A. (2021). The balanced maximally diverse grouping problem with block constraints. European
Journal of Operational Research, 294(1), 42–53.

Schulz,A. (2022).Anewmixed-integer programming formulation for themaximally diverse grouping problem
with attribute values. Annals of Operations Research, 318(1), 501–530.

Schulz, A. (2023). The balanced maximally diverse grouping problem with attribute values. Discrete Applied
Mathematics, 335, 82–103.

Urošević, D. (2014). Variable neighborhood search for maximum diverse grouping problem. Yugoslav Journal
of Operations Research, 24(1), 21–33.

Weitz, R. R., & Lakshminarayanan, S. (1998). An empirical comparison of heuristic methods for creating
maximally diverse groups. Journal of the Operational Research Society, 49(6), 635–646.

Yalaoui, F., & Chu, C. (2002). Parallel machine scheduling to minimize total tardiness. International Journal
of Production Economics, 76(3), 265–279.

Yang, X., Cai, Z., Jin, T., Tang, Z., & Gao, S. (2022). A three-phase search approach with dynamic population
size for solving the maximally diverse grouping problem. European Journal of Operational Research,
302(3), 925–953.

Zheng, S., Lai, X., & Gong, W. (2021). Neighborhood decomposition based variable neighborhood search for
the capacitated p-median problem. In: 2021 China Automation Congress (CAC), IEEE, pp. 1101–1105

Zhou, Y., Kou, Y., & Zhou, M. (2023). Bilevel memetic search approach to the soft-clustered vehicle routing
problem. Transportation Science, 57(3), 701–716.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Efficient neighborhood evaluation for the maximally diverse grouping problem
	Abstract
	1 Introduction
	2 Implementation of neighborhoods
	2.1 Standard implementation
	2.2 Neighborhood decomposition implementation
	2.3 Efficient neighborhood decomposition implementation
	2.4 Comparison of the three implementations

	3 Variable neighborhood search framework
	4 Computational study
	5 Conclusion
	References




