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Abstract
This paper analyses the effects of altruism on the formation of climate coalitions in the 
standard two-stage game of self-enforcing international environmental agreements with 
identical countries. Altruism implies that each country values, to some extent, every other 
country’s welfare when deciding on its coalition membership and emissions policy. In the 
Nash [Stackelberg] game, the fringe [coalition] countries exploit the altruism of the coa-
lition [fringe] countries so that altruism decreases [increases] the coalition size. In any 
case, global emissions and global welfare are close to the non-cooperative values. How-
ever, altruism narrows the gap between the individually optimal emissions and the socially 
optimal emissions, so altruism increases global welfare. The effects of altruism on the 
formation of climate coalitions crucially depends on its modelling: If altruism affects the 
membership decision but not the policy decision, or if each coalition country is more altru-
istic toward other coalition countries than toward fringe countries, altruism can stabilise 
large coalitions up to the grand coalition. Finally, altruism can stabilise small coalitions but 
destabilises large coalitions with asymmetric countries.

Keywords  Climate coalition · Climate policy · Moral behaviour · Social norms

JEL Classification  C72 · D64 · Q54 · Q58

1  Introduction

The Paris Agreement, negotiated by 196 parties at the 2015 United Nations Climate 
Change Conference, aims to limit global warming to well below 2  °C compared to pre-
industrial levels (UN 2015). Although there is thus broad consensus on the international 
goal of climate policy, a continuation of current policies would result in global warming 
of about 3 °C above pre-industrial levels (UN 2023).1 Consequently, the Paris Agreement 
with its nationally determined contributions does not constitute an effective international 
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1  If current policies continue through 2030 and the implied carbon price in 2030 increases with the 
global growth rate through 2100, there is a 50% [4%] median chance of limiting global warming to 2.7 °C 
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environmental agreement in terms of the international political narrative. On the other 
hand, some world regions have introduced rather high carbon prices despite facing negative 
social costs of carbon (see Table 1). Although these carbon prices are still well below the 
global social cost of carbon (418/tCO2 from Ricke et al. 2018), this behaviour can hardly 
be explained with perfect selfishness.2

Instead, it may reflect the important effects of altruistic values on environmental behav-
iour found in the psychological literature (see, e.g., Dietz et  al. 2005; Steg 2016; Lades 
et  al. 2021).3 In particular, there is evidence that climate policy negotiators have social 
preferences regarding burden-sharing rules: If climate policy negotiators from rich coun-
tries were perfectly selfish, they would support the grandfathering rule, i.e. equal percent-
age reduction of emissions, and oppose the egalitarian rule, i.e. equal per capita emissions. 
However, gross domestic product per capita is not positively [negatively] correlated with 
support for the grandfathering [egalitarian] rule (Lange et al. 2007; Meulemann and Zie-
gler 2015). Furthermore, climate policy negotiators from industrialized countries state that 
the egalitarian rule should be the most important burden-sharing rule in international cli-
mate agreements (Kesternich et al. 2021). These results suggest that climate policy nego-
tiators are not driven by perfect selfishness.4

This paper analyses the formation of climate coalitions with altruistic preferences. 
In particular, each country values, to some extent, every other country’s welfare when 
deciding on its coalition membership at the first stage of the game and emissions policy at 
the second stage of the game. In order to be able to compare our results with the standard 
literature (Carraro and Siniscalco 1993; Barrett 1994), we apply the canonical model of 
self-enforcing international environmental agreements with identical countries, concave 
utility from own emissions and convex costs from global emissions. Without altruistic 
preferences, the standard (Nash or Stackelberg) game with linear-quadratic emissions 
benefits and linear marginal emissions damages predicts either small or ineffective climate 
coalitions.5 Beyond the linear-quadratic case, Barrett (2013) and Nkuiya et  al. (2015) 
show that climate thresholds can stabilise the grand coalition, Nkuiya (2020) finds that 

2  With strategic climate policy, terms-of-trade effects could explain part of the gap between regional carbon 
prices and regional social costs of carbon (Markusen 1975; Hoel 1996). Furthermore, the presence of an 
international carbon market with endogenous permit choice (Helm 2003; Holtsmark and Weitzman 2020) 
incentivises regions with low abatement costs to mitigate emissions and sell permits, which can reduce 
global emissions and raise global welfare. This has been shown for an exogenous carbon market with an 
endogenous climate coalition (Altamirano-Cabrera and Finus 2006; Lessmann et al. 2014), an endogenous 
carbon market without climate coalition (Carbone et  al. 2009; Holtsmark and Midttømme 2021) and an 
endogenous carbon market with an endogenous climate coalition (Yu and Wu 2022).
3  Further examples include Kotchen and Moore (2007) and Ziegler (2020) [Engler et al. (2022) and Andre 
et  al. (2024)], who find that altruistic values are significantly positively correlated with participation in 
green-electricity programs [pro-climate donations].
4  Hjerpe et  al. (2011) argue that the ability-to-pay rule, in terms of gross domestic product per capita, 
“has the greatest potential to serve as a basis for agreement in negotiations on allocating mitigation 
commitments” because it is supported by many and opposed by few climate negotiators. Furthermore, it is 
not opposed by any climate negotiator from industrialized countries.
5  In the Nash game with linear-quadratic emissions benefits and quadratic emissions damages, Finus 
(2001, p. 232) finds that climate coalitions consist of no more than two countries. In the Stackelberg game 
with linear-quadratic emissions benefits and quadratic emissions damages, Finus (2001, p. 232) finds that 

Footnote 1 (continued)
[2 °C] above pre-industrial levels (UN 2023, Chapter 4.5, Appendix C). However, the very high emissions 
scenario of the IPCC (2021), which best reflects the cumulative emissions from 2005 to 2020 (Schwalm 
et  al. 2020), even predicts a temperature increase of   4.4 °C above pre-industrial levels (median; fifth to 
ninety-fifth percentile: 3.3–5.7 °C) by the end of the century (IPCC 2021, Chapter 4.3).
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climate coalitions can be large and effective with isoelastic emissions benefits in the 
Stackelberg game, and Eckert and Nkuiya (2022) show that convex marginal emissions 
damages can stabilise large coalitions up to the grand coalition in the Nash game. With 
general functional forms, the second stage of the Nash game and the Stackelberg game 
have been analysed in detail by Bayramoglu et al. (2018) and Finus et al. (2021a, 2021b), 
respectively. Finally, Finus et  al. (2023) show that the stable coalition is always weakly 
larger in the Stackelberg game than in the Nash game.6

We distinguish between the coalition countries taking the fringe countries’ emissions as 
given (Nash game) and taking the reaction of the fringe countries’ emissions into account 
(Stackelberg game) when choosing their own emissions. In both cases, altruism reduces 
each fringe country’s emissions and raises global material welfare, i.e. global welfare in the 
absence of altruistic preferences. Furthermore, we get the typical results that global emis-
sions decrease and each fringe country’s emissions and material welfare increase with the 
coalition size in the Nash game and above a critical coalition size in the Stackelberg game. 
By contrast, the effect of altruism on the equilibrium coalition size depends crucially on 
the game structure.

In the Nash game with linear-quadratic emissions benefits and quadratic emissions 
damages, altruism weakly reduces the coalition size, and climate coalitions consist of no 
more than two countries. The direct effect of altruism, namely smaller global emissions 
and larger global material welfare for a larger coalition size, makes it worthwhile for all 
other countries if some country joins the coalition. However, the indirect effect of altruism, 
namely smaller global emissions and larger global material welfare for a given coalition 
size, makes it less costly for all other countries if some country does not join the coalition. 
This indirect effect outweighs the direct effect for small coalition sizes and explains the 
small climate coalition in equilibrium.

In the Stackelberg game with linear-quadratic emissions benefits and quadratic emis-
sions damages, altruism weakly raises the coalition size, and climate coalitions can consist 
of up to six countries. In this case, the coalition countries take advantage of the fringe 
countries’ altruism by becoming less ambitious in the fight against climate change, expect-
ing the fringe countries to react by reducing their emissions more than they would without 
altruism. However, the coalition countries are not much more ambitious in the Stackelberg 
equilibrium than in the business-as-usual scenario without coalition formation.

These results suggest that altruism cannot stabilise large and effective climate coali-
tions. However, altruism narrows the gap between the individually optimal emissions and 
the socially optimal emissions, so altruism increases global welfare. Thus, altruism affect-
ing the membership decision and the policy decision appears to be more of a substitute 
than a complement for large climate coalitions.

The economic literature has developed and tested several theories for imperfect 
selfishness. In the case of altruistic preferences (Becker 1974), one can distinguish between 
pure altruism, i.e. utility from others’ utility values (Becker 1981), paternalistic altruism, 
i.e. utility from others’ consumption bundles (Pollak 1988), and impure altruism, i.e. 
utility or warm glow from giving others (Andreoni 1990). Alger and Weibull (2010) show 
that pure altruism used in this paper is evolutionary stable, and Andreoni et  al. (2010) 

6  With linear abatement benefits, Karp and Simon (2013) find that a coalition of two or less [three or more] 
countries is stable with strictly convex [concave] marginal abatement costs in the Nash game.

climate coalitions are either small or ineffective, and Diamantoudi and Sartzetakis (2006, p. 254) find that 
climate coalitions consist of no more than four countries when constraining the parameter space to ensure 
non-negative emissions.

Footnote 5 (continued)
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summarize the significant evidence for altruism in economic experiments. Other theories 
comprise reciprocal fairness (Rabin 1993), inequality aversion (Fehr and Schmidt 1999; 
Bolton and Ockenfels 2000) and Kantian behaviour (Alger and Weibull 2013; Roemer 
2015).

These theories have also been applied in the literature on self-enforcing international 
environmental agreements. Buchholz et al. (2018) and Nyborg (2018) analyse the effects 
of reciprocal fairness when countries decide on their membership in the coalition and on 
their emissions. They find that reciprocal fairness can stabilise the grand coalition, but it 
can also stabilise an interior coalition that is either weakly larger (Nyborg 2018) or even 
weakly smaller (Buchholz et al. 2018) than the interior coalition without reciprocal fair-
ness. Lange and Vogt (2003) incorporate inequality aversion à la Bolton and Ockenfels 
(2000) into the canonical model of self-enforcing international environmental agreements 
and find that sufficiently large inequality aversion can stabilise the grand coalition. By con-
trast, Vogt (2016) applies inequality aversion à la Fehr and Schmidt (1999) and finds no 
stable coalition without transfers in his numerical model with heterogeneous countries. 
Recently, Eichner and Pethig (2022) and Ulph and Ulph (2023) analysed the effects of 
Kantian or moral behaviour when countries decide on their membership in the coalition 
and on their emissions. They find that membership moralism expands the climate coalition, 
and emissions moralism can expand the climate coalition only in the presence of member-
ship moralism.

Closest to our paper is van der Pol et  al. (2012), who analyse the effects of altruism 
affecting the membership decision but not the policy decision. They find that this kind of 
partial altruism expands the climate coalition. We extend their model into different direc-
tions. First, we consider altruism on both stages of the game. Second, we analyse not only 
the Nash game but also the Stackelberg game. Third, while they solve their model numeri-
cally with heterogeneous countries, we solve our model analytically with homogeneous 
countries. Forth, we replicate their results analytically to discuss the differences from our 
results.7

Finally, we perform two model extensions. First, we analyse the effects of community 
altruism, that is, we distinguish between in-group altruism and out-group altruism. In this 
case, altruism can stabilise large coalitions up to the grand coalition. Second, we analyse 
the effects of altruism with linear climate damages and asymmetric countries. In this case, 
altruism can stabilise small coalitions but destabilises large coalitions.

Table 1   Largest carbon pricing schemes representing 22% of global CO
2
 emissions

Price: The World Bank (2023), SCC (social cost of carbon): Ricke et al. (2018)

$/tCO2 EU GBR CAN USA KOR ZAF CHN ARG​ MEX JPN KAZ UKR

Price 73 58 38 28 19 10 10 5 4 2 1 1
SCC −4 −4 −8 48 −1 3 24 3 12 6 −1 −1

7  Daube (2019) and Goussebaïle et  al. (2023) analyse the effects of altruism on climate policy with 
multiple countries. Daube (2019) shows that altruistic preferences lead to a partial internalization of the 
climate externality in the non-cooperative solution, and to a full internalization of the climate externality 
in the cooperative solution if and only if the altruistic preferences for all countries coincide. Goussebaïle 
et al. (2023) analyse the effects of altruistic foreign aid on climate change mitigation and find that paying 
transfers before abating emissions incentivises developing countries to choose efficient climate change 
mitigation and leads to the social optimum if altruistic preferences are sufficiently large. However, both 
papers abstract from coalition formation.
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The remainder of the paper is organized as follows: Sect. 2 introduces the model, and 
characterises the social optimum and the business-as-usual scenario. Section  3 analyses 
the effects of altruism on the Nash game of coalition formation. This section also includes 
a comparison with the model of van der Pol et al. (2012). Section 4 analyses the effects 
of altruism on the Stackelberg game of coalition formation with the coalition countries as 
Stackelberg leaders and the fringe countries as Stackelberg followers. Section 5 discusses 
which realms of decision making might be influenced by social preferences. Section 6 per-
forms our two model extensions. Section 7 concludes.

2 � Model

Consider a model with n ≥ 3 identical countries.8 Each county i ∈ N derives consumption 
benefits B(ei) from its emissions ei , where B(0) ≥ 0 , B′ > 0 and B′′ < 0 , and faces climate 
damages D(e) from global emissions e ∶=

∑
i∈N ei , where D(0) = 0 , D′ > 0 and D′′ > 0 . 

Then, each country’s material welfare function is Wi = B(ei) − D(e) . Furthermore, each 
country is altruistic such that it values its own material welfare by 1 and every other coun-
try’s material welfare by � ∈ [0, 1].9 Thus, the altruism parameter � = 0 implies perfectly 
selfish countries, while � = 1 implies perfectly altruistic countries. Then, each country’s 
moral welfare is

where W ∶=
∑

i∈N Wi is global material welfare, and the global moral welfare is

Consequently, the socially optimal emissions (SO) are independent of the altruism parame-
ter � , while the individually optimal emissions, i.e. the business-as-usual emissions (BAU), 
are not (Daube 2019, Results 4 and 5). In particular, the socially optimal values and the 
individually optimal values coincide for � = 1 . In Appendix  A.1, we prove that global 
emissions decrease and global material welfare increases with the altruism parameter in 
the individually optimal solution. Consequently, the relative global emissions eBAU∕eSO 
decrease and the relative global material and moral welfare WBAU∕WSO = VBAU∕VSO 
increase with the altruism parameter.

In the further course of the paper we analyse the two-stage game of self-enforcing envi-
ronmental agreements. At the first stage of the game, countries decide on their member-
ship in the coalition. Thereby, internal [external] stability implies that no country will leave 
[join] the coalition if this reduces its moral welfare (D’Aspremont et al. 1983). At the sec-
ond stage of the game, there is a coalition of m countries, and countries decide on their 

(1)Vi = Wi + �
∑

j∈N�i

Wj = (1 − �)Wi + �W,

(2)V ∶=

∑

i∈N

Vi =

∑

i∈N

[
Wi + �

∑

j∈N�i

Wj

]
= [1 + �(n − 1)]W.

8  We assume identical countries for analytical tractability with convex climate damages. In reality, 
countries benefit differently from own emissions and suffer differently from global emissions. For an 
analysis with asymmetric countries and linear climate damages, see Sect. 6.2.
9  Instead, if each country values its own material welfare by 1 and every other country’s moral welfare 
by � ∈ [0, 1∕n] , then each country’s moral welfare function is Vi = Wi + 𝛾

∑
j∈N�i Vj = W̃i + 𝛼̃

∑
j∈N�i W̃j 

with W̃i = Wi∕(1 + 𝛾) and 𝛼̃ = 𝛾∕[1 − 𝛾(n − 1)] ∈ [0, 1] , and our results do not change. For an analysis with 
community altruism (greater degree of in-group altruism than out-group altruism), see Sect. 6.1.
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emissions. Thereby, each fringe country maximizes its moral welfare (1), and each coali-
tion country i ∈ M maximizes the sum of the coalition countries’ moral welfare

Comparing (1) and (3), each fringe country’s policy weights its own material welfare by 
1 − � and global material welfare by � , while each coalition country’s policy weights the 
coalition’s material welfare by 1 − � and global material welfare by �m . In the following 
we distinguish between two game concepts. In Sect. 3, we analyse the Nash game, and in 
Sect. 4, we analyse the Stackelberg game with the coalition countries as Stackelberg lead-
ers and the fringe countries as Stackelberg followers. The respective game is then solved by 
backward induction.

3 � Nash Game

At the second stage of the Nash game, each fringe country i = f  maximizes its moral wel-
fare (1) over its emissions ef  , taking the other countries’ emissions as given, which yields

Each fringe country equates marginal emissions benefits to its own marginal emissions 
damages D�(e) , plus all other countries’ marginal emissions damages weighted by the 
altruism parameter �(n − 1)D�(e).

Furthermore, each coalition country i = c maximizes the sum of the coalition countries’ 
moral welfare (3) over its emissions ec , taking the other countries’ emissions as given, 
which yields10

For � = 0 , each coalition country equates marginal emissions benefits to the coalition 
countries’ marginal emissions damages mD�(e) . For 𝛼 > 0 , altruism implies that each coali-
tion country accounts for all other countries’ marginal emissions damages via 1 + �(n − 1) , 
but it also implies that all other coalition countries account for each coalition country’s 
marginal emissions benefits via 1 + �(m − 1) . Note that B�(ef ) = B�(ec) = nD�(e) for � = 1 , 
so the Nash equilibrium and the social optimum then coincide. In the following we focus 
on � ∈ [0, 1).

Differentiating (4) and (5) yields the slopes of the aggregate reaction functions

(3)
∑

i∈M

Vi =

∑

i∈M

[
Wi + �

∑

j∈N�i

Wj

]
= (1 − �)

∑

i∈M

Wi + �mW.

(4)B�
(ef ) = [1 + �(n − 1)]D�

(e) ≤ nD�
(e).

(5)B�
(ec) =

1 + �(n − 1)

1 + �(m − 1)
mD�

(e) ≤ nD�
(e).

(6)R�

f
∶=

d(n − m)ef

dmec
= −

(n − m)[1 + �(n − 1)]D��(e)

(n − m)[1 + �(n − 1)]D��(e) − B��(ef )
∈ (−1, 0),

(7)R�

c
∶=

dmec

d(n − m)ef
= −

m2[1 + �(n − 1)]D��(e)

m2[1 + �(n − 1)]D��(e) − [1 + �(m − 1)]B��(ec)
∈ (−1, 0).

10  The second-order conditions are fulfilled.



2315Self‑Enforcing International Environmental Agreements and…

1 3

Consequently, emissions are strategic substitutes, and the slopes of the aggregate reaction 
functions ceteris paribus increase in absolute terms with the altruism parameter. Intuitively, 
altruism implies that countries react more sensitive to other countries’ emissions changes. 
Furthermore, we infer

Consequently, each fringe country’s emissions are greater than each coalition country’s 
emissions. In Appendix A.2.1, we prove11

Proposition 1  (Comparison of Nash equilibrium and BAU) 
•	 ec < eBAU

i
< ef  and e < eBAU,

•	 Vf > Vc,
•	 Wf > Wc,W

BAU
i .

(8) implies that the coalition countries are ceteris paribus more ambitious in the fight 
against climate change than at BAU. This results in smaller coalition country’s emissions 
and global emissions, which raises the free-rider incentives and leads to greater fringe 
country’s emissions. Each fringe country’s emissions being greater than each coalition 
country’s emissions implies Vf > Vc and Wf > Wc . Finally, global emissions being smaller 
and each fringe country’s emissions being greater than at BAU implies Wf > WBAU

i
 and, 

thus, Vf > VBAU
i

 if Wc ≥ WBAU
i

 or if � is sufficiently small.
To prepare the analysis of the first stage of the Nash game, we prove in Appendix A.2.212

Lemma 1  (Effects of coalition size and altruism on emissions and welfare) 
•	 def

dm
> 0 , de

dm
< 0 and dWf

dm
> 0,

•	 def

d𝛼
< 0 , de

d𝛼
< 0 and dW

d𝛼
> 0.

From the first bullet of the lemma, we get the typical results that each fringe country’s 
emissions increase but global emissions decrease with the coalition size, so free-rider 
incentives tend to increase as the coalition gets larger. The resulting higher consumption 
benefits and lower climate damages imply that each fringe country’s material welfare 
increases with the coalition size and, thus, that Vf  increases with the coalition size if Wc 
increases with the coalition size or if � is sufficiently small.

The second bullet of the lemma reveals that each fringe country’s emissions and global 
emissions decrease with the altruism parameter and that global material welfare increases 
with the altruism parameter. Consequently, the relative global emissions e∕eSO decrease 
and the relative global material and moral welfare W∕WSO = V∕VSO increase with the 
altruism parameter. Finally, we prove in Appendix A.2.2 that the slope of the fringe coun-
tries’ aggregate reaction function increases in absolute terms with the altruism parameter 
for D′′′ ≤ 0 and B��� = 0 . This slope corresponds to the leakage rate to the fringe countries 

(8)
B�(ec)

B�(ef )
=

m

1 + �(m − 1)
∈ (1,m].

11  For � = 0 , the results of Proposition 1 have been proven by Bayramoglu et  al. (2018,  p. 110) for the 
abatement game.
12  For � = 0 , the results of Lemma  1 have been proven by Bayramoglu et  al. (2018,  p. 110) for the 
abatement game.
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|R′

f
| , and the higher this leakage rate, the greater ceteris paribus the free-rider incentives in 

the Nash game (Carraro and Siniscalco 1993).
Now we turn to the first stage of the Nash game. First note that Vf (m) > Vc(m) from 

Proposition 1 implies that if a coalition is externally unstable, i.e. Vc(m + 1) ≥ Vf (m) , then 
the corresponding expansion of the coalition is accompanied by a Pareto improvement, i.e. 
Vf (m + 1) > Vc(m + 1) ≥ Vf (m) > Vc(m) . For the detailed stability analysis, we use the 
following specification with linear-quadratic emissions benefits and quadratic emissions 
damages

We constrain the parameter space to ensure non-negative emissions for all m ∈ [2, n] , 
which gives an upper bound for d. In particular, we formulate the following

Assumption 1  d ≤ d̄ ∶=
4b

(n − 1)2
.

This assumption is necessary and sufficient for non-negative emissions for all m ∈ [2, n] 
with � = 0.13 In Appendix A.2.3, we then prove

Proposition 2  (Stability of coalitions with policy altruism) Consider the specification (9) 
and suppose altruism affects the membership decision and the policy decision.
•	 Either the coalition m = 2 is stable or no coalition is stable.
•	 The coalition m= 2 is [not] stable for � = 0 , n≥ 12 and d≤ d̄ [� = 0 , n< 12 and d= d̄].
•	 The coalition size weakly decreases with �.

From the first bullet of the proposition, we get the pessimistic result that at best a 
coalition of two countries is stable. The result from the second bullet of the proposition 
that m = 2 is stable for � = 0 when there is a sufficiently large number of countries may 
seem counterintuitive. In fact, there are two countervailing effects of n on the internal 
stability condition. On the one hand, the condition for m = 2 to be stable becomes stricter 
as n increases for given parameter values a, b, d and � , since the number of fringe countries 
increases with n, which raises marginal climate damages, reduces each coalition country’s 
emissions and, thus, the benefits of remaining in the coalition. On the other hand, the 
condition for m = 2 to be stable also becomes stricter as d increases, since each coalition 
[fringe] country’s emissions decrease [increase] with the damage parameter, which reflects 
Barrett’s (1994) paradox of cooperation. These considerations imply that the upper bound 
for d to ensure non-negative emissions decreases with n, i.e. 𝜕d̄∕𝜕n < 0 , which relaxes 
the internal stability condition. This indirect effect of n on the internal stability condition 
outweighs the direct effect for m = 2 and � = 0 , which explains why the coalition m = 2 

(9)B(ei) = aei −
b

2
e2
i
, D(e) =

d

2
e2, with a, b, d > 0.

13  Assumption 1 is also sufficient for non-negative emissions for all m ∈ [2, n] with � ≥ 0.75 . Furthermore, 
d ≤ b�2∕{(1 − �)[1 + �(n − 1) −

√
1 + �(n − 1)]2} is necessary and sufficient for non-negative emissions 

for all m ∈ [2, n] with � ∈ (0, 0.75).
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is stable for � = 0 and n ≥ 12 . By contrast, the coalition m = 2 is not stable for � = 0 and 
n < 12 when d is sufficiently large, i.e. when d = d̄.14

We use a numerical example to demonstrate that there are economies in which m = 2 is 
not stable for 𝛼 > 0 and n ≥ 12 . Figure 1 depicts each coalition country’s minimal emis-
sions15 (left-hand side figure) and the internal stability condition for m = 2 (right-hand side 
figure) dependent on � . In the numerical example, each coalition country’s emissions are 
positive for all m ∈ [2, n] . Furthermore, m = 2 becomes unstable for � ≥ 0.334 . Thus, there 
are economies in which m = 2 is not stable for 𝛼 > 0 and n ≥ 12.

The third bullet of Proposition 2 and Fig. 1 show that altruism does not stabilise larger 
coalitions, but even destabilises small coalitions. This is in stark contrast to the numeri-
cal analysis of van der Pol et al. (2012), who find that the coalition size increases with the 
altruism parameter and that the grand coalition becomes stable for � ≥ 0.401 (without com-
munity altruism and transfers). The major difference between their model and our model is 
that we assume altruistic preferences at both stages of the game, while they assume altru-
istic preferences only at the first stage of the game. At the second stage of the game, they 
assume that each fringe country maximizes its material welfare, while each coalition coun-
try maximizes the sum of the coalition countries’ material welfare.16 This does not alter the 
qualitative results at the second stage of the game, i.e. Proposition 1 and the first bullet of 
Lemma 1 also hold for � = 0 . However, it alters the qualitative effects of altruism on the 
internal stability condition. In both models, this internal stability condition reads

In van der Pol et al. (2012), where the policy is independent of � , altruism stabilises coali-
tions if and only if

This direct effect of altruism is positive if and only if the total material welfare of the other 
countries decreases when a country leaves the coalition. Then, altruism can induce a coun-
try to stay in the coalition even though its own material welfare would increase if it left the 
coalition. In Appendix A.2.4, we prove that the direct effect is positive for m = 2 (and for 
m ∈ [2, n] with specification (9)), regardless of whether or not altruistic preferences are 
assumed at the second stage of the game. However, the magnitude of the direct effect dif-
fers between the models. Furthermore, in our model, where the policy depends on � , altru-
ism stabilises coalitions if and only if

(10)
Vc(m) − Vf (m − 1) = (1 − �)Wc(m) + �W(m)

−
[
(1 − �)Wf (m − 1) + �W(m − 1)

]
≥ 0.

(11)
𝜕
[
Vc(m) − Vf (m − 1)

]

𝜕𝛼
=
[
(m − 1)Wc(m) + (n − m)Wf (m)

]

−
[
(m − 1)Wc(m − 1) + (n − m)Wf (m − 1)

]
> 0.

16  A discussion on which realms of decision making might be influenced by social preference can be found 
in Sect. 5.

14  Note that the coalition m = 2 is stable for � = 0 and n < 12 when d is sufficiently small, i.e. when 
d ≤ b(2

√
n2 − 3n + 3 − n + 4)∕(3n2 − 4n − 4).

15  Using ec(m(�), �) with m(�) = argmin ec(m, �).
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The second line of (12) represents the indirect effect of altruism. It is positive if and 
only if the policy effect of altruism on a country’s moral welfare is greater inside than 
outside the coalition. In Appendix A.2.4, we prove that the policy effect inside the coa-
lition is positive, i.e. (1 − 𝛼)

dWc(m)

d𝛼
+ 𝛼

dW(m)

d𝛼
> 0 , but that the policy effect outside the 

coalition is also positive for m = 2 (and for m ∈ [2, n − 2] with specification (9)), i.e. 
(1 − 𝛼)

dWf (m−1)

d𝛼
+ 𝛼

dW(m−1)

d𝛼
> 0 . Proposition  2 reveals that the latter effect is so strong 

that altruism raises the free-rider incentives. In other words, the policy effect of altruism 
is more important for small coalitions than for large coalitions, and so important that the 
negative indirect effect of altruism outweighs the positive direct effect.

In order to check whether the different results of van der Pol et al. (2012) indeed stem 
from the different assumption concerning altruistic preferences at the second stage of the 
game, and not from some other minor differences between the models, we analyse the first 
stage of the game without altruistic preferences at the second stage of the game. In Appen-
dix A.2.5, we then prove

Proposition 3  (Stability of coalitions without policy altruism) Consider specification (9) 
and suppose altruism affects the membership decision but not the policy decision.

•	 Either some unique coalition is stable or no coalition is stable.
•	 The coalition m= 2 is [not] stable for � = 0 , n≥ 12 and d≤ d̄ [� = 0 , n< 12 and d= d̄].
•	 The coalition size weakly increases with �.
•	 The grand coalition is [not] stable for � ≥ 4∕7 and d ≤ d̄ [� ≤ 3∕7 and n ≥ 12].

The first bullet of the proposition reveals that there is at most one stable coalition size. 
The second bullet of Proposition 3 mirrors the second bullet of Proposition 2, since the 
models with and without altruistic preferences at the second stage of the game coincide 
for � = 0 . The rest of Proposition  3 confirms the numerical result of van  der Pol et  al. 
(2012) that considering altruism only at the first stage of the game stabilises coalitions. In 
particular, the grand coalition becomes stable when the altruism parameter is greater than a 
critical value, which lies between 3/7 and 4/7 for n ≥ 12 and d ≤ d̄.

Furthermore, in Appendix  A.2.5 we prove that global material and moral welfare 
increase with the coalition size without altruistic preferences at the second stage of the 
game. While altruism affecting the membership decision only is beneficial for global wel-
fare and for the climate ( de

dm
< 0 from Lemma 1) because it expands the climate coalition, 

altruism affecting the membership decision and the policy decision is beneficial for global 
welfare and for the climate ( dW

d𝛼
> 0 and de

d𝛼
< 0 from Lemma 1) because it tightens the cli-

mate policy. If the same coalition is stable in both models, e.g. for � → 0 such that m = 2 , 
then global welfare is larger and global emissions are smaller with than without altruistic 
preferences at the second stage of the game. By contrast, if the grand coalition is stable 
without altruistic preferences at the second stage of the game, e.g. for � ≥ 4∕7 , then global 
welfare is larger and global emissions are smaller without than with altruistic preferences 

(12)

d
[
Vc(m) − Vf (m − 1)

]

d𝛼
=

𝜕
[
Vc(m) − Vf (m − 1)

]

𝜕𝛼

+ (1 − 𝛼)
dWc(m)

d𝛼
+ 𝛼

dW(m)

d𝛼
−

[
(1 − 𝛼)

dWf (m − 1)

d𝛼
+ 𝛼

dW(m − 1)

d𝛼

]
> 0.
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at the second stage of the game. Figure 2 depicts these relationships for a numerical exam-
ple.17 With [without] altruistic preferences at the second stage of the game, m = 2 becomes 
unstable for 𝛼 > 0.334 [ m = n becomes stable for 𝛼 > 0.5 ]. Global emissions are smaller 
and global material welfare is larger with than without altruistic preferences at the second 
stage of the game if and only if 𝛼 < 0.089 and 𝛼 < 0.135 , respectively. Then, the tighter 
climate policy outweighs the larger climate coalition, which then comprises no more than 
30 and 40 out of 100 countries, respectively. Finally, the figure shows that the welfare dif-
ference is relatively small ( < 27,000 ) compared to the welfare difference between social 
optimum (250,000) and BAU without altruistic preferences (9800).

4 � Stackelberg Game
At the second stage of the Stackelberg game, each fringe country i = f  maximizes its moral 
welfare (1) over its emissions ef  , taking the other countries’ emissions as given, which 
yields (4).

Furthermore, each coalition country i = c maximizes the sum of the coalition countries’ 
moral welfare (3) over its emissions ec , taking the other coalition countries’ emissions as 
given, but taking (4) into account, which yields18

where R�

f
∈ (−1, 0) from (6). For � = 0 , each coalition country equates marginal emissions 

benefits to the coalition countries’ marginal emissions damages mD�(e) , corrected for the 
leakage rate to the fringe countries ||R′

f
|| . For 𝛼 > 0 , altruism implies that each coalition 

country accounts for all other countries’ marginal emissions damages via 1 + �(n − 1) , but 
it also implies that all other coalition countries account for each coalition country’s mar-
ginal emissions benefits via 1 + �(m − 1) . Furthermore, altruism implies that each coalition 

(13)B�
(ec) =

1 + �(n − 1)

1 + �(m − 1)
mD�

(e)
[
1 + (1 − �)R�

f

]
≤ nD�

(e),

Fig. 1   Each coalition country’s minimal emissions (left-hand side figure) and the internal stability 
condition for m = 2 (right-hand side figure) dependent on � with n = 100, a = 100, b = 1 and d = 1∕10,000

18  The second-order conditions are fulfilled if B′′′ ≥ 0 and D′′′ ≤ 0 (see Appendix A.3.1).

17  Approximating the coalition size by the solution to Vc(m) − Vf (m − 1) = 0 without altruistic preferences 
at the second stage of the game.
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country accounts for all fringe countries’ marginal emissions benefits, which reduces the 
influence of the leakage rate to the fringe countries via 1 − � . Finally, altruism of the fringe 
countries implies that these countries react more sensitive to other countries’ emissions 
changes, such that the altruism parameter ceteris paribus increases the leakage rate to the 
fringe countries. Note that B�(ef ) = B�(ec) = nD�(e) for � = 1 , so the Stackelberg equilib-
rium and the social optimum then coincide. In the following we focus on � ∈ [0, 1).

From (4) and (13), we infer

Consequently, each fringe country’s emissions are greater [smaller] than each coalition 
country’s emissions for 𝜃 > [<]1 . Furthermore, 𝜃 = 1 implies that the Stackelberg equilib-
rium and the BAU coincide. In Appendix A.3.2, we prove19

Proposition 4  (Comparison of Stackelberg equilibrium and BAU) 

•	 ec ⋛ eBAU
i

⋛ ef  and e ⋛ eBAU for 𝜃 ⋚ 1,
•	 Vc > VBAU

i
> Vf  and V < VBAU for 𝜃 < 1 , Vc = VBAU

i
= Vf  and V = VBAU for 𝜃 = 1 , 

Vf > Vc > VBAU
i

 and V > VBAU for 𝜃 > 1,
•	 Wc > WBAU

i
> Wf  and W < WBAU for 𝜃 < 1 , Wc = WBAU

i
= Wf  and W = WBAU for 

𝜃 = 1 , Wf > Wc,W
BAU
i

    and W > WBAU for 𝜃 > 1.

𝜃 > [<]1 implies that the coalition countries are ceteris paribus more [less] ambitious 
in the fight against climate change than at BAU. This results in smaller [greater] coalition 

(14)
B�(ec)

B�(ef )
=

m

1 + 𝛼(m − 1)

[
1 + (1 − 𝛼)R�

f

]
=∶ 𝜃 ∈ (0,m).

Fig. 2   Global emissions (left-hand side figure) and global material welfare (right-hand side figure) with 
(solid curves) and without (dashed curves) altruistic preferences at the second stage of the game dependent 
on � with n = 100, a = 100, b = 1 and d = 1∕10,000

19  For � = 0 , the results of Proposition 4 have been proven by Finus et al. (2021b, Proposition 2) for the 
abatement game.
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country’s emissions and global emissions, which raises [reduces] the free-rider incen-
tives and leads to greater [smaller] fringe country’s emissions. The coalition could always 
choose 𝜃 = 1 , such that 𝜃 ≠ 1 implies Vc > VBAU

i
 . For 𝜃 > [<]1 global emissions being 

smaller [greater] and each fringe country’s emissions being greater [smaller] than at BAU 
implies Vf ⋛ VBAU

i
⟺ Wf ⋛ WBAU

i
⟺ 𝜃 ⋛ 1 . Furthermore, for 𝜃 > [<]1 global emis-

sions being smaller [greater] than at BAU implies V ⋛ VBAU
⟺ W ⋛ WBAU

⟺ 𝜃 ⋛ 1 . 
Finally, for 𝜃 > [<]1 each fringe country’s emissions being greater [smaller] than each coa-
lition country’s emissions implies Vf ⋛ Vc ⟺ Wf ⋛ Wc ⟺ 𝜃 ⋛ 1.

The partial derivative of 𝜃 with respect to m is positive, so the coalition countries tend 
to become more ambitious as the coalition gets larger. Then, the leakage rate to the fringe 
countries ceteris paribus becomes smaller, which tends to increase 𝜃 , see (6). Furthermore, 
the coalition countries’ marginal emissions damages then become greater, which outweighs 
the greater coalition countries’ marginal emissions benefits and increases 𝜃 , see (14). In 
Appendix A.3.3, we prove20

Proposition 5  (Relation between coalition size and coalition’s ambition) Suppose B′′′ ≥ 0 
and D′′′ ≤ 0 . Then, m ⋚ m̃ ⟺ 𝜃 ⋚ 1 , where

and where dm̃
d𝛼

> 0 for B��� = 0 (sufficient).

Thus, the coalition countries are less [more] ambitious than the fringe countries in small 
[large] coalitions, in which the leakage effect outweighs [is outweighed by] the marginal 
emissions damage effect. The partial derivative of m̃ with respect to � is positive, so the 
respective threshold coalition m̃ tends to get larger as countries become more altruistic. 
In other words, the coalition countries tend to become less ambitious in the fight against 
climate change compared to the fringe countries. On the one hand, the altruism parameter 
ceteris paribus increases the importance of all other coalition countries’ marginal emis-
sions benefits for the optimal policy, and it increases the leakage rate to the fringe coun-
tries. On the other hand, it ceteris paribus increases the importance of all fringe countries’ 
marginal emissions benefits for the optimal policy. Proposition 5 reveals that the former 
effect outweighs the latter with linear-quadratic consumption benefits.

Since m ≥ m̃ will turn out to be the relevant coalition size and to prepare the analysis of 
the first stage of the Stackelberg game, we prove in Appendix A.3.421

Lemma 2  (Effects of coalition size and altruism on emissions and welfare for m ≥ m̃ ) 
Suppose B′′′ ≥ 0 and D′′′ ≤ 0.

•	 def

dm
> 0 , de

dm
< 0 and dVc

dm
,
dVf

dm
,
dWf

dm
> 0 and V(m) > V(m − 1),W(m) > W(m − 1),

•	 def

d𝛼
< 0 and dW

d𝛼
> 0.

(15)m̃ ∶=
n[1 + 𝛼(n − 1)]D��(eBAU) − B��(eBAU

i
)

[1 + 𝛼(n − 1)]D��(eBAU) − B��(eBAU
i

)
∈ (1, n)

20  For � = 0 , the existence of a threshold coalition m̃ has been proven by Diamantoudi and Sartzetakis 
(2006) for the emissions game with linear-quadratic benefits and quadratic costs, by McGinty (2020) for 
the abatement game with linear-quadratic benefits and quadratic costs, and by Finus et al. (2021b) for the 
abatement game with zero third derivatives.
21  For � = 0 , the results of Lemma  2 have been proven by Finus et  al. (2021b,  Proposition 2) for the 
abatement game.



2322	 M. Schopf 

1 3

From the first bullet of the lemma, we get the typical results that each fringe country’s 
emissions increase but global emissions decrease with the coalition size, so free-rider 
incentives tend to increase as the coalition gets larger as in the Nash game. Contrary to the 
Nash game, the resulting lower climate damages ensure that not only each fringe country’s 
moral welfare but also each coalition country’s moral welfare increases with the coalition 
size. Furthermore, each fringe country’s material welfare increases with the coalition size 
because its consumption benefits increase and the climate damages decrease with the coali-
tion size. Finally, Finus et al. (2021a, p. 18) prove that any Stackelberg game is superaddi-
tive, i.e. mVc(m) ≥ (m − 1)Vc(m − 1) + Vf (m − 1) , because ec(m) maximizes the sum of m 
countries’ moral welfare, taking ef (ec(m)) into account. Since each fringe country’s moral 
welfare increases with the coalition size, superadditivity implies that global material and 
moral welfare also increase with the coalition size.22

The second bullet of the lemma reveals that each fringe country’s emissions decrease 
with the altruism parameter and that global material welfare increases with the altruism 
parameter as in the Nash game. Consequently, the relative global material and moral wel-
fare W∕WSO = V∕VSO increase with the altruism parameter. Contrary to the Nash game, 
global emissions need not decrease with the altruism parameter. Finally, we prove in 
Appendix  A.3.4 that the slope of the fringe countries’ aggregate reaction function and, 
thus, the leakage rate to the fringe countries |R′

f
| increases in absolute terms with the altru-

ism parameter for D′′′ ≤ 0 and B��� = 0 as in the Nash game. The higher this leakage rate, 
the smaller ceteris paribus the coalition’s ambition and the greater ceteris paribus the coali-
tion’s strategic advantage over the fringe in the Stackelberg game (Finus et al. 2021b).23

Now we turn to the first stage of the Stackelberg game. First note that Proposition 4 
implies that all coalitions with 𝜃 ≤ 1 are externally unstable because joining this coalition 
then increases the respective country’s moral welfare from Vf ≤ VBAU

i
 to Vc > VBAU

i
 . Con-

sequently, global emissions are smaller and each country’s moral welfare is greater at the 
stable Stackelberg equilibrium than at BAU, and each fringe country’s welfare is greater 
than each coalition country’s welfare. Together with Proposition 5, this gives24,25

Lemma 3  (Instability of small coalitions) Suppose B′′′ ≥ 0 and D′′′ ≤ 0 . Then, all 
coalitions m ≤ m̃ are externally unstable, and the coalition m = ⌊m̃ + 1⌋ ≥ 2 is internally 
stable.

The coalition m = ⌊m̃ + 1⌋ ≥ 2 is internally stable because leaving the coalition 
decreases the respective country’s moral welfare from Vc > VBAU

i
 to Vf ≤ VBAU

i
 . The 

lemma indicates that the coalition size increases with the threshold coalition m̃ , which in 

22  That is, mV
c
(m) + (n − m)V

f
(m) = V(m) = [1 + �(n − 1)]W(m) ≥ [1 + �(n − 1)]W(m − 1) = V(m − 1)

= (m − 1)V
c
(m − 1) + V

f
(m − 1) + (n − m)V

f
(m − 1) for m ≥ m̃.

23  However, note that the effective leakage rate (1 − �)|R�

f
| can decrease with the altruism parameter and 

that it is smaller with altruism than without for � ≥ (n − 2)∕(n − 1) , D��� = 0 and B��� = 0.
24  The function ⌊⋅⌋ maps its argument to the largest weakly smaller integer.

25  For � = 0 , the results of Lemma 3 have been proven Finus et al. (2021b, Corollary 3) for the abatement 
game with zero third derivatives.
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turn tends to increase with the altruism parameter from Proposition 5. Via this mechanism, 
altruism could stabilise larger coalitions.

For the detailed stability analysis, we use specification (9). We constrain the parameter 
space to ensure non-negative emissions for all m ∈ [2, n] , which gives an upper bound for d 
similar to the Nash game. In particular, we formulate the following

Assumption 2  d ≤ ̄̃d ∶=
4b

n(n − 4)
.

This assumption is necessary and sufficient for non-negative emissions for all m ∈ [2, n] 
with � = 0.26 In Appendix A.3.5, we then prove27

Proposition 6 (Stability of coalitions)  Consider specification (9) with n ≥ 7 and d ≤ ̄̃d.
•	 Some unique coalition m ∈ (m̃, m̃ + 2) is stable.
•	 Some unique coalition m ∈ {2, 3} is stable for � = 0.
•	 The coalition size weakly increases with �.
•	 Some unique coalition m ∈ {2, 3, 4, 5, 6} is stable for 𝛼 > 0.

Contrary to the Nash game, Proposition 6 reveals that altruism stabilises larger coalitions. 
However, the coalition never comprises more than six countries. More importantly, the 
coalition is always smaller than m = m̃ + 2 . Since the Stackelberg equilibrium and BAU 
coincide for m = m̃ , the emissions-reducing and welfare-enhancing effects of the coalition 
size from Lemma 2 are negligible. In fact, the small coalitions stem from constraining the 
parameter space to ensure non-negative emissions for m ∈ [2, n] , which gives an upper bound 
for d/b and, thus, for m̃ . From Proposition 5, this upper bound increases with the altruism 
parameter, which is the driving force for larger coalitions with than without altruism.

We use a numerical example to demonstrate there are economies in which the coali-
tion is larger with than without altruism. Figure 3 depicts each coalition country’s minimal 
emissions28 (left-hand side figure) and the internal stability condition (right-hand side fig-
ure) for m = 3 (solid curve) and for m = 4 (dashed curve) dependent on � . In the numer-
ical example, each coalition country’s emissions are positive for all m ∈ [2, n] . Further-
more, m = 3 becomes stable for � ≥ 0.223 , and m = 4 becomes stable for � ≥ 0.839 . Thus, 
there are economies in which the coalition is larger with than without altruism. Finally, 
Fig. 4 shows that global emissions decrease and global material welfare increases with the 
altruism parameter in the numerical example. Furthermore, as the coalition gets larger at 
� = 0.223 and at � = 0.839 , global emissions jump downwards and global material welfare 
jumps upwards, but these jumps are (almost) not visible.

26  Assumption 2 is also sufficient for non-negative emissions for all m ∈ [2, n] with � ≥ 0.5.
27  For � = 0 , the results of Proposition 6 have been proven by Diamantoudi and Sartzetakis (2006, p. 261). 
For n ∈ {5, 6} , they show that some unique coalition m ∈ (m̃, m̃ + 3) with m ∈ {2, 3, 4} [ m ∈ {2, 3} ] is 
stable for n = 5 [ n = 6].

28  Using ec(m(�), �) with m(�) = argmin ec(m, �).
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5 � Discussion

The previous sections have shown that altruism affecting the membership decision and 
the policy decision leads to small (Proposition  2) or ineffective (Proposition  6) climate 
coalitions. By contrast, altruism affecting the membership decision only (van der Pol et al. 
2012) can stabilise the grand coalition (Proposition 3).29 Given that the effects of altruism 

Fig. 3   Each coalition country’s minimal emissions (left-hand side figure) and the internal stability 
condition (right-hand side figure) for m = 3 (solid curve) and for m = 4 (dashed curve) dependent on � with 
n = 100, a = 100, b = 1 and d = 1∕4500

Fig. 4   Global emissions (left-hand side figure) and global material welfare (right-hand side figure) 
dependent on � with n = 100, a = 100, b = 1 and d = 1∕4500

29  This was shown for the Nash game, but since the stable coalitions are always weakly larger in the 
Stackelberg game than in the Nash game (Finus et al. 2023), this also applies to the Stackelberg game.
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on the formation of climate coalitions crucially depends on its modelling, this section 
discusses which realms of decision making might be influenced by social preferences in 
general.30

We start by looking at what assumptions the literature on self-enforcing international 
environmental agreements with social preferences makes and how it justifies them. 
First, the literature incorporating inequality aversion (Lange and Vogt 2003; Lange 
2006; Vogt 2016; Rogna and Vogt 2022) considers social preferences at both stages 
of the game and argues that governments interested in re-election must take (median) 
voters’ fairness preferences into account in national policy and international negotia-
tions. Second, the literature incorporating reciprocal fairness (Grüning and Peters 2010; 
Nyborg 2018) also considers social preferences at both stages of the game.31 Nyborg 
(2018,  p. 707) argues that although groups may act differently than individuals, pol-
icy makers and treaty negotiators tend to be reciprocal when the general population is 
reciprocal, and tend to act reciprocally when the median voter is reciprocal. Third, the 
literature incorporating Kantian ethics (Eichner and Pethig 2022; Ulph and Ulph 2023) 
allows for different moral behaviour at the two stages of the game. Nevertheless, Eich-
ner and Pethig (2022,  pp. 18–19) argue that moral behaviour at just one stage of the 
game or different moral behaviour at the two stages of the game appears to be implausi-
ble, and Ulph and Ulph (2023, p. 12) “recognise that there is a strong argument that an 
agent should take the same moral stance to all decisions.” However, the latter argue that 
governments decide on coalition membership, while both governments and individuals 
decide on domestic emissions through public policy and private behaviour, respectively, 
such that the “decisions involve somewhat different agents”, which might explain differ-
ent moral behaviour at the two stages of the game. Finally, van der Pol et al. (2012, p. 
114) argue that “agents may hold different preferences when acting in different social 
situations, for example as consumers or as citizens.” They then distinguish between 
the decision about the technology employed and the domestic regulations adopted of 
a homo economicus with “personal well-being functions” (Nyborg 2000, p. 305), and 
the decision about the membership in the coalition of a homo politicus with “subjective 
social welfare functions” (Nyborg 2000, p. 305).

To sum up, most of the literature assumes that individual social preferences affect 
both stages of the game via the median voter (or because policy makers and treaty nego-
tiators tend to have the same social preferences as the general population). On the other 
hand, taken together, van der Pol et al. (2012) and Ulph and Ulph (2023) provide good 
arguments that social preferences could be different at the two stages of the game: If 
there is a distinction between homo economicus and homo politicus and if homo eco-
nomicus can influence domestic emissions, then social preferences might be more pro-
nounced at the membership stage than at the policy stage. However, note that the cited 
literature (and the present paper) abstracts from individual decisions and assumes that 
countries or governments decide on both coalition membership and domestic emissions. 
In this case, all decisions are made by citizens rather than by consumers, and there 
should be no qualitative difference between social preferences at the two stages of the 
game.

30  We owe this section to an anonymous reviewer who suggested to discuss which realms of decision 
making might be influenced by altruistic preferences.
31  In Buchholz et al. (2018) countries are reciprocal when they decide on their membership in the coalition, 
but the emissions policy inside and outside the coalition is exogenously given.
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However, strategic delegation could be another argument for different social preferences 
at different game stages. The literature on strategic delegation shows that strategic voters 
elect policy makers who care less about global public goods when policy makers bargain 
over their provision. Thereby, Buchholz et al. (2005) and Loeper (2017) assume that policy 
makers decide on the cooperative bargaining outcome and on the non-cooperative bargain-
ing default (strong delegation), while Segendorff (1998) and Graziosi (2009) also consider 
policy makers deciding on the cooperative bargaining outcome but median voters deciding 
on the non-cooperative bargaining default (weak delegation), which leads to different pref-
erences at different game stages.32 Spycher and Winkler (2022) introduce strategic delega-
tion into the standard two-stage game of self-enforcing international environmental agree-
ments. They distinguish between weak delegation, i.e. elected policy makers decide on 
coalition membership but median voters decide on emissions policy, and strong delegation, 
i.e. elected policy makers decide at both stages of the game. While weak delegation does 
not increase coalition size but does increase global emissions, strong delegation can stabi-
lise the grand coalition and thereby bring about the social optimum. These results suggest 
that strategic delegation can pay off. In this context, Lange and Schwirplies (2017) argue 
that there is indeed strategic delegation in climate policy because the social preferences of 
climate negotiators and the general population differ in that the former are more likely to 
support burden-sharing rules with low economic costs for their regions than the latter.

6 � Extensions

This section performs two model extensions. The first subsection shows that a small degree 
of community altruism can stabilise the grand coalition. The second subsection reveals that 
altruism can stabilise coalitions of two countries but tends to destabilise coalitions of three 
or more countries with linear climate damages and asymmetric countries.33

6.1 � Community Altruism

In this subsection, we consider community altruism. In particular, we distinguish between 
out-group altruism � and in-group altruism 𝛽 > 𝛼 . The psychological literature has devel-
oped and tested two theories in particular for the preference of in-group members over 
out-group members (Balliet et al. 2014): The social identity theory assumes that individu-
als identify themselves with their memberships in social groups (Tajfel et al. 1979), while 
the theory of bounded generalized reciprocity assumes that groups contain individuals 
with cooperative reputations, which induces indirect reciprocity (Yamagishi and Kiyonari 
1999). Cheikbossian (2021a) shows that in-group altruism is evolutionary stable, Cheik-
bossian (2021b) finds that a combination of in-group altruism and out-group altruism can 
be evolutionary stable, and Balliet et al. (2014) summarize the significant evidence for in-
group altruism (and against out-group spite) in psychological experiments.

32  While Buchholz et  al. (2005) and Graziosi (2009) find that strategic voting cancels the gains of 
international cooperation, Segendorff (1998) finds that weak [strong] delegation increases [decreases] the 
gains of international cooperation, and Loeper (2017) finds that the results depend on the type of global 
public goods.
33  We owe this section to an anonymous reviewer who suggested to extend the analysis to community 
altruism and asymmetric countries.
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In the following, we first analyse community altruism in the Nash game then report the 
effects of community altruism in the Stackelberg game. In the Nash game of coalition for-
mation, each fringe country does not belong to a group, such that its moral welfare (1) and 
its first-order condition (4) do not change. By contrast, each coalition country belongs to 
the climate coalition, such that its moral welfare becomes

Thus, community altruism ceteris paribus increases the weight of the coalition’s material 
welfare. Rearranging the corresponding first-order condition yields34

where the numerator reflects the altruistic preferences of the respective coalition country 
for all other countries’ climate damages, and the denominator reflects the altruistic prefer-
ences of all other coalition countries for the respective coalition country’s consumption 
benefits. Community altruism reduces the relative importance of the fringe countries’ cli-
mate damages, which ceteris paribus increases the coalition’s emissions. However, from 
(4) and (17), we infer

Consequently, each fringe country’s emissions are still greater than each coalition coun-
try’s emissions. In Online Appendix B.1.1, we prove that the first bullet and the third bul-
let of Proposition 1 also hold with community altruism: Each coalition country consumes 
less than at BAU, which reduces global emissions and, thus, marginal climate damages, 
such that each fringe country consumes more than at BAU. Consequently, the material wel-
fare of each fringe country is greater than that of each coalition country and greater than 
that at BAU. However, and in contrast to the case without community altruism, the moral 
welfare of each coalition country can be greater than that of each fringe country if the 
material welfare of each coalition country is positive, because then community altruism 
ceteris paribus increases the former but does not affect the latter. In particular, we have 
Vf − Vc = (1 − �)(Wf −Wc) − (� − �)(m − 1)Wc , which ceteris paribus decreases with the 
degree of community altruism and with the coalition size if Wc > 0 . This welfare effect of 
community altruism can reduce the free-rider incentives.

To analyse the policy effect of community altruism, we prove in Online Appendix 
B.1.135

Lemma 4  (Effects of community altruism on emissions and welfare) 

(16)

∑

i∈M

Vi =

∑

i∈M

[
Wi + �

∑

j∈M�i

Wj + �
∑

j∈N�M

Wj

]

= [1 − � + (� − �)(m − 1)]
∑

i∈M

Wi + �mW.

(17)B�
(ec) =

1 + �(n − m) + �(m − 1)

1 + �(m − 1)
mD�

(e) ≤ nD�
(e),

(18)
B�(ec)

B�(ef )
=

m

1 + �(n − 1)

1 + �(n − m) + �(m − 1)

1 + �(m − 1)
∈ (1,m].

34  The second-order conditions are fulfilled.
35  Furthermore, we there prove that Lemma 1 also holds with community altruism.
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•	 def

d𝛽
< 0 , dec

d𝛽
> 0 and de

d𝛽
> 0,

•	 dWf

d𝛽
< 0 and dWc

d𝛽
> 0,

•	 dVc

d𝛽
> 0 and d(Vf−Vc)

d𝛽
< 0 for Wc ≥ 0 (sufficient).

Ceteris paribus, community altruism does not affect each fringe country’s consump-
tion, see (4), but increases each coalition country’s consumption, see (17). Thus, ec 
increases, which increases global emissions and, thus, marginal climate damages, such 
that ef  decreases. Consequently, each fringe country’s material welfare decreases, while 
the increase in each coalition country’s consumption benefits outweighs the increase in the 
climate damages, such that its material welfare increases. This policy effect of community 
altruism raises each coalition country’s moral welfare and reduces the difference between 
the moral welfare of each fringe country and each coalition country if Wc ≥ 0 . Further-
more, it reduces each fringe country’s moral welfare Vf = (1 − �)Wf + �W if � is suffi-
ciently small, such that the decrease in Wf  outweighs the potential increase in W.

Taken together, the sign of each coalition country’s material welfare plays an important 
role for the effects of community altruism on the free-rider incentives. This also becomes 
clear when we look at the (internal) stability condition of the grand coalition:

First note that the grand coalition maximizes global material welfare from 
Vc(n) = [1 + �(n − 1)]Wc(n) as in the case without community altruism. Now consider 
� = 1 . Then, Vc(n) is maximized global material welfare W(n), and Vf (n − 1) is non-maxi-
mized global material welfare W(n − 1) minus the coalition’s material welfare weighted by 
1 − � . Thus, the grand coalition is stable if Wc(n − 1) ≥ 0 . By contrast, if Wc(n − 1) < 0 , 
the grand coalition need not be stable. For example, consider � = 0 . Then, Vf (n − 1) is 
equal to the fringe country’s material welfare Wf (n − 1) , and this material welfare can 
exceed maximized global welfare W(n) if Wc(n − 1) < 0 . However, it can be shown that 
Wc(n − 1) > 0 holds with specification (9) when there is a sufficiently large number of 
countries ( n ≥ 9 ). Then, the emissions policy of one fringe country is relatively unimpor-
tant for the material welfare of many coalition countries. In this case, the grand coalition is 
stable for � = 1.

Note that Wc(n) is always non-negative because the grand coalition could choose ec = 0 
and, thus, B(0) ≥ 0 and D(0) = 0 . Consequently, in-group altruism increases each coun-
try’s moral welfare in the grand coalition. Furthermore, it reduces each fringe country’s 
material welfare, but raises each coalition country’s material welfare with any other coali-
tion, such that the effect on each fringe country’s moral welfare is in general ambiguous. 
However, in Online Appendix B.1.1 we prove that this effect is definitely negative if there 
is only one fringe country. Then, in-group altruism increases the emissions of so many 
coalition countries that the corresponding increase in climate damages and decrease in 
the fringe country’s consumption benefits outweigh the increase in the coalition country’s 
consumption benefits. To sum up, in-group altruism increases the stability of the grand 
coalition.

Finally, out-group altruism does not affect each country’s moral wel-
fare in the grand coalition, but it reduces global emissions and increases global 

(19)

Vc(n) − Vf (n − 1)

= (1 − �)Wc(n) + �W(n) −
[
(1 − �)Wf (n − 1) + �W(n − 1)

]

= W(n) − (1 − �)(n − 1)Wc(n) −
[
W(n − 1) − (1 − �)(n − 1)Wc(n − 1)

]
.
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material welfare with any other coalition, see Lemma  1. Thus, it also tends to increase 
Vf (n − 1) = Wf (n − 1) + �(n − 1)Wc(n − 1) if Wc(n − 1) > 0 . Consequently, it can be 
shown that out-group altruism increases the fringe country’s moral welfare with specifica-
tion (9) when there is a sufficiently large number of countries ( n ≥ 10 ). In this case, out-
group altruism decreases the stability of the grand coalition. We prove our results in Online 
Appendix B.1.1 and summarize them in

Proposition 7  (Stability of grand coalition with community altruism) Consider 
specification (9).
•	 The internal stability condition of the grand coalition increases with � , and it decreases 

with � for n ≥ 10 and d ≤ d̄ (sufficient).
•	 The grand coalition is stable for � = 1 , n ≥ 6 and d ≤ d̄ (sufficient).

Thus, community altruism can stabilise the grand coalition and thereby bring about the 
social optimum. Figure 5 depicts thresholds of � − � for the grand coalition to be stable 
dependent on � in the Nash game (left-hand side figure) for different values of the climate 
damage parameter d.36 When this parameter is small, emissions policy is determined 
mainly by marginal emissions benefits rather than marginal climate damages, so that the 
difference between the emissions and therefore the material welfare of each fringe country 
and each coalition country is small, which reduces free-rider incentives and stabilises the 
grand coalition. Figure 5 shows that the grand coalition can be stable even with a small 
difference between in-group altruism and out-group altruism of less than 0.03.37 Note 
that community altruism does not change the grand coalition’s emissions policy, so its 
stabilizing effect relies on the worse emissions policy for the final fringe country (policy 
effect) and on the increased moral welfare of each coalition country for a given emissions 
policy (welfare effect).38

Finally, we report the effects of community altruism in the Stackelberg game. Since 
the results are simply a combination of those in the Stackelberg game without commu-
nity altruism and those in the Nash game with community altruism, we delegate the full 
analysis to Online Appendix B.1.2. First, there is a unique threshold coalition m̂ ∈ (1, n) 
where the Stackelberg equilibrium and BAU coincide in terms of emissions and material 
welfare. If WBAU

i
≥ 0 , then Vc(m) ≥ VBAU

i
 and Vf (m) ≤ VBAU

i
 for m ≤ m̂ , such that all coali-

tion m ≤ m̂ are externally unstable, and the coalition m = ⌊m̂ + 1⌋ ≥ 2 is internally stable 
as in the case without community altruism.39 Second, community altruism increases each 
coalition country’s emissions and global emissions, and it decreases each fringe country’s 

36  For n = 100 and d∕b > 3.75∕10,000 , each coalition country’s minimal emissions become negative for 
certain combinations of � and �.
37  Coincidentally, this is consistent with the numerical analysis of van der Pol et al. (2012), who find that 
the grand coalition is stable for � = 0 and � ≥ 0.03 or � ≤ 0.024 and � = 0.06 and unstable for � ≥ 0.036 
and � = 0.06.
38  Finally, we ran several examples to find other possible stable coalition sizes. There are economies in 
which no coalition is stable, only the coalition m = 2 is stable, only the grand coalition is stable, or some 
coalition m ≥ 2 and the grand coalition are stable. We did not find an example in which the coalition m = 2 
is stable in the case without community altruism and no coalition is stable in the case with community 
altruism. However, there are economies in which only the coalition m = 2 is stable in both cases, and in which 
global moral welfare is smaller with than without community altruism due to the higher emissions damages.

39  By contrast, if WBAU
i

< 0 , then Vc(m̂) < VBAU
i

 and Vf (m̂) = VBAU
i

 , such that the coalition m = m̂ − 1 is 
externally stable.
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emissions as in the Nash game. Consequently, m̂ increases with � , which can stabilise 
larger coalitions. Furthermore, community altruism decreases each fringe country’s moral 
welfare, and it increases each coalition country’s moral welfare if Wc ≥ 0 as in the Nash 
game, which then stabilises larger coalitions. In particular, in-group [out-group] altruism 
increases [decreases] the internal stability condition of the grand coalition [when there is a 
sufficiently large number of countries] as in the Nash game. Furthermore, it can be shown 
that the condition for the grand coalition to be stable is laxer in the Stackelberg game than 
in the Nash game. However, Fig. 5 shows that the thresholds of � − � for the grand coali-
tion to be stable dependent on � in the Stackelberg game (right-hand side figure) are close 
to those in the Nash game (left-hand side figure).

6.2 � Asymmetric Countries

In this subsection, we consider asymmetric countries in terms of consumption bene-
fits Bi(ei) and climate damages Di(e) . With convex climate damages D′′

i
> 0 (or abate-

ment benefits), the results of previous literature on coalition stability with asymmetric 
countries are based on numerical analyses (Barrett 1997; Botteon and Carraro 2001; 
McGinty 2007; Bakalova and Eyckmans 2019; McGinty 2020). In order to obtain ana-
lytical results, we thus rely on linear climate damages D��

i
= 0 in this subsection. This 

implies that each fringe country has a dominant strategy, such that the Nash game and 
the Stackelberg game coincide. Furthermore, we focus on the case without transfers.

In such a framework with two types of countries, Fuentes-Albero and Rubio (2010) 
show that a coalition of at most three countries is stable if either climate damages or 
emissions benefits are symmetric. Pavlova and De Zeeuw (2013) confirm this result and 
show that the same holds if climate damages and emissions benefits are positively cor-
related. By contrast, if climate damages and abatement costs are negatively correlated, a 

Fig. 5   Thresholds of � − � for the grand coalition to be stable dependent on � in the Nash game (left-
hand side figure) and in the Stackelberg game (right-hand side figure) with n = 100, a = 100, b = 1 and 
d = 1∕10,000 (solid curve), d = 2.375∕10,000 (dashed curve) and d = 3.75∕10,000 (dotted curve)
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coalition of all countries with low climate damages and two countries with high climate 
damages can be stable. Finus and McGinty (2019) extend this analysis by allowing for 
any type of countries. They show that the grand coalition can be stable if climate dam-
ages and abatement costs are negatively correlated.

Following van  der Pol et  al. (2012), we consider a unique altruism parameter to 
derive the general effects of altruism on the formation of climate coalitions. Further-
more, we abstract from community altruism to check the robustness of our main model 
with linear climate damages and asymmetric countries. With a unique altruism param-
eter and without community altruism, each country’s moral welfare function is still 
given by (1), and the global moral welfare function is still given by (2). Consequently, 
the socially optimal emissions always maximize global material welfare, and the indi-
vidually optimal emissions maximize global material welfare if and only if � = 1 . In 
Appendix  A.1, we prove that global emissions decrease and global material welfare 
increases with the altruism parameter in the individually optimal solution as in the main 
model. Consequently, the relative global emissions eBAU∕eSO decrease and the relative 
global material and moral welfare WBAU∕WSO = VBAU∕VSO increase with the altruism 
parameter.

In the coalition formation game, each fringe country’s moral welfare is still given by 
(1), and the sum of the coalition countries’ moral welfare is still given by (3). Rearranging 
the corresponding first-order conditions yields

Consequently, considering two ex ante identical countries, the emissions of the country 
outside the coalition are greater than those of the country inside the coalition, which means 
that also the material and moral welfare of the country outside the coalition are greater 
than those of the country inside the coalition. In Online AppendixB.2.1, we prove40

Proposition 8  (Comparison of Nash equilibrium and BAU with asymmetric countries) 

•	 ei < eBAU
i  for all i ∈ M , ei = eBAU

i
 for all i ∉ M and e < eBAU,

•	 Vi > VBAU
i  for all i ∉ M and V > VBAU,

•	 Wi > WBAU
i  for all i ∉ M and W > WBAU.

(21) implies that the coalition countries are ceteris paribus more ambitious in the fight 
against climate change than at BAU. This results in smaller emissions inside the coalition, 

(20)B�

i
(ei) = (1 − �)D�

i
(e) + �

∑

j∈N

D�

j
(e) ≤

∑

j∈N

D�

j
(e), ∀i ∉ M,

(21)

B�

i
(ei) =

(1 − �)
∑

j∈M D�

j
(e) + �m

∑
j∈N D�

j
(e)

1 + �(m − 1)

= (1 − �)D�

i
(e) + �

�

j∈N

D�

j
(e)

+ (1 − �)

∑
j∈M�i D

�

j
(e) + �(m − 1)

∑
j∈N�i D

�

j
(e)

1 + �(m − 1)
≤
�

j∈N

D�

j
(e), ∀i ∈ M.

40  For � = 0 , the results of Proposition 8 have been proven by Finus and McGinty (2019, p. 544) for the 
abatement game with linear benefits and quadratic costs.
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while the fringe countries’ dominant strategies imply that the emissions outside the coali-
tion do not change, such that global emissions are smaller than at BAU. Smaller global 
emissions and constant fringe country’s emissions imply Wi > WBAU

i
 for all i ∉ M . The 

remaining results arise from the superadditivity of the game, i.e. 
∑

j∈M Vj ≥
∑

j∈M VBAU
j

 : 

Superadditivity implies W > WBAU , which in turn implies Vi > VBAU
i

 for all i ∉ M and 
V > VBAU.

To prepare the analysis of the first stage of the Nash game, we prove in Online Appen-
dix B.2.241

Lemma 5  (Effects of coalition size and altruism on emissions and welfare with asymmetric 
countries) 
•	 If another country joins the coalition, then each coalition country’s emissions decrease, 

each fringe country’s emissions do not change and global emissions decrease. Further-
more, each fringe country’s material and moral welfare increase, and global material 
and moral welfare increase.

•	 dei

d𝛼
< 0 for all i ∈ N and dW

d𝛼
> 0.

The first bullet of the lemma reveals that the comparison between Nash equilibrium and 
BAU from Proposition  8 can be transferred to the comparison between the equilibrium 
with some coalition M and the equilibrium with some smaller coalition M∖i : The larger the 
coalition, the more it fights against climate change, which leads to smaller emissions of the 
original coalition members, to smaller emissions of the new coalition member and, thus, to 
smaller global emissions. The material welfare of each fringe country increases, because 
its consumption benefits do not change, but its climate damages decrease. Superadditivity 
implies that global welfare increases, which in turn implies that the moral welfare of each 
fringe country and global moral welfare increase.

The second bullet of the lemma reveals that each country’s emissions decrease and 
global material welfare increases with the altruism parameter. Consequently, the rela-
tive global emissions e∕eSO decrease and the relative global material and moral welfare 
W∕WSO = V∕VSO increase with the altruism parameter as in the main model with symmet-
ric countries and convex climate damages.

For the first stage of the game, we use the following specification

In Online Appendix B.2.3, we then prove

Proposition 9  (Stability of coalitions with asymmetric countries) Consider the 
specification (22).

•	 Suppose bi = b and di = d for all i ∈ N . Then, any coalition with three members is sta-
ble for � = 0 , and any coalition with two members is stable for 𝛼 > 0.

(22)Bi(ei) = aiei −
bi

2
e2
i
, Di(e) = die, with ai, bi, di > 0.

41  For � = 0 , the results of Lemma  5 have been proven by Finus and McGinty (2019,  p. 544) for the 
abatement game with linear benefits and quadratic costs.
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•	 Suppose 
{
b1 < b2 < ⋯ < bn and d1 ≤ d2 ≤ ⋯ ≤ dn

}
 or 

{
b1 ≤ b2 ≤ ⋯ ≤ bn and 

d1 < d2 < ⋯ < dn
}
 . Then, only coalitions with two members can be stable, and the 

condition for at least one coalition to be stable is tighter for � = 0 than for 𝛼 > 0.
•	 Suppose b1 ≤ b2 ≤ ⋯ ≤ bn and d1 ≥ d2 ≥ ⋯ ≥ dn . Then, any coalition can be stable, 

and the condition for the grand coalition to be stable is laxer for � = 0 than for 𝛼 > 0.

For � = 0 , Proposition 9 replicates the results of Finus and McGinty (2019): With iden-
tical bi and di parameters, a coalition of three countries is stable. With a positive covariance 
between these parameters, either a coalition of two countries or no coalition is stable. The 
coalition becomes smaller because countries with small bi and di parameters profit greatly 
from additional emissions benefits and suffer little from additional climate damages when 
they leave a coalition.42 With a negative covariance, countries with small bi and large di 
parameters and countries with large bi and small di parameters can mutually benefit from a 
large coalition, which can even stabilise the grand coalition.

For 𝛼 > 0 , we get mixed results. With identical bi and di parameters, the negative effect 
of altruism is even stronger than with quadratic climate damages, since the coalition is 
always smaller for 𝛼 > 0 than for � = 0 with linear climate damages. In Online Appendix 
B.2.4, we prove that the effects of altruism on the internal stability condition are compa-
rable to those of the main model: The direct effect is positive, the policy effect inside the 
coalition is positive, but the policy effect outside the coalition is also positive and pre-
dominates, such that staying in the coalition becomes less important as countries become 
more altruistic. With individual bi and di parameters, altruism has two effects on the inter-
nal stability condition: First, it reduces the effective variance of the di parameters, because 
each coalition country accounts for the climate damages of all fringe countries. Second, 
it increases the incentive to stay in small coalitions |M| = 2 , but reduces the incentive to 
stay in large coalitions |M| ≥ 3 . Both effects stabilise |M| = 2 with a positive covariance 
between bi and di , but tend to destabilise |M| ≥ 3 with a negative covariance between these 
parameters. In particular, the condition for the grand coalition to be stable is laxer for � = 0 
than for 𝛼 > 0.

Finally, to further check the robustness of our main model, we also analyse the second 
stage of the Nash game with convex climate damages and asymmetric countries in Online 
Appendix B.2. We find that global emissions decrease and each fringe country’s emissions 
and material welfare increase if another country joins the coalition as in the main model. 
Consequently, global emissions are smaller and each fringe country’s emissions and mate-
rial welfare are greater than at BAU. Furthermore, global emissions decrease with the 
altruism parameter as in the main model. However, in contrast to the main model, some 
fringe country’s emissions could increase with the altruism parameter. For example, sup-
pose that only one fringe country faces climate damages and countries become more altru-
istic. Then, all other countries consume less (because this benefits the respective fringe 
country), which reduces global emissions and, thus, marginal climate damages, such that 
the respective fringe country consumes more (because this does not harm the other coun-
tries). The effects of altruism on global material welfare also become ambiguous. However, 
if countries only differ in their emissions benefits and not in their climate damages, then 
each fringe country’s emissions decrease and global material welfare increases with the 
altruism parameter as in the main model.

42  In Online Appendix B.2.3, we prove that n ∈ M and 2d2
n−1

bn−1 ≥ d2
n
bn is necessary and sufficient for at 

least one coalition of two countries to be stable.
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7 � Conclusion

This paper analyses the effects of altruism on the formation of climate coalitions in the 
canonical two-stage game of self-enforcing international environmental agreements. 
Thereby, altruism implies that each country values, to some extent, every other country’s 
welfare when deciding on its coalition membership and emissions policy. In the Nash 
[Stackelberg] game with linear-quadratic emissions benefits and quadratic emissions dam-
ages, altruism weakly decreases [increases] the coalition size. However, the coalition never 
comprises more than six countries, and the corresponding global emissions and global wel-
fare are close to the non-cooperative values. Nevertheless, altruism reduces global emis-
sions and raises global welfare by narrowing the gap between the individually optimal val-
ues and the socially optimal values. Thus, altruism affecting the membership decision and 
the policy decision appears to be more of a substitute than a complement for large climate 
coalitions. Consequently, altruism may help explain why countries are willing to internal-
ize their climate externalities onto other countries, but are unwilling to conclude a large 
and effective climate agreement.

We find that these results crucially depend on the modelling of altruism: If altruism 
affects the membership decision but not the policy decision (van der Pol et al. 2012), coun-
tries stay in the coalition to avoid worse policy outcomes from smaller coalitions, which can 
stabilise large coalitions. If each coalition country is more altruistic toward other coalition 
countries than toward fringe countries (community altruism), coalition countries achieve 
greater moral welfare and become less ambitious in the fight against climate change, which 
reduces the free-rider incentives and can stabilise the grand coalition. Finally, altruism can 
stabilise small coalitions but destabilises large coalitions with linear climate damages and 
asymmetric countries.

Our analysis can be extended in several directions. For example, one could analyse the 
optimal strategic delegation of each country’s principal to a country’s agent with different 
altruistic preferences between the first and the second stage of the game (Spycher and Winkler 
2022). Furthermore, it may be interesting to replace the assumption of pure altruism with the 
assumption of paternalistic or impure altruism. In the first case, one could consider differ-
ent altruistic parameters for other countries’ consumption benefits and climate damages. In 
the second case, one could add warm-glow transfers between countries at a third stage of the 
game. Finally, the results at the first stage of the Nash game and the Stackelberg game depend 
on the functional forms of the benefit function and the damage function, such that it may be 
interesting to replace our linear-quadratic specification with, e.g., an isoelastic specification 
(Nkuiya 2020). These issues are beyond the scope of the present paper but may represent 
interesting and important tasks for future research.

Appendix

Business‑as‑Usual Scenario

The first-order condition of (1) reads

and the second-order condition reads

(A.1)B�

i
− D�

i
− �

∑

j∈N�i

D�

j
= 0,
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which is fulfilled. Differentiating (A.1) with respect to � yields

which is negative if D��

i
= 0 for all i ∈ N . Taking the sum over all i ∈ N and rearranging 

yields

Substituting into (A.3) yields

which is negative if D��

i
= 0 or Di = D for all i ∈ N . Finally, differentiating W with respect 

to � and using (A.1) yields

which is positive if D��

i
= 0 or Di = D for all i ∈ N.

Nash Game

Proof of Proposition 1

From (4), (5) and Θ ∶=
m

1+�(m−1)
 , the equilibrium is characterised by

(A.2)B��

i
− D��

i
− 𝛼

∑

j∈N�i

D��

j
< 0,

(A.3)

B��

i

dei

d�
− [D��

i
+ �

∑

j∈N�i

D��

j
]
de

d�
−

∑

j∈N�i

D�

j
= 0

⇔

dei

d�
= [D��

i
+ �

∑

j∈N�i

D��

j
]∕B��

i

de

d�
+

∑

j∈N�i

D�

j
∕B��

i
,

(A.4)

�

i∈N

dei

d𝛼
=

�

i∈N

[D��

i
+ 𝛼

�

j∈N�i

D��

j
]∕B��

i

de

d𝛼
+

�

i∈N

�

j∈N�i

D�

j
∕B��

i

⇔
de

d𝛼
=

∑
i∈N

∑
j∈N�i D

�

j
∕B��

i

1 −
∑

i∈N[D
��

i
+ 𝛼

∑
j∈N�i D

��

j
]∕B��

i

< 0.

(A.5)

dei

d�
= [D��

i
+ �

�

j∈N�i

D��

j
]∕B��

i

∑
i∈N

∑
j∈N�i D

�

j
∕B��

i

1 −
∑

i∈N[D
��

i
+ �

∑
j∈N�i D

��

j
]∕B��

i

+

�

j∈N�i

D�

j
∕B��

i

=

[D��

i
+ �

∑
j∈N�i D

��

j
]
∑

i∈N

∑
j∈N�i D

�

j
∕B��

i
−
∑

i∈N[D
��

i
+ �

∑
j∈N�i D

��

j
]∕B��

i

∑
j∈N�i D

�

j

B��

i
[1 −

∑
i∈N[D

��

i
+ �

∑
j∈N�i D

��

j
]∕B��

i
]

+

∑
j∈N�i D

�

j
∕B��

i

1 −
∑

i∈N[D
��

i
+ �

∑
j∈N�i D

��

j
]∕B��

i

,

(A.6)

�W

��
=

∑

i∈N

B�

i

dei

d�
−

∑

i∈N

D�

i

de

d�
=

∑

i∈N

[D�

i
+ �

∑

j∈N�i

D�

j
]
dei

d�
−

∑

i∈N

D�

i

de

d�

= −(1 − �)
∑

i∈N

D�

i
[
de

d�
−

dei

d�
],
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First differentiating (A.7), (A.8) and (A.9) with respect to Θ yields

Solving for de
dΘ

 , def
dΘ

 and dec
dΘ

 yields

Note that Θ = 1 ⟺ ef = ec = eBAU
i

 . Thus, Θ > 1 ⟹ ef > eBAU
i

> ec ∧ eBAU > e.
Second differentiating Vf  , Wf  , Vf − Vc and Wf −Wc with respect to Θ and using (4), (5), 

(A.13), (A.14) and (A.15) yields

(A.7)B�
(ef ) = [1 + �(n − 1)]D�,

(A.8)B�
(ec) = [1 + �(n − 1)]ΘD�,

(A.9)e = mec + (n − m)ef .

(A.10)B��
(ef )

def

dΘ
= [1 + �(n − 1)]D�� de

dΘ
,

(A.11)B��
(ec)

dec

dΘ
= [1 + �(n − 1)]

[
ΘD�� de

dΘ
+ D�

]
,

(A.12)de

dΘ
= m

dec

dΘ
+ (n − m)

def

dΘ
.

(A.13)
def

dΘ
=

m[1 + 𝛼(n − 1)]2D��D�

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + mΘB��(ef )]D

��
> 0,

(A.14)

dec

dΘ
= −

[1 + 𝛼(n − 1)]{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}D
�

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + mΘB��(ef )]D

��
< 0,

(A.15)
de

dΘ
=

m[1 + 𝛼(n − 1)]B��(ef )D
�

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + mΘB��(ef )]D

��
< 0.

(A.16)

dVf

dΘ
= [1 + �(n − m − 1)]B�

(ef )
def

dΘ
+ �mB�

(ec)
dec

dΘ
− [1 + �(n − 1)]D� de

dΘ

= [1 + �(n − 1)]D�

{
(1 − �)

def

dΘ
+ �

[
(n − m)

def

dΘ
+ mΘ

dec

dΘ

]
−

de

dΘ

}

=
�m[1 + �(n − 1)]2{(n − m)[1 + �(n − 1)]D�� − B��(ef )}(D

�)2

B��(ec)B
��(ef ) − [1 + �(n − 1)][(n − m)B��(ec) + mΘB��(ef )]D

��

{
m

1 + �(m − 1)

+
(1 − �){[1 − �(m − 1)(n − m − 1)][1 + �(n − 1)]D�� − B��(ef )}

�[1 + �(m − 1)]{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
− Θ

}
,

(A.17)
dWf

dΘ
= B�

(ef )
def

dΘ
− D� de

dΘ
> 0,
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(A.16) yields dVf

dΘ
> 0 for � ≤

1

(m−1)(n−m−1)

(
≥

4

(n−2)2

)
 and Θ ≤

m

1+�(m−1)
 , which implies 

Vf > VBAU
i

 for � ≤
4

(n−2)2
 . (A.17) implies Wf > WBAU

i
 . Finally, (A.18) implies Vf > Vc and 

Wf > Wc.
Third suppose e ≤ eSO . Then, the right-hand sides of (4) and (5) would be smaller than 

nD�(eSO) , such that the left-hand sides would have to be smaller than B�(eSO
i
) , implying 

ec, ef > eSO
i

 and contradicting e ≤ eSO . Thus, e > eSO . 	�  ◻

Proof of Lemma 1

Totally differentiating (4), (5) and e = mec + (n − m)ef  yields

Solving for def  , dec and de yields

where

First (A.22) [(A.24)] yields def
dm

> 0 and def
d𝛼

< 0 [ de
dm

< 0 and de
d𝛼

< 0].
Second differentiating Vf  and Wf  with respect to m and using (4), (5), (A.22), (A.23) and 

(A.24) yields

(A.18)
d(Vf − Vc)

dΘ
= (1 − 𝛼)

d(Wf −Wc)

dΘ
= (1 − 𝛼)

[
B�
(ef )

def

dΘ
− B�

(ec)
dec

dΘ

]
> 0.

(A.19)B��
(ef )def = [1 + �(n − 1)]D��de + (n − 1)D�d�,

(A.20)
B��

(ec)dec =
1 + �(n − 1)

1 + �(m − 1)
mD��de +

(1 − �)[1 + �(n − 1)]

[1 + �(m − 1)]2
D�dm

+
n − m

[1 + �(m − 1)]2
mD�d�,

(A.21)de = mdec + (n − m)def + (ec − ef )dm.

(A.22)

Λdef

= {(1 − �)[1 + �(n − 1)]mD�
− (ef − ec)[1 + �(m − 1)]2B��

(ec)}[1 + �(n − 1)]D��dm

− {m2
(m − 1)[1 + �(n − 1)]2D��

− (n − 1)[1 + �(m − 1)]2B��
(ec)}D

�d�,

(A.23)

Λdec

= −{(1 − �){[1 + �(n − 1)](n − m)D��
− B��

(ef )}D
�
+ (ef − ec)[1 + �(m − 1)]mD��

⋅ B��
(ef )}[1 + �(n − 1)]dm − m(n − m){[1 + �(n − 1)]2(m − 1)D��

+ B��
(ef )}D

�d�,

(A.24)

Λde

= {(1 − �)[1 + �(n − 1)]mD�
− (ef − ec)[1 + �(m − 1)]2B��

(ec)}B
��
(ef )dm

+ (n − m){[1 + �(m − 1)]2(n − 1)B��
(ec) + m2B��

(ef )}D
�d�,

Λ ∶= −[1 + 𝛼(m − 1)]{[1 + 𝛼(m − 1)]{(n − m)[1 + 𝛼(n − 1)]D��
− B��

(ef )}B
��
(ec)

+ m2
[1 + 𝛼(n − 1)]D��B��

(ef )} > 0.
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such that dVf

dm
> 0 for � ≤

1

(m−1)(n−m−1)

(
≥

4

(n−2)2

)
.

Third differentiating W with respect to � and using (4), (5) and (A.21) yields

Finally, differentiating (6) and (7) with respect to � yields

such that de
d𝛼

< 0 implies 
dR′

f

d𝛼
,
dR′

c

d𝛼
< 0 for D′′′ ≤ 0 and B��� = 0 . 	�  ◻

Proof of Proposition 2

(A.25)

dVf

dm
= [1 + �(n − 1)]D�

{
(1 − �)

def

dm
+ �

[
(n − m)

def

dm
+

m2

1 + �(m − 1)

dec

dm

]
−

de

dm

}

=
[1 + �(n − 1)]D�

[1 + �(m − 1)]Λ
{(1 − �)[1 + �(n − 1)]2{[1 − (m − 1)(n − m − 1)�][1 + �(n − 1)]D��

− B��
(ef )}mD

�
− (ef − ec)[1 + �(m − 1)]{[1 + �(n − m − 1)][1 + �(m − 1)]2[1 + �(n

− 1)]D��B��
(ec) − [1 + �(m − 1)]2B��

(ef )B
��
(ec) + �[1 + �(n − 1)]m3D��B��

(ef )}},

(A.26)
dWf

dm
= D�

{
[1 + 𝛼(n − 1)]

def

dm
−

de

dm

}
> 0,

(A.27)

dW

d𝛼
= D�

{
[1 + 𝛼(n − 1)]

[
(n − m)

def

d𝛼
+

m2

1 + 𝛼(m − 1)

dec

d𝛼

]
− n

de

d𝛼

}

= −
(1 − 𝛼)(n − m)

1 + 𝛼(m − 1)
D�

{
(m − 1)[1 + 𝛼(n − 1)]

def

d𝛼
+

de

d𝛼

}
> 0.

(A.28)

dR�

f

d�
=

(n − m)(n − 1)D��B��(ef )

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

+
(n − m)[1 + �(n − 1)]D���B��(ef )

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

de

d�

−
(n − m)[1 + �(n − 1)]D��B���(ef )

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

def

d�
,

(A.29)

dR�

c

d�
=

m2(n − m)D��B��(ec)

{m2[1 + �(n − 1)]D��(e) − [1 + �(m − 1)]B��(ec)}
2

+
m2[1 + �(n − 1)][1 + �(m − 1)]D���B��(ec)

{m2[1 + �(n − 1)]D��(e) − [1 + �(m − 1)]B��(ec)}
2

de

d�

−
m2[1 + �(n − 1)][1 + �(m − 1)]D��B���(ec)

{m2[1 + �(n − 1)]D��(e) − [1 + �(m − 1)]B��(ec)}
2

dec

d�
,

(A.30)a − bef = [1 + �(n − 1)]de,
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Solving for ef  , ec and e yields

where

Note that 𝜕[
𝜕2
]

ecΩ

1+𝛼(m−1)
m > 0 . For � = 0 , ecΩ

1+�(m−1)
 is minimal at m =

n+1

2
 , and then ecΩ

1+�(m−1)
 is 

non-negative if and only if d ≤ d̄ ∶=
4b

(n−1)2
 , which is thus an upper bound for d. Using this 

upper bound in (A.34) yields

For 𝛼 > 0 , ecΩ

1+�(m−1)
 is minimal at

and then ecΩ

1+�(m−1)
 is non-negative if and only if

Using (A.33), (A.34) and (A.35) yields

(A.31)a − bec =
1 + �(n − 1)

1 + �(m − 1)
mde,

(A.32)e = (n − m)ef + mec.

(A.33)ef =
1 + 𝛼(m − 1) + m(m − 1)(1 − 𝛼)[1 + 𝛼(n − 1)]

d

b

Ω

a

b
> 0,

(A.34)ec =
1 + �(m − 1) − (n − m)(m − 1)(1 − �)[1 + �(n − 1)]

d

b

Ω

a

b
,

(A.35)e =
1 + 𝛼(m − 1)

Ω

na

b
> 0,

Ω ∶= 1 + 𝛼(m − 1) + [1 + 𝛼(n − 1)]{[1 + 𝛼(m − 1)]n + (1 − 𝛼)m(m − 1)}
d

b
> 0.

e
c
=

a

4b2Ω

{{
𝛼(m − 1)[(n − 1)(n − m)(4𝛼 − 3) + (m + 3)(n − m) + (m − 1)

2
]

+(n + 1 − 2m)
2
}
d + (n − 1)

2
[1 + 𝛼(m − 1)](d̄ − d)

}
> 0 ⟸ d ≤ d̄ ∧ 𝛼 ≥ 3∕4.

m = 1 +

√
1 + �(n − 1) − 1

�
=

n + 1

2
−

�(n − 1)2∕2

2
√
1 + �(n − 1) + 2 + �(n − 1)

∈

�
1,

n + 1

2

�
,

d ≤
�2b

(1 − �){1 + �(n − 1) −
√
1 + �(n − 1)}2

.
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The internal stability condition reads

where

(A.36)

Vf = [1 + �(n − m − 1)]
[
aef −

b

2
e2
f
−

d

2
e2
]
+ �m

[
aec −

b

2
e2
c
−

d

2
e2
]

=
a2

2bΩ2
[1 + �(n − 1)]{[1 + �(m − 1)]2 − [1 + �(m − 1)]{[1 + �(m − 1)][n2 − 2m2

− 2n + 2m − 2�(n − 1)(n − m)] − 2�m2
(n − m)}

d

b
+ (1 − �)2[1 + �(n − 1)]m(m

− 1){m2
+ 2n − m − �(m − 1)(n2 − nm − 2n + m)}

(
d

b

)2

},

(A.37)

Vc = [1 + �(n − m)]
[
aef −

b

2
e2
f
−

d

2
e2
]
+ [1 + �(m − 1)]

[
aec −

b

2
e2
c
−

d

2
e2
]

= Vf −
a2

2bΩ2
n2(m − 1)(1 − �)2[1 + �(n − 1)]2[m + 1 + �(m − 1)]

(
d

b

)2

.

(A.38)Vc(m) − Vf (m − 1) =

a2n2(m − 1)(1 − �)2[1 + �(n − 1)]2
(

d

b

)2

2bΩ(m)2Ω(m − 1)2
Φ(m),

(A.39)

Φ(m) ∶= −[1 + 𝛼(m − 1)][m − 3 + 𝛼(m − 2)2] − [1 + 𝛼(n − 1)]{2[(n − m)(m − 1) + (m

− 3)3 + 6(m − 3)2 + 11(m − 3) + 4] + 2𝛼{(n − m)[2(m − 2)2 + 5(m − 2) + 1]

+ (m − 2)[(m − 2)3 + 4(m − 2)2 + 6(m − 2) + 2]} + 𝛼2
(m − 2)[2(n − m)(m2

+ m − 3) + (m − 1)(m − 2)] + 2𝛼3
(n − m)(m − 1)(m − 2)2}

d

b
− [1 + 𝛼(n − 1)]2

⋅ {[n(m + 1) + m(m − 1)2][n + m(m − 3)] + 𝛼{(n − m)2[2(m − 2)2 + 10(m − 2)

+ 3] + 2(n − m)[(m − 2)4 + 7(m − 2)3 + 16(m − 2)2 + 14(m − 2) + 2] + m2
(m

− 2)2} + 𝛼2
(n − m)(m − 2){(n − m)[(m − 2)2 + 9(m − 2) + 6] + 2(m − 2)3 + 8

⋅ (m − 2)2 + 12(m − 2) + 4} + 𝛼3
(n − m)(2n − 2m + 1)(m − 1)(m − 2)2}

(
d

b

)2

< 0 ⟸ m ≥ 3,
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such that all coalitions m ≥ 3 are internally unstable, which proves the first bullet of the 
proposition. Furthermore,

which proves the second bullet of the proposition. Finally,

where

such that m = 2 is internally stable if d
b
 , � and n are sufficiently small. Since all coalitions 

m ≥ 3 are internally unstable from (A.39), and the condition for m = 2 to be stable 

(A.40)
Φ(2)��=0 = 1 − 2(n − 4)

d

b
− (n − 2)(3n + 2)

�
d

b

�2

⋛ 0

⟺
d

b
⋚

2
√
n2 − 3n + 3 − n + 4

3n2 − 4n − 4
,

(A.41)

=
(n − 1)4

16b2

{
(n − 12)4 + 36(n − 12)3 + 438(n − 12)2 + 1860(n − 12) + 817

(n − 1)4
d2

+
2(n − 3)2 + 16

(n − 1)2
(d̄ − d)d + (d̄ − d)2

}
> 0 ⟸ n ≥ 12 ∧ d ≤ d̄,

(A.42)
= −

(n − 1)4

16b2

{
(

11−n

n−3

)4

+ 16
(

11−n

n−3

)3

+ 66
(

11−n

n−3

)2

+ 88
(

11−n

n−3

)
+ 5

32
(

n−1

n−3

)4
d2

−
2(n − 3)2 + 16

(n − 1)2
(d̄ − d)d − (d̄ − d)2

}
< 0 ⟸ n ≤ 11 ∧ d = d̄,

(A.43)

Φ(2)

1 + �
= 1 −

2[n − 4 + �(n − 2)]

(1 + �)∕[1 + �(n − 1)]

d

b
−

(n − 2)[3n + 2 + �(3n − 2)]

(1 + �)∕[1 + �(n − 1)]2

(
d

b

)2

,

(A.44)
𝜕

(
Φ(2)

1+𝛼

)

𝜕

(
d

b

) < 0 ⟸ n ≥ 4,

(A.45)

𝜕

(
Φ(2)

1+𝛼

)

𝜕𝛼
= −

2(n − 2)[(n + 1)(3n − 4) + (2 + 𝛼)𝛼(n − 1)(3n − 2)]

(1 + 𝛼)2∕[1 + 𝛼(n − 1)]

(
d

b

)2

−
2(n − 2)[n − 3 + (2 + 𝛼)𝛼(n − 1)]

(1 + 𝛼)2
d

b
< 0 ⟸ n ≥ 3,

(A.46)

𝜕

(
Φ(2)

1+𝛼

)

𝜕n
= −

2[3n − 2 + 6𝛼(n2 − n − 1) + 𝛼2(6n2 − 15n + 8)]

(1 + 𝛼)∕[1 + 𝛼(n − 1)]

(
d

b

)2

−
2[1 + 2𝛼(n − 2) + 𝛼2(2n − 3)]

(1 + 𝛼)

d

b
< 0 ⟸ n ≥ 2,
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becomes stricter as � increases from (A.45), the coalition size weakly decreases with � , 
which proves the third bullet of the proposition. 	�  ◻

Effects of Altruism on the Internal Stability Condition

From (11), the direct effect of altruism on the internal stability condition reads

which is positive if (m − 1)
dWc(m)

dm
+ (n − m)

dWf (m)

dm
> 0 . Using (4), (5) and (A.21) yields

such that 𝜕
[
Vc(m)−Vf (m−1)

]

𝜕𝛼
> 0 for m ∈ {2, n} . Using specification (9), it can be shown that 

𝜕
[
Vc(m)−Vf (m−1)

]

𝜕𝛼
> 0 for m ∈ [2, n] . The corresponding Maple file is available on request.

From (12), the indirect effects of altruism on the internal stability condition read

Using (4), (5) and (A.21) yields

and

(A.47)

�
[
Vc(m) − Vf (m − 1)

]

��

=
[
(m − 1)Wc(m) + (n − m)Wf (m)

]
−
[
(m − 1)Wc(m − 1) + (n − m)Wf (m − 1)

]
,

(A.48)

(m − 1)
dWc(m)

dm
+ (n − m)

dWf (m)

dm

= (m − 1)

[
B�
(ec)

dec

dm
− D� de

dm

]
+ (n − m)

[
B�
(ef )

def

dm
− D� de

dm

]

= D�

{
(m − 1)

[
1 + �(n − 1)

1 + �(m − 1)
m
dec

dm
−

de

dm

]
+ (n − m)

[
[1 + �(n − 1)]

def

dm
−

de

dm

]}

=

(m − 1)(ef − ec) + (n − m)
{
[2 − m + �(m − 1)]

def

dm
− [1 + �(n − 1)]−1

de

dm

}

[1 + �(n − 1)]−1[1 + �(m − 1)]∕D�
,

(A.49)(1 − �)
dWc(m)

d�
+ �

dW(m)

d�
−

[
(1 − �)

dWf (m − 1)

d�
+ �

dW(m − 1)

d�

]
.

(A.50)

(1 − 𝛼)
dWc(m)

d𝛼
+ 𝛼

dW(m)

d𝛼

= (1 − 𝛼)

[
B�
(ec(m))

dec(m)

d𝛼
− D�

de(m)

d𝛼

]

+ 𝛼

[
mB�

(ec(m))
dec(m)

d𝛼
+ (n − m)B�

(ef (m))
def (m)

d𝛼
− nD�

de(m)

d𝛼

]

= [1 + 𝛼(n − 1)]D�

[
m
dec(m)

d𝛼
+ 𝛼(n − m)

def (m)

d𝛼
−

de(m)

d𝛼

]

= −(1 − 𝛼)[1 + 𝛼(n − 1)](n − m)D�
def (m)

d𝛼
> 0



2343Self‑Enforcing International Environmental Agreements and…

1 3

such that (1 − 𝛼)
dWc(m)

d𝛼
+ 𝛼

dW(m)

d𝛼
> 0 and (1 − 𝛼)

dWf (2−1)

d𝛼
+ 𝛼

dW(2−1)

d𝛼
= [1 + 𝛼(n − 1)]

dWBAU
i

d𝛼
> 0 

from Appendix  A.1. Using specification (9), it can be shown that 
(1 − 𝛼)

dWf (m−1)

d𝛼
+ 𝛼

dW(m−1)

d𝛼
> 0 for m ∈ [2, n − 2] . The corresponding Maple file is avail-

able on request.

Proof of Proposition 3

Without altruistic preferences at the second stage of the game, the emissions for a given 
coalition size are given by substituting � = 0 into (A.33), (A.34) and (A.35), and the 
material welfare levels for a given coalition size are given by substituting � = 0 into 
(A.36) and (A.37). Using these results, the internal stability condition reads

where

where Ni ∶= n − i and Mi ∶= m − i . From (A.39) and (A.53), Φ(m)|�=0 = �(m)|�=0 , and 
from the proof of Proposition 2, Φ(2)|𝛼=0 > 0 for n ≥ 12 , which proves the second bullet of 

(A.51)

(1 − �)
dW

f
(m − 1)

d�
+ �

dW(m − 1)

d�

= (1 − �)

[
B
�
(e

f
(m − 1))

de
f
(m − 1)

d�
− D

�
de(m − 1)

d�

]

+ �

[
(m − 1)B�

(e
c
(m − 1))

de
c
(m − 1)

d�
+ (n − m + 1)B�

(e
f
(m − 1))

de
f
(m − 1)

d�
− nD

�
de(m − 1)

d�

]

= [1 + �(n − 1)]D�

{
[1 + �(n − m)]

de
f
(m − 1)

d�
+

�(m − 1)2

1 + �(m − 2)

de
c
(m − 1)

d�
−

de(m − 1)

d�

}

= −
(1 − �)[1 + �(n − 1)]D�

1 + �(m − 2)

{
[�(m − 2)(n − m) − 1]

de
f
(m − 1)

d�
+

de(m − 1)

d�

}
,

(A.52)

Vc(m) − Vf (m − 1) = (1 − �)Wc(m) + �W(m) −
[
(1 − �)Wf (m − 1) + �W(m − 1)

]

=

(1 + 2�)n2(m − 1)
a2

2b

(
d

b

)2

[
1 + (m2 + n − 3m + 2)

d

b

]2[
1 + (m2 + n − m)

d

b

]2�(m),

(A.53)

�(m) ∶=
�

1 + 2�

{
4N3 + 3 + 2[2N2

3
+ N3(2M

2
2
+ 4M2 + 13) + 2M3

2
+ 9M2

2
+ 7M2 + 9]

d

b

+ [7N2
3
+ N3[4M

3
2
+ 22M2

2
+ 22M2 + 34] + 4M5

2
+ 23M4

2
+ 54M3

2
+ 85M2

2

+ 50M2 + 27]
(
d

b

)2
}

−

{
m − 3 + 2[(n − m)(m − 1) + (m − 3)(m2

+ 2) + 4]
d

b

+ [n − m + m(m − 2)][(n − m)(m + 1) + m(m2
− m + 2)]

(
d

b

)2
}
,
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the proposition. From (A.53), �(m) increases with �

1+2�
 and, thus, with � , which proves the 

third bullet of the proposition. Furthermore,

which proves the third bullet of the proposition. Furthermore,

where Ψ > 0 for n ≥ 4 and m ≥ 3 . The corresponding Maple file is available on request. 
�(m) ≤ 0 for some m ≥ 3 implies 𝜕𝜑(m)

𝜕m
< 0 and, thus, 𝜑(m̄) < 0 for all m̄ ≥ m . Further-

more, �(m) ≥ 0 ⟺ Vc(m) − Vf (m − 1) ≥ 0 ⟺ Vf (m − 1) − Vc(m) ≤ 0 . Thus, an inter-
nally stable coalition m implies an externally unstable coalition m − 1 . Consequently, there 
is at most one internally and externally stable coalition, which proves the first bullet of the 
proposition. Finally, note that

(A.54)

𝜑(n) =
(n − 1)4

16b2

{
50N5

2
+ 305N4

2
+ 720N3

2
+ 790N2

2
+ 358N2 + 17

(1 + 2𝛼)(n − 1)4

⋅

[
𝛼 −

4

7
+

N3(5N
2
3
+ 24N3 + 8)

7(10N3
3
+ 55N2

3
+ 100N3 + 56)

]
d2

+
2(10N3

2
+ 33N2

2
+ 36N2 + 9)

(1 + 2𝛼)(n − 1)2

⋅

[
𝛼 −

4

7
+

5n3 + 11n2 − 9n + 33

7(10N3
2
+ 33N2

2
+ 36N2 + 9)

]
(d̄ − d)d

+
2N2 + 1

1 + 2𝛼

[
𝛼 −

4

7
+

n + 9

7(2N2 + 1)

]
(d̄ − d)2

}
> 0 ⟸ 𝛼 ≥

4

7
∧ d ≤ d̄,

(A.55)

= −
n2(n − 2)(2n2 − 3n + 2)

1 + 2𝛼

[
3

7
− 𝛼 +

n2 + 2n + 8

7(2n2 − 3n + 2)

](
d

b

)2

−
2(2N3

2
+ 7N2

2
+ 8N2 + 2)

1 + 2𝛼

[
3

7
− 𝛼 +

N3
6
+ 12N2

6
+ 38N6 + 4

7(2N3
2
+ 7N2

2
+ 8N2 + 2)

]
d

b

−
2N2 + 1

1 + 2𝛼

[
3

7
− 𝛼 +

N12

7(2N2 + 1)

]
< 0 ⟸ 𝛼 ≤

3

7
∧ n ≥ 12,

(A.56)

��(m)

�m
=

{
1 + 2(n − m + 3m

2
− 7m + 3)

d

b
+ [(n − m)

2
+ (6m

2
− 6m − 2)(n − m) + 5m

4

− 14m
3
+ 14m

2
− 8m]

(
d

b

)2
}/{

m − 3 + 2[(m − 1)(n − m) + (m − 3)(m
2
+ 2)

+ 4]
d

b
+ [n − m + m(m − 2)][(m + 1)(n − m) + m(m

2
− m + 2)]

(
d

b

)2
}
�(m) − Ψ,

(A.57)W =
{b2 − b[n(n − 2) − 2m(m − 1)]d − m(m − 1)2(n − m)d2}na2

2b[b + (m2 + n − m)d]2
,



2345Self‑Enforcing International Environmental Agreements and…

1 3

such that [1 + 𝛼(n − 1)]
𝜕W

𝜕m
=

𝜕V

𝜕m
> 0 . 	�  ◻

Stackelberg Game

Derivation of (13)

The first-order condition of (3) reads

Substituting (4) and rearranging yields (13). The second-order condition of (3) reads

which is fulfilled if D′′′ ≤ 0,B′′′ ≥ 0.

Proof of Proposition 4

From (4), (6) and (13), the equilibrium is characterised by

First differentiating (A.61), (A.62) and (A.63) with respect to � yields

(A.58)

𝜕W

𝜕m
=

[(4m − 2)(n − m) + (m − 1)2]n2ad2

2[b + (m2 + n − m)d]2
ec +

(m − 1)4n2(n − 2)a2d3

2(n − 1)2b[b + (m2 + n − m)d]3

⋅
[
2
(
n − m

m − 1

)3

+ (4n − 1)
(
n − m

m − 1

)2

+ (n − 1)
(
n − m

m − 1

)
+

n2

n − 2

]
> 0,

(A.59)

[1 + �(m − 1)]

{
B
�
(e

c
) −

m[1 + �(n − 1)]

1 + �(m − 1)
D

�

[
1 +

d(n − m)e
f

de
c

]
+

�m(n − m)

1 + �(m − 1)
B
�
(e

f
)
de

f

de
c

}
= 0.

(A.60)

[1 + 𝛼(m − 1)]

{
B
��
(e

c
) −

m[1 + 𝛼(n − 1)]

1 + 𝛼(m − 1)
D

��

[
1 +

d(n − m)e
f

de
c

]2
+

𝛼m(n − m)

1 + 𝛼(m − 1)
B
��
(e

f
)

(
de

f

de
c

)2

−
m

1 + 𝛼(m − 1)
{[1 + 𝛼(n − 1)]D�

− 𝛼B�
(e

f
)}

(n − m)[1 + 𝛼(n − 1)]

{(n − m)[1 + 𝛼(n − 1)]D�� − B��(e
f
)}2

⋅
[
B
��
(e

f
)D

���

[
1 +

d(n − m)e
f

de
c

]
− D

��
B
���
(e

f
)
de

f

de
c

]}
< 0,

(A.61)B�
(ef ) = [1 + �(n − 1)]D�,

(A.62)B�
(ec) = [1 + �(n − 1)]�D�,

(A.63)e = mec + (n − m)ef .

(A.64)B��
(ef )

def

d�
= [1 + �(n − 1)]D�� de

d�
,

(A.65)B��
(ec)

dec

d�
= [1 + �(n − 1)]

[
�D�� de

d�
+ D�

]
,
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Solving for de
d�

 , def
d�

 and dec
d�

 yields

Note that � = 1 ⟺ ef = ec = eBAU
i

 . Thus, � ⋛ 1 ⟺ ef ⋛ eBAU
i

⋛ ec ∧ eBAU ⋛ e.
Second differentiating Vi and Wi with respect to � and using (4), (6), (13), (A.67), (A.68) 

and (A.69) yields

(A.66)de

d�
= m

dec

d�
+ (n − m)

def

d�
.

(A.67)
def

d𝜃
=

m[1 + 𝛼(n − 1)]2D��D�

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + m𝜃B��(ef )]D

��
> 0,

(A.68)
dec

d𝜃
= −

[1 + 𝛼(n − 1)]{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}D
�

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + m𝜃B��(ef )]D

��
< 0,

(A.69)
de

d𝜃
=

m[1 + 𝛼(n − 1)]B��(ef )D
�

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + m𝜃B��(ef )]D

��
< 0.

(A.70)

dVf

d�
= [1 + �(n − m − 1)]B�

(ef )
def

d�
+ �mB�

(ec)
dec

d�
− [1 + �(n − 1)]D� de

d�

= [1 + �(n − 1)]D�

{
(1 − �)

def

d�
+ �

[
(n − m)

def

d�
+ m�

dec

d�

]
−

de

d�

}

=
�m[1 + �(n − 1)]2{(n − m)[1 + �(n − 1)]D�� − B��(ef )}(D

�)2

B��(ec)B
��(ef ) − [1 + �(n − 1)][(n − m)B��(ec) + m�B��(ef )]D

��

⋅
{

(1 − �){[1 + �(n − 1)]D�� − B��(ef )}

�{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
+ 1 − �

}

(A.71)

=
𝛼m[1 + 𝛼(n − 1)]2{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}(D

�)2

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + m𝜃B��(ef )]D

��

⋅

{
(1 − 𝛼){[1 + 𝛼(n − 1)]2D�� − B��(ef )}

𝛼[1 + 𝛼(m − 1)]{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}
+ 𝜃 − 𝜃

}
,

(A.72)

dVc

d𝜃
= 𝛼(n − m)B�

(ef )
def

d𝜃
+ [1 + 𝛼(m − 1)]B�

(ec)
dec

d𝜃
− [1 + 𝛼(n − 1)]D� de

d𝜃

= [1 + 𝛼(n − 1)]D�

{
(1 − 𝛼)𝜃

dec

d𝜃
+ 𝛼

[
(n − m)

def

d𝜃
+ m𝜃

dec

d𝜃

]
−

de

d𝜃

}

=
[1 + 𝛼(m − 1)][1 + 𝛼(n − 1)]2{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}(D

�)2(𝜃 − 𝜃)

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + m𝜃B��(ef )]D

��
,
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(A.70) [(A.73)] yields dVf

d𝜃
> 0 

[
dV

d𝜃
> 0 and dW

d𝜃
> 0

]
 for � ≤ 1 , which implies Vf < VBAU

i
 

[ V < VBAU and W < WBAU ] for 𝜃 < 1 . (A.71) [(A.74)] yields dVf

d𝜃
> 0 

[
dV

d𝜃
> 0 and dW

d𝜃
> 0

]
 

for 𝜃 ≤ 𝜃 , which implies Vf > VBAU
i

 [ V > VBAU and W > WBAU ] for 𝜃 > 1 . (A.72) yields 
dVc

d�
⋛ 0 for 𝜃 ⋚ 𝜃 , which implies Vc > VBAU

i
 for 𝜃 ≠ 1 . (A.75) implies Wf ⋛ WBAU

i
 for 𝜃 ⋛ 1 . 

(A.76) yields dWc

d𝜃
< 0 for 𝜃 ≥ 𝜃 , which implies Wc > WBAU

i
 for 𝜃 < 1 . Finally, (A.77) 

implies Vf ⋛ Vc and Wf ⋛ Wc for 𝜃 ⋛ 1.
Third suppose e ≤ eSO . Then, the right-hand sides of (4) and (13) would be smaller 

than nD�(eSO) , such that the left-hand sides would have to be smaller than B�(eSO
i
) , 

implying ec, ef < eSO
i

 and contradicting e ≤ eSO . Thus, e > eSO . 	�  ◻

(A.73)

dV

d�
= [1 + �(n − 1)]

dW

d�
= [1 + �(n − 1)]

{
(n − m)B

�
(e

f
)
de

f

d�
+ mB

�
(e

c
)
de

c

d�
− nD

� de

d�

}

= [1 + �(n − 1)]D�

{
[1 + �(n − 1)]

[
(n − m)

de
f

d�
+ m�

de
c

d�

]
− n

de

d�

}

=
m[1 + �(n − 1)]3{(n − m)[1 + �(n − 1)]D�� − B

��(e
f
)}(D�)2

B��(e
c
)B��(e

f
) − [1 + �(n − 1)][(n − m)B��(e

c
) + m�B��(e

f
)]D��

⋅
{
−

(1 − �)(n − 1)B��(e
f
)

[1 + �(n − 1)]{(n − m)[1 + �(n − 1)]D�� − B��(e
f
)}

+ 1 − �

}

(A.74)

=
m[1 + 𝛼(n − 1)]3{(n − m)[1 + 𝛼(n − 1)]D�� − B

��(e
f
)}(D�)2

B��(e
c
)B��(e

f
) − [1 + 𝛼(n − 1)][(n − m)B��(e

c
) + m𝜃B��(e

f
)]D��

⋅

{
(1 − 𝛼)(n − m){[1 + 𝛼(n − 1)]2D�� − B

��(e
f
)}

[1 + 𝛼(m − 1)][1 + 𝛼(n − 1)]{(n − m)[1 + 𝛼(n − 1)]D�� − B��(e
f
)}

+ 𝜃 − 𝜃

}
,

(A.75)
dWf

d𝜃
= B�

(ef )
def

d𝜃
− D� de

d𝜃
> 0,

(A.76)

dWc

d𝜃
= B�

(ec)
dec

d𝜃
− D� de

d𝜃
= D�

{
[1 + 𝛼(n − 1)]𝜃

dec

d𝜃
−

de

d𝜃

}

= −
[1 + 𝛼(n − 1)]2{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}(D

�)2

B��(ec)B
��(ef ) − [1 + 𝛼(n − 1)][(n − m)B��(ec) + m𝜃B��(ef )]D

��

⋅

{
𝛼m(n − m){(n − m)[1 + 𝛼(n − 1)]2D�� − B��(ef )}

[1 + 𝛼(m − 1)][1 + 𝛼(n − 1)]{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}
+ 𝜃 − 𝜃

}
,

(A.77)
d(Vf − Vc)

d𝜃
= (1 − 𝛼)

d(Wf −Wc)

d𝜃
= (1 − 𝛼)

[
B�
(ef )

def

d𝜃
− B�

(ec)
dec

d𝜃

]
> 0.
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Proof of Proposition 5

Totally differentiating (4), (13) and e = mec + (n − m)ef  yields

where

Solving for def  , dec and de yields

where

(A.78)B��
(ef )def = [1 + �(n − 1)]D��de + (n − 1)D�d�,

(A.79)B��
(ec)dec = �ede − �ef def + �mdm + ��d�,

(A.80)de = mdec + (n − m)def + (ec − ef )dm,

𝜆e ∶=
1 + 𝛼(n − 1)

1 + 𝛼(m − 1)
mD��

𝛼(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )

(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )

+
1 + 𝛼(n − 1)

1 + 𝛼(m − 1)
mD�

(1 − 𝛼)(n − m)[1 + 𝛼(n − 1)]B��(ef )

[(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )]
2
D��� > 0 ⟸ D��� ≤ 0,

𝜆ef ∶=
1 + 𝛼(n − 1)

1 + 𝛼(m − 1)
mD�

(1 − 𝛼)(n − m)[1 + 𝛼(n − 1)]D��

[(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )]
2
B���

(ef ) ⋛ 0 ⟺ B��� ⋛ 0,

𝜆m ∶=
1 + 𝛼(n − 1)

[1 + 𝛼(m − 1)]2
D� 1 − 𝛼

[(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )]
2
{𝛼(n − m)2[1 + 𝛼(n − 1)]2

⋅ [D��
]
2
− [n + 𝛼(m2

+ n − 2m)][1 + 𝛼(n − 1)]D��B��
(ef ) + [B��

(ef )]
2
]} > 0,

𝜆𝛼 ∶=
n − m

[1 + 𝛼(m − 1)]2
mD� 1

[(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )]
2
{[1 + 𝛼(n − 1)][1 + 𝛼(m

− 1)][1 + 2𝛼(n − 1) + 𝛼2
(n − 1)(m − 1)][(n − m)[1 + 𝛼(n − 1)]D��

− B��
(ef )]D

��
(1

− 𝜃)∕(1 − 𝛼) + [1 + 𝛼(n − 1)][1 + 𝛼(n − 1)(m2
− 1) + 𝛼(n − 1)(m + 2)]D��B��

(ef )

+ [B��
(ef )]

2
} > 0 ⟸ 𝜃 ≤ 1.

(A.81)

�def

= [1 + �(n − 1)]D��
[m�m − (ef − ec)B

��
(ec)]dm

− {(n − 1)[m�e − B��
(ec)]D

�
− m[1 + �(n − 1)]D����}d�,

(A.82)

�dec

= −{[1 + �(n − 1)]D��
[(n − m)�m + (ec − ef )�ef ] − B��

(ef )[�m + (ec − ef )�e]}dm

+ {(n − 1)[(n − m)�e − �ef ]D
�
− {(n − m)[1 + �(n − 1)]D��

− B��
(ef )}��}d�,

(A.83)

�de

= B��
(ef )[m�m − (ef − ec)B

��
(ec)]dm

− {(n − 1)[m�ef − (n − m)B��
(ec)]D

�
− mB��

(ef )��}d�,
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First differentiating (14) with respect to m and using (A.81) and (A.83) yields

such that ec ≥ ef ⟺ 𝜃 ≤ 1 ⟹
d𝜃

dm
> 0 if D′′′ ≤ 0,B′′′ ≥ 0 . 𝜃 ≤ 1 ⟹

d𝜃

dm
> 0 

implies that 𝜃(m) ≥ 1 ⟹ 𝜃(m̄) > 1 for m̄ > m . Thus, (14) implicitly defines m̃ with 
m ⋚ m̃ ⟺ 𝜃 ⋚ 1 if D′′′ ≤ 0,B′′′ ≥ 0 . Using 𝜃 = 1 in (14) and solving for m yields (15).

Second differentiating (15) with respect to � yields

where de
BAU

d𝛼
=

dneBAU
i

d𝛼
< 0 from Appendix A.1. Thus, dm̃

d𝛼
> 0 if D′′′ ≤ 0,B′′′ ≤ 0 . 	�  ◻

Proof of Lemma 2

First (A.81) [(A.83)] yields def
dm

> 0 [ de
dm

< 0 ] for ef ≥ ec ⟺ m ≥ m̃ , and (A.82) yields 
dec

dm
< 0 for ec ≥ ef ⟺ m ≤ m̃ if D′′′ ≤ 0,B′′′ ≥ 0 . Furthermore, using (14) in (A.81) 

yields

𝜆 ∶= [1 + 𝛼(n − 1)]D��
[m𝜆ef − (n − m)B��

(ec)] − [m𝜆e − B��
(ec)]B

��
(ef ) > 0

⟸ D��� ≤ 0,B��� ≥ 0.

(A.84)

d𝜃

dm
= −

1

[1 + 𝛼(n − 1)][1 + 𝛼(m − 1)]𝜆{(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )}
2D�

⋅ {(n − m)𝜆m{(n − m)[1 + 𝛼(n − 1)]D��
− B��

(ef )}{[1 + 𝛼(m − 1)]{(n − m)[1 + 𝛼

⋅ (n − 1)]D��
− B��

(ef )}
2B��

(ec) + m2
[1 + 𝛼(n − 1)]{𝛼(n − m)[1 + 𝛼(n − 1)]D��

− B��
(ef )}D

��B��
(ef )} − (ec − ef )(1 − 𝛼)m(n − m)[1 + 𝛼(n − 1)]2B��

(ec){[B
��
(ef )]

2

⋅ D���
− [1 + 𝛼(n − 1)][D��

]
2B���

(ef )}D
�
},

(A.85)

dm̃

d𝛼
= −

(n − 1)2D��(eBAU)B��(eBAU
i

)

{[1 + 𝛼(n − 1)]D��(eBAU) − B��(eBAU
i

)}2

−
(n − 1)[1 + 𝛼(n − 1)]B��(eBAU

i
)D���(eBAU)

{[1 + 𝛼(n − 1)]D��(eBAU) − B��(eBAU
i

)}2

deBAU

d𝛼

+
(n − 1)[1 + 𝛼(n − 1)]D��(eBAU)B���(eBAU

i
)

{[1 + 𝛼(n − 1)]D��(eBAU) − B��(eBAU
i

)}2

deBAU
i

d𝛼
,

− (n − 1)m𝜆e|D���=0D
�
+ m[1 + 𝛼(n − 1)]D��𝜆𝛼

= −
m2[1 + 𝛼(n − 1)]D�D��

(1 − 𝛼)2(m − 1)[1 + 𝛼(m − 1)][(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )]
2
{(1 − 𝛼)3(n − 1)

⋅ [1 + 𝛼(n − 1)](n − m)2[D��
]
2
+ (1 − 𝛼)[(1 − 𝛼)2(n + m − 1) + 2𝛼(1 − 𝛼)nm + 𝛼2nm]

⋅ (n − m)D��
[(n − m)[1 + 𝛼(n − 1)]D��

− B��
(ef )](𝜃 − 1) + [1 + 𝛼(m − 1)][(n − m)[1

+ 𝛼(n − 1)]D��
− B��

(ef )]
2
(𝜃 − 1)2} < 0 ⟸ 𝜃 ≥ 1,
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such that def
d𝛼

< 0 for ef ≥ ec ⟺ m ≥ m̃ , and (A.83) yields de
d𝛼

< 0 for ec ≥ ef ⟺ m ≤ m̃ if 
D′′′ ≤ 0,B′′′ ≥ 0.

Second differentiating Vi and Wi with respect to m and using (4), (6), (13) and (A.81)-
(A.83) yields

such that dVf

dm
> 0 for ef ≥ ec ⟺ m ≥ m̃ , and dVc

dm
⋛ 0 for ef ⋛ ec ⟺ m ⋛ m̃ if 

D′′′ ≤ 0,B′′′ ≥ 0 . Furthermore, def
dm

> 0 and de
dm

< 0 implies dWf

dm
> 0 for m ≥ m̃ , and ec ≥ ef  

implies dWc

dm
< 0 for m ≤ m̃.

Third differentiating W with respect to � and using (4), (6), (13), (A.81), (A.82) and 
(A.83) yields

(A.86)

dVf

dm
= [1 + �(n − 1)]D�

{
(1 − �)

def

dm
+ �

[
(n − m)

def

dm
+ m�

dec

dm

]
−

de

dm

}

=
[1 + �(n − 1)]D�

[1 + �(m − 1)]�{(n − m)[1 + �(n − 1)]D�� − B��(ef )}

⋅ {(1 − �)m{[1 + �(n − 1)]2D��
− B��

(ef )}{(n − m)[1 + �(n − 1)]D��
− B��

(ef )}�m

+ (ef − ec){�m
2
{�(n − m)[1 + �(n − 1)]D��

− B��
(ef )}{[1 + �(n − 1)]D���ef − B��

(ef )

⋅ �e}B
��
(ef )} − [1 + �(m − 1)]{[1 + �(n − m − 1)][1 + �(n − 1)]D��

− B��
(ef )}{(n

− m)[1 + �(n − 1)]D��
− B��

(ef )}B
��
(ec)},

(A.87)

dVc

dm
= [1 + �(n − 1)]D�

{
(1 − �)�

dec

dm
+ �

[
(n − m)

def

dm
+ m�

dec

dm

]
−

de

dm

}

=
(ef − ec)[1 + �(n − 1)]D�{�(n − m)[1 + �(n − 1)]D�� − B��(ef )}

�{(n − m)[1 + �(n − 1)]D�� − B��(ef )}

⋅ {m{[1 + �(n − 1)]D���ef − B��
(ef )�e} − {(n − m)[1 + �(n − 1)]D��

− B��
(ef )}B

��
(ec)},

(A.88)
dWf

dm
= D�

{
[1 + �(n − 1)]

def

dm
−

de

dm

}
,

(A.89)

dWc

dm
= D�

{
[1 + �(n − 1)]�

dec

dm
−

de

dm

}

= −
D�

[1 + �(m − 1)]�
{�m(n − m){[1 + �(n − 1)]2D��

− B��
(ef )}�m + (ec − ef )[1 + �(m

− 1)]{[1 + �(n − 1)]�{[1 + �(n − 1)]D���ef − B��
(ef )�e} + B��

(ef )B
��
(ec)}},
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where 𝜓 ∶=
(𝜃−1){(n−m)[1+𝛼(n−1)]D��−B��(ef )}

(1−𝛼)[1+𝛼(n−1)]D��
 , such that dW

d𝛼
> 0 for ef ≥ ec ⟺ m ≥ m̃ if 

D′′′ ≤ 0,B′′′ ≥ 0.
Furthermore, differentiating (6) with respect to � and using (A.83) yields

which is negative if D′′′ ≤ 0 and B��� = 0 . Finally, using D��� = 0 and B��� = 0 yields

(A.90)

dW

d𝛼
= (n − m)

def

d𝛼
+ mB�

(ec)
dec

d𝛼
− nD� de

d𝛼

= D�

{
(n − m)[1 + 𝛼(n − 1)]

def

d𝛼
+ m[1 + 𝛼(n − 1)]𝜃

dec

d𝛼
− n

de

d𝛼

}

=
(n − 1)(D�)2

𝜆

{
(𝜃 − 1)m2(n − m)2(1 − 𝛼)[1 + 𝛼(n − 1)]3B��(ef )D

�D���

[1 + 𝛼(m − 1)][(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )]
2

− (1 − 𝛼)(n − 1)(n − m)B��
(ec) + m{n − [1 + 𝛼(n − 1)]𝜃}𝜆ef

+
m2(n − m)(1 − 𝛼)[1 + 𝛼(n − 1)]3(D��)3

(n − 1)(m − 1)3[1 + 𝛼(m − 1)][(n − m)[1 + 𝛼(n − 1)]D�� − B��(ef )]
2

⋅ {(n − 1)2(n − m)2[1 + 𝛼(m2
− 1)] + (n − 1)(n − m)[1 + 𝛼(m − 1)][3n − 2m − 1 + 𝛼

⋅ (n − 1)(m2
− 1)]𝜓 + {3(n − m)2 + 2(m − 1)(n − m) + (m − 1)3 + 𝛼(n − 1)(m − 1)

⋅ [(m2
− 1)(n − m)𝛼 + (m − 1)3𝛼 + 4(n − m) + 2(m − 1)2]}𝜓2

+ (n − m)[1 + 𝛼(m

− 1)]𝜓3
}

}
> 0 ⟸ 𝜃 ≥ 1,D��� ≤ 0,B��� ≥ 0,

(A.91)

dR�

f

d�
=

(n − m)(n − 1)D��B��(ef )

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

+
(n − m)[1 + �(n − 1)]D���B��(ef )

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

de

d�

−
(n − m)[1 + �(n − 1)]D��B���(ef )

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

def

d�

=
(n − m)B��(ef )

�{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2
{m(n − 1)[1 + �(n − 1)][(D��

)
2
− D�D���

]

⋅ [�ef − (n − m)B��
(ec)] − (n − 1)D��B��

(ef )[m�e|D���=0 − B��
(ec)] + m2

(n − m)

⋅ [1 + �(n − 1)]D�D���B��
(ef ){[1 + 2�(n − 1) + �2

(m − 1)(n − 1)][1 + �(n − 1)]D��

− B��
(ef )}∕{[1 + �(m − 1)]2[(n − m)[1 + �(n − 1)]D��

− B��
(ef )]}}

−
(n − m)[1 + �(n − 1)]D��B���(ef )

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

def

d�
,
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such that (1 − �)R�

f
 increases with � for � ≥ 0.5

n−2

n−1
 , D��� = 0 and B��� = 0 (sufficient), and 

(1 − �)R�

f
 is greater than R�

f
|�=0 for � ≥

n−2

n−1
 , D��� = 0 and B��� = 0 (sufficient). 	�  ◻

Prove of Proposition 6

The equilibrium is defined by

Solving for ef  , ec and e yields

(A.92)

d(1 − �)R�

f

d�

=
(n − m)D��{(n − m)[1 + �(n − 1)]2D�� + [n − 2 − 2�(n − 1)]B��(ef )}

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}
2

,

(A.93)

(1 − �)R�

f
− R�

f
|�=0

=
�(n − m)D��{(n − m)[1 + �(n − 1)]D�� + [n − 2 − �(n − 1)]B��(ef )}

{(n − m)[1 + �(n − 1)]D�� − B��(ef )}{(n − m)D�� − B��(ef )}
,

(A.94)a − bef = [1 + �(n − 1)]de,

(A.95)a − bec =
1 + �(n − 1)

1 + �(m − 1)
mde

[
1 − (1 − �)

(n − m)[1 + �(n − 1)]d

(n − m)[1 + �(n − 1)]d − b

]
,

(A.96)e = (n − m)ef + mec.

(A.97)

ef =
a

b�

{
1 + �(m − 1) + [1 + �(n − 1)]{(n − m)[1 + �(m − 1)] + (1 − �)m(m − 1)}

d

b

− m(n − m)(1 − �)[1 + �(n − 1)]2
(
d

b

)2
}
,

(A.98)
ec =

a

b𝜔

{
1 + 𝛼(m − 1) − [1 + 𝛼(n − 1)](n − m){m − 2 − 2𝛼(m − 1)}

d

b

+ (n − m)2(1 − 𝛼)[1 + 𝛼(n − 1)]2
(
d

b

)2
}

> 0 ⟸ 𝛼 ≥
1

2
,
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where

Note that 𝜕[
𝜕2
]

ec𝜔

1+𝛼(m−1)
m > 0 for � ≤

1

2
 . For � = 0 , ec�

1+�(m−1)
 is minimal at m =

n+2

2
+

n−2

2

d

b+d
 , 

and then ec�

1+�(m−1)
 is non-negative if and only if d ≤ ̄̃d ∶=

4b

n(n−4)
 , which is thus an upper 

bound for d. It can be shown that ef�

1+�(m−1)
 is positive for m ∈ [2, n] and � ∈ [0, 1] if d ≤ ̄̃d 

and n ≥ 6 . The corresponding Maple file is available on request.
Using (A.97), (A.98) and (A.99) yields

where m̃ =
1+n[1+𝛼(n−1)]d∕b

1+[1+𝛼(n−1)]d∕b
.

The internal stability condition reads

where

(A.99)e =
a

b𝜔
n[1 + 𝛼(m − 1)]

{
1 + (n − m)[1 + 𝛼(n − 1)]

d

b

}
> 0,

𝜔 ∶= 1 + 𝛼(m − 1) + [1 + 𝛼(n − 1)]{2(n − m)[1 + 𝛼(m − 1)] + m2
}
d

b

+ (n − m)[1 + 𝛼(n − 1)]2{[1 + 𝛼(m − 1)](n − m) + 𝛼m2
}

(
d

b

)2

> 0.

(A.100)

Vf = [1 + 𝛼(n − m − 1)]
[
aef −

b

2
e2
f
−

d

2
e2
]
+ 𝛼m

[
aec −

b

2
e2
c
−

d

2
e2
]

= Vc +
a2

2b𝜔2
n2(m − m̃)(1 − 𝛼)2[1 + 𝛼(n − 1)]2

{
1 + [1 + 𝛼(n − 1)]

d

b

}{
m + 1

+ 𝛼(m − 1) + (n − m)[1 + 𝛼(n − 1)][1 + 𝛼(2m − 1)]
d

b

}(
d

b

)2

,

(A.101)

Vc = [1 + �(n − m)]
[
aef −

b

2
e2
f
−

d

2
e2
]
+ [1 + �(m − 1)]

[
aec −

b

2
e2
c
−

d

2
e2
]

=
a2

2b�
[1 + �(n − 1)]

{
1 + �(m − 1) − (n − m){n + m − 2 − 2�2

(n − 1)(m − 1)

+ �(nm − 3n − 3m + 4)}
d

b
+ (n − m)2(1 − �)2[1 + �(n − 1)]

(
d

b

)2
}
,

(A.102)Vc(m) − Vf (m − 1) =

a2n2(1 − �)2[1 + �(n − 1)]2
(

d

b

)2

2b�(m)�(m − 1)2
�(m),
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Substituting m =
1

1+𝛽
(m̃ + 2) +

𝛽

1+𝛽
n , n = N7 + 7 , � =

1

1+�
 , d =

1

1+𝛿

̄̃d with �, � , � ≥ 0 yields 

𝜙

(
1

1+𝛽
(m̃ + 2) +

𝛽

1+𝛽
n
)
< 0 , which implies 𝜙(m) < 0 for m ≥ m̃ + 2 , n ≥ 7 and d ≤ ̄̃d . The 

corresponding Maple file is available on request. Consequently, all coalitions m ≥ m̃ + 2 
are internally unstable, while all coalitions m ≤ m̃ are externally unstable from Lemma 3. 
Suppose m̃ is an integer. Then, m = m̃ is externally unstable and m = m̃ + 2 is internally 
unstable, m = m̃ + 1 is internally and externally stable from Lemma 3. Suppose m̃ is not an 
integer. Then, m = ⌊m̃⌋ is externally unstable and m = ⌊m̃ + 3⌋ is internally unstable, such 
that m = ⌊m̃ + 1⌋ is internally stable from Lemma 3 and m = ⌊m̃ + 2⌋ is externally stable. If 
m = ⌊m̃ + 1⌋ is externally stable [unstable], then m = ⌊m̃ + 2⌋ is internally stable [unsta-
ble], such that some unique coalition m ∈ (m̃, m̃ + 2) is stable. This proves the first bullet of 

the proposition. Furthermore, 𝜕m̃
𝜕d

=
(n−1)[1+𝛼(n−1)]

b{1+[1+𝛼(n−1)]d∕b}2
> 0 , such that substituting d =

̄̃d into 
m̃ yields an upper bound ̄̃m:

where

(A.103)

�(m) ∶= −(m − 1)[m − 3 + �(m − 2)2] − (m − 1)[1 + �(n − 1)]{[(4m2
− 12m + 4)(n

− m) + m3
− 2m2

− 4m + 2]�2
+ [(2m2

− 2m − 10)(n − m) + 2m3
− 5m2

− 6]�

⋅ (1 − �) + [(2(m − 3))(n − m) + m3
− 3m2

+ 4m − 8](1 − �)2}
d

b
− [1 + �(n

− 1)]2{(m − 1)[(5m2
− 17m + 6)(n − m)2 + (3m3

− 6m2
− 12m + 6)(n − m)

+ m3
− 5m2

+ 1]�2
+ (m − 1)[(m2

+ 2m − 17)(n − m)2 + (3m3
− 9m2

+ 4m

− 20)(n − m) + 2m3
− 8m2

+ 2m − 5]�(1 − �) + [(m2
− 4m + 2)(n − m)2 − 8

⋅ (m − 1)(n − m) − m2
− 4m + 5](1 − �)2}

(
d

b

)2

+ (n − m + 1)[1 + �(n − 1)]3

⋅ {(m − 1)[(2m2
− 10m + 4)(n − m)2 + (2m3

− 8m2
− m + 2)(n − m) − 2m2

+ m]�2
+ (m − 1)[(2m − 12)(n − m)2 − (2m2

+ 9)(n − m) − 2m2
− 1]�(1 − �)

− [2(n − m)2 + (m2
− 1)(n − m) + m2

− 1](1 − �)2}

(
d

b

)3

+ (n − m)(n − m

+ 1)2[1 + �(n − 1)]4{n(2m2
− 3m + 1)�2

+ (3n − 2m + 1)(m − 1)�(1 − �) + (n

− m)(1 − �)2}

(
d

b

)4

.

(A.104)m̃ ≤ ̄̃m ∶=
n[n + 4𝛼(n − 1)]

(n − 2)2 + 4𝛼(n − 1)
,

(A.105)
𝜕 ̄̃m

𝜕𝛼
=

4n(n − 1)2(n − 4)

[(n − 2)2 + 4𝛼(n − 1)]2
⋛ 0 ⟺ n ⋛ 4,
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Thus, ̄̃m is minimal for � = 0 and n = 7 with ̄̃m = 1.96 , and it is maximal for � = 1 and 
n → ∞ with ̄̃m = 5 . m ∈ (m̃, m̃ + 2) and m̃ ≤ ̄̃m then imply m ∈ {2, 3} for � = 0 and 
m ∈ {2, 3, 4, 5, 6} for 𝛼 > 0 . This proves the second bullet of the proposition and the fourth 
bullet of the proposition, respectively. Furthermore,

such that m = 3 is internally unstable for � = 0 , n ≥ 26 and d ≤ ̄̃d . Finally,

such that �(3) decreases with d/b, and increases with (d∕b)3 and (d∕b)4 , which 
implies that �(3) is positive if and only if d/b is greater than some unique threshold 
d∕b = [arg�(3) = 0] . Figure 6 shows that the derivative of this threshold with respect to � 
is negative for n ∈ [7, 25] . This proves the third bullet of the proposition. ◻

(A.106)

𝜕 ̄̃m

𝜕n
=

16𝛼(n − 1)2 − 8𝛼(n − 1)(n − 2) − 4n(n − 2)

[(n − 2)2 + 4𝛼(n − 1)]2
⋛ 0

⟺ 𝛼 ⋛
n − 2 +

√
(n − 2)(5n − 2)

4(n − 1)
∈ [0.576, 0.809].

(A.107)

𝜙(3)|𝛼=0

= −8
d

b
+ (n2 + 10n − 23)

(
d

b

)2

+ 2(n − 1)2(n − 2)
(
d

b

)3

+ (n − 2)2(n − 3)2
(
d

b

)4

= −
d

16b4
{(N6

26
+ 122N5

26
+ 5951N4

26
+ 145224N3

26
+ 1778248N2

26
+ 8867520N26

+ 2064240)d3 + 2n(n − 4)(2N4
26
+ 174N3

26
+ 5587N2

26
+ 78148N26 + 399316)( ̄̃d − d)d2

+ n2(n − 4)2(5N2
26
+ 226N26 + 2519)( ̄̃d − d)2d + 2n3(n − 4)3( ̄̃d − d)3},

(A.108)

�(3) = −2� − 2[1 + �(n − 1)][4 + (2n − 11)� + (2n − 6)�2
]
d

b
+ [1 + �(n − 1)]2[n2 + 10n

− 23 + (2n2 − 28n + 68)� − (3n2 − 24n + 29)�2
]

(
d

b

)2

+ (n − 2)[1 + �(n − 1)]3

⋅ [2(n − 1)2 + (8n2 − 10n − 20)� + (n − 3)(6n − 26)�2
]

(
d

b

)3

+ (n − 3)(n − 2)2

⋅ [1 + �(n − 1)]4[n − 3 + 4(n − 1)� + (5n + 7)�2
]

(
d

b

)4

,
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