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Abstract
Proactive analysis of patient pathways helps healthcare providers anticipate treatment-related risks, identify outcomes, and
allocate resources. Machine learning (ML) can leverage a patient’s complete health history to make informed decisions about
future events. However, previous work has mostly relied on so-called black-box models, which are unintelligible to humans,
making it difficult for clinicians to apply such models. Our work introduces PatWay-Net, an ML framework designed for
interpretable predictions of admission to the intensive care unit (ICU) for patients with symptoms of sepsis. We propose
a novel type of recurrent neural network and combine it with multi-layer perceptrons to process the patient pathways and
produce predictive yet interpretable results. We demonstrate its utility through a comprehensive dashboard that visualizes
patient health trajectories, predictive outcomes, and associated risks. Our evaluation includes both predictive performance –
where PatWay-Net outperforms standard models such as decision trees, random forests, and gradient-boosted decision trees –
and clinical utility, validated through structured interviews with clinicians. By providing improved predictive accuracy along
with interpretable and actionable insights, PatWay-Net serves as a valuable tool for healthcare decision support in the critical
case of patients with symptoms of sepsis.

Keywords Patient pathway · Process prediction · Sepsis · Interpretability · Interpretable machine learning ·
Interpretation plots · Deep learning

Highlights

• This article proposes PatWay-Net, a novelmachine learn-
ing framework for predicting critical pathways of patients
with sepsis symptoms. Our framework retains patient
pathway data in its natural form by combining non-linear
multi-layer perceptrons (MLPs) for each static feature
(i.e., static module) and an interpretable LSTM (iLSTM)
cell for sequential features (i.e., sequential module).

• Our results reveal that our approach outperforms com-
monly used interpretable machine learning models in
our case, such as decision tree and logistic regression
by 10.4% and 7.3% in terms of the area under receiver
operating characteristic curve, respectively, and non-
interpretablemodels, such as randomforest andXGBoost
by 4.4% and 1.2%, respectively.

B Sandra Zilker
sandra.zilker@th-nuernberg.de

Extended author information available on the last page of the article

• PatWay-Net provides decision support to clinicians and
hospital management in predicting the pathway of a
patient accurately while remaining interpretable and can,
therefore, help to improve hospital resource manage-
ment.

• To enhance the model’s interpretability and utility for
clinical decision-makers, we have developed a compre-
hensive dashboard that visualizes patient health trajecto-
ries, predictive outcomes, and associated risks, facilitat-
ing informed clinical and resource allocation decisions.

• The clinical utility of our framework is supported by
structured interviews with independent clinicians, con-
firming its interpretability and actionable insights for
healthcare decision support.

1 Introduction

As healthcare organizations face increasing demands and
limited resources, the efficiency and compliance of health-
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care processes are becoming increasingly important [1]. The
pandemic has served as a stress test for these processes,
revealing several weaknesses, such as gaps in resource allo-
cation, inefficiencies in patient triage, and limitations in
data-driven decision-making [2, 3]. As a remedy, advanced
decision support systems based on modern machine learning
(ML)models can be employed to improve the performance of
healthcare processes and provide proactive insights for clin-
ical decision-makers [3–5]. By using large amounts of data
that are ubiquitously generated in today’s healthcare infor-
mation systems, such models can learn non-trivial patterns
from historical patient trajectories.

A rich source of historical patient data is represented by
so-called patient pathways, a timeline of each patient that
describes the different departments, measurements, treat-
ments, and transitions that a patient has gone through during
a clinical stay [6]. This information can be used tomake accu-
rate predictions about future health outcomes, informing the
allocation of resources or the focus of medical profession-
als on specific patients [e.g., 6–9]. In this way, healthcare
institutions can derive recommendations for managing and
controlling patient pathways early and identify risks and
issues before they emerge.

Such recommendations are especially crucial in the con-
text of sepsis symptoms, a complex and time-sensitive
condition that demands rapid identification and intervention
to improve patient outcomes [10]. By leveraging patient path-
way data, healthcare institutions can not only derive timely
recommendations tomanage and control disease progression
but also identify risks and issues, such as early signs of sep-
sis, before they escalate [11]. Consequently, early detection
and treatment of sepsis, facilitated by the analysis of patient
pathways, can significantly reduce a patient’s deterioration.

ML models represent a promising choice for predicting
patient pathways as they can rapidly process large amounts of
patient data and find latent patterns that help make informed
decisions about patient outcomes. ML models come in var-
ious forms and facets. For critical applications, clinical
decision-makers typically favor interpretable1 ML models
like decision trees, linear and logistic regression, and gener-
alized additive models (GAMs) [e.g., 12–17]. They have the
advantage of providing a clear understanding of how predic-
tions are derived, which is crucial for making informed and
accountable decisions. At the same time, however, such inter-
pretable models have the limitation that they cannot handle
sequential data structures in their natural form, limiting their
prediction capabilities for time-varying patient data.

1 We make a strict distinction between the terms “interpretation”
and “explanation”. Interpretation is derived from models designed
to be intrinsically interpretable, whereas an explanation can be cre-
ated by applying a post-hoc analytical explainable-artificial-intelligence
approach to a black-box model (cf. Section 3).

In contrast, there is an increasing interest in using more
advanced and flexible models, such as bagged and boosted
decision trees [e.g., 6, 8, 9, 18] or deep neural networks
(DNNs) [e.g., 19–21]. DNNs are of particular interest
for predicting patient pathways because of their ability to
automatically discover and learn complex patterns in high-
dimensional data [22]. This ability also allows them to
capture hidden patterns in sequential data structures that are
difficult to identify with traditional ML models. However,
DNNs generally have the limitation that they lack model
interpretability because their internal decision logic is not
directly comprehensible by humans [4, 23]. This renders
them black boxes formodel developers and decision-makers,
which is why they are unsuitable for critical healthcare appli-
cations.

To address the limitations of both research streams above,
we propose PatWay-Net, an innovative ML framework that
is designed for both high predictive accuracy and intrin-
sic interpretability in modeling pathways from patients with
symptoms of sepsis. With this framework, we leverage the
principle of interpretable ML models while harnessing the
flexibility of a DNN architecture. More specifically, our con-
tributions are as follows:

• PatWay-Net is designed to constrain feature interactions,
ensuring full model interpretability across the entire
DNN architecture.

• The architecture blends non-linear multi-layer percep-
trons (MLPs) for static features with an interpretable
LSTM (iLSTM) cell for sequential features, preserving
the natural data structure of patient pathways.

• Acomprehensivedashboard supports PatWay-Net’s appli-
cability by enabling clinical decision-makers to interpret
PatWay-Net’s predictive outcomes and associated risks
easily.

• Structured interviews with independent medical experts
rigorously validatePatWay-Net’s utility and interpretabil-
ity, attesting to its real-world healthcare applicability.

We evaluate our proposed model using a real-life data
set from an emergency department of a Dutch hospital,
containing health records of patients with sepsis symptoms
[11]. During their stay, patients go through different activi-
ties (e.g., changing departments, receiving medications) and
develop different trajectories of severity, resulting in indi-
vidual patient pathways. The data set contains a rich set of
static and sequential features, such as socio-demographic
data, blood measurements, medical treatments, and diag-
noses,which provide a valuable basis for predicting the future
behavior of individual pathways. Specifically, we use this
information to predict whether a patient will be admitted
to the intensive care unit (ICU), which constitutes a highly
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Fig. 1 Illustration of underlying
setting. Multiple tasks must be
performed when a patient is
transferred to a new department
or receives a new treatment.
Thus, early prediction of the
various steps a patient goes
through during their hospital
stay leads to more efficient
operations

relevant prediction task for clinical professionals and admin-
istrative staff to support proactive resource allocation [9,
12, 24]. By comparing different types of ML models, we
show that PatWay-Net outperforms commonly used inter-
pretable models, such as decision trees or logistic regression,
and even non-interpretable models, such as random forest
and XGBoost, in terms of area under the receiver operating
characteristic curve (AUCROC ) and F1-score. We then use
PatWay-Net for interpreting both static and sequential fea-
tures of the real-world setting to demonstrate its applicability
for healthcare decision support.

Our paper is organized as follows: Section 2 motivates
the task of predicting critical patient pathways from a
clinical point of view. Section 3 presents relevant back-
ground and related work. Section 4 introduces our proposed
ML framework for interpretable patient pathway prediction,
PatWay-Net. Section 5 outlines the evaluation and applica-
tion results based on the real-life use case for predicting ICU
admission for patients with symptoms of sepsis. Section 6
summarizes our work by drawing implications for research
and practice, reflecting on limitations, and providing an out-
look for future work.

2 Clinical relevance

2.1 Patient pathways and clinical decision support

Healthcare processes are generally concerned with all activ-
ities related to diagnosing, treating, and preventing diseases

to improve well-being [25]. This includes patient-related
activities organized in patient pathways and administrative
activities that support clinical tasks [26]. Patient pathways
are directly linked to a patient’s diagnostic–therapeutic cycle
and, therefore, do not constitute strictly standardized pro-
cesses. However, accurate prediction of patient pathways is
crucial for optimizing resource allocation, improving patient
outcomes, and facilitating timely clinical interventions, thus
making it an essential tool for enhancing healthcare effi-
ciency and effectiveness.

Figure 1 illustrates a patient’s hospital stay at multiple
departments. In each department, various tasks must be per-
formed to ensure a safe andwell-organized patient transition.
In this example, the patient was transferred from the emer-
gency room to the coronary care unit. Depending on the
patient’s condition, the patient may be transferred to the ICU
or the normal care unit (NCU). Therefore, both departments
must be prepared for patients. By using a decision support
system that accurately predicts the next station, resources for
one of the departments can be saved.

Technically, a patient visiting the hospital produces a
patient pathway. A set of multiple patient pathways is then
stored as an event log. Table 1 presents an example rep-
resentation of an event log. Here, one visit of a patient is
represented by a patient pathway (ID = 1). In the beginning,
the patient registered at the emergency room at 2024-02-20
12:11:01. Also, the gender of the patient is registered asmale
(M). In the next patient activity, the blood pressure is mea-
sured at 180. Later, medication is administered before the

Table 1 Example event log with
a single patient pathway
following the scenario in Fig. 1

Patient
pathway ID

Patient activity Timestamp Blood pressure Gender

1 Emergency room registration 2024-02-20 12:11:01 - M

1 Measure blood pressure 2024-02-20 13:11:27 180 M

1 Give medication 2024-02-20 14:30:27 - M

1 Measure blood pressure 2024-02-20 15:45:55 195 M

1 ICU Admission 2024-02-20 16:12:02 - M
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blood pressure is measured for a second time at 195. The
next activity then describes the patient being transferred to
the ICU.

As shown inTable 1, the patient information in an event log
is not structured to be easily processed by prediction mod-
els. Therefore, careful processing of static and sequential
patient information is necessary to predict following patient
activities accurately. In addition, experts generally have to
ensure that the model learns meaningful patterns from the
data, which constrains the model to be intrinsically inter-
pretable. Both points are addressed in this work.

In the development of decision support for healthcare
applications, the involvement ofmedical experts is inevitable
[27]. Their insights can ensure that the proposed approach
aligns with the complexities and problems of clinical prac-
tice. In this work, a comprehensive dashboard serves as a
translational interface, bridging the gap between high-level
computational outputs and real-world clinical decisions. It
provides a demonstration of a model’s potential for real-
world applicability, ensuring that its capabilities are both
understandable and useful to healthcare practitioners.

2.2 The case of sepsis

Sepsis results from the body’s overwhelming response to an
infection and can be life-threatening [28]. Therefore, sep-
sis is a time-sensitive issue that needs clinicians’ attention as
early as possible to enable the best possible outcome for each
patient [10]. Based on this, it is critical to predict this outcome
during an ongoing patient pathway to provide timely recom-
mendations for controlling the disease’s progression [11, 29].
However, the importance of sepsis lies not only in the urgency
of its treatment but also in its complex and variable nature
that can be detected in the resulting patient pathways [30].
While its symptoms and, thus, underlying medical indica-
tors, can progress or change rapidly, treatment needs to be
adapted dynamically which influences the patient pathway
[29]. Ultimately, in the context of developing interpretable
ML models for predicting patient pathways, the focus on
patients with sepsis symptoms is crucial, given the impera-
tive to enhance clinical decision-making, resource allocation,
and ultimately, patient outcomes in this high-stakes domain.

3 Methodological background and related
work

ML models are increasingly being integrated into clinical
applications to assist healthcare professionals in diagnosing
diseases, predicting patient outcomes, and making treatment
decisions [7–9]. While the predictive power of these models
is often decisive, it is also essential that they provide com-
prehensible outputs due to the critical nature of healthcare

decisions. Comprehensible outputs promote transparency,
reduce the risk of unintended biases, and ensure the relia-
bility of the model results, ultimately contributing to safer
and more effective patient care [31–33].

From a methodological point of view, there are generally
two distinct streams of research dealing with comprehending
ML models. Table 2 provides an overview of both streams
with exemplary approaches, which can be further classified
according to the type of input features they support.

3.1 Explainable machine learning

The first stream of research refers to the concept of explain-
able ML. It promotes the use of flexible ML models with
high predictive power, which subsequently require post-hoc
explanation methods to convert their complex mathemati-
cal functions into easier-to-understand explanations [23, 32].
Common representatives of flexibleMLmodels for static fea-
tures are bagged and boosted decision trees such as random
forest [42] and XGBoost [43]. Such models excel at han-
dling static tabular data because they can capture complex
interactions between features, allowing them to achieve high
predictive performance [6, 8, 9, 18]. In this work, we include
both models as strong baseline approaches in our evaluation
section. However, the construction of high-level interactions
creates a lack of transparency because the individual feature
effects are no longer understandable by humans and therefore
require additional explanation methods.

For sequential features, the field has increasingly focused
on DNNs in recent years [22]. Their multi-layered network
architecture allows them to automatically discover and learn
complex patterns in high-dimensional data structures that are
relevant for the prediction task [4, 5]. Of particular interest
are recurrent neural networks and long short-term memory
(LSTM) networks because they can capture temporal pat-
terns and therefore offer superior predictive performance
compared to traditional approaches in dynamic and complex
healthcare process environments [e.g., 19, 20]. Furthermore,
such network architectures have the advantage that they
can be modified to capture static and sequential features
simultaneously [e.g., 21, 41]. Nevertheless, the nested,multi-
layered structure ofDNNs also creates a lack of transparency,
because it is not directly observable what information in the
input data drives the models to generate their prediction, ren-
dering them black boxes for model users. In our work, we
adopt the overall idea of an LSTM network [44] but propose
a modification to ensure full model transparency.

To turn the internal decision logic of black-box models
into comprehensible results, the field of explainable ML has
proposed a variety of post-hoc explanation methods [6, 45].
Some of these methods are model-specific. That is, they are
designed for specific types of models and derive explana-
tions by examining internal model structures and parameters
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Table 2 Positioning of our work with respect to related fields from a methodological perspective

Explainable machine learning Interpretable machine learning

Definition Refers to methods that aim to simplify (approximate) the
decision logic of ML models that are not directly under-
standable to human users (known as black-box models).

Refers toMLmodels that are designed to be inherently under-
standable to human users.

Main focus Encourages the use of flexible ML models with high
predictive power that require post-hoc explanations to
convert complex mathematical functions into a more
understandable form for clinical model validation.

Encourages the use of ML models that ensure a complete
understanding and validation of the decision logic for fully
transparent clinical decision support without the need for
additional explanation methods.

Static features Involves a scenario where a flexible black-boxMLmodel
is provided with a fixed-length feature vector (e.g., age,
weight, vital signs of a patient), and the model’s response
is analyzed after prediction using model-specific expla-
nation methods such as layer-wise relevance propagation
[e.g., 6] or model-agnostic explanation methods such as
Shapley additive explanations [e.g., 18].

Interpretable ML models limit interactions between features
to reduce complexity, allowing for comprehensive validation
of the model’s performance. Typical interpretable ML mod-
els are linear models [e.g., 12, 14, 15], decision trees [e.g.,
17], or generalized additive models [e.g., 13, 16], as well as
typical risk charts, such as the well-known simplified acute
physiology score (SAPS) at the intensive care unit [34].

Sequential features A black-box sequential ML model is provided with tem-
poral patient data (e.g., a trend of vital signs over a period),
and the model’s response is analyzed post-hoc [e.g., 31,
35, 36]. Typical sequential ML models with high pre-
dictive power are recurrent neural networks like long
short-term memory (LSTM) networks [e.g., 19, 20].

An interpretable ML model that processes temporal patient
data with full transparency to medical professionals. Inter-
pretable models allow for complete validation of model
behavior. Examples include probabilistic finite automatons
[e.g., 37], hidden Markov models [e.g., 38], and certain
advances in neural networks [e.g., 39, 40].

Static + sequential
features

A black-box model consists of two parts: One that can
process static features and one that can process sequential
features [e.g., 21, 41]. The information about the patient
from the two sources is then combined to compute the
model output.

Our research: A fully interpretable ML model that can pro-
cess both static and time-varying patient data.

(e.g., layer-wise relevance propagation for DNNs [6, 36]).
Other methods are model-agnostic and, therefore, broadly
applicable to different ML models. One of the most widely
used model-agnostic methods is Shapley additive explana-
tions (SHAP) [46]. SHAP uses a game-theoretic approach
to explain the output of any ML model. It has been applied,
for example, to mortality prediction in ICUs [31] and to pro-
cess prediction models based on general event logs [35]. An
overview of existing post-hoc explanation methods is given
by Loh et al. [32]. Overall, post-hoc explanation methods
have the advantage of providing a high degree of flexibil-
ity while encouraging the use of models with high predictive
performance. Furthermore, they can lead to valuable insights,
especially for exploratory analysis purposes [47].

However, post-hoc explanation methods must also be
viewed with caution. They generally attempt to reconstruct
the cause of a generated prediction by approximation. As
a result, they can never fully explain the entire black-box
model without losing information, which may lead to unre-
liable results. Similarly, explanations are provided only after
a model’s prediction, making it impossible to fully validate
the functioning of the model for all inputs before model
deployment. This issue becomes particularly critical when
the distribution of input data changes over time, and the
model may need to handle input feature ranges that were
not encountered during its training phase. Overall, such defi-

ciencies can lead to misleading conclusions and potentially
harmful results [33, 48]. For this reason, we refrain from
pursuing this general research stream in this paper.

3.2 Interpretable machine learning

The second stream of research refers to the field of inter-
pretable ML, which promotes the development of intrinsi-
cally interpretable models [23, 49]. In this research stream,
the structure of an ML model is constrained, such that the
resultingmodel allows for a better understanding of how pre-
dictions are generated. Traditional representatives are linear
models and decision trees, which are easy to comprehend
and therefore often remain the preferred choice in critical
healthcare applications [e.g., 12, 14, 15, 17]. At the same
time, however, they are generally too restricted to capture
more complex relationships.

A more advanced class of intrinsically interpretable ML
models areGAMs [23, 49]. InGAMs, input features aremod-
eled independently in a non-linear way to generate univariate
shape functions that can capture arbitrary patterns but remain
fully interpretable. The resulting shape functions for each
feature are summed up afterward to produce the final model
output. Thus, GAMs include additive model constraints yet
drop the linearity constraint of a simple logistic/ linear regres-
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sion model. This structure is simply interpretable as it allows
users to verify the importance of each feature. That is, the fit-
ted shape functions directly reveal how each feature affects
the predicted output without the need for additional explana-
tion.

In recent years, a wide variety of GAM variants have been
proposed that can learn specific types of shape functions
depending on the underlying learning procedure, for exam-
ple, based on splines [50], decision trees [51, 52], or even
neural networks [53–55]. However, all of these approaches
have in common that they primarily focus on processing
static features and, therefore, cannot handle sequential data
structures in their natural form [49]. As a consequence, their
application in the healthcare domain is usually limited to
preprocessed features in a static and aggregated form [e.g.,
13, 16]. In this work, we adopt the general idea of GAMs to
capture non-linear effects of individual features and propa-
gate this idea not only to static features but also to sequential
features to obtain a powerful yet fully interpretable model.

Apart from that, there are also interpretable ML models
that are specifically designed to capture sequential patterns.
Traditional approaches include probabilistic finite automa-
tons [37] or hidden Markov models [38]. Such models have
the drawback that they require explicit knowledge about the
form of an underlying process model [56], which is chal-
lenging to discover or reconstruct from complex event data in
dynamic healthcare environments [11, 57]. Therefore, recent
approaches increasingly pursue the idea of constraining the
structure of DNN architectures to obtainmodels that can pro-
cess sequential features in their natural formwhile remaining
intrinsically interpretable. To date, however, littlework exists
in this area and current approaches often do not distinguish
between sequential and static features [e.g., 39, 40].

In summary, only a limited amount of approaches deal
with the development of intrinsically interpretablemodels for
transparent patient pathway prediction. In particular, it lacks
an innovative approach that can capture non-linear relation-
ships in the form of flexible shape functions for static as well
as sequential patient features while providing comprehensi-
ble model outputs that visualize the different feature effects
for transparent decision support. Likewise, to the best of our
knowledge, none of the existing approaches can automati-
cally detect and integrate (sequential) feature interactions to
control themodel’s flexibility for improved predictive perfor-
mance. As a remedy, we propose PatWay-Net, a novel ML
framework that combines all these aspects within a single
approach.

4 PatWay-Net

This section describes PatWay-Net, an interpretable ML
framework building on a DNN model with an architecture

that transfers the ideas of GAMs into a novel, intrinsi-
cally interpretable LSTM module for sequential features,
and intrinsically interpretable MLPs, for static features.2 We
apply this proposed DNN architecture of PatWay-Net to the
problem of patient pathway prediction but want to empha-
size that our proposed architecture is universal and can be
applied to a variety of problem sets that combine sequential
and static data (see also Appendix D for evaluations on other
use cases).

In the following, we first describe the underlying problem
of patient pathway prediction (Section 4.1), before mathe-
matically describing the architecture (Section 4.2) and the
training process (Section 4.3) of PatWay-Net’s DNN model.
Subsequently, we describe the different interpretation plots
that can be derived from the intrinsically interpretable archi-
tectural design of PatWay-Net’s DNN model (Section 4.4).

4.1 Problem statement

An ML model f ∈ F should map patient pathways to a
target of interest, with F denoting the so-called hypothesis
space. Patient pathways comprise two sets of information,
one set describes static information about the patient, and
one set describes dynamic or sequential information about
the patient.

Definition 1 (Patient Pathways) Mathematically, the infor-
mation that describes a set of patients can be expressed as a
tuple

(
Xstatic, Xseq

)
, (1)

where Xstatic ∈ R
s×q is the static patient data, and Xseq ∈

R
s×T ×p is the sequential patient data. The dimension s

denotes the number of patient pathways, q indicates the num-
ber of static variables that describe a patient (e.g., one-time
diagnoses or gender), and T and p describe the number of
time steps that we recorded for the sequential information
and the number of features tracked in each time step, respec-
tively. A single patient’s patient pathway i is denoted by the
static information X(i)

static and the sequential data X(i)
seq .

The objective of this work is to find a prediction model
f ∈ F that maps the static information Xstatic and sequen-
tial information Xseq about patients to target outcomes y =
(y1, . . . , ys), that is

f : (
Xstatic, Xseq

) → y. (2)

The target outcomes y can thereby represent various patient
activities in the future, such as ICU admission.

2 For reproducibility, all developed and used material can be found
here: https://github.com/fau-is/patway-net
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A timely prediction of the future occurrence of an activity
is crucial, as it can prevent the worsening of the patient’s con-
dition and initiate successful treatment by medical experts.
Therefore, a prediction model should not only make predic-
tions once the full patient pathway is present but shouldmake
predictions already at earlier stages, that is, with less infor-
mation included in the patient pathways. Thus, we define the
patient pathway prefix in the following.

Definition 2 (Patient Pathway Prefix) Given patient pathway
i with static information X(i)

static ∈ R
q and sequential infor-

mation X(i)
seq ∈ R

T ×p, the patient pathway prefix of length t∗
is defined as a tuple

(
X(i)

static, X
(i)
seq [: t∗]

)
, (3)

where X(i)
seq [: t∗] ∈ R

t∗×p denotes the first t∗ time steps of
the patient’s sequential information.

4.2 Architecture of the DNNmodel

The proposed interpretable architecture of PatWay-Net is
shown in Fig. 2. It contains a static, a sequential, and a con-
nection module. While the first two modules naturally model
the event log data, the connection module maps the outputs
of these modules onto predictions of patient activities (in our
case ICU admission).

4.2.1 Static module

The static module resembles a GAM [50], yet combines the
underlying idea with the power of DNNs [54]. By making
this architectural choice, we allow our proposed model to
remain fully transparent. That is, the effect of each input fea-
ture on the model output can be fully assessed after training

the model. This is achieved by mapping the input features
separately to output values (i.e., there are no interactions
between input features). This separation naturally constrains
this DNN but, on the other hand, allows the visual inspection
of the effect each static feature has on the network’s output.
Consequently, although our proposed model is derived from
the field of DNNs, we make careful choices about our archi-
tecture to allow for a fully transparent white-box model (in
contrast to the black-box behavior of general DNNs).

Mathematically, for q static input features Xstatic[1],
. . . ,Xstatic[q], the static module maps the input features to
outputs o1, . . . , oq through

ol = f l
M L P (Xstatic[l]), with l ∈ {1, . . . , q}, (4)

where each f l
M L P denotes a neural network and ol ∈ R indi-

cates a single scalar. The neural networks of the architecture
are trained in individual sub-modules so that the weights of
the different neural networks are trained independently from
each other (cf. the boxes around the neural networks of the
static module in Fig. 2). With this architecture, we can later
compute the outputs ol for various input values for each neu-
ral network f l

M L P and, thereby, visually inspect the effect
that the input has on the output.

4.2.2 Sequential module

The sequential module extends the previous idea of our static
module to a sequential setting. For this, we propose a novel
interpretable LSTM (iLSTM) layer to encode the values of
each sequential feature Xseq [ j] into a vector h j

t ∈ R
m , with

j ∈ {1, 2, . . . , p}, where m denotes the hidden size for a sin-
gle sequential feature in the iLSTM cell. To ensure intrinsic
interpretability of the iLSTM, each sequential feature has its
corridor throughout the gates and state vectors of the origi-

Fig. 2 Illustration of the
architecture of PatWay-Net’s
DNN model consisting of a
sequential, a static, and a
connection module. Here, two
static and two sequential
features are shown, which run
through their modules and are
then connected
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nal LSTM [44], without the possibility to interact with any
other feature (similar to the previous static module, in which
each static feature went through a separate neural network).
Such feature corridors in the iLSTM layer have a specific
size, defined by the internal element size of the correspond-
ing sequential feature m, defining how much vector space is
reserved for the sequential feature value computation, from
the gates to the hidden state.

Similar to a vanilla LSTM [44], the iLSTM uses a forget
gate, an input gate, and an output gate, as well as a candidate
state, resulting in the vectors ft , it ,ot , and c̃t , respectively. The
information of the sequence is then stored in a cell state ct ,
and a hidden stateht . Technically, this restriction, to not allow
uncontrolled interactions, is realized by multiplying weight
matrices with masking matrices. A masking matrix includes
only 0 or 1 values. If an element of a weight matrix should be
considered, the corresponding element in themaskingmatrix
is set to 1, else it has the value 0. Mathematically, the iLSTM
can be formalized as

ft = σ
(
xt ⊗ (U f ∗ Um) + ht ⊗ (V f ∗ Vm) + b f

)
, (5)

it = σ (xt ⊗ (Ui ∗ Um) + ht ⊗ (Vi ∗ Vm) + bi ) , (6)

ot = σ (xt ⊗ (Uo ∗ Um) + ht ⊗ (Vo ∗ Vm) + bo) , (7)

c̃t = tanh (xt ⊗ (Uc̃ ∗ Um)+ht ⊗ (Vc̃ ∗ Vm)+bc̃) , (8)

ct+1 = ft ∗ ct + it ∗ c̃t , (9)

ht+1 = ot ∗ tanh (ct+1) . (10)

Here, σ denotes the sigmoid activation, ⊗ is the matrix
multiplication, and ∗ denotes the element-wise multiplica-
tion. Um and Vm are masking matrices that ensure that the
individual features are computed independently using val-
ues from their corridor and, therefore, omitting interactions
between sequential features. By contrast, a traditional, non-
interpretable LSTM [44] does not use suchmaskingmatrices
and, therefore, allows any interaction between features for
which values are to be computed. As output, the iLSTM
layer returns for each sequential feature Xseq [ j] the vector
h j ∈ R

m , that is, the last hidden state of the iLSTM for the
sequential feature j . Let f j

i L ST M ∈ R → R
m denote this

function, which maps the j-th sequential feature onto the
corresponding hidden state, and let fi L ST M ∈ R

p → R
p∗m

denote the function that maps all sequential features to the
complete hidden state vector.

Beyond single sequential features, the iLSTM layer can
encode values of a pairwise sequential feature interaction
( j, k) in (1, . . . , p) × (1, . . . , p) into a vector h j,k ∈ R

m .
Mathematically, the iLSTM computes such interactions as
an additional sequential feature that does not interact with
other features. The interactions to be used in PatWay-Net can
be chosen manually or can be detected automatically using
heuristics. We describe such a heuristic in Appendix A.

4.2.3 Connection module

In the connection module, the information from the static
module and the sequential module are then combined to
compute the estimations ŷ for the target outcomes y. Mathe-
matically, we use the hidden outcome values o1, . . . , oq for
static features, the hidden state values h1, . . . ,hp for sequen-
tial features, and potentially h j,k for interacting sequential
features j, k ∈ (1, . . . , p) × (1, . . . , p). These values are
then concatenated and mapped onto the output neuron to
provide the estimations ŷ. The mapping is performed using
a single feed-forward layer with sigmoid activation, as the
prediction of patient activities (in our case ICU admission)
is defined as a binary classification task.

4.3 Parameter optimization of the DNNmodel

All parameters from the threemodules are combined into one
DNN model in which these are optimized simultaneously.
Let fPatWay-Net denote this DNN model with parameters β.
Depending on the task, the fit of fPatWay-Net to the target
outcomes y is thenmeasured by a loss functionL. In our real-
world data application, we use binary cross-entropy, as ICU
admission represents a binary decision.Overall,weminimize
the empirical risk, that is

β∗ = argmin
β

s∑

i=1

T∑

t=1

L
(

fPatWay-Net

(
X(i)

static,X
(i)
seq [: t]; β

)
, yi

)
, (11)

where we iterate over the patient pathways s and over the
prefixes for each patient pathway T .

We address this optimization problem using an adap-
tive moment estimation (Adam) optimizer [58] with default
hyperparameters. For every epoch, we perform a mini-batch
gradient descent to optimize the internal parameters batch-
wise efficiently.

4.4 Interpretations of the DNNmodel

Based on the architectural design of PatWay-Net’s DNN
model, different interpretation plots can be created, allowing
an interpretation of how the model input affects the model
output. The interpretation plots are part of a comprehensive
dashboard, that serves as a decision support tool for clini-
cal decision-makers (cf. Section 5.4). Table 3 provides an
overview of the four interpretation plots that we propose in
this paper, including plot names, the underlying equations,
and short descriptions of the plots’ purposes.

In the real-life data application that follows, we prefer
the designation (medical) indicator over feature because it
is more comprehensible for decision-makers in the medical
domain. Accordingly, we name our four interpretation plots
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Table 3 Overview of
PatWay-Net’s interpretation
plots

Plot name Underlying equation Description

Medical indicator importance Equations 12 and 13 This plot shows the medical indicator
importance on the x-axis and the medical
indicator name on the y-axis for all static
and sequential data. It provides a quick
overview of which medical indicators are
most relevant for the model.

Medical indicator shape Equations 12 and 13 This plot shows themedical indicator value
on the x-axis and the effect onmodel output
on the y-axis for static (Eq. 12) or sequen-
tial (Eq. 13) data. It allows medical experts
to get a detailed look into the model behav-
ior for single points in time.

Medical indicator transition Equation 14 This plot shows the effect that a transition
of a sequential medical indicator has from
a value at time step t −1 to another value at
time step t . It depicts the change of effect
on the z-axis. Thereby, medical experts can
observe how changes in indicator values
over time (e.g., vital signs) affect themodel.

Medical indicator development Equation 15 This plot shows time steps on the x-axis and
respective effect values on the y-axis for
sequential data. It provides the trajectory
as well as the effect that each value had on
the model.

medical indicator importance,medical indicator shape,med-
ical indicator transition, and medical indicator development
(see Table 3). The importance, shape, and transition plots
are based on so-called shape functions [52]. Traditionally,
shape functions are only computed for static features [e.g.,
13, 16, 51–55]. However, one of our paper’s contributions is
that we also extend their idea to sequential features to obtain
interpretable model results for sequential features.

In general, shape functions describe the effect on the
model output for various values of a single indicator. Thus,
these plots answer the question, “How does the model out-
put change for various values of a medical indicator?”. For
a static indicator l, the shape function represents the function
described by f l

M L P and the corresponding parameters in the
connection module, that is, it shows values Xstatic[ j] for the
l-th static indicator on the x-axis and

f l
M L P (Xstatic[l]), (12)

weighted by the parameters in the connection module, on the
y-axis. For sequential data j , the iLSTM layer can be illus-
trated similarly, with the x-axis showing the values X(i)

seq [ j, t]
of a sequential indicator j for an individual pathway and a
single time step t , and the y-axis, showing the corresponding
effects on the model output via

f j
i L ST M (X(i)

seq [ j, : t]), (13)

weighted by the parameters in the connection module. This
plot can also be extended to interactions of two sequential
indicators with a three-dimensional plot, in which the color
denotes the interaction effect on the model output, as exem-
plarily shown in Appendix A.We call this plot the sequential
medical indicator interaction plot. Note that the fi L ST M layer
preserves the history up to time step t . In our case, we are
showing the effect of sequential data, depending on the his-
tory of a patient’s pathway.

An indicator importance can be derived by computing the
area under the shape functions, that is, under the plots that
are described in Eqs. 12 and 13. Thereby, PatWay-Net allows
computing the overall importance of static and sequential
indicators, answering the question, “Which medical indica-
tors are the most important?”.

A medical indicator transition illustrates the change of
effect on the model output for sequential data from time step
t − 1 to t . This answers the question, “How does the model
output change from the previous to the current time step?”.
To answer this question, for a given sequential indicator j
with the sequence X(i)

seq [ j], we calculate the difference in the
effect in the sequential module between the time steps t and
t − 1, that is, we calculate

f j
i L ST M (X(i)

seq [ j, t]) − f j
i L ST M (X(i)

seq [ j, t − 1]), (14)

weighted by the parameters in the connection module. To
illustrate all combinations of changes in the value from the
last to the current time step, alongwith the change of effect on
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Table 4 Summary statistics of
the numerical medical indicators
in our real-life data set

Medical indicator Obs. Mean SD Percentile
5% 25% 50% 75% 95%

Age 724 72.12 15.48 40.0 65.0 75.0 85.0 90.0

CRP 2,388 111.66 83.53 12.0 44.0 94.0 156.0 276.0

LacticAcid 992 1.98 1.49 0.7 1.1 1.6 2.3 4.7

Leukocytes 2,525 13.24 16.87 2.8 7.6 11.0 15.1 24.9

Note: Obs. = Number of observations, SD = Standard deviation

the model output, we use a three-dimensional plot, in which
the z-axis (the color) describes an increase or decrease in the
change of the effect.

Lastly, a medical indicator development describes the
trajectory of an indicator over time. Due to the design of
PatWay-Net’s DNN model, we can illustrate the sequential
effect over time. That is, the model output can be tracked for
each time step of the patient pathway’s sequential informa-
tion and plotted afterward. This plot is specifically useful to
answer the question, “What effect did a sequential medical
indicator of a given patient pathway have on the model output
over time?”. As such, we adopt the general idea ofWeinzierl
et al. [36] to provide transparency at the local instance level.
However, instead of using a post-hoc explanationmethod,we
can directly plot the interpretable results from our sequential
and connection module. Mathematically, this can be derived
for a sequenceX(i)

seq [: t], t = 1, . . . , T of indicator j through
a plot, showing the time steps 1, . . . , T on the x-axis, and,
on the y-axis,

fi L ST M (X(i)
seq [ j, : t]), with t = 1, . . . , T , (15)

weighted by a scalar value from the connection module.

5 Evaluation and application of PatWay-Net

We evaluate PatWay-Net and demonstrate its applicability
using a real-world use case fromaDutch hospital.After intro-
ducing the use case (Section 5.1) and describing the baseline
models (Section 5.2), we perform a three-step evaluation
procedure. First, we evaluate the predictive performance of
PatWay-Net’s intrinsically interpretableDNNmodel through
a benchmark study (Section 5.3). Second, we evaluate the
meaningfulness of PatWay-Net’s interpretation plots through
a demonstration as part of a comprehensive dashboard for
clinical decision-makers and a discussion including clini-
cal evidence of the visualized interpretation aspects (Section
5.4). Finally, we validate the utility of PatWay-Net for
decision-makers through structured interviews with clini-
cians from different hospitals and different domains. The

results of those interviews are also presented in Section 5.4,
while additional information can be found in Appendix C.3

5.1 Use case description

Our real-life publicly-available data set comprises pathways
of patients with sepsis symptoms from a Dutch hospital with
approximately 50,000 patients per year [11].4 The hospital
uses an enterprise resource planning (ERP) system to track all
performed patient events. The process consists of logistical
activities, including the patient’s stations through the hospi-
tal, andmedical activities, such as blood valuemeasurements
and medical treatments. Although the aforementioned pro-
cess can be described in a fairly structured manner based on
the information provided by the use case provider [11], this
structure is only reflected to a limited extent in the underly-
ing event log. In addition, patients can run through different
activities in highly individual pathways, making it difficult to
detect patterns to estimate an individual pathway’s outcome
manually.

Based on these patient pathways, we predict whether a
patient will be admitted to the ICU. This prediction is highly
relevant for both healthcare providers and insurance compa-
nies. First, capacity and staff planning in ICUs are crucial
and influence the patient’s probability of recovery [59]. Sec-
ond, admissions to the ICU for septic patients are among the
highest costs compared to other diseases [24].

The patient events of the event log can be differentiated
into 16 activitieswith different purposes, for example, release
type, type of measurement, or stating whether the patient
was admitted to normal care. They all represent sequential
medical indicators. In addition to the control-flow informa-

3 We further verify and demonstrate the validity of PatWay-Net’s cre-
ated interpretation plots by comparing these with post-hoc-generated
explanations for black-box models, and verify the end-to-end training
capability of PatWay-Net’sDNNmodel (AppendixA).We also perform
a simulation study (Appendix B) and verify the prediction capability
of PatWay-Net’s DNN model with two additional data sets from other
domains (Appendix D).
4 https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/
12707639
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Table 5 Comparison between
baseline models and
PatWay-Net

ML approach F1-score (weighted) AUCROC
Validation Test Validation Test

Our Approach

PatWay-Net
(with interaction)

0.886 (±.016) 0.896 (±.016) 0.820 (±.028) 0.734 (±.058)

PatWay-Net
(without interaction)

0.883 (±.015) 0.893 (±.016) 0.821 (±.027) 0.724 (±.049)

Interpretable Shallow Machine Learning

Decision tree 0.879 (±.019) 0.890 (±.016) 0.753 (±.060) 0.665 (±.069)

K -nearest neighbor 0.892 (±.019) 0.859 (±.025) 0.673 (±.047) 0.600 (±.049)

Naïve Bayes 0.363 (±.242) 0.416 (±.228) 0.723 (±.043) 0.689 (±.056)

Logistic regression 0.881 (±.016) 0.890 (±.015) 0.769 (±.044) 0.684 (±.063)

Non- Interpretable Machine Learning

LSTM network
(with static module)

0.890 (±.018) 0.898 (±.014) 0.840 (±.028) 0.757 (±.049)

XGBoost 0.883 (±.018) 0.896 (±.016) 0.817 (±.014) 0.703 (±.018)

Random forest 0.881 (±.017) 0.885 (±.011) 0.804 (±.013) 0.725 (±.016)

Note: Highlighted are the best performances among interpretable models

tion, the event log contains another 27 indicators. Three are
sequential and numerical and represent the measured val-
ues ofC-reactive protein (CRP), Leukocytes, and LacticAcid.
Furthermore, patient Age is a numerical and static indicator.
The summary statistics of the numerical indicators are pre-
sented in Table 4.

BesidesAge, there are 22 categorical static indicators (e.g.,
type of medical staff executing the activity), or binary values
(e.g., stating whether or not the patient received an infu-
sion) [11]. To avoid data leakage, we remove the medical
indicator diagnosis as the large majority of the patient path-
ways with certain diagnoses describe patients who are later
admitted to the ICU. That is, it can be assumed that the hos-
pital guidelines require all patients with a certain diagnosis
to be admitted to the ICU. A detailed description of the fur-
ther data preprocessing steps, as well as evidence that the
size of the used event log is appropriate for PatWay-Net’s
DNN model to achieve accurate and timely predictions, can
be found in Appendix A.

5.2 Baselinemodels

We benchmark PatWay-Net5 against three groups of ML
approaches. The first group includes decision tree, K -nearest
neighbor, naïve Bayes, and logistic regression. This group
allows us to assess how well PatWay-Net performs com-
pared to traditional shallow ML models that are intrinsically
interpretable. These models are limited to processing static
patient information and cannot handle sequential data. The

5 For simplicity, we will sometimes refer to PatWay-Net’s DNNmodel
as PatWay-Net in the following.

second group includes random forest and XGBoost. This
group allows us to assess how well PatWay-Net performs
compared to commonlyusedblack-boxMLapproaches. Like
the first group, these models are limited to processing static
patient information and cannot handle sequential data. Third,
we include a state-of-the-art LSTMmodel that uses the static
module of PatWay-Net and combines it with an unrestricted
LSTMcell [44] to process the sequential patient information.
This model represents the model with the highest flexibility
and modeling capacity. Yet, it does not allow for a transpar-
ent interpretation of how the predictions are derived. Thus,
its applicability in high-stakes decisions is generally limited.

These baseline models are then compared to our pro-
posed PatWay-Net. Here, we compare two versions. First,
PatWay-Net without any interactions between the sequential
medical indicators. Second, PatWay-Net with pairwise inter-
action between a set of sequential medical indicators.6 In
doing so, we tune models by applying a grid search, evaluate
models by performing a five-fold stratified cross-validation,
and measure the predictive performance of models by calcu-
lating AUCROC and F1-score. More details about our model
tuning, model evaluation, and model selection can be found
in Appendix A.

5.3 Results on predictive performance

The predictive performance of PatWay-Net and the baselines
for the use case are summarized in Table 5. Among the inter-
pretable shallow ML models, logistic regression and naïve

6 Information on further experiments with multiple pairwise interac-
tions can be found in Appendix A.
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Bayes models outperform the decision tree and K -nearest
neighbor models with an improvement of 1.9 to 8.9 percent-
age points in terms of AUCROC performance on the test
sets.

PatWay-Net outperforms all shallow ML baseline mod-
els across all metrics. We observe that PatWay-Net, without
any interactions, pushes the predictive performance by 5.1%
in comparison to shallow ML models. By incorporating an
interaction term in our sequential module, we achieve an
AUCROC performance on the test sets of 0.734, which is an
improvement of 7.3% compared to the logistic regression,
and an improvement of 10.4% compared to the decision tree.
PatWay-Net with the interaction in the sequential module
even outperforms the non-interpretablemodelsXGBoost and
random forest by 4.4% and 1.2%, respectively. We conduct
a Friedman test and a Wilcoxon signed-rank test with Holm
p-value adjustment [60], which shows that the difference is
statistically significant with α = 1% for the decision tree,

logistic regression, and K -nearest neighbormodels, andwith
α = 10% for the naïve Bayes model. Further information on
the statistical tests can be found in Appendix A.

As an upper bound, the state-of-the-art LSTM network
leads to an AUCROC performance on the test sets of 0.757,
which is only slightly higher than our proposed PatWay-Net.
However, it does not allow any intrinsicmodel interpretation.

5.4 Results on interpretation

PatWay-Net’s interpretation plots are presented to medical
decision-makers via a comprehensive dashboard (see Fig. 3),
which is structured into four parts, a) to d).

Part a) provides general (static) information on a patient,
such as age, height, or weight as well as their history dur-
ing their current stay. For example, it shows when a patient
has been admitted or when certain measurements have been
taken. Part b) provides a short textual description of the

Fig. 3 Medical dashboard with PatWay-Net’s interpretation plots
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urgency of the ICU admission depending on the model’s
prediction. Parts c) and d) comprise PatWay-Net’s inter-
pretation plots. In particular, part c) shows an overview of
the most impactful medical indicators on the model predic-
tion, and d) provides further interpretation details on selected
static or sequential medical indicators. In what follows, we
focus on parts c) and d) of the dashboard and demonstrate
PatWay-Net’s interpretation plots for the medical indicator
importance as well as static and sequential medical indica-
tors.

The interviews conducted with medical experts show that
the dashboard is helpful as a support for decision-making.
Moreover, all medical experts confirm the usefulness of the
interpretation plots to understand at a glance what caused
the prediction. The interviewees also positively assessed the
visual plots and thought that such plots are the language
that is spoken medically. All interviewees stated that they
prefer simple plots because they usually have to act rela-
tively quickly. Another outcome of the interviews is that
interpretations in the form of PatWay-Net’s dashboard would
positively influence their trust in the predictions. Therefore,
they think that it increases the acceptance of such predic-
tions. Additional information on the interviews can be found
in Appendix C.

5.4.1 Importance of medical indicators

Figure 4 shows the medical indicator importance plot, high-
lighting the 20most impactful indicators in our model. These
indicators have the greatest effects on the model output in
forecasting the potential need for ICU admission.

The medical indicators Oligurie, Hypotensie (hypoten-
sion), and Leukocytes emerge as the top contributors with the
most substantial impact on the model prediction. The static
indicator Oligurie, representing decreased urine output, is an
essential medical indicator in our model for predicting ICU
admission as it is often associated with severe sepsis due to
its connectionwith reduced kidney perfusion [e.g., 61]. Like-
wise, Hypotensie, or low blood pressure, is a critical static
medical indicator in our model as it can represent a possible
consequence of significant blood vessel dilation caused by
systemic inflammation [e.g., 62]. The sequential indicator
Leukocytes, that is white blood cell count, also holds sig-
nificant importance in our model for the prediction of ICU
admission. Variations in leukocyte counts often signal the
body’s immune response to infections such as sepsis [e.g.,
63]. As our proposed ML framework’s unique capability is
to include this sequential medical indicator in the analysis, it
enables us to compare the importance of sequential indicators
with the importance of the static indicators directly.

Fig. 4 Importance for static and sequential medical indicators

5.4.2 Static medical indicators

Figure 5 shows the interpretation plot for the static med-
ical indicator Age in the dashboard. Specifically, it shows
PatWay-Net’s shape function for this specific indicator,
revealing a non-linear effect ofAge on ICUadmission predic-
tion. This demonstrates the flexibility of PatWay-Net’s DNN
model in capturing arbitrary relationships between individual
medical indicators and the prediction target, which, inspired
by traditional GAMs [e.g., 51–55], is more suitable for
detecting and learning complex patterns in data than simple
linear models.

Interestingly, the effect for the medical indicator Age
decreases as the value (i.e., the patient’s age) increases. At
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Fig. 5 Interpretation plot for static medical indicator Age in the dash-
board

first glance, this trend may appear counter-intuitive, consid-
ering that higher age is typically associated with more severe
sepsis cases and a higher risk of adverse outcomes [e.g., 64].
However, the patient population in our dataset is compara-
tively old, which might be a reason for this observed medical

indicator shape. Additionally, there could be specific hospital
protocols or clinical guidelines that apply to patients above a
certain age, which could influence the patient’s pathway and
the eventual outcome.

5.4.3 Sequential medical indicators

Figure 6 shows the interpretation plots for the sequential
medical indicator Leukocytes in the dashboard, depending
on a given patient’s previous pathway. The plots reveal the
model’s transparent decision logic regarding the develop-
ment, shape, and transition of the medical indicator.

The medical indicator shape plot (lower left in Fig. 6)
shows the shape function of the sequential medical indicator
Leukocytes. Again,we can see the flexibility of PatWay-Net’s
DNN model in capturing non-linear relationships between
the medical indicator and the prediction target. This time,
however, the indicator represents a sequential feature cap-
tured in its natural form, which constitutes an innovative
advancement over traditional interpretable models, such as
GAMs and decision trees.

Leukocytes play a pivotal role in the body’s immune
response, and a considerable alteration in the leukocyte count
is a common physiological response to sepsis [e.g., 63]. In
Fig. 6, while the Leukocytes value decreases, the effect on the

Fig. 6 Interpretation plots for
sequential medical indicator
Leukocytes in the dashboard
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prediction for ICU admission increases considerably. Thus,
we can see a substantial alteration in the leukocyte count.
Moreover, an elevated leukocyte count can be a typical indi-
cator of an ongoing systemic inflammatory response to an
infection, like sepsis [e.g., 65].However, a decrease inLeuko-
cytes can also occur in severe caseswhere the immune system
is overwhelmed, indicating a worsening of the patient’s con-
dition [e.g., 66]. In such an acute case, there exists a potential
necessity for the patient to receive intensive care.

Themedical indicator transition plot (lower right in Fig. 6)
shows how the prediction changes from the previous to the
current Leukocytes value measurement. The figure illustrates
that a decrease in theLeukocytes value (from a previous value
of 0.0 to a current value of 1.0) corresponds to an increased
probability of the patient requiring ICU admission. This is
consistentwith clinical understanding, as a decrease in leuko-
cytes often denotes a heightened vulnerability to developing
an infection like sepsis, suggesting a more severe disease
course that may require intensive care. Conversely, if there
was a low Leukocytes value at the previous time step that
subsequently increases by the current time step to a normal
value, prediction indicates a lower likelihood of the patient
being transferred to the ICU. This could suggest that the
patient’s immune response is stabilizing, or the infection is
being effectively controlled, thus reducing the necessity for
intensive care.

The medical indicator development plot (upper plot in
Fig. 6) shows what effect the sequential medical indicator
Leukocytes has on the model prediction over time. Up to
time step three (2014-09-18 13:46 - 2014-09-18 13:56), the
effect of Leukocytes is high since no measurement has been
taken yet. From time step three to four (2014-09-18 13:56 -
2014-09-18 14:11), the effect on the prediction decreases, as
a medium-high Leukocytes value of 0.51 has been measured
in this time period.

6 Discussion and future work

6.1 Implications for healthcaremanagement
and practice

Our research has multiple implications for healthcare man-
agement and practice. First, PatWay-Net supports a straight-
forward analysis of patient pathways using patients’ histori-
cal event data. In thisway, subjectivity is avoided, andmanual
effort can be reduced to a minimum in decision-making.
Likewise, our model provides high predictive performance
in the context of patients with symptoms of sepsis without
relying on explicit process knowledge. This allows flexibil-
ity for decision support applications in highly complex and
dynamic healthcare environments. In our case, experiments
have shown that the predictive performance is superior to

traditional approaches by combining patients’ static features
with sequential features in a DNN architecture that remains
fully interpretable. This is a great advantage because predic-
tion tasks in the healthcare sector are usually dominated by
linear and logistic regression models with underlying static
features to ensure a high degree of transparency [e.g., 12–15].

At the same time, PatWay-Net can improve decision-
making in both patient-specific and administrative decision
contexts. For example, in a patient-specific decision con-
text, a model interpretation for admission to ICU prediction
may indicate an increase in a patient’s probability of being
transferred to the ICU after being treated with a certain medi-
cation. Based on this insight,medical experts have the chance
to intervene and apply corrective treatments to prevent worse
consequences. In an administrative context, model interpre-
tation could reveal shortcomings in the hospital’s IT system.
For instance, conflicting predictions between PatWay-Net
and clinicians can be traced down to potentially missing
patient information within an ERP system, allowing for opti-
mization of hospital operations.

Finally, PatWay-Net provides timely decision support.
From a technical point of view, PatWay-Net’s inference time
is similar to one of the shallow interpretable models as the
underlying model of PatWay-Net represents a function map-
ping the data input to the prediction output. Compared to the
inference time, the training time of PatWay-Net is consider-
ably higher than the training time of the shallow interpretable
models as PatWay-Net is a DNN with a recurrent iLSTM
cell. Further, the training time increases with each sequential
feature as each sequential feature is passed through a single
corridor in the iLSTM cell. However, for our purpose, the
inference time is far more important than the training time
as the models are created and trained before they are applied
in an online mode where the models are used for providing
effective decision support. On the other hand, PatWay-Net’s
interpretations can be immediately retrieved from the model
itself. In doing so, it is considerably faster than applying a
post-hoc explanation method such as SHAP for reconstruct-
ing explanations for non-interpretable DNN models.

6.2 Implications for research

PatWay-Net combines two crucial streams of research. The
first stream follows the idea that more complex models,
such as DNNs, can naturally model specific structures of
the underlying data and, thereby, increase predictive per-
formance. Thus, PatWay-Net employs an iLSTM in its
sequential module tomodel temporal structures of sequential
data, and several MLPs in its static module to model non-
linear structures of static data. The second stream follows the
idea that explanations of complex models can never provide
the same understanding as that of intrinsically interpretable
models [33, 49]. Consequently, approximated explanations
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of complex models should be avoided or used carefully.
As a remedy, PatWay-Net remains fully interpretable and
prevents uncontrolled interactions of static and sequential
features by incorporating the main principle of GAMs into
its entire DNN architecture. As such, the model also pro-
vides an extension to traditional GAMs, which are unable to
capture sequential data structures in their natural form [e.g.,
51–55].

Within the realm of medical research, this work is aligned
with emerging trends advocating for a shift from static,
tabular data to multimodal data representation [67]. Tradi-
tional approaches often simplify complex health data such
as images and vital signs into aggregated statistics or explicit
features, thereby losing important information and only cap-
turing a snapshot of the patient’s health. Our framework
addresses this gap by accurately modeling health trajectories
through both, sequential and static data. The architecture is
not limited to merely processing patient pathway data but it
can also be adapted to other temporal sequences commonly
encountered in healthcare, such as data from wearable and
ambient biosensors [68]. By facilitating a more rigorous rep-
resentation of humandata,we improve not only the predictive
performance but also the clinical utility of ML models in
healthcare settings.

6.3 Limitations and outlook

Aswith any research, ourwork is not free of limitations. First,
we focused in this paper on a use case of patients with symp-
toms of sepsis to demonstrate the benefits of PatWay-Net in
caseswhere trust in theMLsystem is crucial to allow for prac-
tical applications. However, the application of PatWay-Net
is not limited to this use case but can also be used to predict
process-related outcomes in other tasks or domains involv-
ing static and sequential features, as shown by the results
of the additional use cases in Appendix D. Here, we find
mixed results, highlighting that full generalizability in other
contexts requires further work.

Second, the event log sample from the real-life data
application was relatively small, and using this sample for
training PatWay-Net showed a performance decrease from
validation to test scores. This difference could be an indi-
cator of model selection criterion overfitting [69], which
might affect PatWay-Net’s generalizability to unseen data.
However, to mitigate the effect of this overfitting type, we
followed the suggestion from Cawley and Talbot [69] and
adopted solutions for the problem of overfitting to the train-
ing criterion. In particular, we tested model regularization,
hyperparameter minimization, and early stopping [69–71].
Among these solutions, performing early stopping achieved
the best predictive performance for our use case of patients
with symptoms of sepsis. In addition, results that we obtained

froma further use case on loan applications (seeAppendixD)
confirm that this type of overfitting is likely to be less present
when the event log size is larger. However, despite these
overfitting concerns, PatWay-Net achieved relatively high
predictive performance, and being a neural network, it can be
expected that its predictive performance will further improve
when trained with more data [22].

Third, PatWay-Net’s sequential medical indicator plots
provide interpretations that are tied to a patient’s individual
pathway. This limitation is necessary because the predictive
effect of a sequential medical indicator within our iLSTM
cell is determined by the patient-specific trajectory over pre-
vious time steps. As a result, varying historical trajectories
can lead to different outcomes, which may also affect the
results of the interpretation plots. However, at this point,
it is not practical for clinical decision support to include
global interpretation plots for all conceivable trajectory vari-
ants across all patients in a single dashboard. Therefore, we
decided to focus on developing a patient-specific dashboard
with all relevant information to support clinicians in an easily
accessible way. Nonetheless, future research should address
this limitation to identify new ways of how feature effects
of multiple sequences over several time steps can be visu-
alized in a comprehensive, yet fully understandable manner.
This may require new visualization techniques (e.g., interac-
tive filter mechanisms) or additional abstraction layers (e.g.,
clustering of patient trajectories leading to similar outcomes
and interpretation plots), which offer promising directions
for future work.

Fourth, PatWay-Net’s mechanism to automatically detect
and integrate interactions covers pairwise interactions among
sequential features. For the use case addressed in this paper,
we can show that the predictive performance of PatWay-Net
with this mechanism is close to the predictive performance of
an unrestricted LSTM cell (see Appendix A). Nevertheless,
we assume that other types of interactions (e.g., more com-
plex interactions between sequential features or interactions
between sequential and static features) are more present in
other use cases. The results obtained for a further use case on
hospital billings (see Appendix D) give the first indication
for this assumption and therefore provide an entry point for
future research.

Fifth, the proposed version of PatWay-Net does not cur-
rently consider a mechanism for selecting relevant features.
This may become relevant when dealing with a large collec-
tion of features in other real-world applications, where the
full set of features may lead to impractically large computa-
tional costs and a higher risk of overfitting. Future research
could follow up on this point to investigate which feature
selection methods are appropriate for combining static and
sequential features. Nevertheless, PatWay-Net already pro-
vides someguidance for selecting themost important features
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(or medical indicators) through its medical indicator impor-
tance plot, thus facilitating clinicians or hospitalmanagement
when dealing with a large collection of medical indicators.

Sixth, as with any ML model, PatWay-Net’s results are
only as good as the data it consumes. That is, PatWay-Net is
not only a reflection of possibly biased decisions made in the
past but also of any data quality issues embedded in the data
set. For example, in our use case of patients with symptoms
of sepsis, some interpretation plots showed counter-intuitive
relationships between medical indicators and the prediction
target that may not be reflected in the medical literature.
These findings underscore the need for rigorous data man-
agement in hospital operations to enable analytics tools like
PatWay-Net to enhance decision-making substantially. Sim-
ilarly, we want to emphasize that the learned feature effects
should not be interpreted causally, as they are still based
on correlations. Thus, it is not possible to say with cer-
tainty why some of the effects shown in the interpretation
plots are present. This could be due to correlations with
other (unmeasured) features, or other underlyingphenomena.
However, despite these limitations, PatWay-Net still offers a
fully transparent model that can be used to allow clinicians to
compare the model results with their domain knowledge to
iteratively debug and improve the model, identify underlying
data quality issues, or initiate further investigations for the
identification of causal relationships.

Finally, our current approach pertains to the creation
of a clinical dashboard that relies solely on the provided
interpretation plots generated from the shape functions of
PatWay-Net. While these plots offer exact insights into the
model’s decision logic, theymay still lack the level of context
and intuitiveness required for effective clinical application.
In the next steps, we intend to address this limitation by har-
nessing the capabilities of large languagemodels [72, 73]. By
incorporating a large languagemodel in an adaptive dialogue
system,weaim toprovidemore intuitive and contextually rel-
evant explanations for clinical professionals when presenting
the interpretation plots. This enhancementwill not onlymake
the model’s outputs more accessible but also foster improved
communication between the model and the healthcare prac-
titioners, thereby enhancing the model’s utility in real-world
clinical settings.

Appendix A Further details and experiments
on themain use case

In this appendix, we provide further details on the use case
we address to evaluate the clinical utility of PatWay-Net,
our proposed ML framework for interpretable predictions in
patient pathways.

In what follows, we provide details on the preprocessing
of the data set (Appendix A.1), before we present a heuris-
tic for automatic interaction detection (Appendix A.2). After
that, we provide details on model tuning, model evaluation,
and model selection (Appendix A.3), and present further
results on statistical tests (Appendix A.4), predictive perfor-
mance (Appendix A.5, A.6, and A.7), interpretation qual-
ity (AppendixA.8), and runtimeperformance (AppendixA.9).

A.1 Preprocessing of the data set

We remove outliers in our data set by only considering com-
pleted patient pathways that are longer than two but shorter
or equal to 50 patient events. We also remove patient path-
ways that do not start with activity ER registration because
we assume this activity to be the central entry point into
the patient pathway. As a result, the event log contains 724
patient pathways with 675 different variants over a period of
1.5 years.

Our real-life data set comprises binary, categorical, or
continuous medical indicators. The values of a binary med-
ical indicator are mapped to 0 or 1, categorical values are
onehot-encoded, and continuous values are scaled into the
range [0, 1]. Patient activities, such as Measure Leukocyte
count, are either encoded by standard onehot encoding or by
a custom encoding. In standard one-hot encoding, the patient
activity a is encoded as a vector containing only zeros, except
for a single position that corresponds to a, which is set to 1.
In our custom encoding, we explicitly model the relationship
between activities and their existing continuousmedical indi-
cators in the data. In detail, if an activity can be described
by a continuous value, we set the corresponding position in
the vector to this continuous value. Further, to provide more
meaningful interpretations for sequential medical indicators,
we also keep this continuous value for subsequent patient
activities, as long the value does not change.

We extract all prefixes from Xstatic × Xseq ; that is, we
extract all subsequences of the sequential data, denote those
as Xsub

seq , and retain the static data as is, to predict at each
time step. This step increases the number of training samples,
which enables us to evaluate the ML models on how early
they can already make accurate patient pathway predictions
in the future.

For each patient pathway prefix, the target labels y are
created as follows: Given a prefix (X(i)

static, X
(i)
seq [: t∗]) and

the patient activity of interest (e.g., Admission to ICU), we
check the activities of patient pathway i . Then, if the activity
of interest appears in the patient pathway’s activities, we set
the target label to 1 and else to 0. We discard all prefixes and
corresponding labels where the activity of interest is part of
the sequential data. This is important to avoid data leakage
problems in patient pathway predictions.
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A.2 Automatic search for interactions

Given all subsequences of the sequential data Xsub
seq , PatWay-

Net’s interaction detection iterates 100 times to identify the
most relevant pairwise feature interactions in these data (see
Algorithm 1). Per iteration, a feature pair ( j, k) is randomly
determined from sequential features Dseq , and the sequen-
tial data for the features j and k are retrieved and reshaped.
Then, the sequential data and label data are split into an
80% training set and 20% test set, an XGBoost [43] model
fXG B with standard parameters is trained based on this data,
and the trained model is applied to the test set to calculate
an AUCROC value. Subsequently, the current interaction
is added together with the respective AUCROC value to
r, from which the best interactions are selected. In addi-
tion, the current interaction is added to K so that the same
interaction cannot be used again in future iterations of this
procedure. After performing all iterations, the interactions
with the highest AUCROC values are first selected based on
r and k∗ (number of best interactions) and then transferred to
the iLSTM layer, in which they are considered as additional
sequential features.

Algorithm 1 PatWay-Net’s interaction detection.

Given: Xsub
seq , y, k∗,Dseq , fXG Boost .

1 for i ← 1 to 100 do
2 ( j, k) ← feature pair(Dseq ).

3 if j �= k ∧ ( j, k) /∈ K then
4 Xsub

seq ← (Xsub
seq [ j], Xsub

seq [k]).
5 Xsub

seq ← reshape(Xsub
seq ).

6 Xtrain
seq , ytrain ← split(Xsub

seq , y).
7 Xtest

seq , ytest ← split(Xsub
seq , y).

8 f ∗
XG Boost ← train( fXG Boost , Xtrain

seq , ytrain).
9 per fi ← test( f ∗

XG Boost , X
test
seq , ytest ).

10 r ← r + (per fi , ( j, k)).

11 K ← K ∪ {( j, k)}.
12 end
13 end
14 return top-k-inter(r, k∗).

A.3 Model tuning, model evaluation, andmodel
selection

Table 6 reports the tuning parameters used in our grid search.
We performed initial experiments for all models to find

Table 6 Hyperparameters used
in grid search

ML approach Hyperparameter Hyperparameter range

PatWay-Net Hidden size per sequential feature 4, 8

(with interaction) Hidden size per static feature 4, 8

Learning rate 0.001, 0.01

Batch size 32, 128

PatWay-Net Hidden size per sequential feature 4, 8

(without interaction) Hidden size per static feature 4, 8

Learning rate 0.001, 0.01

Batch size 32, 128

LSTM network Hidden size sequential features 4, 32, 128

(with static module) Hidden size per static feature 4, 8

Learning rate 0.001, 0.01

Batch size 32, 128

Decision tree Max. depth 2, 3, 4

Logistic regression Regularization strength 10−3, 10−2, . . . , 100 . . . , 10+3

K -nearest neighbor Number of neighbors 3, 5, 10

Naïve Bayes Variance smoothing 10−9, 10−8, . . . , 10−4, . . . , 1

XGBoost Max. depth 2, 6, 12

Learning rate 0.3, 0.1, 0.03

Random forest Max. depth 2, 6, 12

Number of estimators 100, 200, 400

Max. leaf nodes 2, 6, 12

Note: Best values over the five folds are marked in bold
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appropriate value ranges for the hyperparameters. For the
PatWay-Net models, the hyperparameters hidden size per
sequential feature and hidden size per static feature define
the used vector space for each sequential and static feature,
respectively. For example, if the hidden size per static fea-
ture is set to 4, each model’s MLP has a hidden layer with
4 neurons. In contrast to the PatWay-Net models, the base-
line LSTM model uses a traditional unrestricted LSTM cell
instead of the proposed, restricted iLSTM cell, and there-
fore, the hidden size per sequential feature defines the used
vector space for all sequential features. Further, we set the
maximum number of neurons for the LSTM model with the
unrestricted LSTM cell to 8 and for the PatWay-Net mod-
els with the restricted iLSTM cell to 128 as experiments
in the use case showed that more vector space is required
for the unrestricted LSTM to identify arbitrary dependen-
cies between all sequential features and less vector space is
sufficient for the restricted LSTM to compute each sequen-
tial feature effectively and efficiently. For the shallow ML
models, we set the value ranges of the hyperparameters such
that the resulting models are still interpretable. For instance,
we bounded the depth of the decision tree or the number of
neighbors in the K -nearest neighbor model.

The procedure for model evaluation is summarized in
Algorithm 2. Given the static data Xstatic, sequential data
Xseq , and target outcome y, we start our evaluation by per-
forming a five-fold stratified cross-validation with random
shuffling on patient pathway level. That is, training and vali-
dation of each run are performed based on an entire pathway,
without randomly shuffling sequentially ordered events, to
avoid any temporal data leakage that could result from erro-
neously using future events as part of the evaluation of past
events. After retrieving the training set and test set in each
fold, we split the training set into a sub-training set (train*)
and a validation set. Subsequently, we select the best model
through a grid search using the sub-training and validation
set and apply the best model to the test set to compute the test
performance. We perform this procedure five times (k = 5).
In total, we repeat the entire model evaluation procedure five
times, each with a different seed, and calculate the average
performance and standard deviation over the performance
values of these executions.

To measure the performance of theMLmodels on the val-
idation and the test set, we calculate the AUCROC [74] (pri-
mary measure) and the weighted F1-score (secondary mea-
sure). AUCROC determines how well a classifier can distin-
guish between classes [75], and remains unbiasedwhen deal-
ing with highly imbalanced class distributions [76]. F1-score
is the harmonic mean of precision and recall [74]. Moreover,
we select the model with the highest test AUCROC from the
model evaluation procedure to retrieve the interpretation.

For model selection, we perform a grid search, as formal-
ized in Algorithm 3. For each hyperparameter constellation

Algorithm 2 Model evaluation.
Given: Xstatic, Xseq , y, k, f

1 (tr1, te1), . . . , (trk , tek) ← split-k-stratified(Xstatic, y).
2 for i ← 1 to k do
3 Xtrain

static,X
train
seq , ytrain ← retrieve(Xstatic,Xseq , y, tri ).

4 Xtest
static,X

test
seq , ytest ← retrieve(Xstatic,Xseq , y, tei ).

5 Xtrain∗
static ,Xtrain∗

seq , ytrain∗ ← split(Xtrain
static,X

train
seq , ytrain).

6 Xval
static,X

val
seq , yval ← split(Xtrain

static,X
train
seq , ytrain).

7 fbest ←
grid-search( f ,Xtrain∗

static ,Xtrain∗
seq , ytrain∗,Xval

static,X
val
seq , yval ).

8 per fi ← test( fbest ,Xtest
static,X

test
seq , ytest ).

9 end
10 return 1

k

∑k
i=1 per fi .

(p1, . . . , pl) ∈ P , the model f is trained and validated.
During training, we perform early stopping based on the vali-
dation set after 10 epochs to avoid overfitting. After training,
we apply the model to the validation set and calculate the
AUCROC . The AUCROC is used as our selection criterion
for the grid search, and the model with the highest AUCROC

value on the validation set is selected for model testing.

Algorithm 3Model selection (grid-search).

Given: Xtrain
static,X

train
seq , ytrain,Xval

static,X
val
seq , yval , f ,P .

1 for (p1, . . . , pl) ∈ P1×, . . . ,×Pl do
2 f(p1,...,pl ) ← train( f , (p1, . . . , pl ),Xtrain

static,X
train
seq , ytrain).

3 AUCROC,(p1,...,pl ) ←
validate( f(p1,...,pl ),X

val
static,X

val
seq , yval ).

4 if AUCROC,(p1,...,pl ) > AUCROC,best then
5 fbest ← f(p1,...,pl ).

6 AUCROC,best ← AUCROC,(p1,...,pl ).

7 end
8 end
9 return fbest

A.4 Statistical tests

Weperform statistical tests for the interpretableML approaches
used in our real-life data application. In particular, for our
main metric (test AUCROC ), we conduct a Friedman test
showing significant differences among the results (statistic =
56.45143, p = 6.56037e-11). As a post-hoc test, we conduct
a Wilcoxon signed-rank test with Holm p-value adjustment
[60]. Table 7 shows the pairwise p-values. PatWay-Net with
one interaction outperforms the decision tree (p = .001503),
logistic regression (p = .000593), and K -nearest neigh-
bor (p = .000001) models significantly with α = 1% and
the setting with one interaction significantly outperforms
the naïve Bayes (p = .044226) models with α = 10%.
PatWay-Net’s setting without interaction also outperforms
the decision tree (p = .000637), logistic regression (p =
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Table 7 Overview of pairwise p-values for test AUCROC for Wilcoxon signed-rank test

p-values for Test AUCROC PatWay-Net PatWay-Net Decision K -nearest Naïve Logistic
(with int.) (without int.) tree neighbor Bayes regression

PatWay-Net (with int.) .379944 .001503 .000001 .044226 .000593

PatWay-Net (without int.) .379944 .000637 .000001 .118250 .002009

Decision tree .001503 .000637 .001461 .340556 .915693

K -nearest neighbor .000001 .000001 .001461 .000160 .000383

Naïve Bayes .044226 .118250 .340556 .000160 .915693

Logistic regression .000593 .002009 .915693 .000383 .915693

.002009), and K -nearest neighbor (p = .000001) models
significantly with α = 1%.

A.5 Predictive performance for controlled vs.
uncontrolled interactions

Table 8 describes the results for PatWay-Net, in which the
number of interactions varies. To provide a fair compari-
son, the experiments for PatWay-Net with two and three
interactions are performed in the same way as described in
Appendix A.3. Overall, we observe robust results with only
marginal differences. We find that in our real-life use case, a
single sequential interaction leads to the highest AUCROC

and F1-score on the test set.
Further, Fig. 7 illustrates the most relevant pairwise

sequential medical indicator interaction in terms of the pre-
dictive performance of PatWay-Net (with one interaction).
The figure demonstrates the interaction between the indica-
tors CRP (x-axis) and LacticAcid (y-axis). If both indicator
values are low, the interaction effect is low (black-colored
region in the lower left corner). However, the interaction
effect becomes stronger with increasing values of both indi-
cators. So, if the values for both indicators are close to 1, the
interaction effect is high (yellow-colored region in the upper
right corner).

Fig. 7 Feature interaction between the indicators CRP and LacticAcid

A.6 Predictive performance for different training
sample sizes

Figure 8 shows the test AUCROC scores of different train-
ing sample sizes for PatWay-Net with one interaction, the
best-performing variant. More specifically, we create train-
ing samples with 10%, 20%, 40%, 60%, 80%, and 100%
of the instances of the complete training set. To avoid data
leakage issues, we create the training set samples based on

Table 8 Comparison of PatWay-Net with different interactions and the LSTM network (with static module)

ML approach F1-score (weighted) AUCROC
Validation Test Validation Test

Controlled Interactions in Our Approach

PatWay-Net (one interaction) 0.886 (±.016) 0.896 (±.016) 0.820 (±.028) 0.734 (±.058)

PatWay-Net (two interactions) 0.886 (±.018) 0.894 (±.013) 0.821 (±.035) 0.720 (±.045)

PatWay-Net (three interactions) 0.884 (±.017) 0.892 (±.015) 0.817 (±.035) 0.718 (±.042)

Uncontrolled Interactions in Non- Interpretable Machine Learning

LSTM network
(with static module)

0.890 (±.018) 0.898 (±.014) 0.840 (±.028) 0.757 (±.049)
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Fig. 8 Predictive performance for different training sample sizes

complete patient pathways and split each of them into a train
set and validation set before the prefixes are created from the
complete patient pathways. For each sample, we perform a
five-fold cross-validation, as described in Appendix A.3, but
with default hyperparameters.

The figure shows that the test AUCROC increases steadily
with more training instances. Given that, we conclude that
the event log size has an impact on the predictive perfor-
mance andmore training instances lead to a higher predictive
performance. Further, as PatWay-Net outperforms all inter-
pretable shallow ML baseline models in our comparison,
we conclude that the use of the complete training set is

appropriate for PatWay-Net to create predictions that outper-
form the predictions of interpretable ML baselines regarding
AUCROC . Finally, as PatWay-Net belongs to the family of
DNNs [22], we assume that it achieves an even higher predic-
tive performance andmaybe a greater difference in predictive
performance compared to the interpretable ML baselines
when more data are used for model training.

A.7 Predictive performance over time

Figure 9 showsthe test AUCROC scoresof thefirst12 timesteps
of patient pathways from the use case for PatWay-Net (with-
out and with interaction) and the baselines. At each time step,
prefixes of patient pathways of the corresponding size are con-
sidered. For calculating the AUCROC scores per time step, we
tune, evaluate, and select themodelsas described in SectionA.3.

The figure shows that PatWay-Net (with and without inter-
action) is already able to create predictions in the first steps of
patient pathways, which are considerably more accurate in
terms of AUCROC than the predictions of the interpretable
ML baselines. Only the not-interpretable ML approach
random forest outperforms PatWay-Net (with and without
interaction) in nearly all of the considered time steps. By con-
sidering only longer sequences (longer than 8), a significant
number of patient paths are filtered out from this experiment,
and thus the performance varies for all ML models.

Overall, this experiment empirically shows that the size of
the given event log is appropriate for PatWay-Net to create
timely predictions.

Fig. 9 Predictive performance
over time
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Fig. 10 Shape plot (left) and SHAP plot (right) for medical indicator Age

A.8 Intrinsic interpretability vs. post-hoc
explainability

Figure 10 shows two interpretation plots for the same static
medical indicator Age of our use case. While the medical
indicator shape function retrieved from a PatWay-Net model
with one interaction is illustrated on the left side, post-hoc
generated SHAP values for a black-box XGBoost model are
shown on the right side. While the trend of both plots is sim-
ilar, the SHAP plot shows a high variance for the effect on
the model prediction for a single value of the static medical
indicator Age. In contrast, the shape plot for the same indi-
cator shows a continuous function that is presumably easier
to comprehend for non-technical users.

A.9 Runtime performance

Table 9 compares the training and inference time of the static
model of PatWay-Net’s DNN model, which is end-to-end
trained, with a two-step version of the static module, which
is not end-to-end trained. For the latter, we first trained an
MLP model per static feature and then used the output of all
MLP models as input for training and applying a subsequent
logistic regression model. The experiments for this compari-
son were conducted on a workstation with 12 CPU cores and
128 GB RAM.

Table 9 Runtime performance

Training
time (sec)

Inference
time (sec)

PatWay-Net
(static module)

51.569
(±30.790)

0.005
(±.000)

MLPs + logistic
regression

1646.935
(±125.027)

0.024
(±.001)

The results show that the training time of PatWay-Net’s
static module with end-to-end training is on average 51.569
seconds, whereas the training time for the variant without
end-to-end training takes on average 1.646,935 seconds. In
other words, PatWay-Net’s static module is about 33 times
faster than training the individual models. Thus, the training
of all MLP models in one single architecture is considerably
more efficient. Concerning inference, the average time for
both variants is very low.

Appendix B Simulation study

In this appendix, we verify and demonstrate PatWay-Net’s
validity concerning the generated interpretation plots. More
specifically, we follow the idea of other interpretable model
proposals [e.g., 53, 54], in which the authors perform simula-
tion studies based on synthetic data with controllable feature
effects. In doing so,weprefer like in our real-life data applica-
tion the designation (medical) indicator over feature because
it is more comprehensible for decision-makers in themedical
domain.

In the following, we provide details on the simulation
data creation (Appendix B.1), the used experimental setting
(Appendix B.2), the obtained results ( Appendix B.3), and
additional results (Appendix B.4).

B.1 Simulation data creation

For our simulation study, we create a synthetic event log con-
taining static and sequential medical indicators.7 The event
log consists of 50,000 patient pathways with 12 events each.
Every patient pathway begins with a start activity, called ER

7 For the purpose of reproducibility, additional material can be found
in the repository.
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Registration, followed by three measurements of the Heart
Rate and Blood Pressure each, and then the administration of
medication (four times A and one time B in random order).
Further, the data set contains four static and two sequen-
tial medical indicators. Two of the static medical indicators
are numerical, namely Age and BMI (Body Mass Index),
whereas the remaining two are binary, namely Gender and
Foreigner. They are all set randomly. The sequential medical
indicator Heart Rate occurs whenever the respective activ-
ity Heart Rate appears. Thus, it has different values that
either solely increase or decrease over time. In our simu-
lation study, the increase or decrease is exemplarily always
set to 30%. The sequential medical indicator Blood Pres-
sure occurs whenever the respective activity Blood Pressure
appears. The values can increase and decrease randomly over
time for one instance.

We created a continuous label for solving a regression-
like prediction task. The label contains five different additive
parts to introduce five differentmedical indicator effects con-
cerning the static and sequential attributes in our event log:
ygender , yage, ypattern , yhr−nl , and yhr (see Eq. B1). Each
part can take values between 0 and 0.2, thus, the label y can
take values between 0 and 1. The remaining medical indi-
cators (e.g., Foreigner and BMI) are only included as noise
terms and do not have any effect on the target variable.

y = ygender + yage + ypattern + yhr−nl + yhr . (B1)

The first part ygender shows the influence of the staticmedical

indicator gender, where bgender
static is 1 if the patient is female

and 0 otherwise:

ygender = 0.2 ∗ bgender
static , with bgender

static =
{
1, if xgender

static = 1,

0, otherwise.
(B2)

The second part, yage, demonstrates the effect of the static
medical indicator age on the label, which we model as a
downward open parabola:

yage = −0.8 ∗ (xage
static − 0.5)2 + 0.2. (B3)

Besides the influence of static medical indicators on the label
y, we also include an influence of sequential medical indi-
cators. First, bpattern

seq is 1 if an instance contains a certain
pattern in its sequence of activities regarding the administra-
tion of themedication, namely“Medication A, Medication A,

Medication A, Medication A, Medication B”:

ypattern = 0.2 ∗ bpattern
seq , with

bpattern
seq =

⎧
⎪⎨

⎪⎩

1, if xmeda
t,seq = 1,∀t ∈ {8, . . . , 11}

∧ xmedb
12,seq = 1,

0, otherwise.

(B4)

Further, yhr−nl shows the effect of the medical indicator
Heart Rate at time step t2 as a downward open parabola:

yhr−nl = −0.8 ∗ (xhr
2,seq − 0.5)2 + 0.2. (B5)

Lastly, yhr describes the effect of the behavior of the medical
indicator Heart Rate over time. The values can increase or
decrease over time for a single patient pathway. If the values
increase, bhr

seq will take the value 1, otherwise it will be 0:

yhr = 0.2 ∗ bhr
seq , with

bhr
seq =

{
1, if xhr

t,seq − xhr
t−1,seq > 0, for t ∈ {2, 3, 4},

0, otherwise.

(B6)

B.2 Experimental setting

We optimize PatWay-Net based on the complete simulation
data set comprising 50,000 patient pathways and then gen-
erate interpretation plots based on 1,000 patient pathways
of the same data set. Furthermore, we do not consider any
sequential medical indicator interaction as we are interested
in investigating how well the model can learn the five addi-
tive parts described in the previous section. Finally, we set
the hidden size per sequential and static medical indicator to
16, and the batch size, number of epochs, and learning rate
to 32, 1,000, and 0.001, respectively, as the loss converged
well with these values.

B.3 Results

We present PatWay-Net’s interpretation plots for the created
synthetic event log and, based on the interpretation plots,
we validate how well PatWay-Net captures the effects we
modeled in the synthetic event log data.

B.3.1 Importance of medical indicators

Figure 11 shows themedical indicator importance plot at time
step t12. As expected, the medical indicators Gender, Heart
Rate,Age,Medication A, andMedication B show an effect on
the model output. The remaining indicators correctly show
no effect, as they were only included in the simulation to
serve as irrelevant noise terms.

123

S. Zilker et. al.



159

Fig. 11 Importance for static and sequential medical indicators

B.3.2 Static medical indicator shape

Figure 12 compares the global effect of the model output
for the static categorical medical indicators Gender (left)
andForeigner (right). PatWay-Net correctly detects the effect
of the medical indicator Gender with a constant value of
0.2, which equals the magnitude of the simulated coefficient
whenever the indicator value is 1 (= female). By contrast, the
indicator Foreigner has no effect.

Similarly, Fig. 13 shows the static medical indicator shape
plot for indicator Age (left) compared to the indicator BMI
(right).8 PatWay-Net can correctly detect the parabolic effect
on the label of the medical indicator Age, with the strongest
effect of 0.2, being achieved at a value of 0.5, as modeled in
Eq. B3. By contrast, no influence was correctly detected for
the indicator BMI.

8 For better interpretability, we applied post-processing to the effect
values by adjusting the y-axis to 0.

B.3.3 Sequential medical indicator shape

For the sequential medical indicators Heart Rate and Blood
Pressure, the indicator effect on the prediction can be eval-
uated for each time step. Figure 14 shows the sequential
medical indicator shape for Heart Rate (left) and Blood
Pressure (right) exemplarily for the time step t4 and t7,
respectively.9 PatWay-Net can correctly detect the quadratic
effect on the label for the indicator Heart Rate. Indicator
Blood Pressure, on the other hand, has no effect, as correctly
detected by PatWay-Net.

B.3.4 Sequential medical indicator transition

As sequential medical indicators may change over time, it is
crucial to investigate their effect not only at a certain time step
but also the transition between two consecutive time steps.
Figure 15 shows exemplarily the sequentialmedical indicator
transition of the indicator value as well as the change of
effect on the prediction for the indicators Heart Rate and
Blood Pressure from time step t3 (previous) to time step t4
(current). For the medical indicator Heart Rate, the indicator
value can either linearly increase or linearly decrease by 30%
from time step t3 (x-axis) to t4 (y-axis). For increasing cases,
we can observe the effect changes stronger negatively, that
is, decreases from t3 to t4, from any indicator value to a
higher indicator value (blue region). If the increase concerns
two indicator values with a lower value, the change in the
indicator effect is lower. This is due to the parabolic shape of
the medical indicator Heart Rate (see Fig. 14) as defined in
Eq. B6. For the decreasing cases, we can observe the effect
changes stronger positively, that is, increases from t3 to t4,
from a higher to a lower indicator value (red region). As
for increasing cases, if the decrease concerns two indicator
values with a lower value, the change in the indicator effect is
lower. Again, this is due to the parabolic shape of themedical
indicator Heart Rate (see Fig. 14).

For the medical indicator Blood Pressure, the indicator
values can either randomly increase or decrease from time
step t6 (x-axis) to t7 (y-axis), as demonstrated by the plot
(see Fig. 14). Further, the effect on the prediction of the
medical indicator does not change over time, as the complete
region is colored white, indicating a change in the indicator
effect of 0. Thus, in summary, we can see that PatWay-Net
correctly detects the effect of the transition of the Heart Rate
asmodeled inEq.B6,whereasBlood Pressure does not affect
the model output.

9 We select these time steps because they are the last time steps at which
aHeart Rate andBlood Pressure activity occur. However, the remaining
figures can be found in the repository.
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Fig. 12 Static medical indicator shape for indicators Gender (left) and Foreigner (right)

Fig. 13 Static medical indicator shape for indicators Age (left) and BMI (right)

Fig. 14 Sequential medical indicator shape for indicators Heart Rate (left) and Blood Pressure (right)
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Fig. 15 Sequential medical indicator transition for indicators Heart Rate (left) and Blood Pressure (right)

B.3.5 Sequential medical indicator development

Figure 16 demonstrates the sequential medical indicator
effect on the prediction for the indicator Heart Rate for a
given patient pathway over time. The strongest increase in
the indicator effect can be observed from time step t1 to t2,
as Heart Rate is first measured at time step t2. From t2 to t3,
and from t3 to t4, the indicator effect increases more weakly,
while theHeart Rate value steadily decreases. After time step
t4, the effect remains the same, as the activityHeart Rate does
not occur after that.

B.4 Additional results

We conduct additional experiments with the created syn-
thetic event log and interpretable baselines regarding training
performance and interpretability. Table 10 summarizes the
average train performance of PatWay-Net models without an
interaction and baselinemodels over five seeds. The train per-
formance indicates how well ML models capture the effects
we modeled in the synthetic data. For measuring the train-
ing performance,we calculate themean squared error (MSE),

mean absolute error (MAE), and R2. As baselines, we use the
interpretable shallow ML approaches ridge regression, lasso
regression, and decision tree regression. For training the lasso
regressionmodels anddecision tree regressionmodels,we set
the regularization strength to 0.01 and the maximum depth
to 3, respectively. We use default values for the remaining
hyperparameters. We observe that the PatWay-Net models
considerably outperform the baseline models in terms of
all regression measures. This indicates that the PatWay-Net
models can better capture themodeled effects in the synthetic
data.

Figure 17 shows the loss curve for the training of PatWay-
Net. The loss curve ranges from epoch 10 to 100 for better
readability. Loss indicates theMSE.MSE values of the base-
line models are added for a direct comparison. Based on this
figure, theMSEvalues for the PatWay-Netmodel are increas-
ingly lower from epoch 20 to 100. Therefore, the longer we
train the PatWay-Net model, the better it can capture the
modeled effects in the synthetic data.

Tables 11, 12, and Fig. 18 represent coefficients of the
ridge regression model, coefficients of the lasso regression
model, and the structure of the decision tree regression

Fig. 16 Sequential medical
indicator development for
indicator Heart Rate
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Table 10 Train performances
for the simulation study

Train MSE Train MAE Train R2

PatWay-Net (without interaction) 0.000 (±.000) 0.002 (±.000) 0.997 (±.000)

Ridge regression 0.024 (±.000) 0.124 (±.000) 0.290 (±.000)

Lasso regression 0.024 (±.000) 0.126 (±.000) 0.278 (±.000)

Decision tree 0.021 (±.000) 0.120 (±.000) 0.379 (±.000)

Fig. 17 Loss of PatWay-Net (from epoch 10 to 100) and baselines

Table 11 Model coefficients for static medical indicators of ridge
regression

Static indicators Gender Foreigner BMI Age

Model coefficients 0.197653 0.000666 -0.001051 0.007274

Table 12 Model coefficients for static medical indicators of lasso
regression

Static indicators Gender Foreigner BMI Age

Model coefficients 0.157634 0.00 -0.00 0.00

model, respectively. By comparing the different interpre-
tation plots of PatWay-Net presented in Appendix B with
the outputs of the baseline models (i.e., model coefficients
and tree structure), it becomes clear that PatWay-Net with
its interpretation plots provides much more comprehensible
model outputs than the interpretable shallow ML models.

Appendix C Expert interviews

To assess PatWay-Net’s interpretation quality, we conducted
structured interviews with four independent medical experts.
Themedical experts are clinicians in different hospitals in dif-
ferent fields (surgery, trauma surgery, internal medicine, and
anesthesiology), but are not directly associated with our use
case. They have between five and ten years of professional
experience.

The interviews were structured into five parts. First, all
relevant information on the use case of patients with symp-
toms of sepsis was described to the interviewees. Second,
a rough overview of different patient pathways was illus-
trated using a visualized process model. Third, general
questions on predictive applications and their practical rel-
evance were discussed. Fourth, we provided PatWay-Net’s
visual output and some additional descriptions of the inter-
pretation inmultiple steps. Based on this, we asked questions
regarding usefulness, applicability, and trust in the predic-

Fig. 18 Decision tree model with depth 3
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tions. Lastly, overarching questions on the dashboard were
asked.10

In general, the benefit of applying MLmodels in the med-
ical domain was confirmed by the interviewees, as “the idea
of supporting medical differentiation through ML makes a
lot of sense” (I4). Specifically, using predictive approaches
is helpful (I2) and “important for quick decision-making and
provision or estimation of the required resources” (I1). It
enables “better assessment of patient risk, prioritization, [...],
and transfer to another hospital if necessary” (I4). Addition-
ally, it fosters to “properly assess the patients” (I2) and to
“order closer monitoring of the blood values” (I3). Further,
it enables to “better assess capacity” (I2), so that practi-
tioners “can also adjust ICU beds” (I3). In particular, the
admission to ICU is helpful for medical experts with less
experience: “For younger colleagues [...] who don’t have that
much experience with [determination of ICU admission] yet,
it’s certainly helpful, also just to make sure that nothing is
overlooked” (I2).

However, all interviewees confirmed that they “would not
trust such predictions without further explanation” (I1) as
they “think it’s important to know what the decision is based
on” (I2). Clinicians “have to justify the process to the patients
and relatives and to do that [they] want to understand the
process to be able to justify it” (I4).

Our dashboard was evaluated to be “helpful as a support
for decision-making” (I1), because “it is similar in processes
to [their] own decision-making” (I1) and it is “prepared very
well” (I3). Additionally, the interviewees “believe these tools
will not miss findings and will guide you to look at everything
again when it automatically shows up in an overview” (I1).

Moreover, all medical experts confirm the usefulness of
the interpretation plots as, for example, I2 “find[s] it helpful
in any case [to] have an overview of which factors have been
included [and to] [...] understand at a glance what caused
the system to do this. [...] Because then [they] can also take
a closer look at what the blood pressure is doing or where
the leukocytes are”. They positively assess the visual plots
and think that “this is the language that is spoken medically
in actually every continent” (I3). All interviewees stated that
they prefer simple plots, because “there are always so many
new colleagues [...] in the clinic that I think keeping it as
simple as possible makes the most sense” (I2) and that they
usually have to act “relatively quickly” (I2, I3).

They prefer the suggested plots over common SHAP plots
because they look “clearer and [are] easier to follow” (I2,
I4). They feel that SHAP plots are “confusing and not really
self-explaining” because there are “too many dots in the plot”

10 The interview guideline can be found in the online repository.

(I3) (cf. also Appendix A). Finally, one interviewee sug-
gested providing interpretations in the form of “written text”
(I4).

All interviewees also confirm that interpretations in the
form of PatWay-Net’s dashboard “would positively influence
[their] [...] trust in the predictions” (I1, I4), because the
dashboard provides “exactly what [they] work out [them-
selves] during a [...] visit” (I3). Therefore, they think that it
“increases [the] acceptance of such predictions” (I3).

Appendix D Additional use cases

To prove PatWay-Net’s robustness and generalizability, we
use two additional data sets from different domains (i.e., hos-
pital billing and loan application). The event logs are publicly
available, and we use the version by Teinemaa et al. [77] as
they include labels for process outcome prediction. The data
sets are preprocessed in the same way as for the event log
(Appendix A.1). To keep the computational effort manage-
able, we only used the first 5,000 traces. Interactions of the
models are detected and incorporated as for the use case
(Appendix A.2). The hyperparameters used for the experi-
ments can be found in the repository.

First, we use the hospital billing11 event log. It captures
billing data from an ERP system of a hospital about con-
ducted services. Its preprocessed version contains two static
medical indicators. These two indicators, namely speciality
and caseType, are categorical and contain 22 and eight differ-
ent values, respectively. Besides the activity with 18 different
values, the preprocessed event log contains another sequen-
tial medical indicator, namely state, which is also categorical
with ten different values. Finally, the label indicates whether
a case is reopened [77]. The second data set is the bpi201212

event log. The data was taken from aDutch financial institute
and captures the process of loan applications. After prepro-
cessing, it contains one static numerical medical indicator,
namely amount_req, and the activity includes 36 different
values. The label indicates if the application was accepted.

The results for PatWay-Net and the baselines for both data
sets are summarized in Tables 13 and 14. For both event
logs, we can show that PatWay-Net outperforms the base-
lines regarding the AUCROC . For the bpi2012 event log,
we observe that PatWay-Net also outperforms the baselines
regarding the F1-score.

11 https://research.tue.nl/en/datasets/hospital-billing-event-log
12 https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
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Table 13 Comparison between
baseline models and
PatWay-Net for the hospital
billing event log

ML approach F1-score (weighted) AUCROC
Validation Test Validation Test

Our Approach

PatWay-Net
(with interaction)

0.944 (±.006) 0.950 (±.004) 0.691 (±.049) 0.627 (±.040)

PatWay-Net
(without interaction)

0.944 (±.006) 0.950 (±.004) 0.694 (±.053) 0.614 (±.056)

Interpretable Shallow Machine Learning

Decision tree 0.944 (±.006) 0.950 (±.005) 0.589 (±.071) 0.546 (±.043)

K -nearest neighbor 0.932 (±.010) 0.936 (±.012) 0.512 (±.020) 0.534 (±.023)

Naïve Bayes 0.942 (±.004) 0.947 (±.010) 0.670 (±.051) 0.605 (±.048)

Logistic regression 0.944 (±.006) 0.950 (±.004) 0.674 (±.055) 0.599 (±.049)

Non- Interpretable Machine Learning

LSTM network
(with static module)

0.966 (±.014) 0.964 (±.007) 0.814 (±.057) 0.758 (±.103)

XGBoost 0.944 (±.006) 0.951 (±.005) 0.696 (±.054) 0.623 (±.038)

Random forest 0.944 (±.006) 0.951 (±.005) 0.692 (±.060) 0.626 (±.047)

Table 14 Comparison between
baseline models and
PatWay-Net for the bpi2012
event log

ML approach F1-score (weighted) AUCROC
Validation Test Validation Test

Our Approach

PatWay-Net
(with interaction)

0.638 (±.008) 0.662 (±.003) 0.740 (±.006) 0.750 (±.003)

PatWay-Net
(without interaction)

0.647 (±.006) 0.665 (±.009) 0.741 (±.007) 0.750 (±.005)

Interpretable Shallow Machine Learning

Decision tree 0.319 (±.012) 0.369 (±.002) 0.519 (±.005) 0.529 (±.007)

K -nearest neighbor 0.512 (±.026) 0.527 (±.019) 0.528 (±.024) 0.534 (±.021)

Naïve Bayes 0.412 (±.075) 0.458 (±.072) 0.515 (±.014) 0.542 (±.029)

Logistic regression 0.320 (±.012) 0.369 (±.002) 0.473 (±.013) 0.490 (±.016)

Non- Interpretable Machine Learning

LSTM network
(with static module)

0.648 (±.014) 0.672 (±.009) 0.744 (±.008) 0.760 (±.012)

XGBoost 0.448 (±.027) 0.509 (±.032) 0.520 (±.003) 0.554 (±.013)

Random forest 0.352 (±.040) 0.414 (±.065) 0.521 (±.010) 0.537 (±.012)
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