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Abstract
We analyze, in a game-theoretic model, the strategic interaction between competing firms 
that source their inputs from either primary or recycled material. Because the manufac-
turers’ primary production today serves as input for the recyclers’ production tomorrow, 
manufacturers can limit the recyclers’ scale of operation by reducing their output. Improv-
ing the recycling process generates then two opposite effects: it reduces primary produc-
tion tomorrow by exposing manufacturers to stronger competition from recyclers, but it 
also lowers the manufacturers’ incentives to reduce their primary production today. If pri-
mary production exerts a negative externality on the environment, then making the recy-
cling process too efficient might be counterproductive. This intuition equally applies to 
remanufacturing.

Keywords  Recycling · Remanufacturing · Circular economy · Strategic entry 
accommodation

JEL Classification  L13 · L72 · O13 · Q58

1  Introduction

Research question. Authorities worldwide have committed to scaling up the collection of 
scraps for recycling. The expectation is that, by increasing the inputs for the recycling sec-
tor, they can reduce the volume of primary production and hence, lower the economy’s 
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impacts on the environment.1 The European Commission, for instance, announced in 
November 2022 proposals to reduce packaging waste by introducing new targets for reuse 
and recycling.

While recycling can reduce the negative impact of the economy on the environment, 
one may ask to which extent an improvement in the collection of scraps for recycling can 
reduce the volume of primary production. To answer this question properly, we need to 
analyse the strategic interaction between competing firms that source their inputs from 
either primary or recycled material. What makes this competition peculiar is that the 
firms producing from primary material (which we call the ‘ manufacturers’) also supply 
inputs for the firms producing from recycled material (which we call the ‘recyclers’). Con-
sequently, the manufacturers can control the scale at which the recyclers can operate; in 
particular, they may want to reduce their current production to limit the competition that 
recyclers will exert in the future. It is thus crucial to take this possibility into account when 
evaluating the impacts of improving the recycling process.2

Main result. Our analysis establishes that  an intensification of the recycling process 
may be counter-productive from an environmental—and even societal—point of view. The 
intuition behind this result is the following. Improving the recycling process generates 
two opposite effects. On the one hand, it reduces primary production (and the negative 
externality associated with the use of primary resources) once recyclers enter the market; 
this is so because the competition they exert on manufacturers gets stronger as recycling is 
improved. On the other hand, the better the recycling process, the lower the incentives for 
manufacturers to reduce their primary production before recyclers enter. The benefit for 
manufacturers of limiting the recyclers’ future entry must indeed be assessed against the 
cost of forgoing current profits. An improvement of the recycling process worsens the ben-
efit/cost ratio of this strategy because it forces manufacturers to accept a larger decrease in 
their current primary production to reach a given reduction in the recyclers’ scale of entry.

To establish this result, we consider a game-theoretic model with two periods. In period 
1, manufacturers extract primary material and use it to produce some final products. In 
period 2, recyclers enter the market; they produce the final product using recycled mate-
rial while manufacturers continue to produce from primary material. Periods are linked 
as follows: the available recycled material in period 2 is a fraction of what manufacturers 

2  The same intuition applies to remanufacturing, which is “a specific type of recycling in which used dura-
ble goods are repaired to a like-new condition” (Bernard 2011, p. 337). The difference is that, after a prod-
uct’s first life, recycled material can be redirected towards any industry; on the contrary, the remanufactured 
products go back to the same industry. Nevertheless, both remanufacturing and recycling firms rely on the 
used products from the primary producers as input for their business. Hence, remanufacturers compete with 
manufacturers of primary products in the same way as recyclers do, meaning that the basic mechanisms 
of our analysis are also present in the case of remanufacturing. As an illustration, Örsdemir et al. (2014) 
explain that manufacturers have the incentive to reduce the competitive threat exerted by remanufacturers 
“through limiting quantity, specifically by creating a scarcity of cores available for remanufacturing.” They 
give the example of Lexmark, which made cores ineligible for remanufacturing (see https://​archi​ve.​grrn.​
org/​lexma​rk/​backg​round.​html, last accessed April 4, 2024).

1  Recycling of aluminium products, for example, requires as little as 5% of the energy and emits as little as 
5% of greenhouse gas compared to the production of primary aluminium (International Aluminium Institute 
2009). Recycling can also reduce the negative impact of waste on the environment (arguably better than 
landfills and incineration).

https://archive.grrn.org/lexmark/background.html
https://archive.grrn.org/lexmark/background.html
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produced in period 1. To isolate the effects of strategic interaction, we assume in our base-
line model that the manufacturer does not internalize the scarcity of the primary material.3

Related literature. Motivated by the notorious Alcoa case (Walter 1951),4 the early liter-
ature on recycling focuses on the price path and the respect of Hotelling rule in the extrac-
tion of exhaustible resources with the existence of a recycling sector.5 For this objective, 
the natural approach taken by most papers in this strand of literature is to relate steady-state 
outcomes (prices, market shares, etc.) to fundamentals (demand, recycling rate, produc-
tion costs, etc.). In contrast, our approach borrows from industrial organization and focuses 
on two periods only (no steady-state is contemplated). Therefore, we do not consider the 
“recycling problem” as such, because there is no third period to anticipate. Instead, we 
analyze more sharply the impact of the fundamentals on the strategic interaction between 
primary and secondary producers.

Also motivated by the structure of the aluminium market and the nature of extracting 
and recycling industries, the literature is largely dominated by the twin assumptions that (i) 
the recyclers are perfectly competitive and (ii) resources are exhaustible. The assumption 
of a competitive recycling industry imposes that, by setting the price for the current period, 
the primary producer determines in advance the output of the recyclers since it knows that 
the recyclers will equate their marginal cost to the given price. By eliminating the possibil-
ity of a strategic reaction from the recyclers, this assumption allows the previously men-
tioned studies to focus on the price path of the resource and the primary producer’s market 
power. To the contrary, we differ by allowing the recyclers to exercise market power. This 
assumption lets us analyze how dynamic incentives interact with future changes in market 
structure.

We are not the first to explore the dynamic effects of recycling in an oligopoly competi-
tion. However, to the best of our knowledge, such studies either focus on the primary firm’s 
foreclosure incentive (Hollander and Lasserre 1988; Ba et al. 2020; Ba 2022) or assume 
that firms can commit to supply paths (Gaudet and Van Long 2003; de Beir et al. 2023). 
We extend this literature by considering how strategic behaviour interacts with environ-
mental policy in a dynamic setting. This extension is necessary to discuss the interaction 
between strategic incentives and policies designed with environmental-friendly objectives.

Concerning the relationship between the exhaustibility of resources and the strategic 
reaction of firms, previous studies show that imposing this assumption leads to specific 
channels of reaction. For instance,  Ba and Mahenc (2019) demonstrate that, by produc-
ing less in the first period, the primary producer signals that it will flood the market with 
primary products in the second period, hence, deterring the entry of the recyclers. In other 
studies, de Beir et al. (2023) and Ba (2022) assume a cost function of primary production 
that is convex with respect to the resource left unextracted. In such a setting, firms want 
to reduce primary production initially to save on future costs and, thereby, compete more 
aggressively against recyclers. In contrast, we abstract from exhaustibility in our baseline 

3  In Sect. 4.3, we show that our results continue to hold when the manufacturer internalizes the scarcity of 
the primary material in its profit-maximization program. We also propose a scenario in which it might be 
plausible that the manufacturer ignores resource scarcity.
4  In 1945, Alcoa, the producer of primary aluminium, was found in a monopolistic position by virtue of 
its control over 90% of primary aluminium output, limiting the competitiveness of the recycling industry, 
which captured roughly 20% of the total aluminium market. Judge Learned Hand concluded that Alcoa con-
stituted an illegal monopoly, in violation of the Sherman Antitrust Act: Alcoa was found to control strategi-
cally the recycling sector’s supply by manipulating the primary aluminium production.
5  See, for example, Gaskins (1974), Swan (1977), Hoel (1984), Suslow (1986), Hollander and Lasserre 
(1988), Grant (1999), Eichner (2005), and Honma and Chang (2010).
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model and focus on the primary producer’s control of the recycling input to constrain 
the recycler’s scale of entry. Nevertheless, in Sect. 4.3, we extend our baseline model to 
account for resource exhaustibility. We show that the two motivations for reducing first-
period production (future cost saving and entry limitation) reinforce one another.

Another assumption typically used in the literature is the existence of a technology 
threshold for the recycler to enter the market. Under this assumption,  Ba and Mahenc 
(2019) and de Beir et al. (2023) establish a setting in which the primary producer can deter 
or accommodate the recycler by reducing its production before the recycler’s entry. In our 
setting, we assume that the technology/availability of scraps is good enough so that the 
recycler can always enter the market. As a result, only two strategies are possible for the 
primary producer: limit the recycler’s competition or let it exist. In both cases, the manu-
facturer and the recycler interact strategically.

Furthermore, the literature generally integrates the collection decision into the recycling 
entities. In reality, while reprocessing entities are mostly private, the collection system 
relies heavily on the government’s effort to scale it up. Playing a significant role in organiz-
ing the curb-side collection and subsidizing the collection entities, the government’s com-
mitments influence the recycling rate beyond the market-based mechanism. Therefore, we 
extend the literature by examining the impacts of exogenous variations of the recycling 
rate. To the best of our knowledge, Fabre et al. (2020) is the only other study doing this 
kind of analysis. However, they only consider an efficient recycling rate and a setting with 
a social planner’s problem.6 In contrast, we study the optimal recycling rate with a setting 
allowing for strategic interaction among firms.

As mentioned above, the literature studying the problem of “remanufacturing” is 
also closely related to our work. In this strand of literature, extant studies focus mainly 
on the impact that remanufacturing has on the primary manufacturers’ profitability. For 
instance, Atasu et al. (2008) investigate the conditions for the benefits of remanufacturing 
to outweigh the losses from cannibalization when manufacturers conduct remanufactur-
ing themselves. They show that remanufacturing is more beneficial under competition than 
under monopoly. In another paper, Ferguson and Toktay (2009) analyze the competition 
between a manufacturer and a remanufacturing firm. They discuss the conditions for the 
manufacturer to choose to remanufacture its products or not. They also compare two entry-
deterrent strategies: remanufacturing and preemptive collection. Webster and Mitra (2007) 
and Mitra and Webster (2008) develop two-period models where they consider a monopo-
list on the original market that competes with a remanufacturer. Assuming a fixed level of 
remanufacturability, they show the conditions under which take-back regulations as well as 
subsidies encourage remanufacturing activities. Örsdemir et al. (2014) study the competi-
tion between a manufacturer and a remanufacturer, incorporating the constraint that the 
remanufactured product quantity cannot exceed the quantity of the original product. Their 
model shares some features with ours but differs in important aspects: competition takes 
place in a single period and public policy is not considered.

In a broader view, our study also echoes recommendations from empirical studies that 
recycling should not be pushed too far. Kinnaman et al. (2014) use data in Japan to estimate 
the average social cost of waste management as a function of the recycling rate. Defining 
the social cost as the sum of all municipal costs and revenues, costs to recycling house-
holds, external disposal costs and external benefits of recycling, the authors suggest that 
the recycling rate that minimizes the average social costs in Japan should only be 10% and 

6  Ba and Soubeyran (2023) also share a similar idea. However, their setting does not allow for a full static 
comparison. As a result, they only conduct numerical simulations with certain recycling rates.
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concluded that  “the 20% recycling rate in Japan is higher than the socially optimal rate” 
and that “the current recycling rates in the United States (35%) and the EU27 (34%) may 
also be too high.” In another study, Dijkgraaf and Gradus (2014) estimate the cost function 
resulting from different policies in waste recycling in the Netherlands and find that it seems 
nearly impossible for the Netherlands to reach the EU goal of 70% recycling rate because 
of the high cost of the recycling system.7

In Sect. 2, we analyse a baseline model with one manufacturer, one recycler, and linear 
demand and costs. In Sect.  3, we use this model to characterize the first-best allocation 
and the second-best policy. In Sect. 4, we show that our key results hold in more general 
settings with a general demand, product and cost differentiation, resource scarcity, several 
manufacturers and recyclers, manufacturers using their own scrap, or a for-profit scrap col-
lector. We conclude in Sect. 5.

2 � A Baseline Model

We analyze here a setting with one manufacturer, one recycler, and simple specifications 
for demand, costs, and recycling technology. This parsimonious model allows us to focus 
on the main strategic trade-off while leaving out unnecessary details. In Sect. 4, we discuss 
our assumptions and show the robustness of our results by extending the model in several 
directions.

We consider the market for some homogenous good (think of, e.g., aluminium cans). 
The manufacturer produces the good from primary material, whereas the recycler does so 
by using a reprocessed fraction of the manufacturer’s end-of-life products. The two firms 
play the following two-stage game. In period 1, the manufacturer chooses the quantity of 
production for this period, q1 ; by the end of the period, all products in use wear out and 
a fraction � ∈ [0, 1] of the scraps is collected and reprocessed (the rest of the scraps is 
dumped). In period 2, the recycler enters the market and uses the reprocessed scraps as 
input to compete with the manufacturer à la Cournot; we denote by r the quantity produced 
by the recycler and by q2 the quantity produced by the manufacturer. In what follows, we 
call � the recycling rate and we take it as a measure of the efficiency of the recycling sys-
tem.8 Note that � is common knowledge (in particular, it is known by the manufacturer in 
period 1). The other ingredients of the baseline model are as follows.

Demand. The inverse demand for the good is p1 = 1 − q1 in period 1 and p2 = 1 − q2 − r 
in period 2. That is, we assume for now that consumers perceive the manufacturer’s and 
the recycler’s products as homogenous, and that the recycler’s entry does not contribute to 
increasing total demand (i.e., the maximum price that consumers are willing to pay is the 
same in both periods and is normalized to 1).

Production costs. We assume that both firms have a constant marginal cost of production 
and no fixed cost. Without loss of generality, we normalize the manufacturer’s production 

7  In this stream of the literature, we can also cite Hamilton et al. (2013), Kinnaman (2013), Fullerton and 
Kinnaman (1995), Kinnaman and Fullerton (2000), Callan and Thomas (2001), Kinnaman (2006), Bohm 
et al. (2010), Kinnaman (2010), and Hamilton et al. (2013).
8  To adapt the model to the case of remanufacturing, we can simply interpret the parameter � as the degree 
of product repairability. A larger value of � means then that the primary product is easier to repair, which 
increases the remanufacturing possibilities. Policies promoting the repairability of goods aim to foster this 
process. For instance, in February 2024, the Council and the European Parliament reached a provisional 
deal on the so-called right-to-repair (or R2R) directive, which promotes the repair of broken or defective 
goods (see https://​tinyu​rl.​com/​bduac​nx3, last accessed April 4, 2024.)

https://tinyurl.com/bduacnx3
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cost to zero. Meanwhile, the total cost to produce a quantity r of recycled products from 
reprocessed scrap is equal to cr. We assume in the baseline model that c ≥ 0 , meaning that 
recycling is at least as expensive as primary production. Before the recycler’s entry, the 
manufacturer does not know precisely the value of c; it expects c to be drawn from a uni-
form distribution over the interval [0, 1/2].9

We solve the game for its subgame-perfect equilibrium, assuming that the manufacturer 
does not discount its future profit when choosing its quantity in period 1.10 Before doing 
so, we briefly outline the benchmark case with no possibility of recycling. This is so, in 
our setting, when the recycling rate � is equal to zero: with no scrap collected and/or repro-
cessed, the recycler cannot enter the market. In this case, the manufacturer would simply 
behave as an unconstrained monopolist in both periods: it would choose q1 and q2 to maxi-
mize � = (1 − q1)q1 + (1 − q2)q2 , which yields q1 = q2 = qm = 1∕2 . Over the two periods, 
the manufacturer would then produce a total quantity of primary products 2qm = 1 and earn 
a total profit of Π(1∕2, 1∕2) = 1∕2.

We now turn to the situations in which 𝜏 > 0 : scraps are collected and reprocessed so 
that the recycler can enter the market in period 2. Solving the game backwards, we first 
analyse the Cournot competition in period 2; we then move to the manufacturer’s choice in 
period 1.

2.1 � Competition Between Manufacturer and Recycler

In period 2, the two firms simultaneously choose their quantity. The manufacturer chooses 
q2 to maximize �2 =

(
1 − q2 − r

)
q2 ; we derive the manufacturer’s best-response function 

from the first-order condition:

The recycler chooses r to maximize �r = (1 − q2 − r)r − cr under the constraint r ≤ �q1 
(as it cannot produce more than the amount of reprocessed scrap, i.e., �q1 ). Solving the 
constrained maximization program, we find that the recycler’s best-response function is 
kinked:

Crossing the two best-response functions, we can identify two possible Cournot-Nash equi-
libria in period 2, depending on the amount of reprocessed scrap ( �q1 ) and the recycler’s 
unit cost (c): an  ‘unconstrained equilibrium’ in which scraps are in large supply and/or the 
recycler is not efficient enough to reprocess them all, and a  ‘constrained equilibrium’ in 

(1)q2(r) = (1 − r)∕2.

(2)r∗
(
q2
)
=

{
1

2

(
1 − c − q2

)
if

1

2

(
1 − c − q2

) ≤ �q1,

�q1 otherwise .

9  We make this assumption of stochastic costs purely for convenience, as it allows us to make the manufac-
turer’s optimization problem continuous in period 1. We can establish our result equally—though less ele-
gantly—if we assume instead that the manufacturer knows the recycler’s cost with certainty. As we assume 
no entry cost, c ≤ 1∕2 guarantees that the recycler enters the market. For c > 1∕2 , the recycler stays out 
because entry is not profitable even when the manufacturer produces the monopoly quantity. Using the ter-
minology of Bain (1956), we say that entry is ‘blockaded’ in this case. In our setting, the manufacturer can-
not ‘deter’ entry and must ‘accommodate’ it when c < 1∕2.

10  A discount factor strictly lower than 1 would attenuate the manufacturer’s incentives to reduce produc-
tion in the first period (as second-period profits would weigh relatively less). It is easily shown, however, 
that this would not affect our results.
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which scraps are in short supply and/or the recycler is efficient enough to be bounded by 
the input availability. These two equilibria are characterized as follows:

•	 Quantities at the unconstrained equilibrium are found by solving the system of equa-
tions made of (1) and the top branch of ( 2): 

 (with ru ≥ 0 as we assume c ≤ 1∕2 ). The equilibrium profits are then computed as: 

•	 In the constrained equilibrium, the recycler’s quantity is bounded by the input con-
straint and the manufacturer reacts according to ( 1), so that: 

 equilibrium profits are then equal to: 

Figure 1 depicts the two possible equilibria in period 2. Due to the input constraint, the 
recycler’s reaction function is kinked at r = �q1 . If the scrap supply is large and/or the 
recycler is not efficient enough, we obtain the unconstrained equilibrium (qu

2
, ru) in which 

ru < 𝜏q1 (Fig. 1a). Because the input constraint is not binding, the firms’ outputs are inde-
pendent of the recycling rate � and the quantity of primary product in the first period ( q1 ). 
Instead, they depend on the marginal recycling cost c (a higher marginal cost c leads to 
lower recycling ru and higher primary production qu

2
 in period 2). In contrast, if the scrap 

supply is small and/or the recycler is efficient enough, its best-response function is shifted 
upward, as in Fig. 1b. Here, the quantity of recycled product is constrained by the initial 
primary production q1 . The market then reaches the equilibrium (qc

2
, rc) in which the recy-

cler uses all the reprocessed scrap ( rc = �q1 ), whereas the manufacturer produces a larger 
quantity qc

2
 than if the recycler was not constrained (denoted by q̃ ). In this case, the manu-

facturer can control the scale of the recycler through its initial production q1 (a lower q1 
leads to a lower rc and a larger qc

2
).

In sum, the unconstrained equilibrium occurs if the quantity of reprocessed scrap is 
large enough, i.e., 𝜏q1 > ru ; the constrained equilibrium occurs otherwise. Equivalently, for 
a given �q1 , the unconstrained equilibrium occurs if ru is small enough. Since ru decreases 
with the recycler’s marginal cost c, a larger value of this cost makes the unconstrained 
equilibrium more likely, as formalized in the following lemma.

Lemma 1  (1) For a given quantity of reprocessed scrap �q1 , the unconstrained equilibrium 
( ru < 𝜏q1 ) obtains if the recycler’s marginal cost c is above c̃ ≡ (

1 − 3𝜏q1
)
∕2 and the con-

strained equilibrium ( rc = �q1 ) obtains otherwise. (2) As the threshold c̃ decreases with � 
and q1 , only the unconstrained equilibrium can occur if �q1 ≥ 1∕3.

Proof  (1) The threshold c̃ is the value of c that separates the two types of equilibrium; that 
is, c̃ is such that ru(c̃) = rc , which is equivalent to 1−2c̃

3
= 𝜏q1 . For c > c̃ , we have ru < 𝜏q1 . 

(2) Given that c ≥ 0 , only the unconstrained equilibrium can occur if c̃ ≤ 0 , which is 

qu
2
=

1

3
(1 + c) and ru =

1

3
(1 − 2c),

�u
2
=

1

9
(1 + c)2 and �u

r
=

1

9
(1 − 2c)2.

qc
2
=

1

2

(
1 − �q1

)
and rc = �q1;

�c
2

(
q1
)
=

1

4

(
1 − �q1

)2
and �c

r

(
q1
)
=

1

2
�q1

(
1 − 2c − �q1

)
.
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equivalent to �q1 ≥ 1

3
 ; for instance, if q1 = qm

1
=

1

2
 , then the condition becomes � ≥ 2

3
 . 	

� ◻

2.2 � Manufacturer’s ‘Limit Entry’ Strategy

We now analyse whether and how the manufacturer wants to follow a ‘limit entry’ strat-
egy, whereby the firm reduces its production in period 1 so as to limit the quantity of 
input that the recycler will be able to use in period 2. We are also interested in evaluat-
ing how the level of the recycling rate affects the manufacturer’s decision.

In period 1, the manufacturer chooses the quantity q1 to maximize its expected prof-
its over the two periods. There are two possible courses of action. First, we know from 
Lemma 1 that if the manufacturer sets a sufficiently large quantity—namely, q1 ≥ 1∕(3�)

—it can make sure that the equilibrium in period 2 will be unconstrained irrespective 
of the marginal cost drawn by the recycler. In that case, the manufacturer’s profit in 
period 2 is �u

2
= (1 + c)2∕9 , which is independent of q1 . Hence, the manufacturer’s opti-

mal quantity in period 1 is qm
1
= 1∕2 . This quantity satisfies the constraint as long as 

qm
1
≥ 1∕(3�) , or � ≥ 2∕3.
Alternatively, the manufacturer can choose q1 < 1∕(3𝜏) . Then, the equilibrium pre-

vailing in period 2 depends on the cost drawn by the recycler: the manufacturer obtains 
the profit �c

2
 in the constrained equilibrium if c < c̃ , and obtains the profit �u

2
 in the 

unconstrained equilibrium if c > c̃ . Consequently, if q1 < 1∕(3𝜏) , the manufacturer’s 
expected profit function can be written as

where �1
(
q1
)
= q1

(
1 − q1

)
 and, given the uniform distribution of c over the interval [

0, 1∕2
]
,

Because c̃ decreases with q1 , the manufacturer faces a tradeoff when increasing q1 . From 
(5), we observe that 𝜋̂u

2

(
q1
)
 increases with q1 as the probability that the unconstrained equi-

librium occurs increases with q1 while the manufacturer’s profit remains constant. In con-
trast, we observe from (4) that 𝜋̂c

2

(
q1
)
 decreases with q1 for two reasons: not only does the 

constrained equilibrium become less likely but also the manufacturer gets a smaller profit 
(as q∗

2
(�q1) decreases with q1 because of strategic substitutability).

Clearly, the level of the recycling rate � affects the balance between these two con-
flicting forces. As we now show, it does so in a non-monotonic way. Denote by q∗

1
(�) the 

quantity that maximizes expression (3) for a given � . Note first that if � is close to zero, 
the unconstrained equilibrium is very unlikely (as c̃ is close to 1/2) and the manufacturer 
is hardly affected by the small scale of the recycler’s operation in the constrained equi-
librium. It follows that the manufacturer’s choice of quantity q∗

1
(�) tends to qm

1
= 1∕2 as 

� tends to zero. Note also that we have just established that the manufacturer chooses 

(3)𝜋e = 𝜋1
(
q1
)
+ 𝜋̂c

2

(
q1
)
+ 𝜋̂u

2

(
q1
)
,

(4)𝜋̂c
2

(
q1
)
=∫

c̃

0

2𝜋c
2

(
q1
)
dc = ∫

1

2
(1−3𝜏q1)

0

1

2

(
1 − 𝜏q1

)2
dc =

1

4

(
1 − 𝜏q1

)2(
1 − 3𝜏q1

)
,

(5)𝜋̂u
2

(
q1
)
=∫

1

2

c̃

2𝜋u
2
dc = ∫

1

2

1

2
(1−3𝜏q1)

2

9
(1 + c)2dc =

1

4
𝜏q1

(
𝜏2q2

1
− 3𝜏q1 + 3

)
.
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qm
1
= 1∕2 as well for � ≥ 2∕3 . To understand how q∗

1
(�) evolves with � for 0 < 𝜏 < 2∕3 , 

we use the implicit function theorem to write:

Because q∗
1
(�) maximizes the firm’s expected profit, 𝜕2𝜋e(q∗

1
)∕𝜕q2

1
< 0 by the second-order 

condition. So dq∗
1
(�)∕d� takes the sign of

As � only influences the first-period profit via its impact on q1 , the first term is equal to 
zero. The variation of q1 with respect to � depends then on two factors: (i) the marginal 
impact of � on the expected loss following an increase in q∗

1
 under the constrained equi-

librium and (ii) the marginal impact of � on the expected gain following an increase in q∗
1
 

under the unconstrained equilibrium. Therefore, the profit-maximizing quantity in period 
1, q∗

1
 , decreases with � if the first impact dominates the second and increases with � other-

wise. As noted above, the former case certainly occurs when � is close to zero (as the sec-
ond impact vanishes), while the latter case certainly occurs when � is close to 2/3 (as the 
first impact vanishes). We expect thus q∗

1
(�) to be a U-shaped function of �.

We now confirm our intuition by computing the exact value of q∗
1
(�) . The first-order 

condition for profit-maximization is:

dq∗
1
(�)

d�
= −

�2Πe(q∗
1
)

�q1��

/
�2Πe(q∗

1
)

�q2
1

.

𝜕2𝜋e(q∗
1
)

𝜕q1𝜕𝜏
=

𝜕2𝜋1(q
∗
1
)

𝜕q1𝜕𝜏
�����

=0

+
𝜕2𝜋̂c

2

(
q∗
1

)
𝜕q1𝜕𝜏

�������
(i)

+
𝜕2𝜋̂u

2

(
q∗
1

)
𝜕q1𝜕𝜏

�������
(ii)

.

(6)
��e

�q1
=

1

2

(
−3�3q2

1
− 4

(
1 − �2

)
q1 + 2 − �

)
= 0.

Fig. 1   Cournot-Nash equilibrium in period 2
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At � = 0 , it is equivalent to 1 − 2q1 = 0 , which confirms that q∗
1
(0) = 1∕2 = qm

1
 . For 𝜏 > 0 , 

the solution to Equation (6) is11:

We check that q∗
1
(𝜏) < 1∕(3𝜏) if and only if 𝜏 < 2∕3 . We also observe that for 𝜏 < 2∕3 , 

q∗
1
(𝜏) < 1∕2 (while q∗

1
(2∕3) = 1∕2 ). As represented in Fig.  2, q∗

1
(�) is a U-shaped func-

tion of � : q∗
1
= 1∕2 at the two extreme values of the interval ( � = 0 and � = 2∕3 ), it 

decreases with � for 0 < 𝜏 < 𝜏 ≈ 0.326 and increases with � for 𝜏 < 𝜏 < 2∕3 . For � ≥ 2∕3 , 
q∗
1
(�) = 1∕2 : as explained above, the manufacturer can no longer constrain the recycler’s 

input once the recycling rate becomes too large; it therefore maintains the monopolistic 
production qm

1
 to maximize its profits in period 1.

The next proposition records our results.

Proposition 1  (1) If the recycling rate � is lower than 2/3, then the manufacturer contracts 
its period 1 production, q∗

1
(𝜏) < qm

1
 , to limit the recycler’s scale of operation in period 2; 

the contraction is the largest for 𝜏 = 𝜏 ≈ 0.326 . (2) If the recycling rate � is larger than 2/3, 
then the manufacturer maintains the monopolistic production level in period 1, q∗

1
(�) = qm

1
.

Intuitively, when the recycling rate is small, the manufacturer can constrain the recy-
cler’s scale by reducing slightly its production in period 1. Hence, in this case, the manu-
facturer finds it profitable to sacrifice part of its period-1 profits to increase its expected 
period-2 profits. As long as the recycling rate remains smaller than 𝜏 , the manufacturer 
reduces further its initial production. Yet, once the recycling rate becomes larger than 𝜏 , 
the manufacturer continues to apply the limit entry strategy, but it does so by reducing 
its initial production by smaller amounts; in fact, as the recycler can access a larger share 
of the initial production, the manufacturer must forgo more profits in period 1 to reach a 
given increase in expected profits in period 2. Eventually, the limit entry strategy becomes 
unprofitable (or is simply no longer a feasible option) when the recycling rate gets larger 
than 2/3; the manufacturer, then, is no longer willing to contract its initial production and 
prefers to produce the monopoly output in period 1, as though the recycler was not to enter 
in period 2.

3 � Policy Implications

We now address our research question: How far should we go in improving recycling? The 
policy instrument that we study is the recycling rate �.12 There are different ways through 
which public authorities can increase the recycling rate. For instance, the authorities can 
manage a centralized collection system and implement policies to encourage consumers 
and firms to participate in scrap collection. As a companion tool to enforce a given intended 
collection rate, authorities can also run a system of returnable goods with deposits (as is 

(7)q∗
1
(�) =

√
4 − 8�2 + 6�3 + �4 − 2

�
1 − �2

�
3�3

.

12  As our objective is to demonstrate the counter-intuitive impacts of modifying the recycling rate, we limit 
our analysis to this policy instrument, abstracting away other instruments—such as taxes on primary prod-
ucts or subsidies on recycled products—that the government could use to limit environmental damages. For 
a survey on the economics of environmental policy instruments, see, e.g., Sterner and Robinson (2018).

11  It can easily be checked that the other root is negative and that the second-order condition is satisfied.
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done for glass bottles in some European countries).13Negative environmental externali-
ties can result from four sources in our setting: (i) the extraction of the primary resource, 
(ii) the production of primary goods by the manufacturer; (iii) the production of recycled 
goods by the recycler, and (iv) the accumulation of disposed waste. Following the literature 
(see, e.g., Örsdemir et al. (2014) and the references therein), we assume that externalities 
are constant per unit of output. Accordingly, we define ep ≥ 0 , er ≥ 0 , and ew ≥ 0 as the 
per-unit externality of, respectively, primary production (including the externality of pri-
mary production and primary resource extraction), r ecycled production, and waste. The 
total environmental impact can then be defined as14:

The other two components of the social welfare function are the consumer surplus (CS) 
and the firms’ profits ( Π ). In our setting, they are computed as follows:

As is also usually assumed in the literature, the social planner maximizes the unweighted 
sum of the three components, that is, W = CS + Π − E.15

3.1 � First‑Best Allocation

In a first-best world, the social planner chooses the quantities to be produced ( q1 , q2 , r) as 
well as the recycling rate ( � ) to maximize total welfare. The social planner’s program is:

Using expression (8)-(10) and deriving W with respect to r, we find:

The left-hand side is the price of goods in period 2, while the right-hand side is the social 
cost of recycling (that is, the private cost c plus the net externality—one unit of recycled 
product entails an environmental impact of er but reduces waste by ew ). To give room to 
recycling in our setting, we assume that this inequality is satisfied. It follows that the social 
planner chooses to set r = �q1 . The social welfare function then becomes:

(8)E = ep
(
q1 + q2

)
+ err + ew

(
q1 − r

)
.

(9)CS =
1

2
q2
1
+

1

2

(
q2 + r

)2
,

(10)Π =�m + �r =
[(
1 − q1

)
q1 +

(
1 − q2 − r

)
q2
]
+
(
1 − q2 − r − c

)
r.

max
q1,q2,r,�

W subject to r ≤ �q1.

dW

dr
> 0 ⇔ 1 − r − q2 > c +

(
er − ew

)
.

W =
(
1 − q1

)
q1 +

(
1 − q2 − �q1

)
q2 +

(
1 − q2 − �q1 − c

)
�q1

+
1

2
q2
1
+

1

2

(
q2 + �q1

)2
−
(
ep
(
q1 + q2

)
+ er�q1 + ew(1 − �)q1

)
.

15  All along, we assume that improving recycling is costless. This allows us to isolate the role of the strate-
gic interaction described in the previous section (otherwise, a limited improvement of the recycling process 
could be attributed to cost reasons).

13  To compare the merits of different organizations of collection systems, see, e.g.,  Beatty et  al. 
(2007), Viscusi et al. (2012), Hamilton et al. (2013), Kinnaman (2013), or Kinnaman et al. (2014).
14  In this two-period model, we do not consider the potential waste externality of second-period production 
( q2 + r).
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Solving for the first-order conditions with respect to q1 and q2 yields16:

Substituting these values into the welfare function and deriving with respect to � gives:

As the first bracketed term is equal to q∗
1
> 0 , we see that the derivative is either positive 

or negative, depending on the sign of the second bracketed term. This allows us to state the 
following result.

Proposition 2  If the social cost of recycling ( c + er − ew ) is lower than the social cost of 
primary production ( ep ), then the first-best allocation is such that the first-period produc-
tion is entirely recycled. Otherwise, there is no role for recycling at the first best.

The intuition behind this result is straightforward. As the first-best is achieved by pro-
ducing at the marginal social cost, one must choose, for the second period, the technology 
(primary production or recycling) with the lowest marginal social cost.

3.2 � Second‑Best Policy

We now consider a world in which quantities are not directly chosen by the social plan-
ner but, instead, by the manufacturer ( q1 and q2 ) and the recycler (r). The planner can, 
nevertheless, influence the chosen quantities indirectly through the recycling rate. We saw 
indeed in the previous section that the recycling rate impacts the degree of competition in 
period 2 and, thereby, the manufacturer’s decision in period 1. As recalled in Table 1, the 
quantities chosen by the two firms at the subgame-perfect equilibrium of the game depend 
on � , and so do the various components of the social welfare function.17

{
q∗
1
= 1 − ep − ew − �

(
c + er − ew − ep

)
,

q∗
2
= 1 − ep − �

(
1 − ep − ew

)
+ �2

(
c − ep + er − ew

)
.

dW

d�

||||q1=q∗1,q2=q∗2
=
(
1 − ep − ew − �

(
c + er − ew − ep

))(
ep − c − er + ew

)
.

Fig. 2   Period-1 production as a 
function of the recycling rate

16  It is easily checked that the second-order conditions are satisfied.
17  The detailed computations can be found in Appendix 6.1.
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The social planner’s objective is now written as:

An immediate observation from Table  1 is that W̄(𝜏) is constant for values of the recy-
cling rate above 2/3. Recall that if � ≥ 2∕3 , the competition between the manufacturer and 
the recycler always leads to the unconstrained equilibrium, in which scrap is only partially 
recycled. In this case, the equilibrium quantities are independent of the recycling rate and 
so are all components of the social welfare function.

For smaller values of the recycling rate, we cannot solve analytically for the maximum 
of W̄(𝜏) . However, we can draw useful insights by examining the impact of the recycling 
rate on the components of the social welfare function.

3.2.1 � Impacts of Recycling on Firms and Consumers

Firms. Unsurprisingly, the firms’ preferences regarding the level of the recycling rate are 
completely at odds with one another. It is easily shown that  the manufacturer’s profit is 
the largest for � = 0 , while the recycler’s profit reaches its maximum level at � = 2∕3. If 
we take the point of view of total industry profits, we see in Panel (A) of Fig. 3 that they 
decrease with � ; this follows from the fact that, in our model, the manufacturer earns profit 
over one more period than the recycler.18

Consumers. As the baseline model assumes homogeneous products, the consumer sur-
plus increases with the level of total production (primary and recycled). A priori, recycling 
has ambiguous impacts on the consumer surplus: on the one hand, the recycler’s entry in 
period 2 benefits consumers (because in a homogeneous product market, duopolists pro-
duce together a larger equilibrium quantity than a monopolist does); on the other hand, the 
prospect of the recycler’s entry induces the manufacturer to (weakly) decrease its produc-
tion in period 1. Panel (B) of Fig. 3 shows that the former effect always outweighs the lat-
ter, and even more so as the recycling rate increases. Hence, consumer surplus increases 
with the recycling rate � , which means that consumers would vote for pushing the improve-
ment of the recycling process to � = 2∕3.

Social surplus. Combining the previous results, we can evaluate the impacts of recycling 
on the social surplus, defined as the sum of the firms’ profits and the consumer surplus. We 
see in Panel (C) of Fig. 3 that the social surplus first decreases and then increases with the 
recycling rate. Comparing the values of the social surplus at � = 0 and � = 2∕3 , we find:

Hence, a second-best social planner with no concern for the environment (that is, only 
focused on the well-being of firms and consumers) would choose a recycling rate equal to 
2/3.19 This finding follows from the pro-competitive effect of recycling in our setting.

max
𝜏

W̄(𝜏) ≡ 𝜋m(𝜏) + 𝜋r(𝜏) + CS(𝜏) − E(𝜏).

SS
(

2

3

)
=

41

54
= 0.759 > SS(0) = 0.75.

18  Even if the manufacturer had to bribe the recycler not to enter the market, it would push for the total 
absence of recycling.
19  In fact, the planner is indifferent between any � ∈

[
2∕3, 1

]
 . Yet, if we introduce a tiny cost of improving 

recycling, choosing � = 2∕3 is the dominant option.
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3.2.2 � Impacts of Recycling on Environmental Externalities

Using the results recorded in Table 1 to compute the total environmental externality and 
deriving it with respect to the recycling rate, we obtain:

Some lines of computations establish the following findings: (i) as � tends to zero, �p(�) , 
�r(�) , and �w(�) tend, respectively, to − 1

2
 , 1
2
 , and − 3

4
 ; (ii) �p(�) and �w(�) increase with 

� , while �r(�) decreases with � ; (iii) �p(�) , �r(�) , and �w(�) are all positive at � =
2

3
 . 

Hence, the function E(�) is either increasing or U-shaped in � . It is increasing in � if the 
derivative is positive in the vicinity of � = 0 , which occurs if − 1

2
ep +

1

2
er −

3

4
ew > 0 , 

which is equivalent to er > ep +
3

2
ew . Otherwise, E(�) reaches a minimum at 𝜏 such that 

𝜔p(𝜏)ep + 𝜔r(𝜏)er + 𝜔w(𝜏)ew = 0 , with 0 < 𝜏 <
2

3
.

In sum, if the social planner only cares about the environment, it chooses ‘partial recy-
cling’ (that is, the recycling rate is positive but strictly lower than 2/3), unless the externality 
from recycling is very large compared to the other two sources of externality (precisely, if 
er > ep +

3

2
ew), in which case the best is not to recycle at all.

The intuition is simple. Partial recycling induces the manufacturer to reduce its first-period 
production to limit the recycler’s scale of entry. From an environmental point of view, this has 
the advantage of reducing the extraction of primary resources, as well as the production of 
primary and recycled products.

�E(�)

��
=�p(�)ep + �r(�)er + �w(�)ew, with

�p(�) ≡�q1

��
−

1

2

(
1 − 3�q1

)(
q1 + �

�q1

��

)
,

�r(�) ≡(1 − 3�q1
)(

q1 + �
�q1

��

)
,

�w(�) ≡�q1

��
−
(
1 − 3�q1

)(
q1 + �

�q1

��

)
.

Table 1   Quantities, profits, consumer surplus, and total environmental impact at the subgame-perfect equi-
librium

� = 0 0 < 𝜏 < 2∕3 � ≥ 2∕3

q1(�)
1

2

1

3�3

�√
4 − 8�2 + 6�3 + �4 − 2

�
1 − �2

�� 1

2

q2(�)
1

2

1

2

(
6�2q2

1
− 4�q1 + 1

)
1

6

r(�) 0 1

2
�q1

(
2 − 3�q1

)
1

6

�m(�)
1

2

1

4

(
1 + 2(2 − �)q1 − 4

(
1 − �2

)
q2
1
− 2�3q3

1

)
23

54

�r(�) 0 1

4
�q1

(
1 − �q1

)2 1

27

CS(�) 1

4

1

8

(
1 + 5�q1 + 2

(
2 − �2

)
q2
1
− 2�

(
6 + �2

)
q3
1

)
8

27

E(�) ep

+
1

2
ew

1

4
�
(
2er − 2ew − ep

)(
2 − 3�q1

)
q1

+
(
ep + ew

)
q1 +

1

2
ep

11

12
ep +

1

6
er

+
1

3
ew
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3.2.3 � Combined Impacts of Recycling

Finally, we look at how the second-best social welfare function evolves with the recycling 
rate. We focus on values of � comprised between 0 and 2

3
 (as W̄(𝜏) is constant for 2

3
≤ � ≤ 1 ). 

Recall that W̄(𝜏) = SS(𝜏) − E(𝜏) , where SS(�) = �m(�) + �r(�) + CS(�) . For 0 ≤ � ≤ 2

3
 , we 

just found that SS(�) reaches its maximum at � =
2

3
 , while −E(�) reaches its maximum at a 

lower value of � (possibly � = 0 ). Hence, in the presence of externalities ( E(𝜏) > 0 ), W̄(𝜏) 
cannot be maximum at � =

2

3
 . We check indeed that the derivative of W̄(𝜏) with respect to � is 

negative when evaluated at � =
2

3
:

This means that there exist 𝜏 in the vicinity of 2
3
 , such that W̄(𝜏) > W̄

(
2

3

)
 . Moreover, com-

paring the value of W̄(𝜏) at the extremes, we find:

Hence, if the latter condition is fulfilled, we have that W̄(𝜏) > W̄
(

2

3

)
= W̄(1) > W̄(0) , with 

0 < 𝜏 <
2

3
 . Figure 4 illustrates this result. It depicts the social welfare function in the sec-

ond-best, assuming that ep = er = 0.1 and ew = 0.05 . As er < ep∕2 + ew + 1∕18 , we see 

𝜕W̄(𝜏)

𝜕𝜏

|||||𝜏= 2

3

= −
3

14

(
ep + ew

)
< 0.

W̄
(

2

3

)
=

41

54
−
(

11

12
ep +

1

6
er +

1

3
ew

)
> W̄(0) =

3

4
−
(
ep +

1

2
ew

)

⇔er <
1

2
ep + ew +

1

18
.

Fig. 3   Impact of the recycling rate on A total profits, B consumer surplus, and C social surplus
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that the maximum is reached at a value of � that is inferior to 2/3. We have thus proved the 
following result.

Proposition 3  From a second-best perspective, partial recycling is optimal if the negative 
externality stemming from recycled production is relatively smaller than the externalities 
stemming from primary production and waste (precisely if er <

1

2
ep + ew +

1

18
).

The rationale underlying this result can be succinctly articulated as follows. The sec-
ond-best social planner faces a delicate trade-off stemming from the divergent effects that 
changes in the recycling rate exert on social surplus and environmental externalities. In 
striving to maximize social surplus, the planner is inclined to enhance recycling to the full-
est extent feasible, given that the benefits accruing to consumers and recyclers outweigh the 
drawbacks experienced by manufacturers. Nonetheless, the imperative to mitigate environ-
mental externalities necessitates a nuanced approach, wherein partial recycling emerges as 
preferable. This preference arises from the incentivization of manufacturers to curtail pri-
mary resource extraction, thereby limiting the recycler’s entry. Insofar as recycling yields 
relatively lower environmental harm compared to the utilization of primary resources and 
waste disposal, the planner’s prioritization is directed towards mitigating the latter effects, 
leading to a propensity to constrain recycling enhancements. Consequently, from a second-
best perspective, the response to our initial question “Recycling: How far should we go?” is 
aptly articulated as “Not too far!”.

4 � Extensions

In this section, we show that the results obtained in our baseline model continue to 
hold in more general settings. We first stick to the ‘one manufacturer/one recycler’ 
setting but we generalize the demand function (4.1), allow for differentiated products 
and costs (4.2), or introduce resource scarcity (4.3). Next, we complexify the strate-
gic interaction by assuming an arbitrary number of manufacturers and recyclers (4.4), 
letting the manufacturer be present in the recycling market (4.5), and introducing an 
independent scrap collector (4.6). For each extension, we present the modified model 
and focus on the results and economic intuition, leaving most of the technical analysis 
in the appendix.

4.1 � General Demand Function

In the baseline model, the demand for the products was, for simplicity, assumed to be lin-
ear. We take now a general demand function, P = P(Q) . This function is strictly decreas-
ing, twice differentiable in ℝ+ , and satisfies the following assumptions: (i) P(Q) = 0 for a 
finite Q; (ii) P��(Q)Q + P�(Q) < 0 for all Q > 0 ; and (iii) P(Q) > 0 . Under these assump-
tions, the best-response functions are downward sloping with the slope belonging to the 
interval (−1, 0] . These are the sufficient conditions to assure the existence of a unique and 
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locally stable Cournot equilibrium in period 2.20 These conditions also ensure that products 
are substitutes so that per-firm outputs decrease with the number of firms in the symmetric 
equilibrium.21

In Appendix 6.2, we characterize the subgame-perfect Nash equilibrium of the game. 
We show that the results of Lemma 1 and Proposition 1 still hold with the general demand 
P(Q) . In particular, we establish that q∗

1
= qm for 𝜏 ≥ 𝜏 and q∗

1
< qm for 𝜏 < 𝜏 , with q∗

1
 

decreasing with � when � is close to zero, and increasing in � when � is close to 𝜏.22 We 
also show that the expected quantity produced by the manufacturer in period 2 decreases 
with � . This allows us to state that the results of Proposition 1 continue to hold in the gen-
eral case, and so do the policy implications of Sect. 3.

4.2 � Product and Cost Differentiation

In the baseline model, we suppose for simplicity that the products of the recycler and 
the manufacturer are perfect substitutes. This relies on two related assumptions: the 
two products have the same technical properties and consumers are indifferent between 
them. Arguably, both assumptions can be verified in some contexts but certainly not in 
general. For certain materials such as glass, paper, and some metals, it is reasonable to 
consider that recycled and primary products can be used in the same way. Yet, recy-
cled materials may also produce goods of inferior quality or, simply, other goods (for 
instance, plastic from recycled bottles is used for certain textiles or garden furniture). 
Moreover, even if recycled and primary products are similar from a technical view-
point, it is not clear whether consumers will perceive them as equivalent. For some 

Fig. 4   Social welfare function at 
the second best ( ep = er = 0.1 , 
ew = 0.05)

20  See Novshek (1985) for the existence, Kolstad and Mathiesen (1987) on the uniqueness and Dastidar 
(2000) on the local stability of Cournot equilibrium. See Vives (2001) for the discussion of these condi-
tions.
21  In fact, Amir and Lambson (2000) prove that the necessary condition can be weaker: P(Q) is log-con-
cave, i.e. P��(Q)P(Q) − P�2 < 0 . However, the existence of a unique Cournot equilibrium requires strictly 
increasing, convex cost functions. Therefore, we use the assumption of declining marginal revenue to cover 
the case with zero production cost.
22  The threshold 𝜏 < 1 is such that ru(0) = 𝜏 and hence, ru(c) < 𝜏qm for all c ∈ [0, c̄) . (In the linear case, we 
had 𝜏 = 2∕3.)
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products (such as cars, electronic goods, or domestic appliances), consumers may be 
reluctant to trust recycled products or components. Conversely, environmentally con-
scious consumers may be attracted to recycled products of other types (such as textiles, 
packaging, or luggage). As for costs, we postulate in the baseline model that recycling 
is at least as expensive as primary production. This assumption is also restrictive, as 
in some industries, more energy is needed for primary production than for recycling 
(think, for instance, of the aluminium industry).

We show here that our model can be extended to account for these alternative sce-
narios while preserving the main results. On the demand side, we now let recycled and 
primary products be differentiated (vertically and horizontally). In period 2 (when both 
products are on the market), consumers are assumed to have the following net utility:

Maximizing with respect to q2 and r yields the inverse demands for two goods: 
p2 = am − q2 − �r and pr = ar − r − �q2 . In this formulation, ak is the maximum price that 
consumers are willing to pay for product k ( k = m, r ); this parameter can also be interpreted 
as an indicator of perceived quality. Hence, any difference between am and ar denotes verti-
cal differentiation. For instance, am > ar means that consumers are willing to pay more for 
the primary product than for the recycled one, other things being equal. The parameter � 
is an inverse measure of horizontal differentiation between the two products: if � = 0 , the 
two products are seen as completely different; if � = 1 , they are seen as perfect substitutes. 
In period 1, as only the manufacturer’s product is available, the inverse demand is simply 
p1 = am − q1.

On the supply side, we denote the constant unit costs by cm > 0 for the manufacturer 
and by cr ≥ 0 for the recycler. Under this formulation, producing from recycled mate-
rial can be more or less expensive than producing from primary material. Note that we 
can recover the baseline model by setting am = ar = 1 , � = 1 , cm = 0 and cr = c.

In Appendix 6.3, we repeat the analysis of Sect. 2. We characterize the equilibrium 
quantity of the manufacturer in the constrained equilibrium, which depends not only 
on the recycling rate � but also on the demand and cost parameters ( ar, am, � , cr, cm ). 
To gain additional insights, we perform two comparative statics exercises. We consider 
first the effect of horizontal differentiation between the primary and the recycled prod-
ucts. To this end, we set ar = am = 1 , cm = 0 (as in the baseline model) but let � vary. 
We examine next the effect of vertical differentiation: What happens if consumers are 
environmentally conscious and value the recycled product relatively more than the pri-
mary product? Here, we set am = 1 , cm = 0 , and � = 1 (as in the baseline model) but we 
let ar be larger than am = 1.

The numerical simulations that we perform suggest that the manufacturer reduces 
further its first-period output to limit entry as products become more substitut-
able ( � increases) or as the recycled product becomes more valuable for consumers 
( ar increases). The intuition is clear: in both cases, the manufacturer faces stronger 
competition from the recycler and finds it more profitable to limit the recycler’s scale 
in period 2. From a policy point of view, one observes that the recycling rate that 
generates the largest output reduction becomes smaller as � increases but larger as ar 
increases.

U
(
q2, r

)
= amq2 + arr −

1

2

(
q2
2
+ r2 + 2�q2r

)
− p2q2 − prr.
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4.3 � Resource Scarcity

As we noted in the introduction, we implicitly assume in the baseline model that the 
manufacturer does not internalize the scarcity of the resource that it uses in its production 
process. To account for resource scarcity, we extend the baseline model in the following 
way. We let the manufacturer’s total cost of production be given by cmq1 in period 1 and 
cm

(
�q1 + q2

)
 in period 2, with cm, 𝜃 > 0 . The formulation of the costs in period 2 captures 

the idea that the cost of exploiting the scarce resource increases over time with the stock of 
what has been used so far (in the baseline model, cm = � = 0 ). In the benchmark case with 
no recycling, the manufacturer’s maximization programme is:

The profit-maximizing quantities are found as:

We observe that in the absence of any competition, the manufacturer already has an incen-
tive to reduce its first-period production. As underlined by, e.g., Ba and Mahenc (2019), 
reducing production (extraction) in the first period contributes to lowering the cost of pro-
duction (extraction) in the second period.

Consider now the entry of the recycler in the second period. As we show in the baseline 
model, this entry may also incentivize the manufacturer to reduce its production in the 
first period. We want to know (i) how the two channels (scarcity costs and entry limita-
tion) interact and (ii) how the equilibrium is affected by a change in the recycling rate. In 
Appendix 6.4, we show that (i) the two channels reinforce one another and (ii) the manu-
facturer’s first-period production continues to be U-shaped in the recycling rate. In sum, 
resource scarcity does not challenge our main results. In fact, resource scarcity gives the 
manufacturer another motive to decrease its first-period quantity: on top of reducing the 
recycler’s entry potential, the manufacturer also wants to save on second-period costs.

To conclude this section, let us note that the baseline model remains a reasonable 
approximation if we consider a local market. Within this local market, the firms (manu-
facturer and recycler) are (relatively) large, which explains why they enjoy market power. 
However, from a global perspective, these firms are very small players. As a result, the 
manufacturer does not perceive that its production contributes to the exhaustion of the 
resource. This does not prevent the local authority from taking into account the negative 
global externality that resource exhaustion exerts (see the parameter ep that we introduced 
in Sect. 3). A case in point is the recycling of plastics in Belgium. First, the market for 

max
q1,q2

(
1 − q1

)
q1 − cmq1 +

(
1 − q2

)
q2 − cm

(
�q1 + q2

)
.

qm
1
=

1 − cm(1 + �)

2
≤ qm

2
=

1 − cm

2
.
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plastic recycling is increasingly local.23 Second, Belgium is a small producer of plastics at 
the global level.24 Finally, the Belgian government cares about plastic recycling.25

4.4 � Several Manufacturers and Recyclers

We consider now an arbitrary number of symmetric firms in each sector: m identical manu-
facturers and n identical recyclers. We adjust our notation as follows. First, we let qi1 and 
qi2 denote the quantities produced by manufacturer i = 1…m in period 1 and 2 respec-
tively; Q1 and Q2 are the corresponding total quantities, summing over all m manufacturers. 
Second, we let rj denote the quantity produced by recycler j = 1… n in period 2; R denote 
the total quantity produced by the n recyclers, with R ≤ �Q1 . Finally, the inverse demand is 
written as P = 1 − Q1 in period 1 and P = 1 − Q2 − R in period 2.

As in the baseline model, we assume that all firms produce at a constant marginal cost; 
this cost is normalized to zero for manufacturers and equal to c for all recyclers, with c 
drawn from a uniform distribution over 

[
0, 1∕(m + 1)

]
 . In Appendix 6.5, we solve the game 

by backward induction for its subgame-perfect equilibrium. We sketch the main results 
here.

Define:

The Nash equilibrium at the second stage of the game is characterized as follows: for 
Q1 < Qlim

1
 , all recyclers are constrained while for Q1 ≥ Qlim

1
 , no recycler is constrained. The 

condition for the unconstrained equilibrium ( Q1 ≥ Qlim
1

 ) can be rewritten as:

We observe that c̃(m, n) decreases with m and increases with n, implying that, other things 
being equal, the unconstrained equilibrium is more likely if there are more manufacturers 
or fewer recyclers. We also note that the unconstrained equilibrium is the only possible 
equilibrium if Q1 is sufficiently large, that is:

Qlim
1

≡ 1

�

n(1 − (m + 1)c)

m + n + 1
.

c ≥ n − 𝜏(m + n + 1)Q1

n(m + 1)
≡ c̃(m, n).

24  We can roughly estimate that Belgium accounts for 0.6% of global plastic materials production (Bel-
gium’s GDP is about 4% of EU-27 GDP and EU-27 accounted for 15% of global plastic materials produc-
tion in 2021; see Statista.com).
25  “Overall, the country is particularly performant in the collection, sorting and recycling of household 
packaging with Belgium firmly taking on more ambitious targets than the EU itself, establishing a target 
of 70% plastics recycling rate for 2030 (compared to 55% for the EU) and a 95% household packaging 
recycling rate (vs. 65% for the EU)” (see The Brussels Time, 15 June 2023, https://​tinyu​rl.​com/​3322f​ymj; 
emphasis added; last accessed April 4, 2024).

23  For instance, a new recycling plant has recently started to operate in Belgium. This “new recycling cen-
tre is the last of five new facilities being built across Belgium, with three new operational—the simultane-
ous efforts of all five are expected to see a 75% domestic recycling rate for plastic packaging from 2025. 
(...) [The operator] plans to provide the centre with 24,000 tonnes of PMD waste sourced from Belgian 
households.  (...) These will be converted into recycled plastic granules to be used in the production of new 
packaging. It is hoped that the recyclate will be of such high quality that it can be reused in its entirety and 
that it will be supplied to the local Belgian market as much as possible (see  Packaging Europe, 21 March 
2023, https://​tinyu​rl.​com/​yckmm​dpa; emphasis added; last accessed April 4, 2024).

https://tinyurl.com/3322fymj
https://tinyurl.com/yckmmdpa
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If this equilibrium prevails, the manufacturers’ profits in the two periods are independent 
of one another. It follows that the equilibrium in period 1 is the classic Cournot-Nash equi-
librium. In the present setting, each firm produces a quantity q1 = 1∕(m + 1) . Then, condi-
tion (11) is satisfied as long as

We note that (i) 𝜏(1, 1) = 2∕3 (as we found in the baseline model), (ii) 𝜏(m, n) decreases 
with m and increases with n, and (iii) 𝜏(m, n) < 1 if and only if n < m(m + 1) . We can thus 
conclude that the symmetric ‘unconstrained equilibrium’ occurs if the recycling rate is 
above some threshold and becomes more likely as the number of manufacturers increases 
and the number of recyclers decreases.

In the symmetric ‘limit equilibrium’, we show that each manufacturer produces a quan-
tity q∗

1
(𝜏,m, n) < 1∕(m + 1) . We can then compute the value of � that minimizes q∗

1
(�,m, n) 

and assess how this value, which we denote 𝜏(m, n) , changes with the numbers of manufac-
turer and recyclers in the market. Given the complexity of the expressions, we only con-
sider cases with one or two firms in each group; we find:

which suggests that 𝜏(m, n) decreases with m and increases with n.

4.5 � Manufacturer Using Its Own Scrap

In the baseline model, we assume that the manufacturer produces the good in both peri-
ods by using primary material exclusively. To relax this assumption, suppose now that the 
manufacturer is forced to use its scrap along with primary material to produce in period 
2. The reuse of scrap entails two contrasting effects on the manufacturer’s profits. On the 
one hand, there is a direct negative effect stemming from the increase in the unit cost of 
production in period 2. Supposing for simplicity that the production process mixes a share 
� of scrap (which costs c per unit) with a share (1 − �) of primary material (which costs 0 
per unit), the manufacturer’s unit cost is now equal to 𝛼c > 0 . On the other hand, there is 
potentially a positive strategic effect as the manufacturer can further limit the recycler’s 
capacity by using part of the scrap for its own production. Now, the quantity r that the recy-
cler can produce cannot be larger than �q1 − �q2.26

In Appendix  6.6, we analyse the manufacturer’s limit entry strategy under these new 
assumptions. We compute the manufacturer’s profit-maximizing quantity in period 
1, q∗

1
(�, �) , and we analyse its sensitivity to changes in � . We observe first that q∗

1
(�, �) 

continues to be U-shaped in � even for 𝛼 > 0 , meaning that our main result is preserved. 
The additional insight that we can draw from this extension of the model is the follow-
ing: If the manufacturer must include a larger ratio of reprocessed scrap in its production, 
it tends to decrease its first-period production further and the recycling rate that induces 
the lowest first-period production becomes larger. This indicates that the positive effect of 

(11)c̃(m, n) ≤ 0 ⇔ Q1 ≥ n

𝜏(m + n + 1)
.

Q1 =
m

m + 1
≥ n

𝜏(m + n + 1)
⇔ 𝜏 ≥ n(m + 1)

m(m + n + 1)
≡ 𝜏(m, n).

𝜏(2, 1) = 0.178 < 𝜏(2, 2) = 0.272 < 𝜏(1, 1) = 0.326 < 𝜏(1, 2) = 0.474,

26  The available scrap from period 1, �q1 , is reduced by the scrap that the manufacturer uses for its second-
period production, �q2.
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constraining further the recycler’s entry outweighs the negative effect of facing a larger 
production cost in period 2.

4.6 � Independent Scrap Collector

In the baseline model (and its extensions so far), we assume a direct link between the 
manufacturer’s scrap production in the first period and the recycler’s activity in the second 
period. In reality, this link is less direct: between scrap production and recycling, there is 
the intermediary step of scrap collection. Another useful extension of the model consists 
thus in introducing a third type of actors, namely scrap collectors, who first retrieve dis-
carded material from manufacturers and/or consumers and, next, sell it to recyclers. As 
these intermediaries act strategically, they affect the manufacturer’s behavior.

In this more realistic context, is the manufacturer still willing to reduce its first-period 
production now that it no longer directly controls how much scrap is available for recy-
cling? And if it still does, how is its behavior affected by public policy? We show here that 
our previous results carry over if we introduce an independent, for-profit, scrap collector in 
the model. In particular, the manufacturer still reduces its first-period production below the 
myopic optimum to limit entry and this reduction is still a non-monotonic function of the 
efficiency of the collection/recycling process.

To account for scrap collection and resell, let us divide period 1 into two sub-periods. 
In period 1a, the manufacturer produces q1 ; in period 1b, the scrap collector chooses the 
intensity of scrap collection � ∈ [0, 1] to produce a quantity of scrap s = �q1 and sell it to 
the recycler at a price c per unit. As before, in period 2, the recycler produces r from scrap 
at cost c and the manufacturer produces q2 from primary material at cost 0. We assume that 
the scrap collector’s cost function is concave in � and increasing in q1 : C

(
�, q1

)
=

1

2
��2q1 , 

where 𝜎 > 0 can be seen as an inverse measure of the efficiency of the collection process 
(the lower � , the lower the cost of scrap collection for any intensity � and any production 
q1 ). We also assume that the recycler can produce a quantity of final good r = �s from a 
quantity s of scrap, where 0 < 𝜇 ≤ 1 measures the efficiency of the recycling process. In 
this extended model, a public authority can use two instruments to improve recycling: it 
can decrease � to have a larger share of discarded products being collected and/or improve 
� to have a larger share of collected scrap being transformed into final goods.

In Appendix 6.7, we demonstrate that the manufacturer can improve its second-period 
profit by decreasing its first-period output below the myopic optimum. In other words, 
the manufacturer is still able to limit the recycler’s entry even if the quantity of available 
scrap is now chosen by an intermediary. We also show that the profit-maximising quantity 
in period 1 first decreases and eventually increases with � (with � ≡ �2∕� measuring the 
global efficiency of the collection/recycling process). This non-monotonicity is similar to 
the one we find in the baseline model.

5 � Conclusion

We show in this paper that increasing the rate of scrap collection/reprocessing for recycling 
(or the degree of product repairability to foster remanufacturing) does not reduce mono-
tonically the quantity of primary production. This is due to the strategic reaction of manu-
facturers when anticipating the entry by recyclers (or remanufacturers). In fact, increasing 
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the recycling rate from a low level reduces the quantity of primary production as manufac-
turers constrain the recyclers’ scale of operation to soften competition in the next period. 
However, if the initial recycling rate is higher than a certain threshold, increasing the rate 
will lead to an increase in the quantity of primary production as constraining the recyclers’ 
entry becomes too expensive for manufacturers (because they need to reduce further their 
current production—and thus their current profit). Consequently, it may be counterproduc-
tive from an environmental point of view (and even a societal point of view) to make the 
recycling process too efficient because, above some level, manufacturers would prefer to 
increase their extraction of primary material.

Although we show that our results continue to hold in richer settings, future research 
should aim at extending our model further. An interesting direction would be to abandon 
the simplifying assumption of symmetry within the two categories of firms (manufactur-
ers and recyclers). If manufacturers are different (for instance, because they have different 
costs of production), it is unclear how the efforts to reduce the recyclers’ entry would be 
allocated among them. Manufacturers would indeed tend to free-ride and let other firms 
bear the cost of reducing their production.27 Also, given the manufacturers’ first-period 
decisions, the recyclers’ entry could be affected not only on the intensive margin (each 
entrant producing less) but also on the extensive margin (the less efficient recyclers staying 
out altogether). Additional insights could then be gained regarding the impacts of changes 
in the recycling rate.

Appendix

Second Best

Recall:

•	 Unconstrained equilibrium (for c ≥ c̃ ≡ (
1 − 3𝜏q1

)
∕2 ): 

•	 Constrained equilibrium (for c ≤ c̃ ≡ (
1 − 3𝜏q1

)
∕2 ): 

Equilibrium quantities

•	 Manufacturer

–	 Period 1

–	 Period 2

qu
2
=

1

3
(1 + c), ru =

1

3
(1 − 2c),�u

2
=

1

9
(1 + c)2,�u

r
=

1

9
(1 − 2c)2

qc
2
=

1

2

(
1 − �q1

)
, rc = �q1,�

c
2
=

1

4

(
1 − �q1

)2
,�c

r
=

1

2
�q1

(
1 − 2c − �q1

)
.

q1 =

⎧⎪⎨⎪⎩

1

2
if 𝜏 = 0√

4−8𝜏2+6𝜏3+𝜏4−2(1−𝜏2)
3𝜏3
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2

3
1

2
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2

3
≤ 𝜏 ≤ 1

27  See, e.g., Gilbert and Vives (1986).
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•	 Recycler

Equilibrium profits

•	 Manufacturer: �m =
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)
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Total environmental externality

General Demand Function

Period 2 equilibrium. In period 2, the manufacturer chooses q2 to maximize its profit 
�2 = P(q2 + r)q2 , while the recycler chooses r to maximize its profit �r = P(q2 + r)r − cr 
under the constraint that r ≤ �q1 . Letting r∗(q2) = argmax

r

�r , we can write the recycler’s best-
response function as:

Hence, the unconstrained and constrained equilibria, 
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1

2
(1−3𝜏q1)

2
�
ep

�
q1 +

1+c

3

�
+ er

1−2c

3
+ ew

�
q1 −

1−2c

3

��
dc

=
1

4
𝜏
�
2er − 2ew − ep

��
2 − 3𝜏q1

�
q1 +

�
ep + ew

�
q1 +

1

2
ep

if 0 < 𝜏 <
2

3

∫ 1

2

0
2
�
ep

�
1

2
+

1+c

3

�
+ er

1−2c

3
+ ew

�
1

2
−

1−2c

3

��
dc

=
1

12

�
11ep + 2er + 4ew

� if
2

3
≤ 𝜏 ≤ 1

r∗ =

{
r∗(q2) if r∗(q2) ≤ �q1,

�q1 otherwise .

{
P(Q) − qu

2
P�(Q) = 0

P(Q) + ruP�(Q) − c = 0
where Q = ru + qu

2
,

{
P(Q) − q2P

�(Q) = 0

rc = �q1
where Q = �q1 + qc

2
.
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Using the fact that qc
2
 satisfies the first-order condition for profit maximization (i.e., 

d�2

dq2
= P�(Q)qc

2
+ P(Q) = 0 , with Q = �q1 + qc

2
 ), along with the implicit function theorem, 

we can compute the derivative of qc
2
 with respect to q1 as

Because P��qc
2
+ P� < 0 and P��qc

2
+ 2P� < 0 under our assumptions, we obtain that dq

c
2

dq1
< 0 ; 

that is, qc
2
 decreases with q1.

From there, we can show that the results of Lemma 1 still hold with the general demand 
P(Q) . The quantities of recycled and primary product in the unconstrained equilibrium 
ru(c) and qu

2
(c) are indeed such that

Because P′ < 0 by assumption, ru(c) decreases in c, equals zero at c = c̄ , and 
reaches its maximum at c = 0 , where the two firms are symmetric.28 We then obtain 
ru(c) < ru(0) = qu

2
(0) for all c ∈ [0, c̄) . As per-firm outputs decrease with the number of 

firms under our assumptions, we also have that qu
2
(0) < qm.29 Therefore, there exists a 

threshold 𝜏 < 1 such that ru(0) = 𝜏 and hence, ru(c) < 𝜏qm for all c ∈ [0, c̄) . (In the lin-
ear case, we had 𝜏 = 2∕3 .) Moreover, for any 𝜏 < 𝜏 and q1 < qm , there must exist a value 
c̃ ∈ (0, c̄) such that ru(c̃) = 𝜏q1 . Because ru(c) decreases in c, we have c̃ decreasing with q1 
and � , such that

Manufacturer’s maximization problem in period 1. We compute the total differentiation of 
the manufacturer’s expected profit function with respect to q1:

The impact of q1 on the expected profit in the second period is computed as

dqc
2

dq1
= −

��2

�2q2�q1

�2�2

�q2
2

= −�
P��qc

2
+ P�

P��qc
2
+ 2P�

.

{
P�qu

2
(c) + P = 0,

P + P�ru(c) − c = 0.

{
ru(c) ≤ 𝜏q1 if c ≥ c̃(q1)

ru(c) > 𝜏q1 otherwise.

dΠe(q1)

dq1
=

d𝜋1(q1)

dq1
+

d𝜋̂c
2

(
q1
)

dq1
+

d𝜋̂u
2

(
q1
)

dq1
.

d𝜋̂c
2

�
q1
�

dq1
+

d𝜋̂u
2

�
q1
�

dq1
=

1

c̄

d

dq1 ∫
c̃(q1)

0

𝜋c
2
(q1)dc +

1

c̄

d

dq1 ∫
c̄

c̃(q1)

𝜋u
2
(c)dc

=
1

c̄

⎡⎢⎢⎢⎢⎢⎣

dc̃(𝜏q1)

𝜕q1

�
𝜋c
2
(q1) − 𝜋u

2
(c̃)

�

���������������������������������
(a)

+ c̃
d𝜋c

2
(q1)

dq1
�����

(b)

⎤⎥⎥⎥⎥⎥⎦

.

28  By definition, c̄ is such that 𝜋u
r
(ru(c̄), qu

2
(c̄)) = 0 ; in a Cournot competition without degeneration follow-

ing our assumption, this is equivalent to ru(c̄) = 0.
29  See Amir and Lambson (2000).
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Because ru(c̃) = rc = 𝜏q1 , we obtain 𝜋c
2
(q1) = 𝜋u

2
(c̃) , which makes (a) = 0 . Therefore, we 

obtain

Given that the profit of the manufacturer under the constrained equilibrium is 
�c
2
(q1) = P(�q1 + q∗

2
)q∗

2
 , with q∗

2
= q∗

2
(�q1) the best response of the manufacturer when the 

recycler produces �q1 , we have

Because q∗
2
 maximizes �c

2
 , according to the first-order condition of the profit-maximization 

problem, P�q∗
2
= −P . Replacing in (13), we obtain

The first derivative of the manufacturer’s profit function can then be written as

Since c̃
c̄
P(.)𝜏 is positive and P�(q1)q1 + P(q1) is negative by assumption, there can be a 

value q∗
1
 so that d�

dq1
= 0 . Furthermore, P�(q1)q1 + P(q1) decreases with all q1 > 0 as �1(q1) 

is concave and c̃
c̄
P𝜏 increases with all q1 > 0 as both P and c̃ decrease with q1 . Therefore, q∗

1
 

is unique if it exists.
Profit-maximizing primary production in period 1. When q1 converges to 0, dΠ

dq1
 con-

verges to P�(0)0 + P(0) , which is strictly positive under our assumptions (i). Furthermore, 
at q1 = qm , the manufacturer’s period 1 profit is separately maximized, i.e., 
P�(qm)qm + p(qm) = 0 by the first-order condition. Equation (15) then becomes

Since c̃
c̄
P𝜏 > 0 , dΠ

dq1
 is strictly negative at q1 = qm (ii). Together, (i) and (ii) impose that, if 

𝜏 < 𝜏 , the profit function increases with q1 , reaches a unique maximum then decreases with 
q1 when q1 tends to qm . Therefore, for 𝜏 < 𝜏 , choosing q∗

1
∈ (0, qm) is the optimal choice for 

the manufacturer.
At 𝜏 = 𝜏 , because c̃(𝜏qm) = 0 , Equation (15) is equivalent to

Thus, the firm’s profit is maximized at q∗
1
= qm if 𝜏 = 𝜏 . Because q∗

1
 is unique, this is also 

the global optimal choice of the manufacturer.

(12)
𝜕𝜋̂c

2

(
q1
)

𝜕vq1
+

𝜕𝜋̂u
2

(
q1
)

𝜕q1
=

1

c̄

[
c̃(q1)

𝜕𝜋c
2
(q1)

𝜕q1

]
.

(13)

��c
2
(q1)

�q1
=

(
� +

�q∗
2

�q1

)
P�q∗

2
+ P

�q∗
2

�q1

= �P�q∗
2
+

�q∗
2

�q1
(P�q∗

2
+ P).

(14)
𝜕𝜋c

2
(q1)

𝜕q1
= −P𝜏 < 0.

(15)
dΠe

dq1
= P�(q1)q1 + P(q1) −

c̃

c̄
P(q2 + r)𝜏.

(16)
dΠ

dq1
= −

c̃

c̄
P𝜏.

P�(q1)q1 + P(q1) = 0.
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For 𝜏 > 𝜏 , c̃(𝜏qm) is negative, imposing that the constrained equilibrium does not obtain. 
The manufacturer’s profit is independent of � . The firm then chooses q∗

1
= qm.

Impact of the recycling rate on primary production in period 1. To formalize the impact 
of 𝜏 ∈ (0, 𝜏) on q∗

1
 , we use the implicit function theorem to write

Because q∗
1
 maximizes the firm’s expected profit, 𝜕

2𝜋(q∗
1
)

𝜕q2
1

< 0 by the second-order condition. 
So dq

∗
1
(�)

d�
 takes the sign of

From (12), we obtain

Because both c̃ and P decrease with � , the sign of �
2�(q∗

1
)

�q1��
 is ambiguous.

Consider � close to 0, we have

Furthermore, when � → 0 , q∗
1
→ argmax

q1

(�1 + �c
2
) but �c

2
(�q1, q

∗
2
(�q1)) → �c

2
(0, q∗

2
(0)) , 

which is independent of q1 , thus q∗
1
→ argmax

q1

�1 = qm.

Consider 𝜏 = 𝜏 , we have q1 = qm , leading to c̃ = 0 . In this case,

As 𝜕

𝜕𝜏

[
c̃

𝜋c
2

𝜕q1

]
 is negative for � close to zero, whereas q∗

1
→ qm > 0 when 𝜏 → 𝜏 , we can 

deduce that the initial production of the manufacturer decreases from the monopolistic 
value when � is small and increases with � when � is close to 𝜏 to reach the monopolistic 
level q∗

1
= qm again at this threshold.

Recall that the threshold c̃ is determined at ru(c̃) = 𝜏q1 , from the first-order condition of 
profit maximization of the recycler, we obtain

dq∗
1
(�)

d�
= −

�2�(q∗
1
)

�q1��

�2�(q∗
1
)

�q2
1

.

𝜕2𝜋(q∗
1
)

𝜕q1𝜕𝜏
=

𝜕2𝜋1(q
∗
1
)

𝜕q1𝜕𝜏
+

𝜕2𝜋̂c
2

(
q1
)

𝜕q1𝜕𝜏
�������

(i)

+
𝜕2𝜋̂u

2

(
q1
)

𝜕q1𝜕𝜏
�������

(ii)

.

𝜕2𝜋(q∗
1
)

𝜕q1𝜕𝜏
=

𝜕2𝜋̂c
2

(
q1
)

𝜕q1𝜕𝜏
+

𝜕2𝜋̂u
2

(
q1
)

𝜕q1𝜕𝜏
=

1

c̄

𝜕

𝜕𝜏

[
c̃(q∗

1
)
𝜋c
2
(q∗

1
)

𝜕q1

]

= c̃(q∗
1
)
𝜕2𝜋c

2
(q∗

1
)

𝜕q1𝜕𝜏
+

𝜕c̃(q∗
1
)

𝜕𝜏

𝜕𝜋c
2
(q∗

1
)

𝜕q1
= −

1

c̄

𝜕

𝜕𝜏
[c̃𝜏P]

= −
1

c̄

[
Pc̃ + 𝜏

(
𝜕c̃

𝜕𝜏
P +

𝜕P

𝜕𝜏
c̃
)]

.

lim
𝜏→0

𝜕

𝜕𝜏

[
c̃
𝜋c
2

𝜕q1

]
= [−Pc̃]𝜏=0 < 0.

lim
𝜏→𝜏

𝜕

𝜕𝜏

[
c̃
𝜋c
2

𝜕q1

]
= −𝜏P

𝜕c̃

𝜕𝜏
> 0.

(17)c̃ = P�(Q)𝜏q1 + P(Q),
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with Q = �q1 + qc
2
(�q1).

To study the variation of c̃ with respect to 𝜏 ∈ (0, 𝜏) , we take the total differentiation of 
equation (17) with respect to � and rearrange the terms to obtain

Hence, given a level of q1 , we have

For dc̃
d𝜏

≥ 0 , we should have dq1
d�

≤ −
q1

�
 . Intuitively, this inequality means that, at an initial 

level of � , to compensate for the marginal effect of an increase in � on the reduction of c̃ , 
the manufacturer has to reduce its initial production by more than q1∕� , which is larger 
than q1 . That means that the manufacturer has to reduce more than what it is producing. 
Since this is impossible, we can conclude that c̃ always decreases with �.

Impact of the recycling rate on primary production in period 2. In period 2, the manufac-
turer’s profits in the constrained equilibrium is given by �c

2
= P(�q1 + q2)q2 . Applying the 

implicit function theorem on the first-order condition ��
c
2

�q2
= P�q2 + P = 0 , we obtain the vari-

ation of q2 with respect to � due to the substitution effect in period 2 as

Hence, the total variation of q2 with respect to � , taking into account both the substitution 
effect in period 2 and the strategic effect in period 1 is given by

Similar to the logic above, since dq1
d𝜏

> q1 , we have dq2
d𝜏

< 0 ; that is, the quantity of primary 
product in the constrained equilibrium decreases in �.

We know that c̃ decreases in � ; that is, the probability of occurrence of the constrained 
equilibrium is smaller. Moreover, given the same recycling cost c, we have qc

2
> qu

2
 . Hence, 

the expected quantity of primary product in period 2 decreases � . Now given that q∗
1
 

decreases with � when � is small, the total quantity of primary production decreases when � 

dc̃

d𝜏
=

(
q1 +

𝜕q2

𝜕𝜏

)
P� + P��𝜏q1

(
q1 +

𝜕q2

𝜕𝜏

)
+ P�q1

=

(
q1 +

𝜕q2

𝜕𝜏

)
(P��𝜏q1 + P�) + P�q1

= P�q1

(
P��𝜏q1 + P�

P��q2 + 2P�
+ 1

)
< 0.

dc̃

d𝜏
= q1P

� + 𝜏P�
dq1

d𝜏
+

(
q1 + 𝜏

dq1

𝜏
+

dq2

d𝜏

)
(P��𝜏q1 + P�)

= P�

(
𝜏
dq1

d𝜏
+ q1

)(
P��𝜏q1 + P�

P��q2 + 2P�
+ 1

)
.

�q2

��
= −

��2

�2q2�q1
∕
�2�2

�q2
2

= −�q1
P��q2 + P�

P��q2 + 2P�
.

dq2

d�
=

�q2

��
+

�q2

�q1

dq1

d�

= −�q1
P��q2 + P�

P��q2 + 2P�
− �

P��q2 + P�

P��q2 + 2P�

dq1

d�

= −
P��q2 + P�

P��q2 + 2P�

(
dq1

d�
+ q1

)
�.
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is small. However, since qu
2
 is independent of � , the higher the weight of qu

2
 in the computa-

tion of expected primary production in period 2, the smaller the variation of q̂2 with respect 
to � . Hence, when � is large, the negative impact of increasing � on the total primary pro-
duction via q̂2 converge to zero while the positive impact via q∗

1
 is larger. Therefore, the 

total primary production decreases, then increases with � , that is, it also has an interior 
minimum with respect to �.

Product and Cost Differerentiation

To ease the exposition, we define �k ≡ ak − ck ( k = m, r ); this variable can be seen as a 
measure of the ‘social value’ of one unit of product k (as it is the difference between the 
maximum willingness to pay and the marginal cost). If the manufacturer was not con-
strained by the potential entry of the recycler, it would, in period 1, maximize 

(
�m − q1

)
q1 

and choose qm
1
= �m∕2 . Under entry, the manufacturer’s profit in period 2 is given by (

�m − q2 − �r
)
q2 , leading to the following reaction function: q2(r) =

(
�m − �r

)
∕2 . The 

recycler chooses r to maximize 
(
�r − r − �q2

)
r under the constraint that r ≤ �q1 . The 

resulting reaction function is: r
(
q2
)
=
(
�r − �q2

)
∕2 if 

(
�r − �q2

)
∕2 ≤ �q1 or �q1 other-

wise. We can now derive the two candidate Nash equilibria:

For the constrained equilibrium to emerge (and our results to follow), it must be that:

Note that we assume here that 𝛾
2
𝜇m < 𝜇r <

2

𝛾
𝜇m to guarantee positive quantities for both 

firms in the unconstrained equilibrium,30 It is obvious that 𝜇̃r >
𝛾

2
𝜇m . We can also show 

that 𝜇̃r <
2

𝛾
𝜇m . This condition is equivalent to 𝜇m > 𝛾𝜏q1 , which is the most stringent when 

q1 = qm
1
= �m∕2 ; in that case, the condition becomes 2 > 𝛾𝜏 , which is satisfied as � and � 

are inferior to 1.
In the constrained equilibrium of period 2, both firms produce a positive quantity as 

long as

Let us assume that ar −
2

𝛾
𝜇m < 0 < ar −

𝛾

2
𝜇m . We, therefore, suppose that cr is uniformly 

distributed over 
[
0, ar −

�

2
�m

]
.

In period 1, when the manufacturer decides to limit entry, it chooses q1 to maximize 
Πe = q1

(
𝜇m − q1

)
+ 𝜋̂c

2

(
q1
)
+ 𝜋̂u

2

(
q1
)
 , where:

{
Unconstrained equilibrium ∶ qu

2
=

2�m−��r

4−�2
, ru =

2�r−��m

4−�2
,

Constrained equilibrium ∶ qc
2
=

1

2

(
�m − ��q1

)
, rc = �q1.

𝜏q1 < ru ⇔ 𝜇r >
𝛾

2
𝜇m +

4 − 𝛾2

2
𝜏q1 ≡ 𝜇̃r.

2

𝛾
𝜇m > 𝜇r >

𝛾

2
𝜇m ⇔ ar −

2

𝛾
𝜇m < cr < ar −

𝛾

2
𝜇m.

30  We also assume that 𝛾 > 0 so that the two firms interact strategically.
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The profit-maximizing value of q1 is found as:

It is easily shown that q∗
1

(
𝜏;ar,𝜇m, 𝛾

)
< qm

1
= 𝜇m∕2 . As explained in the text, we perform 

two comparative statics exercises. 

1.	 Effects of horizontal differentiation. We set ar = am = 1 , cm = 0 but let � vary.
2.	 Effects of vertical differentiation. We set am = 1 , cm = 0 , and � = 1 but we let ar be larger 

than am = 1.

Table 2 reports the results of some numerical simulations. These results suggest that the 
manufacturer reduces further its first-period output to limit entry as products become more 
substitutable ( � increases) or as the recycled product becomes more valuable for consumers 
( ar increases).

Resource Scarcity

If we redo the analysis of Sect. 2, assuming cm <
1

2
 and c (the recycler’s constant marginal 

cost) uniformly distributed on 
[
0,

1

2

(
1 + cm

)]
 , we find the following profits, respectively in 

the unconstrained and constrained cases:

The threshold in Lemma  1 becomes: c̃ = 1

2

(
1 + cm − 3𝜏q1

)
 . This threshold is negative 

when the manufacturer produces its first-period unconstrained quantity, 
qm
1
= (1 − cm(1 + �))∕2 if 𝜏 >

2(1+cm)
3(1−cm(1+𝜃))

 . If the manufacturer sets q1 < (1 + cm)∕(3𝜏) , the 

unconstrained equilibrium occurs for c > c̃ and the constrained equilibrium otherwise. The 

𝜋̂c
2

(
q1
)
=∫

ar−
𝛾

2
𝜇m−

4−𝛾2

2
𝜏q1

0

1

ar −
𝛾

2
𝜇m

1

4

(
𝜇m − 𝜏𝛾q1

)2
dcr

=
1

4

(
𝜇m − 𝜏𝛾q1

)2 2ar − 𝛾𝜇m − 4𝜏q1 + 𝜏𝛾2q1

2ar − 𝛾𝜇m

,

𝜋̂u
2

(
q1
)
=∫

ar−
𝛾

2
𝜇m

ar−
𝛾

2
𝜇m−

4−𝛾2

2
𝜏q1

1

ar −
𝛾

2
𝜇m

(
2𝜇m − 𝛾

(
ar − cr

)
4 − 𝛾2

)2

dcr

=
4 − 𝛾2

12

3𝜇2
m
+ 𝜏2𝛾2q2

1
− 3𝜏𝛾𝜇mq1

2ar − 𝛾𝜇m

𝜏q1.

q∗
1

�
�;ar,�m, �

�
=

√
(2−��)2(2+��)2a2

r
−4�(�2+��+1)(2−��)2ar�m+2�

2(4�2+2�4−2�2�2+�3�3−4�3�+2)�2
m

�3�2(4−�2)

−
((4−�2�2)ar−�(2�2−�2�2+2)�m)

�3�2(4−�2)
.

�u
2
=
1

9

(
1 − 2cm + c

)2
− cm�q1, �

u
r
=

1

9

(
1 − 2c + cm

)2
,

�c
2
=
1

4

(
1 − cm − �q1

)2
− cm�q1, �

c
r
=

1

2
�q1

(
1 − 2c + cm − �q1

)
.
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first-period maximization programme is then given by 
maxq1

(
1 − q1

)
q1 − cmq1 + 𝜋̂c

2

(
q1
)
+ 𝜋̂u

2

(
q1
)
 , where:

The profit-maximizing quantity is found as:

It can be shown that q∗
1
(𝜃, 𝜏) < qm

1
(𝜃) , meaning that the manufacturer reduces its first-

period quantity below the monopoly level. Moreover, in Fig. 5, we plot q∗
1
(�, �) against � for 

different values of � (and setting cm = 1∕4 ). We observe that q∗
1
(�, �) remains a U-shaped 

function of � for all values of � . In sum, resource scarcity does not challenge our main 
results. In fact, resource scarcity gives the manufacturer another motive to decrease its 
first-period quantity: the manufacturer wants to reduce the recycler’s entry potential and 
also its second-period cost. We have indeed that q∗

1
(𝜃, 𝜏) < qm

1
(𝜃) < qm

1
(0).

Several Manufacturers and Recyclers

Period 2. Suppose that n ≥ 1 recyclers have entered the market. The maximization prob-
lem of recycler j is maxrj

(
1 − c − rj − r−j − Q2

)
rj subject to rj + r−j ≤ �Q1 , where r−j 

denotes the total quantity produced by the other recyclers. We derive recycler j’s reac-
tion function as follows. From the first-order condition, we find the quantity that recy-
cler j would choose if it were unconstrained: rj =

1

2

(
1 − c − r−j − Q2

)
 . This quantity is 

valid as long as the constraint is satisfied, i.e.,

In sum, we have

𝜋̂c
2

(
q1
)
=∫

1

2
(1+cm−3𝜏q1)

0

(
1

4

(
1 − cm − 𝜏q1

)2
− cm𝜃q1

)
2

1 + cm
dc

=
(
1 + cm − 3𝜏q1

)𝜏2q2
1
− 2

(
𝜏 + (2𝜃 − 𝜏)cm

)
q1 +

(
1 − cm

)2
4
(
1 + cm

) ,

𝜋̂u
2

(
q1
)
=∫

1

2
(1+cm)

1

2
(1+cm−3𝜏q1)

(
1

9

(
1 − 2cm + c

)2
− cm𝜃q1

)
2

1 + cm
dc

=𝜏q1
𝜏2q2

1
− 3

(
𝜏 + (4𝜃 − 𝜏)cm

)
q1 + 3

(
1 − cm

)2
4
(
1 + cm

) .

q∗
1
(�, �) =

√
(1−2cm)

2
�4+2(1+cm)(3(1−(1+�)cm)�3−2(2−cm)�2+2(1+cm))−(2+�2)cm−2(1−�2)

3�3
.

1

2

(
1 − c − r−j − Q2

)
+ r−j ≤ �Q1 ⇔ r−j − Q2 ≤ 2�Q1 − (1 − c).

Table 2   Effects of product 
differentiation on the 
manufacturer’s limit strategy

Horizontal differentiation Vertical differentiation

� 𝜏 qm
1
− q∗

1
(𝜏) ar 𝜏 qm

1
− q∗

1
(𝜏)

1 0.326 0.038 1 0.326 0.038
0.9 0.338 0.036 1.1 0.387 0.045
0.8 0.351 0.033 1.2 0.445 0.051
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Define:

We now show that there cannot be an equilibrium where some but not all recyclers are 
constrained. Suppose, by contradiction, that we have an equilibrium with a strict subset of 
recyclers being in the constrained part of their reaction function. Suppose that recyclers 1 
to k are in the unconstrained part, while recyclers k to n are in their constrained part (with 
1 < k < n ). Define

We can sum up the first-order conditions of the unconstrained recyclers:

Proceeding in the same way for the constrained recyclers, we have:

rj
(
r−j,Q2

)
=

{ 1

2

(
a − c − r−j − Q2

)
if r−j − Q2 ≤ 2�Q1 − (a − c)

�Q1 − r−j otherwise.

Qlim
1

≡ 1

�

n(1 − (m + 1)c)

m + n + 1
.

Ru ≡
k∑

s=1

rs and Rc ≡
n∑

t=k+1

rt.

k∑
s=1

rs =

k∑
s=1

1

2

(
1 − c − r−s − Q2

)
⇔ Ru =

1

2
k
(
1 − c − Q2 − Rc

)
−

1

2
(k − 1)Ru

⇔(k + 1)Ru + kRc = k
(
1 − c − Q2

)
.

n∑
t=k+1

rt =

n∑
t=k+1

(
�Q1 − r−t

)
⇔ Rc = (n − k)

(
�Q1 − Ru

)
− (n − k − 1)Rc

⇔Rc + Ru = �Q1

Fig. 5   Manufacturer’s first-period quantity ( cm = 1∕4)
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Solving the system of the last two equations gives:

We need to check if the condition for being in the unconstrained part of the reaction func-
tion is satisfied for all recyclers s ∈ {1, k} . If it is, then we have:

a contradiction.
It follows that the only two equilibria are such that either none or all recyclers are con-

strained. Take first the case such that no recycler is constrained. Summing up the reac-
tion functions of the n recyclers, we have Ru

(
Q2

)
= n

(
1 − c − Q2

)
∕(n + 1) . As for 

manufacturer i, its problem is maxqi2

(
a − qi2 − q−i2 − Ru

)
qi2 , where q−i2 is the sum 

of the quantities produced by the other manufacturers. The first-order condition yields 
qi2

(
q−i2,Ru

)
=
(
1 − q−i2 − Ru

)
∕2 . Summing up the m previous expressions, we have

At the Nash equilibrium, we have Q∗
2
= Q2

(
R∗
u

)
 and R∗

u
= Ru

(
Q∗

2

)
 ; solving and assuming 

c < 1∕(m + 1) , we obtain

At the symmetric equilibrium, each manufacturer produces Q2∕m and each recycler pro-
duces Ru∕n . This equilibrium is valid as long as all recyclers are indeed in the uncon-
strained part of their reaction function, which supposes

Consider now the case in which all recyclers are constrained. Summing up the reaction 
functions of the n recyclers, we have Rc = �Q1. As Q2

(
Rc

)
= m

(
1 − Rc

)
∕(m + 1) , we find 

that Q∗∗
2

= m
(
1 − �Q1

)
∕(m + 1) and R∗∗

c
= �Q1 . At the symmetric equilibrium, each manu-

facturer produces Q2∕m and each recycler produces Rc∕n . This equilibrium is valid as long 
as all recyclers are indeed in the constrained part of their reaction function, which supposes 
that (n − 1)R∗∗

c
− nQ∗∗

2
> n

(
2𝜏Q1 − (1 − c)

)
 . A few lines of computations establish that the 

latter condition is equivalent to Q1 < Qlim
1

.
We can now compute the equilibrium profits in both cases. In the unconstrained case, we 

have

Ru =k
(
1 − c − Q2 − �Q1

)
,

Rc =(k + 1)�Q1 − k
(
1 − c − Q2

)
.

k∑
s=1

(
r−s − Q2

) ≤k(2�Q1 − (1 − c)
)
⇔ k�Q1 − Ru ≤ k

(
2�Q1 − (1 − c)

)

⇔�Q1 −
(
1 − c − Q2 − �Q1

) ≤ 2�Q1 − (1 − c)

⇔2�Q1 − (1 − c) − Q2 ≤ 2�Q1 − (1 − c) ⟺ Q2 ≤ 0,

Q2 =
1

2

(
ma − (m − 1)Q2 − mRu

)
⇔ Q2

(
Ru

)
=

m

m+1

(
1 − Ru

)
.

Q∗
2
= m

1 + nc

m + n + 1
,R∗

u
= n

1 − (m + 1)c

m + n + 1
.

n∑
j=1

(
r−j − Q∗

2

) ≤n(2�Q1 − (1 − c)
)
⇔ (n − 1)R∗

u
− nQ∗

2
≤ n

(
2�Q1 − (1 − c)

)

⇔Q1 ≥ 1

�

n

m + n + 1
(1 − (m + 1)c) ≡ Qlim

1
.
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In the constrained case, we have

Period 1. Consider the limit strategy in period 1. If Q1 < Qlim
1

 , a manufacturer’s profit in 
period 2 is �c

2
 if c < c̃(m, n) , and �u

2
 if c > c̃ . Letting q−i1 = Q1 − qi1 , we can write manufac-

turer i’s expected profit function as

where �1
(
Q1

)
=
(
1 − qi1 − q−i1

)
qi1 and, given the uniform distribution of c over the inter-

val 
[
0, 1∕(m + 1)

]
,

The first-order condition for profit-maximization evaluated at qi1 = q1 for all i can be writ-
ten as

�u
2
=
(
1 − Q∗

2
− R∗

u

) 1
m
Q∗

2

=

(
1 − m

1 + nc

m + n + 1
− n

1 − (m + 1)c

m + n + 1

)
1

m
m

1 + nc

m + n + 1

=
(1 + nc)2

(m + n + 1)2
,

�u
r
=
(
1 − c − Q∗

2
− R∗

u

)1
n
R∗
u

=

(
1 − c − m

1 + nc

m + n + 1
− n

1 − (m + 1)c

m + n + 1

)
1 − (m + 1)c

m + n + 1

=
(1 − (m + 1)c)2

(m + n + 1)2
.

�c
2
=
(
1 − Q∗∗

2
− R∗∗

u

) 1
m
Q∗∗

2

=

(
1 −

m
(
1 − �Q1

)
m + 1

− �Q1

)
1 − �Q1

m + 1

=

(
1 − �Q1

)2
(m + 1)2

,

�c
r
=
(
1 − Q∗∗

2
− R∗∗

u

)1
n
R∗∗
u

=

(
1 − c −

m
(
1 − �Q1

)
m + 1

− �Q1

)
1

n
�Q1

=
1 − (m + 1)c − �Q1

n(m + 1)
�Q1.

Πe
(
Q1

)
= 𝜋1

(
Q1

)
+ 𝜋̂c

2

(
Q1

)
+ 𝜋̂u

2

(
Q1

)
,

𝜋̂c
2

(
Q1

)
=∫

n−𝜏(m+n+1)Q1
n(m+1)

0

(1−𝜏Q1)
2

m+1
dc =

1

n(m+1)2

(
1 − 𝜏Q1

)2(
n − 𝜏(m + n + 1)Q1

)
,

𝜋̂u
2

(
Q1

)
=∫

1

m+1

n−𝜏(m+n+1)Q1
n(m+1)

(m+1)(1+nc)2

(m+n+1)2
dc =

m+n+1

3n(m+1)2
𝜏Q1

(
𝜏2Q2

1
− 3𝜏Q1 + 3

)
.
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Solving for q1 , we find

and we check that the total quantity mq∗
1
(�,m, n) is inferior to n∕(�(m + n + 1)) if and only 

if 𝜏 < 𝜏(m, n).

Own Scrap Use

For the sake of comparability, we continue to assume that the manufacturer does not 
know the exact realization of c when it chooses q1 in period 1 but expects c to be uni-
formly distributed over 

[
0, 1∕2

]
.

In period 2, the manufacturer chooses q2 to maximize 
(
1 − �c − q2 − r

)
q2 and the 

recycler chooses r to maximize 
(
1 − c − r − q2

)
r . Using the first-order conditions for 

profit-maximization, we derive the quantities and profits at the unconstrained equilib-
rium as:

To guarantee positive equilibrium quantities, we impose c ≤ 1∕(2 − �) . This equilibrium 
obtains as long as ru + �qu

2
≤ �q1 , which is equivalent to:

with c̃(𝛼) ≥ 0 if and only if q1 ≤ (1 + �)∕3�.
If c < c̃(𝛼) , then the constrained equilibrium prevails, with r = �q1 − �qc

2
 . The value 

of qc
2
 is found by inserting r = �q1 − �qc

2
 into the manufacturer’s first-order condition:

It follows that:

−2m2�3(m + n + 1)q2
1
+
(
2m(m + 2n + 1)�2 − n(m + 1)3

)
q1 + n

(
(m + 1)2 − 2�

)
= 0.

q∗
1
(�,m, n) =

(m+1)

√
4m2�4+8m2n(m+n+1)�3−4mn(m+1)(m+2n+1)�2+n2(m+1)4

4m2(m+n+1)�3

−
n(m+1)3−2m(m+2n+1)�2

4m2(m+n+1)�3
,

qu
2
=

1

3
(1 + c − 2c�) and ru =

1

3
(1 − 2c + c�),

�u
2
=

1

9
(1 + c − 2c�)2 and �u

r
=

1

9
(1 − 2c + c�)2.

c ≥ (1 + 𝛼) − 3𝜏q1

2
(
1 − 𝛼 + 𝛼2

) = c̃(𝛼),

��2

�q2

||||r=�q1−�qc2
= 0 ⇔ qc

2
=

1

2 − �

(
1 − �c − �q1

)
.

rc =
1

2 − �

(
2�q1 + �2c − �

)
,�c

2
=

(
1 − �q1 − �c

)2
(2 − �)2

,

and �c
r
=

(
2�q1 + �2c − �

)(
1 − �q1 −

(
2 − 2� + �2

)
c
)

(2 − �)2
.
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When the manufacturer chooses q1 < (1 + 𝛼)∕(3𝜏) , the equilibrium prevailing in period 2 
depends on the cost drawn by the recycler: the manufacturer obtains the profit �c

2
 if c < c̃ 

and �u
2
 if c > c̃ . Consequently, the manufacturer’s expected profit function can be written as

where �1
(
q1
)
= q1

(
1 − q1

)
 and, given the uniform distribution of c over the interval [

0, 1∕(2 − �)
]
,

In period 1, the manufacturer chooses q1 to maximize �e . From the first-order condition, we 
find:

with K ≡ 2�4 + 3
(
4 − 7� + 4�2

)
�3 − 2

(
8 − 9� + 3�2 + 2�3

)
�2 + 2(2 − �)2

(
1 − � + �2

)2 . 
A sufficient condition to have K > 0 for all � ∈ [0, 1] (and so, for the second-order condi-
tion to be met) is 𝛼 < 0.441 , which we assume from now on.

In Fig. 6, we depict the manufacturer’s profit-maximizing quantity in period 1, q∗
1
(�, �) , 

against � for different values of �.

Independent Scrap Collector

Let us derive the subgame-perfect equilibrium of this game. In period 2, the manu-
facturer chooses q2 to maximize �2 =

(
1 − q2 − r

)
q2 , while the recycler chooses 

r to maximize �r = (1 − q2 − r)r − c(r∕�) . Their respective reaction functions are 
q2(r) = (1 − r)∕2 and r

(
q2
)
=
(
� − c − �q2

)
∕(2�) . The Cournot-Nash equilibrium in 

period 2 is then found as q2 = (� + c)∕(3�) and r = (� − 2c)∕(3�) . In period 1b, the 
scrap collector faces the demand s = r∕� = (� − 2c)∕

(
3�2

)
 or, equivalently, the inverse 

demand c = �(1 − 3�s)∕2 . Given that s = �q1 , we can write the scrap collector’s maxi-
mization problem as:

𝜋e = 𝜋1
(
q1
)
+ 𝜋̂c

2

(
q1
)
+ 𝜋̂u

2

(
q1
)
,

𝜋̂c
2

(
q1
)
=∫

c̃

0

2𝜋c
2

(
q1
)
dc = ∫

(1+𝛼)−3𝜏q1

2(1−𝛼+𝛼2)

0

2(1−𝛼c−𝜏q1)
2

(2−𝛼)2
dc

=
(1+𝛼−3𝜏q1)(3𝜏2(4−14𝛼+21𝛼2−14𝛼3+4𝛼4)q21)

12(2−𝛼)2(1−𝛼+𝛼2)
3

−
(1+𝛼−3𝜏q1)(6𝜏(2−4𝛼+3𝛼2)(2−2𝛼+𝛼2)q1+(12−30𝛼+37𝛼2−22𝛼3+7𝛼4))

12(2−𝛼)2(1−𝛼+𝛼2)
3 ,

𝜋̂u
2

(
q1
)
=∫

1

2

c̃

2𝜋u
2
dc = ∫

1

2−𝛼

(1+𝛼)−3𝜏q1

2(1−𝛼+𝛼2)

2

9
(1 + c − 2c𝛼)2dc

=
(𝜏(2−𝛼)q1−𝛼(1−𝛼))q1((2−𝛼)

2(2𝛼−1)2𝜏2q1+2𝜏(1−𝛼)(2−𝛼)(2𝛼−1)(3−2𝛼+𝛼2))
4(2−𝛼)3(1−𝛼+𝛼2)

3

+
(𝜏(2−𝛼)q1−𝛼(1−𝛼))(12−18𝛼+19𝛼2−10𝛼3+4𝛼4)(1−𝛼)

2

4(2−𝛼)3(1−𝛼+𝛼2)
3 .

q∗
1
(�, �) =

(2−�)(1−�+�2)
√
2K−(9�−3�2−2�3−8)�2+2(2−�)2(1−�+�2)

2

3(4−7�+4�2)�3
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Solving for the first-order condition (and checking that the second-order condition is met), 
we find:

A sufficient condition for �∗ ≤ 1 is � ≥ �∕2 . Introducing �∗ into the price of scrap (c) and 
the quantities produced at the equilibrium of period 2 ( q2 and r), we can express the equi-
librium profit of the manufacturer in period 2 as:

where � ≡ �2∕� measures the global efficiency of the collection/recycling process.
It is easily seen that �2

(
q1
)
 is a decreasing function of q1 , which means that the 

manufacturer can improve its second-period profit by decreasing its first-period output 
below the myopic optimum. In other words, the manufacturer is still able to limit the 
recycler’s entry even if the quantity of available scrap is now chosen by an intermedi-
ary. The remaining question is how the manufacturer’s limit entry strategy is affected by 
changes in � . To answer this question, we solve the manufacturer’s problem is period 1. 
The manufacturer chooses q1 to maximize Π = q1

(
1 − q1

)
+ �2

(
q1
)
 . In Fig. 7, we report 

the optimal quantity for values of � ranging from 0 to 1. We observe that the optimal 
quantity first decreases but eventually increases with � . This non-monotonicity is simi-
lar to the one we find in the baseline model.

max
�

�

2

(
1 − 3��q1

)
�q1 −

�

2
�2q1 such that � ≤ 1.

�∗ =
�

6�2q1 + 2�
.

�2
(
q1
)
=

(
5�q1 + 2

)2

16
(
3�q1 + 1

)2 ,

Fig. 6   First-period production for 
different rates of scrap re-use
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