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Abstract
In group decisions, achieving consensus is important, because it increases com-
mitment to the result. For cooperative groups, Combinatorial Multicriteria Accept-
ability Analysis (CMAA) is a group decision framework that can achieve consen-
sus efficiently. It is based on a novel Combinatorial Acceptability Entropy (CAE) 
consensus metric. As an output measure, the CAE metric is unique in its ability to 
identify the evaluations that have the greatest impact on consensus and to prevent 
premature consensus. This paper is intended to complement the original CMAA 
publication by providing additional insights into the CAE consensus metric. The 
design requirements for the CAE algorithm are presented, and it is shown how these 
requirements follow from the properties of cooperative decisions. The CAE-based 
consensus-building algorithm is contrasted both qualitatively and quantitatively 
with a representative example of the conventional input distance and input averaging 
approach to multi-criteria consensus-building. A simulation experiment illustrates 
the ability of the CAE-based algorithm to converge quickly to the correct decision as 
defined for cooperative decisions. The metric is able to meet a new, more stringent 
definition of hard consensus. The CAE approach highlights the need to distinguish 
between competitive and cooperative group decisions. Attention in the literature has 
been paid almost exclusively to the former type; the CAE approach demonstrates 
the greater efficiency and effectiveness that can be achieved with an approach that is 
designed specifically for the latter.
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1  Introduction

In a multi-criteria group decision, several decision-makers collaborate to select the 
most-preferred alternative according to a set of performance criteria. Consensus 
is important because it creates a higher level of commitment to the decision and 
increases the chances of success of its implementation (De Vreede et  al. 2013). 
Susskind et al. (1999) state: “When decision-makers’ preferences and concerns are 
considered, they are much more likely to actively participate in the implementation 
of the obtained solution.” For this reason, consensus measurement and consensus-
building are topics that have given rise to much research, as can be seen in the sur-
vey of Cai et al. (2023).

In this paper, we discuss the consensus metric that was introduced in conjunction 
with the Combinatorial Multicriteria Acceptability Analysis (CMAA) framework 
(Goers and Horton 2023a). We will refer to it as the Combinatorial Acceptability 
Entropy (CAE) metric. It is unique, in that it is not based on a similarity measure. 
Although it is an output metric, it enables a cost-minimizing consensus-building 
heuristic that can reach a high level of consensus with significantly fewer iterations 
than a typical input averaging and similarity based technique. In the first published 
case study using CMAA/CAE (Goers and Horton 2023b), a group of engineers 
reached a hard consensus on a product development decision with just eight clarifi-
cation steps. To the authors’ knowledge, CAE is the first output metric that makes it 
possible to identify the decision-maker inputs that have the greatest impact on con-
sensus and thereby provide a heuristic for optimizing the consensus-building itera-
tion. The motivation for this work is to provide some background information about 
the CAE metric and to compare and contrast its properties with those of a conven-
tional input consensus metric.

1.1 � Input and Output Consensus Metrics

Consensus measures can be divided into input and output metrics. These are also 
known as coincidence among preferences and coincidence among solutions, respec-
tively Herrera-Viedma et al. (2014). Input metrics measure the degree of similarity 
between the decision-makers’ evaluations (Del Moral et al. 2018), while output met-
rics measure the difference between their rankings. If the values are identical, the 
consensus is said to be hard; if the difference is small, but non-zero, the consensus 
is said to be soft (Pérez et al. 2018). Soft consensus is interpreted as ‘partial agree-
ment’ between the decision-makers (Zhang et al. 2019). Herrera-Viedma et al. pro-
vide an overview of soft consensus models (Herrera-Viedma et al. 2014). Kacprzyk 
and Fedrizzi (1988) were the first to point out that even in a ‘consensus-committed’ 
group, differences between decision-makers – for example between their value sys-
tems – may prevent hard consensus and a certain degree of soft consensus must be 
sought instead.

The most common type of input consensus metric is the similarity of the deci-
sion-makers’ judgements to their average value (List 2011; Jj et al. 2015; Liu and 
Li 2019). Other metrics are based on pairwise distances between judgements (Dong 
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et al. 2018) or on the variance of each set of judgements (Moral et al. 2017). Del 
Moral et al. (2018) compare different input-based distance metrics with an output 
metric and obtained significantly different results for each. Del Moral et al. (2018) 
study the effect of aggregation operators and consensus metrics on the level of con-
sensus and the speed of the consensus-building process. Tapia et al. (2023) study the 
Gini index as a dispersion-based, rather than distance-based consensus metric and 
conclude that it is appropriate for use in the MCGDM context. Tapia et al. (2022) 
show that the Theil entropy can be used as a consensus measure that behaves simi-
larly to a standard input distance metric. Zhang et al. (2019) balance individual and 
global consensus measures to reduce the adjustment distance and thereby reduce 
non-cooperative behavior during consensus-building.

Output consensus is more useful than input consensus, because it is the agree-
ment about the preferredness of alternatives which is ultimately of interest, not 
agreement about the individual inputs. Del Moral et al. (2018) remark that “[coinci-
dence among solutions] provides a more realistic measure of consensus”. Input con-
sensus is thus a means to an end, but not an end in itself. Nevertheless, output con-
sensus is seldom considered in the MCGDM literature. This is presumably because 
input metrics, which are computed from individual evaluations, provide clues which 
of these might be adjusted and in what manner. On the other hand, input adjustments 
with output metrics are limited to general instructions of the type: “If an alternative 
ranks lower than the group average then adjust the judgements to promote it, and if 
it ranks higher than the average then adjust the judgements to demote it” (Del Moral 
et al. 2018).

1.2 � Consensus‑building Processes

Often in practice, no attempt is made to build consensus. Instead, decision-maker 
evaluations are simply aggregated to average values (Bagoçius et al. 2014; Memari 
et  al. 2019; Gao et  al. 2020). In the case of AHP, the individual priority vectors, 
rather than the pairwise comparisons, may be averaged (Srdjevic et al. 2011). Some 
approaches apply weights to the decision-makers according to their expert-level 
(Ozer 2007), to their level of conformity (Asuquo et  al. 2019) or other objective 
attributes of their inputs (Srdjevic et al. 2011; Koksalmis and Kabak 2019).

Neglecting to build consensus carries the risk that the resulting decision is less 
than optimal, because extreme evaluations (which are obscured by averaging) may 
be indicators of important information that is unknown to the majority of the group.

Consensus-building in multi-criteria group decision-making is an iterative pro-
cess, in which decision-maker evaluations are successively adjusted until the value 
of the consensus metric reaches a pre-determined threshold. The structure of the 
process is shown in Fig. 1. Methods vary in their consensus measure (Step 1), the 
identification of the evaluations to be adjusted (Step 3) and the direction of adjust-
ment (Step 4). Zhang et  al. (2019) refer to the algorithms of steps 3 and 4 as the 
Identification Rule and Direction Rule, respectively.

Input-averaging methods attempt to improve the consensus measure by having 
the decision-makers adjust their inputs in the direction of the group average. In some 
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cases, they are invited or encouraged to adjust their evaluations in the required direc-
tion (Herrera-Viedma et al. 2002; Pérez et  al. 2018; Zhang et al. 2019; Dong and 
Saaty 2014), while in other cases, the adjustments may even be made by the algo-
rithm automatically without referring back to the decision-makers at all (Xu 2009; 
Pang et  al. 2017; Dong et  al. 2016; Palomares et  al. 2013; Lin et  al. 2022). The 
evaluations of decision-makers who refuse to adjust their input may be penalized 
(Chao et al. 2021; Dong et al. 2016), or even ignored entirely (Kacprzyk and Fed-
rizzi 1988).

Many studies assume that adjusting an evaluation may incur a political or psycho-
logical cost for the affected decision-makers, and several approaches model the cost 
of consensus-building and propose methods for its reduction. Zhang et  al. (2019) 
consider five different efficiency metrics and develop procedures to minimize them. 
Guo et al. (2023) present a ‘minimum adjustment cost’ consensus-building approach 
that takes the tolerance of each decision-maker towards changing their evaluations 
into account. Chao et al. (2022) simulate the efficiency of various consensus build-
ing approaches. Dong and Xu (2016) present a ‘minimum expert consensus model’ 
in order to reduce the number of times decision-makers are requested to adjust their 
judgements.

Other topics of importance concerning consensus-building are minority opin-
ions, extreme opinions and non-cooperative behavior. Amenta et  al. (2020) claim 
that extreme input values distort the overall group preference and propose an algo-
rithm to de-emphasize their effects. Dong et al. (2016) propose a method to miti-
gate the negative effects of non-cooperative behavior during consensus-building. 
Xu et al. (2015) consider minority opinions within the decision-making group; their 
method increases the weight of minority decision-makers who are able to convince 
the majority of the validity of their arguments and also reduces the weight of deci-
sion-makers who are deemed to be non-cooperative. Gao and Zhang (2022) also 
reduce decision-maker weights if they are discovered to be behaving non-cooper-
atively. Due to the rise in social media, interest in decision-making in large groups 
has grown, and Labella et al. 2018 study the scalability of established consensus-
building methods.

Fig. 1   Structure of a consensus-building process
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1.3 � Contributions

The main contributions of this work are:

•	 Demonstrate that the CAE metric is an effective measure of the quality of output 
consensus.

•	 Compare and contrast the CAE metric with the conventional input distance-
based approach.

•	 Demonstrate that, when used in conjunction with CMAA consensus-building, 
CAE can correctly identify consensus on the most-preferred alternative, even 
though the conventional metric is still far from reaching its termination criterion.

•	 Demonstrate that, when used in conjunction with conventional input averaging, 
CAE can correctly identify a lack of consensus on the most-preferred alternative, 
even though the conventional metric has reached its termination criterion.

The rest of this paper is organized as follows. Section 2 introduces some notation 
and terminology and discusses two important distinctions in MCGDM: cooperative 
versus competitive groups and input consensus versus output consensus. In Sect. 3, 
we discuss combinatorial acceptability as a measure of the preferredness of an alter-
native, the use of its entropy as a consensus metric and the resulting consensus-
building process. In Sect. 4, we use a simple example to illustrate CAE-based con-
sensus-building, and we present simulation results that compare the new approach 
with an input averaging consensus-building method. Finally, some concluding 
remarks are made in Sect. 5.

2 � Preliminaries

2.1 � Notation and Terminology

Throughout this paper, alternatives are denoted by ai, 1 ≤ i ≤ m , criteria by 
cj, 1 ≤ j ≤ n and decision-makers by DMk, 1 ≤ k ≤ d . Subjective performance 
evaluations of alternatives with respect to criteria are referred to as judgements, and 
expressions of criteria importance are preferences. A multicriteria decision is com-
posed of a set of judgement tasks and a set of preference tasks. The overall perfor-
mance of an alternative will be referred to as its preferredness. The alternative with 
the greatest preferredness is the most-preferred alternative. In this paper, we con-
sider the task of determining the most-preferred alternative. The algorithms can be 
easily extended, if a complete ranking is desired.

The judgement by decision-maker DMk of alternative ai with respect to criterion 
cj is denoted by �k(j, i) , and the preference by decision-maker DMk for criterion cj by 
�k(j) . When two or more decision-makers submit different judgements for a particu-
lar judgement task, a judgement discrepancy is created, and when they submit differ-
ent preferences for a particular preference task, a preference discrepancy is created. 
For simplicity of presentation, we will only consider judgement discrepancies in this 
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paper. The algorithms can be easily extended to include preference discrepancies, 
which are treated in an analogous manner.

A mental model is a “mechanism whereby humans generate descriptions of sys-
tem purpose and form, explanations of system functioning and observed system 
states, and predictions of future system states” (Rouse and Morris 1984). If all mem-
bers of a group have the same mental model of the relevant aspects of an issue, 
the model is said to be shared; if their private models differ, it is unshared. In the 
context of group decision-making, a shared mental model will lead to a unanimous 
evaluation.

2.2 � Cooperative and Competitive Groups

In a group decision, initial judgements and preferences will inevitably differ. Briggs 
et al. (2005) give five causes of discrepancies: 

1.	 People associate different concepts with the same words or symbols, or they use 
different words or symbols for the same concepts.

2.	 Individuals base their evaluations on different assumptions.
3.	 There are asymmetries in the information that individuals hold.
4.	 Decision-makers have mutually exclusive individual goals.
5.	 Decision-makers have different tastes.

These causes can be used to characterize two types of group decision:

Competitive decision. This type contains entries 4 and 5 in the list. Competitive 
decisions occur when discrepancies are caused by incompatible goals or by dif-
ferences in fundamental beliefs. Fundamental beliefs may be based on personal 
taste or political positions, or they may simply be prejudices.
Cooperative decision. This category is composed of entries 1, 2 and 3 in the list. 
Discrepancies are caused (only) by differences in information and interpretation 
held by the decision-makers.

In competitive decisions, discrepancies cannot be resolved simply by an exchange 
of information, because decision-makers have conflicting agendas or irreconcilable 
beliefs. Instead, achieving consensus requires compromise, which can impose a 
psychological or political cost on the decision-makers. Furthermore, input consen-
sus may not reflect actual agreement among the decision-makers: they adjust their 
judgements and preferences in order to reduce the numerical distance between them, 
but their opinions remain unchanged.

Several features that have been proposed for MCGDM methods were designed 
with competitive decisions in mind. These include decision-maker weighting, the 
assumption that making adjustments incurs costs, and, most importantly, promot-
ing the group average as the desired consensus value. The first two features are 
not needed in cooperative decisions, and the third is counter-productive, since the 
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mental model behind an extreme judgement might be the one that convinces the 
whole group when shared.

By contrast, in a cooperative decision, decision-makers resolve discrepancies 
quickly, once they have heard all the relevant information and arguments. Examples 
of groups that match or come close to this ideal are physicians on a tumor board 
selecting a treatment for a cancer patient (Specchia et al. 2020) and a team of engi-
neers and designers deciding on the next set of features to be added to a product.

For a cooperative group, a correct decision exists; it is the one that all decision-
makers will agree on once they have created a shared understanding of the relevant 
issues (De Vreede et  al. 2013). Keeney (2009) describes the cooperative consen-
sus-building process as follows: “The collaborative decision analysis process allows 
each group member to incorporate his or her knowledge, information, and judge-
ment into the model. This makes explicit any differences about knowledge, infor-
mation, and judgements held by the group members. Once clarified, many of these 
differences may be eliminated in productive discussions.”

In practice, decisions may be of mixed type: some judgement or preference 
tasks may be cooperative while others are competitive. The former can be resolved 
quickly and uncontroversially by creating a shared understanding, while the latter 
will require negotiation and compromise.

2.3 � Input Consensus and Output Consensus

Input consensus measures the degree of similarity between the inputs of the deci-
sion-makers. A typical input consensus metric is the average of the distances 
between each decision-maker’s judgement and the corresponding group mean:

where �(j, i) is the average of the �k(j, i) over all k.
Output consensus measures the degree of similarity between the results proposed 

by each decision-maker. The consensus degree can then be measured as the sum of 
the distance between each decision-maker’s ranking and the group average ranking:

where rk(i) is the rank determined by decision-maker DMk for alternative ai , and r(i) 
is the corresponding average rank over all decision-makers. Alternatively, Kendall’s 
coefficient of concordance or Spearman’s rank correlation coefficient may be used.

Clearly, input consensus is a sufficient condition for output consensus: if all deci-
sion-maker inputs coincide, then their rankings of the alternatives will also coincide. 
However, input consensus is not a necessary condition for output consensus; deci-
sion-makers may agree on the ranking of the alternatives, even though their inputs 
differ significantly.

(1)CMI =
1

m ⋅ n ⋅ d

n∑

j=1

m∑

i=1

d∑

k=1

|�k(j, i) − �(j, i)| ,

(2)CMO =
1

m ⋅ d

m∑

i=1

d∑

k=1

|rk(i) − r(i)| ,
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Figure  2 (left) shows a minimally sized example of this phenomenon with 
m = n = d = 2 . The decision model is Simple Additive Weighting (Kaliszewski and 
Podkopaev 2016), the criteria weights are both 0.5, and the range of permissible 
judgement values is [0, 1]. All judgements by decision-maker DM1 are at the high 
end of the range, and all judgements by decision-maker DM2 are at the low end. 
Both decision-makers prefer a1 over a2 , and the metric CMO would signal a hard 
output consensus. However, an input similarity measure would return a very poor 
degree of consensus; for example, the input averaging consensus index of Eq. (1) 
gives CMI = 0.35 (from the range [0, 0.5]).

A second problem with input consensus is that it may fail to detect disunity 
between the decision-makers about the decision result. In Fig. 2 (right), both deci-
sion-makers submit judgements of similar size, resulting in CMI = 0.05 , which rep-
resents a high level of soft consensus. (Zhang et al. terminate the consensus-building 
process at CMI = 0.1 (Zhang et  al. 2019).) However, decision-maker DM1 clearly 
prefers alternative a1 , while DM2 prefers a2 , which an output metric such as Eq. (2) 
will correctly characterize as a low level of consensus.

3 � The CAE Consensus Model

3.1 � Design Considerations

The combinatorial acceptability entropy consensus model was developed as a result 
of the following observation:

Observation 1  In a cooperative decision, all decision-makers will submit the same 
judgement �(j, i) or preference �(j) , when their mental models for it have been 
shared.

The agreed value resulting from the shared mental model may correspond to one 
of the submitted ones, or it may be a new value that results from a synthesis of dif-
ferent arguments.

From Observation 1, the following three corollaries can be derived:

Corollary 1  In a cooperative decision, all decision-makers will agree on the pre-
ferredness of each alternative, once they have shared their mental models for each 

Fig. 2   Comparisons of input averaging and acceptability entropy. Left: strong output consensus but weak 
input consensus; Right: strong input consensus but weak output consensus
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judgement and preference. In this sense, a cooperative decision has a unique ‘cor-
rect’ solution.

The correct solution is predicated on the knowledge available to the decision-
makers at the time the decision is made (Kahneman 2002). It does not imply abso-
lute correctness in the sense of an oracle.

Corollary 2  In a cooperative decision, any private mental model might turn out to be 
decisive when it is shared.

From this follows that all judgements and preferences are potentially equally 
important and should be treated as such.

Corollary 3  In a cooperative decision, any consensus-building process that requires 
decision-makers to modify their inputs towards a particular value (such as a group 
mean) introduces a bias.

This means that a decision method that prescribes adjustment corrections may 
lead to an incorrect solution in the sense of Corollary 1.

From these Corollaries follow three design requirements for a consensus-building 
algorithm: it must be able to produce the correct decision in the sense of Corollary 
1, from which it follows that it must be unbiased in the sense of Corollary 3 and 
assign equal importance to each judgement or preference. From these requirements 
follows that the method will be able to pass the ‘Unique Argument Test’ (Horton and 
Goers 2021): If there is a clinching argument for a judgement or preference that is 
known to only one member of the group, then the group decision method must – in 
principle – be able to produce that judgement or preference as a unanimous result.

3.2 � Combinatorial Acceptability as a Measure of Preferredness

The CAE consensus metric is based on the assumption that any combination of 
judgements and preferences might be the one that remains when all mental mod-
els have been shared and the corresponding discrepancies resolved. Therefore, all 
decision-maker inputs are equally valid, and every combination of them, or instance, 
should, in principle, be taken into consideration when computing the preferredness 
of each alternative.

The rank r acceptability br
i
 of alternative ai is the proportion of instances for 

which ai achieves rank r. Some decision models can return multiple alternatives on 
the same rank, resulting in 

∑
i b

r
i
> 1 . In this case, the values are normalized to a 

probability vector. The concept of rank acceptability was introduced by Lahdelma 
and Salminen (Lahdelma and Salminen 2001) in the context of Stochastic Multicri-
teria Acceptability Analysis, where it was computed using samples from continuous 
distributions representing uncertainty in the inputs.

The acceptability acci of alternative ai is a measure of its preferredness. It is a 
function of its rank acceptabilities. One such function is the linear combination
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where the coefficients �r are chosen to satisfy �1 ≥ �2 … ≥ �m . One possibility are 
the inverse weights �r = 1∕r (Lahdelma and Salminen 2001). Since this paper is 
concerned with the identification of the most-preferred alternative only, we can use 
the simplest approach:

We thus have acci = b1
i
 , and we can use the terms ‘acceptability’ and ‘rank-1 accept-

ability’ interchangeably.
Figure 3 illustrates the acceptability computation. Instances of the decision prob-

lem are formed by combining decision-maker inputs. Each instance is passed to the 
chosen decision method, which returns a ranking of the alternatives for that instance.

Two sets of counter variables are required. The first records for each alternative ai 
and ranking position r the number of instances in which ai attains rank r. After nor-
malization, these values are input into Eq. (3) to obtain the acceptabilities of each 
alternative.

The second set has cardinality n × m × d . It contains a counter for each alternative 
and decision-maker input in each discrepancy and records the number of instances 
in which alternative ai is most-preferred when the discrepancy at (cj, ai) is resolved 
to �k(j, i) . These represent the contributions of each individual decision-maker input 
to the acceptability of each alternative and are referred to current judgement accept-
abilities. They are also used to compute the proportion of instances for which each 
alternative would become most-preferred if the corresponding input were to be 
selected in the next step. These are referred to as potential judgement acceptabili-
ties. When preference discrepancies are present, current preference acceptabilities 
and potential preference acceptabilities are defined analogously.

The number of instances generated by a decision can be extremely large. In 
such cases, Monte Carlo simulation can be used instead of complete enumeration 
of the instance space. 10,000 random instances are required to obtain a 95% confi-
dence interval half-width of 0.01 for each rank acceptability value, which provides 

(3)acci =

m∑

r=1

�r ⋅ b
r
i
,

(4)�r =

{
1, if r = 1

0 otherwise
.

Fig. 3   Computation of the combinatorial acceptabilities
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sufficient accuracy in practice (Goers and Horton 2023b). The computation time 
to analyse 100,000 instances is less than one second on a notebook computer and 
therefore does not present an obstacle in practice.

During the generation of the instances, repeated input values are only considered 
once. For example, if three decision-makers submit the judgements {1, 1, 3} , the 
algorithm treats them as the set {1, 3} when generating the instances. This is a con-
sequence of Corollary 2: input values should be treated equally.

Rank acceptabilities can also be interpreted probabilistically; br
i
 is the probability 

that alternative ai will achieve rank r, if it is assumed that discrepancies are resolved 
randomly, where each judgement or preference in a discrepancy is equally likely to 
be chosen by the group.

The acceptability computation is independent of the decision method used; it 
simply generates combinations of the inputs required by the decision method and 
uses the rankings that it produces.

3.3 � Acceptability Entropy as a Consensus Metric

The idea behind the CAE consensus metric is to measure the similarity of the vector 
of acceptabilities to a standard unit vector. This is achieved using the information 
entropy h:

where p is a probability vector. Entropy is a measure of the uncertainty in a discrete 
random variable (Shannon 1948). The maximum value hmax = log2(pi) is obtained 
when the pi are equal. Its minimum value is 0, which is obtained when pi∗ = 1 for 
some i∗ and all other pi are 0. Entropy is a measure of the difference between a given 
probability vector and a standard unit vector. It is this property that makes it suit-
able as an output consensus metric, when the pi represent the preferredness of the 
alternatives.

By substituting the acceptabilities acci into Eq. (5), h is the current entropy in the 
decision for the most-preferred alternative. This is a measure of the degree to which 
the acceptability of one alternative dominates that of the others; a value h ≪ 1 indi-
cates that the acceptability of one alternative is significantly greater than that of any 
of the others. Substituting the potential acceptabilities for a given decision-maker 
input �k(j, i) into Eq. (5) gives the potential (judgement) entropy ĥ(𝜆k(j, i)) for that 
input. This shows to what degree the acceptability of one alternative would domi-
nate, if that resolution were to be chosen.

Figure 4 shows six probability vectors sorted from left to right according to their 
entropies, which are equally spaced from 2.32 down to 0.1. The value 2.32 is the 
maximum possible entropy for a vector with five elements. It is achieved when all 
elements of the vector have the same value and are therefore least suited to identify a 
most-preferred alternative. On the right, the vector with entropy 0.1 is almost indis-
tinguishable from the standard unit vector (0, 0, 0, 1, 0), which would be achieved at 
h = 0.

(5)h = −
∑

i

pi ⋅ log2(pi) ,
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The entropy metric has a high sensitivity for large h values: the step from 
h = 2.32 to h = 1.88 marks the transition from indistinguishable acceptabilities 
to a clear favorite. By contrast, the same-sized entropy decrement from h = 0.56 
to h = 0.1 marks only a small perceived difference in the acceptabilities. Figure 4 
suggests that, if the vectors represent rank-1 acceptabilities, a threshold of h < 1.0 
is sufficient to declare a very good soft consensus on the most-preferred alterna-
tive. At h = 0.1 , we have p4 = 0.99 , so the probability of a different alternative 
becoming most-preferred if the remaining discrepancies were to be resolved ran-
domly is only 1%. Since the maximum possible value for the entropy hmax grows 
slowly with the number of alternatives, a threshold of h < 0.3 ⋅ hmax is recom-
mended for the general case.

In Fig. 2 (right), the rank-1 acceptabilities are b1
1
= b1

2
= 0.5 , since both alter-

natives are most-preferred in eight of the 16 instances. Accordingly, the current 
entropy of this acceptability vector has the maximum possible value of h = 1.0 , 
indicating the lowest possible degree of consensus.

Figure  2 (left) shows a more interesting situation. The rank-1 acceptabilities 
are b1

1
= 11∕16 and b1

2
= 5∕16 , since 11 of the 16 possible combinations of inputs 

yield a1 as the most-preferred alternative, and 5 yield a2 . The current entropy is 
h = 0.9 (in the range 0 ≤ h ≤ 1 ), which suggests that these acceptabilities do not 
provide a reliable recommendation for the most-preferred alternative. This result 
may seem counter-intuitive, because both decision-makers individually prefer 
alternative a1 over a2 , and a typical output metric such as Eq. (2) would report 
a hard consensus. However, the assumptions on which the CAE metric is based 
shows that this conclusion might be premature. If decision-maker DM2 had the 
more convincing arguments regarding the performance of a1 with respect to both 
criteria, and DM1 had better arguments concerning a2 , then a2 would become 
the most-preferred alternative. Schulz-Hardt and Mojzisch call the tendency of 
groups to (incorrectly) agree on an alternative before all arguments have been 
considered premature consensus (Schulz-Hardt and Mojzisch 2012). The abil-
ity to identify input combinations for which each alternative might become 

Fig. 4   Entropies of six different acceptability vectors
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most-preferred (or indeed achieve any given rank) is an important feature of the 
CAE consensus metric.

The entropy of the acceptabilities is an output consensus metric. However, its 
interpretation differs from that of classical metrics, and Eq. (2) is not applicable. 
Instead of ‘coincidence among solutions’, i.e., the degree of similarity between the 
decision-makers’ individual rankings, the CAE metric measures the degree to which 
the entire set of instances generated by the inputs produces the same most-preferred 
alternative. In this sense, soft consensus may be interpreted as ‘partial agreement’. 
Hard consensus implies not only that all decision-makers prefer the same alterna-
tive, but also that all combinations of their inputs do so as well. It is therefore a more 
stringent requirement.

The potential entropies make the following consensus-building heuristic possible 
(with reference to the steps in Fig. 1): 

1.	 Compute the potential entropies for each available resolution in each discrepancy.
2.	 Use h < 0.3 ⋅ hmax for a ‘very firm’ consensus or h = 0 for a hard consensus.
3.	 Identify the discrepancy containing the lowest potential entropy. All decision-

makers are involved in its resolution.
4.	 This step is empty: the algorithm does not prescribe an adjustment direction, and 

the decision-makers are free to agree on a unanimous value.

The identification rule at Step 3 is a heuristic for minimizing the overall cost of 
the consensus iteration. It will usually (but not always Goers and Horton (2023a)) 
choose the shortest path to consensus. Ideally, the shared mental model will lead to 
the entropy-optimal resolution at each step, because it improves the consensus met-
ric by the greatest amount. Other resolutions will cause the entropy to decrease by 
a smaller amount or even to increase. If the decision-makers are unable to agree on 
a resolution, the discrepancy becomes unavailable for future consideration and the 
algorithm returns to Step 3. Each failed resolution increases the number of iterations 
needed to achieve consensus by one. Non-entropy-optimal resolutions may (but do 
not necessarily) increase the number of steps.

In the case of a cooperative decision, the agreement on a unanimous value in Step 
4 is the result of the shared mental model. In the case of a competitive decision, it 
will require negotiation and/or compromise.

Table 1 shows a summary of the principal differences between the CAE/CMAA 
algorithm and conventional input distance/input-averaging methods.

4 � Numerical Examples and Comparisons

4.1 � Illustration of the Consensus‑building Process

This section contains an illustration of the CAE-based consensus-building process, 
which is described in detail in (Goers and Horton 2023a). A synthetic decision 
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problem is used, which is constructed solely for illustrative purposes. For simplic-
ity of presentation, a minimally sized problem with m = n = d = 2 is used, and the 
criteria have equal weights. Performance values are in the range [0, 1]. The decision 
model is Simple Additive Weighting (Kaliszewski and Podkopaev 2016): alternative 
scores are the scalar product of the criteria weight vector and the corresponding vec-
tor of performance values.

Figure 5 shows the first step of the consensus-building process. The initial deci-
sion-maker input is shown in the table ‘Judgements’. Each pair of curly brackets 
contains the judgements by the two decision-makers for a particular (cj, ai) pair. 
This {DM1 , DM2 } arrangement of the values in curly brackets is continued in the 

Table 1   Comparison of consensus metrics and consensus-building approaches

Attribute CAE/CMAA Input distance/input averaging

Target decision type Cooperative Competitive
Type of consensus metric Output Input
Interpretation of outlying judge-

ments
Can signal important information Misrepresent the group opinion

Decision method is applied to ... Multiple combinations of inputs Average of inputs
Preferredness of alternatives Strength of support (accept-

ability)
According to decision model

Basis for consensus Shared understanding Numerical compromise
Consensus metric Entropy of the acceptabilities Similarity between inputs
Meaning of hard consensus All instances yield the same 

most-preferred alternative
Coincidence of judgements and 

preferences
Consensus cost metric Number of iterations Various (#Iterations, #adjusted 

alternatives, total adjustment, 
...)

Identification rule Minimize potential entropy Minimize cost
Direction rule None Towards group average

Fig. 5   First consensus-building step for the example decision
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following tables. There are discrepancies at all four locations, giving a total of 
24 = 16 instances. Eight instances return a1 as the preferred alternative and eight 
return a2 . The resulting rank-1 acceptabilities are therefore b1

1
= b1

2
= 8∕16 = 0.5 . 

Both alternatives are equally preferred, the consensus is minimal, and the current 
entropy is correspondingly maximal at h = 1.0.

The potential judgement acceptabilities show the proportion of instances for 
which each alternative would be preferred if each resolution were to be applied. 
For example, resolving the discrepancy at (c2, a2) to the value 0.2 proposed by DM2 
would increase the acceptability of a1 to the potential acceptability 0.63 and reduce 
the acceptability of a2 to the potential acceptability 0.38.

The potential entropies are computed from the potential acceptabilities result-
ing from each resolution. The lowest value of 0.54 would be obtained by resolving 
the discrepancy at (c1, a1) either to 0.9 or to 0.2, so this discrepancy is passed to 
the decision-makers for resolution. After sharing their mental models of the perfor-
mance of alternative a1 with respect to criterion c1 , the decision-makers agree on a 
compromise judgement of 0.8, which was chosen arbitrarily for this example.

Figure  6 shows the second step of the consensus-building process. The judge-
ment discrepancy at (c1, a1) has been replaced by the resolved value of 0.8, improv-
ing the current entropy to h = 0.76 . This is slightly worse than the entropy of 0.54 
that would have been attained by resolution to either of the initial judgements. The 
entries at (c1, a1) in the other tables are now undefined, because the discrepancy no 
longer exists. Eight instances remain, of which seven return a1 as preferred alterna-
tive, and one returns a2 . Resolving to DM2 ’s input at both (c2, a1) and (c2, a2) would 
lead to hard consensus, with potential acceptabilities of 1.0 for a1 and 0.0 for a2 , and 
a corresponding potential entropy of ĥ(𝜆2(c2, a1)) = ĥ(𝜆2(c2, a2)) = 0.0 . The deci-
sion-makers resolve the discrepancy at ( c2, a2 ) to the entropy-minimizing choice 0.2.

Figure  7 shows the final situation after Step 2. Two discrepancies have been 
resolved, and two are unresolved. Four instances remain, which all yield a1 as 
the preferred alternative. The two remaining discrepancies can safely be ignored, 
because no resolution would change the most-preferred alternative.

Fig. 6   Second consensus-building step for the example decision
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4.2 � Illustration of Convergence Speed

The second example is used to demonstrate the speed of convergence that the 
CAE-based consensus-building algorithm can achieve. Table  2 shows a group 
decision with m = n = 6 and d = 3 . The criteria weights wj are fixed. The deci-
sion-maker judgements yield 26 trivalent discrepancies, 8 bivalent discrepancies 
and two unanimous judgements, which generate 326 ⋅ 28 ⋅ 12 > 6.51E14 instances. 
The decision was analysed using Monte Carlo simulation with 10,000 random 
instances. The initial rank-1 acceptabilities b1

i
 are (0.39, 0.12, 0.02, 0.45, 0.02, 0.

02). Their (current) entropy is 1.75 (in the range [0, 2.58]) indicating that a most-
preferred alternative should not be chosen on the basis of this data.

Despite the very large number of combinations of inputs, only three resolu-
tions are needed to achieve hard consensus; these are shown in bold typeface 
at locations (c1, a4) , (c3, a4) and (c4, a4) . Resolving the discrepancy at location 
(c1, a4) to 8 reduces the current entropy to h = 1.03 . Next resolving the discrep-
ancy at (c3, a4) to 7 yields h = 0.31 and b1

4
= 0.96 , which is already a very strong 

recommendation for a4 as most-preferred alternative. After the third resolution 
at location (c4, a4) to 8, consensus is achieved, with b1

4
= 1.0 and current entropy 

h = 0.0 . More than 3.6E13 instances remain, and it can be easily verified that 
these all produce alternative a4 as most-preferred. The 31 remaining discrepan-
cies therefore have no effect on the most-preferred alternative and can be ignored. 
If rank acceptabilities for r > 1 are needed, the consensus-building process can be 
continued for r = 2, 3,… in turn.

Fig. 7   Result for the example decision

Table 2   Decision problem with three steps to consensus

wj a
1

a
2

a
3

a
4

a
5

a
6

c
1

6 {5, 3, 6} {9, 2, 7} {8, 3, 3} {2, 2, 8} {3, 3, 3} {7, 7, 4}
c
2

5 {3, 7, 3} {0, 6, 0} {0, 5, 2} {8, 8, 8} {1, 5, 7} {7, 5, 0}
c
3

4 {5, 9, 7} {2, 7, 8} {8, 1, 5} {7, 5, 0} {2, 8, 9} {5, 2, 1}
c
4

3 {8, 8, 7} {6, 3, 1} {1, 0, 4} {6, 8, 1} {7, 4, 0} {3, 6, 2}
c
5

2 {8, 6, 4} {5, 1, 7} {9, 3, 2} {7, 7, 6} {1, 9, 4} {2, 8, 4}
c
6

1 {4, 9, 6} {5, 5, 3} {6, 9, 3} {9, 6, 5} {9, 1, 2} {9, 5, 2}
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4.3 � Comparison of Convergence Behavior

A simulation study was carried out to compare the convergence behavior of the 
CAE-based consensus-building algorithm with a representative input averaging 
method. For the latter, the MACRP 3 algorithm of Zhang et  al. (2019) was cho-
sen. This is the input averaging algorithm that most closely approximates CMAA 
in structure, in that in each iteration it selects one judgement task and presents it to 
all decision-makers for consideration. Referring to Fig. 1, MACRP 3 is specified as 
follows: 

1.	 The consensus metric is the average distance between each decision-maker judge-
ment and its corresponding group average according to Eq. (1).

2.	 Zhang et al. (2019) use a threshold value of CMI ≤ 0.1.
3.	 The identification rule selects the discrepancy (j∗, i∗) containing the judgement 

that is most distant from the group average: 

 All decision-makers are required to adjust their judgements.
4.	 The direction rule requires that the adjusted judgement for decision-maker DMk 

should be between �k(j, i) and �(j∗, i∗) , i.e., between no adjustment at all and the 
group average for the selected judgement.

The MACRP 3 algorithm does not consider preference discrepancies, and it assumes 
that all judgements are in the range [0,1].

MACRP 3 and CMAA were applied to four differently sized decisions using 
Monte Carlo simulation with 1,000 randomly generated decisions for each prob-
lem size. The number of criteria and decision-makers were set to n = d = 5 , and 
the number of alternatives m was tested for 5, 10, 15 and 20. Criteria weights were 
equal, and performance judgements were uniformly distributed on the interval [0, 1]. 
Each method was simulated until its consensus measure reached its threshold. These 
were h ≤ 2% and CMI ≤ 20% of their maximum possible values, respectively. For 
MACRP 3, this corresponds to CMI ≤ 0.1 in each case, because the maximum value 
is independent of m. For CMAA, the absolute value of the threshold varies with m, 
but h < 0.1 is satisfied in all four cases. The value 0 represents hard consensus for 
both metrics. Optimal resolutions were applied in both simulations: the maximum 
adjustment to �(j∗, i∗) was used in MACRP 3, and entropy-minimizing resolutions 
were used in CMAA.

Figure 8 shows the results obtained with CMAA. The shading of the curves rep-
resents the different problem dimensions from m = 5 (lightest) to m = 20 (darkest). 
Round markers represent the current entropy h (primary vertical axis), and square 
markers represent CMI (secondary vertical axis). The horizontal dashed line at 
CMI = 20% marks the threshold at which Zhang et al. terminate the MACRP 3 itera-
tion (Zhang et al. 2019). The axes have been scaled so that the initial consensus met-
rics are approximately co-located.

(j∗, i∗) = argmax
i,j,k

(|�k(j, i) − �(j, i)|) .
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On average, CMAA reaches its threshold in four steps for m = 5 and m = 10 , 
and in five steps for m = 15 and m = 20 . In all four cases, more than 90% of the 
instances return the same preferred alternative. The number of steps needed to 
reach the consensus threshold is very low and essentially independent of the 
problem size. By contrast, by the time CMAA had identified the most-preferred 
alternative at step 5, CMI still showed a weak level of consensus and thus failed to 
recognize that the most-preferred alternative had been identified.

Figure  9 shows analogous results using the MACRP 3 consensus-building 
algorithm. The same notation is used as in Fig. 8. As m increases from 5 to 20, 
the number of steps required to reach a soft consensus at CMI ≤ 20% grows lin-
early from 11 to 40, and the CAE metric improves even more slowly. In other 
words, when the input distance-based iteration terminates, the agreement between 
the decision-makers regarding the most-preferred alternative has hardly improved 
at all.

Fig. 8   Consensus processes for CMAA for different decision dimensions

Fig. 9   Consensus processes for MACRP 3 for different decision dimensions



1265On the Combinatorial Acceptability Entropy Consensus Metric…

5 � Conclusions

5.1 � Summary

In this paper, we discuss the CAE consensus metric introduced by Goers and 
Horton (2023a), and we provide insights into its motivation and design objec-
tives. The new consensus measure can be used in conjunction with the CMAA 
framework to convert any single-user multi-criteria decision method into a group 
method without the need for aggregation.

The new metric reveals all possible most-preferred alternatives. This feature 
can prevent the decision-makers from arriving at a premature consensus when a 
conventional output metric signals a unique most-preferred alternative.

Although it is an output measure, the CAE metric enables a cost-minimizing 
consensus-building heuristic. The heuristic is unbiased, in the sense that it does 
not prescribe the direction of input adjustments. In a cooperative decision, it 
achieves consensus not only in the sense that the differences between decision-
maker inputs and outputs are reduced, but also in the sense that it promotes a 
shared understanding of the relevant issues.

In a Monte Carlo simulation study, the CAE-based consensus-building method 
was compared to a conventional approach based on an input distance metric and 
input-averaging and was found to be significantly more efficient. The combinato-
rial framework achieves hard consensus in a small number of steps that is almost 
independent of the number of alternatives. It was found that the CAE-based 
algorithm can correctly identify consensus about the most-preferred alternative, 
whereas the conventional metric fails to. When used in conjunction with conven-
tional consensus-building using input averaging, CAE can correctly identify lack 
of consensus about the most-preferred alternative, even though the conventional 
metric has reached its termination threshold.

5.2 � Outlook

This paper focused on the identification of the most-preferred alternative. The 
CAE metric and CMAA consensus-building approach can be easily extended, if 
the top-n alternatives or a complete ranking is needed instead. The consensus-
building algorithm can be applied to each rank sequentially, as the established 
consensus of already-treated ranks is not affected by the processing of the subse-
quent ones.

The Identification Rule used here is optimistic, in the sense that it selects the 
discrepancy that contains the lowest entropy resolution, even though there is no 
guarantee that it will be selected by the decision-makers. The effect of alterna-
tive Identification Rules on consensus-building efficiency should be studied, for 
example selecting the discrepancy with the lowest expected entropy.

The CAE-based Identification Rule only looks one step ahead to the next set of 
potential entropies. It is also possible to look ahead several resolution steps. This 
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might also contribute to a reduction in the number of consensus-building steps 
needed.

The CMAA algorithm was designed for use in cooperative decisions. However, 
it is also applicable in competitive situations. In this case, a direction rule could 
be introduced that encourages decision-makers to adjust their inputs towards a 
particular value (such as the mean of the inputs). This would introduce a bias 
(such as with any aggregation-based approach), but it would still offer the advan-
tages of the combinatorial approach. Furthermore, convergence speed might be 
improved by introducing artificial inputs to the discrepancies that represent com-
promise values. A facilitator could then select a discrepancy for clarification that 
has the lowest entropy for the compromise resolution over the one with the abso-
lute lowest entropy, if the latter required agreement on an extreme judgement or 
preference.
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