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Abstract
In this paper, we introduce an inexact regularized proximal Newton method (IRPNM)
that does not require any line search. The method is designed to minimize the sum
of a twice continuously differentiable function f and a convex (possibly non-smooth
and extended-valued) function ϕ. Instead of controlling a step size by a line search
procedure, we update the regularization parameter in a suitable way, based on the
success of the previous iteration. The global convergence of the sequence of iterations
and its superlinear convergence rate under a local Hölderian error bound assumption
are shown. Notably, these convergence results are obtained without requiring a global
Lipschitz property for ∇ f , which, to the best of the authors’ knowledge, is a novel
contribution for proximalNewtonmethods. Tohighlight the efficiencyof our approach,
we provide numerical comparisons with an IRPNM using a line search globalization
and a modern FISTA-type method.

Keywords Nonsmooth and nonconvex optimization · Global and local convergence ·
Regularized proximal Newton method · Hölderian local error bound

Mathematics Subject Classification 49M15 · 65K10 · 90C26 · 90C30 · 90C55

1 Introduction

We are interested in solving the composite optimization problem

min
x∈Rn

F(x) := f (x)+ ϕ(x) with f (x) := ψ(Ax − b), (1)

B Christian Kanzow
christian.kanzow@uni-wuerzburg.de

Simeon vom Dahl
simeon.vomdahl@uni-wuerzburg.de

1 Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 30, 97074 Würzburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-024-00600-9&domain=pdf
http://orcid.org/0000-0003-2897-2509


586 S. vom Dahl, C. Kanzow

where A ∈ R
m×n and b ∈ R

m represent some given data, and with ψ : Rm → R :=
R∪{∞} andϕ : Rn → R being proper lower semicontinuous (lsc) functions satisfying
the following conditions.

Assumption 1 (a) ψ is twice continuously differentiable on an open set containing
A(�)− b, where � ⊇ dom ϕ is a closed subset of Rn ,

(b) ϕ is convex and continuous on its domain dom ϕ,
(c) F is bounded from below, i.e., F∗ := inf x∈Rn F(x) > −∞.

From this structure, it is clear that the objective function F : Rn → R is also proper
and lower semicontinuous, but possibly nonsmooth and nonconvex. Assumption 1(a)
and the chain rule guarantee that f is twice continuously differentiable on an open set
containing � with

∇ f (x) = A	∇ψ(Ax − b), ∇2 f (x) = A	∇2ψ(Ax − b)A for all x ∈ �. (2)

Note thatmodel (1) alongwith the above assumptions is almost the same as in [23]. The
only difference lies in Assumption 1(c), where [23] requires coerciveness of F instead
of boundedness from below. Note that this coercivity is a much stronger condition. In
particular, together with the assumed lower semicontinuity assumption, it implies that
all sublevel sets are compact, so that (1) has a compact set of minimizers. Moreover,
it guarantees global Lipschitz continuity of the gradient ∇ f on all sublevel sets of F .
The elimination of the coercivity requirement on F is therefore significant.

Problems of type (1) frequently arise in various fields, including statistics, machine
learning, image processing, and many others. Notably, the well-known LASSO prob-
lem, as introduced by Tibshirani in [36], represents a special (convex) instance of (1).
Applications to compressive sensing problems are discussed in detail in [10]. Machine
learning applications like low rank approximations are extensively treated in the book
[26], and dictionary learning algorithms are surveyed in the monograph [8]. Matrix
completion problems, both convex and nonconvex, have been extensively explored in
the past [25, 39]. Additionally, [3] serves as a representative example of the numerous
applications of (1) in the field of image processing.

1.1 Related work

Proximal methods have a long history, beginning withMartinet’s proximal point algo-
rithm [27, 28]. Later, Rockafellar generalized the theory and applied it to convex
minimization problems [33, 34]. The first proximal method for nonconvex problems
of the form (1) was the proximal gradient method introduced by Fukushima and Mine
[13]. Subsequently, several proximal gradient methods emerged, including the well-
known IterativeShrinkage/ThresholdingAlgorithm (ISTA) and its accelerated version,
FISTA, introduced by Beck and Teboulle [1]. New FISTA-type methods continue to
be introduced, such as the recent example in [22] by Liang and Monteiro.
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An inexact regularized proximal Newton method without… 587

The idea of proximal Newton methods is to find in each step, for a current iterate
xk , an approximate minimizer yk of the subproblem

min
x

q̂k(x) := f (xk)+∇ f (xk)	(x − xk)+ 1

2
(x − xk)	Gk(x − xk)+ ϕ(x), (3)

where Gk is either the Hessian ∇2 f (xk) or a suitable approximation of the exact
Hessian. The main difference to proximal gradient methods is the incorporation of
second-order information, which leads to a faster convergence rate due to a better
local approximation of the nonlinear function f . On the other hand, iterative methods
for the solution of the subproblem (3) usually take longer due to the more complex
nature of this subproblem. In fact, note that the proximal Newton method reduces
to the proximal gradient method if Gk is a multiple of the identity matrix at each
iteration, so that the proximal gradient subproblem is (usually) easier to solve, in
several applications even analytically.

Stationary points of (1) are given by the solutions of the generalized equation
0 ∈ ∇ f (x)+ ∂ϕ(x), where ∂ϕ(x) denotes the (convex) subdifferential of ϕ at x , and
this inclusion can be rewritten as

r(x) = 0

for a certain residual function, see (10) below for the precise definition. Similary, the
stationary conditions of the subproblems (3) reduce to the solution of the partially
linearized generalized equation at iterate xk :

0 ∈ ∇ f (xk)+ Gk(x − xk)+ ∂ϕ(x). (4)

Various results on the convergence of iterative methods for solving (4) can be found
in the literature. Fischer [9] proposes a very general iterative framework for solv-
ing generalized equations and proves local superlinear and quadratic convergence of
the resulting iterates under an upper Lipschitz continuity assumption of the solution
set map of a perturbed generalized equation. Early proximal Newton methods were
designed for special instances of (1), mostly with convex ψ and ϕ such as GLMNET
[11, 12] and newGLMNET [40] for generalized linear models with elastic-net penal-
ties, QUIC [14] for the l1-regularized Gaussian maximum likelihood estimator and
the Newton-Lasso method [32] for the sparse inverse covariance estimation problem.

Lee et al. [21] were the first to propose a generic version of the exact proximal
Newton method for (1) with convex f . They assume that ∇ f is Lipschitz continuous
and show global convergence under the uniform positive definiteness of {Gk} and
local quadratic convergence under the strong convexity of f and the Lipschitz conti-
nuity of ∇2 f . Byrd et al. [6], considering (1) with the l1-regularizer ϕ(x) = λ‖x‖1,
propose an implementable inexactness criterion for minimizing q̂k while achieving
global convergence, and local fast convergence results under similar assumptions to
[21]. Their global convergence theory also works for nonconvex f . Yue et al. [41] used
the inexactness criterion and the line search procedure of [6] to develop an inexact
proximal Newton method with a regularized Hessian and proved its local superlinear
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588 S. vom Dahl, C. Kanzow

and quadratic convergence under the Luo-Tseng error bound condition [24], which
is significantly weaker than the strong convexity assumption on f . Mordukhovich
et al. [31] further improve on [41] by eliminating an impractical assumption where
the parameters of their method satisfy a condition involving a constant that is dif-
ficult to estimate. They also prove local superlinear convergence under the metric
q-subregularity of ∂F for q ∈ ( 1

2 , 1
)
, a condition even weaker than the Luo-Tseng

error bound. Their entire analysis, however, concentrates on convex functions f .
While proximal Newton-type methods for problem (1) with convex f have been

extensively explored in the past, there has been limited research to date on the case
where f is nonconvex. In the previously referenced paper [6], global convergence
was established with nonconvex f and the l1-regularizer, albeit still requiring a strong
convexity assumption on f for the local convergence theory. Lee and Wright [20]
investigated an inexact proximal Newton method, presenting a sublinear global con-
vergence rate result on the first-order optimality condition for general choices of Gk ,
with the sole assumption of ∇ f being Lipschitz continuous. Combining the advan-
tages of proximal Newton and proximal gradient methods, Kanzow and Lechner [16]
introduced a globalized inexact proximal Newton method (GIPN). In this approach, a
proximal gradient step is taken whenever the proximal Newton step fails to satisfy a
specified sufficient decrease condition. They proved global convergence with a local
superlinear convergence rate under the local strong convexity of F and uniformly
bounded positive definiteness of Gk . Inspired by the work [38] for smooth noncon-
vex optimization problems, Liu et al. [23] extended the theory of [31] to the case of
(1), where f is allowed to be nonconvex. Instead of the metric q-subregularity on ∂F ,
they assumed that accumulation points of the iterate sequence satisfy a Hölderian local
error bound condition on the set of so-called second-order stationary points to show
convergence of the iterates with a local superlinear convergence rate. They achieve a
local superlinear convergence rate without F being locally strongly convex. However,
they require that F is level-bounded.

All aforementioned works employed a proximal Newton-type method in conjunc-
tion with an appropriate line search strategy for global convergence. There has been
minimal exploration of proximalNewtonmethodswith alternative globalization strate-
gies. Yamashita and Ueda [37] investigated regularized Newton methods for smooth
unconstrained problems, achieving global convergence by adjusting the regulariza-
tion parameter based on the success of the previous iteration, similar to a trust-region
scheme. As of the authors’ knowledge, the method described in the PhD thesis [19,
Chapter 4] remains the only instance where this globalization strategy was applied
within the framework of proximal Newton-type methods.

Historically, the global Lipschitz continuity of ∇ f has been a standard assumption
for the convergence analysis of proximal gradient and proximal Newton methods.
While recentworks have successfully eliminated this assumption for proximal gradient
methods (see, for example, [4, 7, 15, 17]), there are no known comparable results for
proximal Newton methods.
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An inexact regularized proximal Newton method without… 589

1.2 Our contributions

In this work, we present a proximal Newton method without a line search for problem
(1) under Assumption 1. Building upon the selection in [23], we employ the following
expression as the regularized Hessian at iteration xk :

Gk = ∇2 f (xk)+�k A
	A + νkrk

δ I (5)

with

�k := a
[
−λmin

(
∇2ψ

(
Axk − b

))]

+ , a ≥ 1, and δ ∈ (0, 1]. (6)

Recall from (2) that Gk can be rewritten as

Gk = A	
(∇2ψ(Axk − b)+�k I

)
A + νkrk

δ I ,

hence the definition of �k immediately implies that the matrix Gk is positive definite
(the first term is positive semidefinite). The only difference to [23] resides in the final
term, where the sequence {rk}k∈N0 is recursively given by

r0 := ‖r(x0)‖ and rk+1 =
{
‖r(x̂ k)‖, if ‖r(x̂ k)‖ ≤ ηrk
rk, otherwise

for k ∈ N0, (7)

with x̂ k being an approximate solution of subproblem (3), η ∈ (0, 1), and r is the
residual function already mentioned before and formally defined in (10) below. Addi-
tionally, the regularization parameter νk follows an update strategy akin to [19, 37],
detailed in Sect. 3. Notably, the sequence {Gk} is not uniformly positive definite, since
{rk} converges to 0, as clarified later.

We establish the global convergence of the iterate sequence and its convergence
rate of q(1 + δ) > 1, assuming the existence of an accumulation point that satisfies

a local Hölderian error bound of order q > max
{

1
1+δ

, δ
}
on the set of second-order

stationary points. In comparison with [23], our approach reproduces essentially the
same convergence results, employing an update strategy for the regularization param-
eter instead of a line-search technique. Most notably, we eliminate the requirement
for F to be coercive. The coerciveness guarantees a compact minimizer set for (1),
as well as the Lipschitz continuity of ∇ f on all sublevel sets of F . It is noteworthy
that this global Lipschitz continuity of the gradient of f has been a standard assump-
tion in order to prove convergence of the iterate sequence. To the best of the authors’
knowledge, this work is the first to eliminate this assumption.

Utilizing the dual semismooth Newton augmented Lagrangian method (SNALM)
developed in [23] as a subproblem solver, we compare the performance of our method
(IRPNM-reg) with the line search based inexact regularized proximal Newton method
(IRPNM-ls) from [23] and AC-FISTA [22] on five distinct test problems.
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590 S. vom Dahl, C. Kanzow

1.3 Notation

In this paper, N = {1, 2, 3, ...} denotes the set of positive integers and we write
N0 := N ∪ {0}. The extended real numbers are given by R := R ∪ {+∞}. For a ∈ R

we write a+ := max(0, a). For x ∈ R
n , ‖x‖ represents the Euclidean norm, Bε(x)

stands for the closed ball around x with radius ε > 0, and dist(x,C) denotes the
Euclidean distance from x to a closed set C ⊆ R

n . The set Sn comprises all real
symmetric matrices of dimension n × n and S

n++ is the set of all positive definite
matrices in Sn . For M ∈ S

n , its spectral norm is denoted by ‖M‖ and M � 0 indicates
that M is positive semidefinite. The smallest eigenvalue of M is denoted by λmin(M).
The identity matrix is denoted by I , with its dimension being evident from the context.
The domain of a function g : Rn → R is defined as dom g := {x ∈ R

n | g(x) < ∞}
and g is called proper if dom g �= ∅.

2 Preliminaries

This section summarizes some background material from variational analysis that will
be important in our subsequent sections.

First of all,we denote by ∂F(x) thebasic (or limiting orMordukhovich) subdifferen-
tial of F at x , see the standard references [30, 35] formore details. Its precise definition
plays no role in our subsequent discussion since only some of its basic properties will
be used. In particular, it is known that, for convex functions, this basic subdifferential
simplifies to the well-known convex subdifferential. Furthermore, according to [35,
Exercise 8.8(c)], for any x ∈ dom ϕ, it holds that ∂F(x) = ∇ f (x)+ ∂ϕ(x).

Based on this notion, we now introduce two stationarity concepts, the first one being
the standard stationarity condition for composite optimization problems, the second
one being a stronger concept introduced in [23].

Definition 1 A point x ∈ dom ϕ is called a

(a) stationary point of problem (1) if 0 ∈ ∂F(x)
( = ∇ f (x)+ ∂ϕ(x)

)
;

(b) second-order stationary point of problem (1) if it is a stationary point which, in
addition, satisfies ∇2ψ(Ax − b) � 0.

We denote by S∗ and X ∗ the sets of all stationary and second-order stationary points,
respectively.

Assumption 1 guarantees that X ∗ ⊆ {
x ∈ S∗∣∣∇2 f (x) � 0

}
, which holds with

equality when A has full rank. Note that Assumption 1(a) together with the outer
semicontinuity of ∂ϕ implies that the sets S∗ and X ∗ are closed. In contrast to the
situation discussed in [23], we stress that bothS∗ andX ∗might be empty in our setting
due to the removal of the coerciveness assumption on F . We further note that there
might be stationary points (i.e., S∗ �= ∅), while X ∗ is still empty. A local minimizer
is always a stationary point, but is not guaranteed to be second-order stationary, and
the converse may not be true either.
It is important to note that the concept of second-order stationarity is not standard in
the literature and was only introduced in [23]. The need for this type of stationarity

123



An inexact regularized proximal Newton method without… 591

arises from Lemma 16. For examples where the result of Lemma 16 does not hold for
an x ∈ S∗\X ∗, or where dist(xk,X ∗) is replaced by dist(xk,S∗), see [23, Remark
5]. It would be an interesting topic for further research to investigate whether similar
convergence results can be achieved for stationary points that do not satisfy second-
order stationarity.

Example 2 A simple example of a problem with stationary points but no second-order
stationary points while satisfying Assumptions 1 is given by A = I , b = 0 and the
functions

ψ(x) = −x2 and ϕ(x) =
{
|x |, |x | ≤ 1

∞, else
.

x∗ = 0 is a local minimizer of F , but not a second-order stationary point. Note that
this example also shows that a local minimizer does not have to be a second-order
stationary point.

Proximal Newton-type methods rely on the proximity operator. For a proper,
lower semicontinuous and convex function g : Rn → R, the proximity operator
proxg : Rn → R

n is defined by

proxg(x) := argmin
y

{
g(y)+ 1

2
‖y − x‖2

}
.

The objective function g(y)+ 1
2‖y − x‖2 is strongly convex on dom g. This ensures

a unique minimizer for every x ∈ R
n , i.e., the proximity operator is well-defined.

Moreover, the operator is nonexpansive, signifying Lipschitz continuity with constant
one. It also satisfies the crucial relationship

y = proxg(x) ⇐⇒ y ∈ x − ∂g(y), (8)

which shows that

x ∈ S∗ ⇐⇒ −∇ f (x) ∈ ∂ϕ(x) ⇐⇒ x = proxϕ(x −∇ f (x)). (9)

Motivated by this, the residual or prox-gradient mapping is defined by

r(x) := x − proxϕ(x − ∇ f (x)), x ∈ R
n . (10)

Consequently, x ∈ R
n is a stationary point of F if and only if r(x) = 0. Hence, the

norm of r(x) can be used to measure the stationarity of x .
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592 S. vom Dahl, C. Kanzow

3 The algorithm and its basic properties

Consider a fixed iteration k ≥ 0 with a current iterate xk ∈ R
n . Then the core task of

proximal Newton methods lies in solving the subproblem

min
x

qk(x) :=amp; f (xk)+∇ f (xk)	(x − xk)+ 1

2
(x − xk)	∇2 f (xk)(x−xk)+ϕ(x).

(11)

The first part of qk provides a quadratic approximation of the smooth function f .
However, since f is not necessarily convex,∇2 f (xk)may not be positive semidefinite
and, hence, qk may not be convex. To address this difficulty, we consider the matrix

Hk := ∇2 f (xk)+�k A
	A

with �k defined in (6). Recall from the discussion following (6) that Hk , simply
by definition of �k , is positive semidefinite. Furthermore, given some regularization
parameter μk > 0, the corresponding matrix Gk from (5), which is given by

Gk = Hk + μk I ,

is then automatically positive definite. This implies that the resulting subproblem

min
x

q̂k(x) := f (xk)+ ∇ f (xk)	(x − xk)+ 1

2
(x − xk)	Gk(x − xk)+ ϕ(x),

(12)

has a strongly convex objective function and, thus, a unique solution. Throughout this
paper, we write

xk := argminx q̂k(x)

for this unique minimum. From a numerical point of view, computing this minimum
exactly might be very demanding, and we therefore require an inexact solution only.
We denote this inexact solution by x̂ k . In order to prove suitable global and local
convergence results, this inexact solution has to satisfy certain criteria which measure
the quality of the inexact solution. Here, we assume that the inexact solution x̂ k is
computed in such a way that the conditions

‖Rk(x̂
k)‖ ≤ θ min

{
‖r(xk)‖, ‖r(xk)‖1+τ

}
and F(xk)− q̂k(x̂

k) ≥ αμk

2
‖x̂ k − xk‖2

(13)

hold, where α, θ ∈ (0, 1) and τ ≥ δ are certain constants, and the residual Rk is
defined by

Rk(x) := x − proxϕ

(
x − ∇ f (xk)− (Hk + μk I )(x − xk)

)
.
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Note that Rk is the counterpart of the residual r from (10) for the subproblem (12).
In particular, and similar to (9), a vector x is an optimal solution of (12) if and
only if Rk(x) = 0. This explains why the first condition from (13) serves as an
inexactness criterion. Regarding the second condition, we refer to Lemma 8 below for
a justification.

Typically, see the recent papers [23, 31], these (regularized) proximal Newton-
type methods are combined with an appropriate line search strategy to achieve global
convergence. In this work, our objective is to attain global convergence by controlling
the regularization parameter itself, depending on the success of the previous iteration.
This idea has already been used in [37] with a regularized Newton method for the
minimization of a twice differentiable function. Recently, in the PhD thesis [19], it has
been established for proximal Newton methods in the composite setting. To assess the
success of a candidate x̂ k , we consider the ratio

ρk := aredk
predk

(14)

between the actual reduction

aredk := F(xk)− F(x̂ k) (15)

and the predicted reduction

predk := F(xk)− qk(x̂
k). (16)

It is important to note that for the predicted reduction,we use the unregularized approx-
imation qk instead of q̂k . From the second condition in (13) it follows that

predk = F(xk)− qk(x̂
k) = F(xk)− q̂k(x̂

k)

+ 1

2
(x̂ k − xk)	(�k A

	A + μk I )(x̂
k − xk)

≥ F(xk)− q̂k(x̂
k)+ μk

2
‖x̂ k − xk‖2

≥ (1+ α)
μk

2
‖x̂ k − xk‖2 >

μk

2
‖x̂ k − xk‖2 (17)

for all k ≥ 0. If xk = x̂ k , then the definitions of the corresponding residual functions
give Rk(x̂ k) = Rk(xk) = r(xk). From the first inexactness test in (13), it follows
that r(xk) = 0. Consequently, in combination with (17), we can make the following
remark.

Remark 3 If xk = x̂ k , then xk is already a stationary point of (1). Hence, predk > 0
at all iterations k such that xk is not already a stationary point.

We are now ready to present our algorithm.
The basic idea of Algorithm 1 is to solve, iteratively, the proximal regularized Newton
subproblem (12) and either to accept the inexact solution as the new iterate, provided
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594 S. vom Dahl, C. Kanzow

Algorithm 1 Regularized proximal Newton method

1: Choose x0 ∈ dom ϕ and parameters c1 ∈ (0, 1); c2 ∈ (c1, 1); σ1 ∈ (0, 1); σ2 > 1; η ∈ (0, 1); θ ∈
(0, 1); α ∈ (0, 1); a ≥ 1; 0 < νmin ≤ ν0 ≤ ν; 0 < δ ≤ 1; τ ≥ δ; pmin ∈ (0, 1/2); κ > 1 + δ. Set
k := 0; r0 := ‖r(x0)‖; μ0 := ν0r

δ
0.

2: for k = 0, 1, 2, ... do
3: Compute an inexact solution x̂k of the proximal regularized Newton subproblem (12) satisfying the

inexactness criterion (13).
4: Set dk := x̂k − xk .
5: Compute predk , aredk and ρk .
6: if predk ≤ pmin(1− θ)‖dk‖min{‖r(xk )‖, ‖r(xk )‖κ } OR ρk ≤ c1 then
7: Set xk+1 = xk , νk+1 = σ2νk . � unsuccessful iteration
8: else
9: Set xk+1 = x̂k .
10: if ρk ≤ c2 then
11: Set νk+1 = min{νk , ν}. � successful iteration
12: else
13: Set νk+1 = min{max{σ1νk , νmin}, ν}. � highly successful iteration
14: end if
15: end if
16: if ‖r(xk+1)‖ ≤ ηrk then � k + 1 ∈ K
17: rk+1 = ‖r(xk+1)‖.
18: else
19: rk+1 = rk .
20: end if
21: μk+1 = νk+1r

δ
k+1.

22: end for

that this makes a sufficient progress in the sense of the tests in line 6, or to stay at the
current point and enlarge the regularization parameter. The steps between lines 10 and
20 are devoted to a very careful update of the parameter νk as well as rk , hence of the
regularization parameter μk in line 21, since this update is essential especially for the
local convergence analysis where we prove fast local convergence under fairly mild
assumptions.

In the remaining part, we state a number of basic properties which might, partially,
explain some of these careful updates.

Lemma 4 (a) The sequence {rk} is monotonically decreasing,
(b) For all k ≥ 0 it holds that ‖r(xk)‖ > ηrk .
(c) For all k ≥ 0 it holds that rk ≥ min{‖r(x j )‖ | 0 ≤ j ≤ k}.

Proof (a) We consider an iteration k ≥ 0. If the condition ‖r(xk+1)‖ ≤ ηrk in line 16
of Algorithm 1 is satisfied, we get rk+1 = ‖r(xk+1)‖ ≤ ηrk < rk . Otherwise, the
algorithm directly sets rk+1 = rk . Combining these two cases shows that rk+1 ≤ rk .
Hence, the sequence {rk} is monotonically decreasing.
(b) For k = 0 this property obviously holds. For an iteration k ≥ 0, if the condition
in line 16 of Algorithm 1 is true, then ‖r(xk+1)‖ = rk+1 > ηrk+1; if it is not, then
‖r(xk+1)‖ > ηrk = rk+1.
(c) For k = 0 this property obviously holds. Suppose now that this property holds for
some k ∈ N0. If the condition in line 16 is satisfied at iteration k we get

rk+1 = ‖r(xk+1)‖ ≥ min{‖r(x j )‖ | 0 ≤ j ≤ k + 1}.
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Otherwise it holds that

rk+1 = rk ≥ min{‖r(x j )‖ | 0 ≤ j ≤ k} ≥ min{‖r(x j )‖ | 0 ≤ j ≤ k + 1},

where we used the induction hypothesis in the first inequality. ��
The following result contains some estimates regarding the sequence {νk} and the
corresponding sequence {μk} of regularization parameters.

Lemma 5 For an iteration k ≥ 0 it holds that

(a) νk ≥ νmin,
(b) xk+1 = xk , νk+1 = σ2νk > νk and μk+1 = σ2μk > μk , if k is unsuccessful,
(c) xk+1 = x̂ k , νk+1 ≤ νk and μk+1 ≤ μk , if k is successful or highly successful.

Proof (a) This statement follows recursively from ν0 ≥ νmin and the possible updates
for νk in the algorithm.
(b) If k is an unsuccessful iteration, it follows by definition of the algorithm that xk+1 =
xk and νk+1 = σ2νk . From Lemma 4(b) it immediately follows that ‖r(xk+1)‖ =
‖r(xk)‖ > ηrk , hence rk+1 = rk and eventually μk+1 = νk+1r δ

k+1 = σ2νkr δ
k =

σ2μk > μk .
(c) If k is a successful or highly successful iteration, it follows by definition of the
algorithm and statement (a) that xk+1 = x̂ k and νk+1 ≤ νk . Using Lemma 4(a), we
then get μk+1 = νk+1r δ

k+1 ≤ νkr δ
k = μk . ��

In the following we consider the set K ⊂ N0 of iterations

K := {0} ∪ {k ∈ N | The if-condition in line 16 was satisfied at iteration k − 1} .

Several properties for the iterates k belonging to this set are summarized in the next
result.

Lemma 6 For all iterations k ∈ K\{0} ⊂ N, the following properties hold:

(a) ‖r(xk)‖ ≤ ηrk−1,
(b) rk = ‖r(xk)‖,
(c) iteration k − 1 was successful or highly successful,
(d) νk ≤ ν,
(e) μk ≤ ν‖r(xk)‖δ .

Proof Statements (a) and (b) follow directly from the if-condition in line 16 and the
command in line 17. If iteration k − 1 was unsuccessful, then it would follow from
Lemma 4(b) that ‖r(xk)‖ = ‖r(xk−1)‖ > ηrk−1, a contradiction to k ∈ K according
to (a). Hence (c) holds. Assertion (d) then follows from (c) and assertion (e) follows
from (b) and (d). ��
The index setK plays a central role in our convergence analysis. The following result
indicates why this set is so important.
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Lemma 7 LetK = {k0, k1, k2, ...}. For all i ∈ Nwith ki ∈ K it holds that rki ≤ ηrki−1

and the following three statements are equivalent:

(i) K is an infinite set.
(ii) limk∈K ‖r(xk)‖ = 0.
(iii) lim infk→∞ ‖r(xk)‖ = 0.

Proof Consider i ∈ N with ki ∈ K. From Lemma 6(a), 6(b) and Lemma 4(a) it
then follows immediately that rki ≤ ηrki−1 ≤ ηrki−1 . If K is an infinite set, this
directly implies limk∈K ‖r(xk)‖ = limk∈K rk = 0. From Lemma 4(c) it follows that
lim infk→∞ ‖r(xk)‖ = 0. Suppose now that K is not an infinite set. Denote the last
iteration inK by k̄. Then it holds that rk = r k̄ for all k ≥ k̄. It follows fromLemma 4(b)
that ‖r(xk)‖ > ηrk = ηr k̄ for all k ≥ k̄. Hence, lim infk→∞ ‖r(xk)‖ > 0. ��

4 Global convergence results

This section presents global convergence results which are in the same spirit as those
known for trust-region-type methods.

The first result states that the inexactness criterion (13) is feasible, which implies
that Algorithm 1 is well-defined.

Lemma 8 For every k ∈ N0 such that xk is not a stationary point of (1), the inexactness
criterion (13) is satisfied for any x ∈ dom ϕ sufficiently close to the exact solution xk

of (12).

Proof Recall that there are two criteria in (13). We show that both of them hold for
all x sufficiently close to the global minimum of the underlying subproblem. Hence,
consider a fixed iteration index k ∈ N0 and assume that xk is not already a stationary
point of the given composite optimization problem (1). Since ‖Rk(xk)‖ = 0, it follows
from the continuity of Rk relative to dom ϕ that

‖Rk(x)‖ ≤ θ min
{
‖r(xk)‖, ‖r(xk)‖1+τ

}

holds for x ∈ dom ϕ sufficiently close to xk , showing that the first test in (13) holds
for these x . Furthermore, from the optimality of xk with respect to (3), we get

0 ∈ qk(x
k) ⇐⇒ −∇ f (xk)	 − Gk(x

k − xk) ∈ ∂ϕ(xk).

The definition of the convex subdifferential then yields

∇ f (xk)	(xk − xk)+ (xk − xk)	Gk(x
k − xk) ≤ ϕ(xk)− ϕ(xk), (18)

see also [21, Prop. 2.4]. Therefore we obtain

F(xk)− q̂k(x
k) = ϕ(xk)− ∇ f (xk)	(xk − xk)
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− 1

2
(xk − xk)	Gk(x

k − xk)− ϕ(xk)

= −
(
∇ f (xk)	(xk − xk)+ ϕ(xk)− ϕ(xk)

)

− 1

2
(xk − xk)	Gk(x

k − xk)

≥ 1

2
(xk − xk)	Gk(x

k − xk)

≥ μk

2
‖xk − xk‖2 >

αμk

2
‖xk − xk‖2, (19)

where the first inequality follows from (18) and the second from the positive semidefi-
niteness of Hk . From the continuity of F(xk)− q̂k(·)− αμk

2 ‖·−xk‖2 relative to dom ϕ,
it follows that

F(xk)− q̂k(x) >
αμk

2
‖x − xk‖2

holds for all x ∈ dom ϕ sufficiently close to xk .
��

The next result provides a lower and upper bound of the residual r(xk) in terms of the
vector dk .

Lemma 9 For all k ∈ N0, it holds that

μk

(1+ ‖Gk‖)(1+ θ)
‖dk‖ ≤ ‖r(xk)‖ ≤ 1+ ‖Gk‖

1− θ
‖dk‖.

Proof By r(xk) = xk−proxϕ(xk−∇ f (xk)), we get from (8) that r(xk) ∈ ∇ f (xk)+
∂ϕ

(
xk − r(xk)

)
. In the same way, Rk(x̂ k) ∈ ∇ f (xk)+Gkdk+∂ϕ(x̂ k− Rk(x̂ k)) fol-

lows from the definition of the proximal operator. Themonotonicity of the subgradient
mapping ∂ϕ ensures that

〈
Rk(x̂

k)− r(xk)− Gkd
k, dk + r(xk)− Rk(x̂

k)
〉
≥ 0. (20)

Simply reordering the left-hand side yields
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0 ≤ −‖r(xk)‖2 − ‖Rk(x̂
k)‖2 + 2〈Rk(x̂

k), r(xk)〉 − (dk)	Gkd
k

+ 〈Rk(x̂
k)− r(xk), dk + Gkd

k〉.

This implies

‖r(xk)− Rk(x̂
k)‖2 ≤ ‖r(xk)‖2 − 2

〈
Rk(x̂

k), r(xk)
〉
+ ‖Rk(x̂

k)‖2 + (dk)	Gkd
k

≤
〈
Rk(x̂

k)− r(xk), dk + Gkd
k
〉

≤ ‖r(xk)− Rk(x̂
k)‖ · (1+ ‖Gk‖)‖dk‖.

Together with the inexactness criterion ‖Rk(x̂ k)‖ ≤ θ‖r(xk)‖ and the Cauchy-
Schwarz inequality, this results in

‖r(xk)‖ ≤ ‖r(xk)− Rk(x̂
k)‖ + ‖Rk(x̂

k)‖ ≤ (1+ ‖Gk‖)‖dk‖ + θ‖r(xk)‖.

Remembering θ ∈ (0, 1), we get the upper estimate

‖r(xk)‖ ≤ 1+ ‖Gk‖
1− θ

‖dk‖.

Reordering (20) in a different way yields

〈dk,Gkd
k〉 ≤ 〈Rk(x̂

k)− r(xk), dk − Rk(x̂
k)+ r(xk)+ Gkd

k〉
≤ 〈(I + Gk)d

k, Rk(x̂
k)− r(xk)〉.

Using Gk � μk I and the Cauchy–Schwarz inequality, we therefore get

μk‖dk‖2 ≤ 〈dk,Gkd
k〉 ≤ (1+ ‖Gk‖)‖dk‖‖Rk(x̂

k)− r(xk)‖
≤ (1+ ‖Gk‖)‖dk‖(1+ θ)‖r(xk)‖,

where the last inequality follows from (13). Hence, dividing by μk‖dk‖ (in the case
of ‖dk‖ = 0, the resulting inequality holds trivially) yields

‖dk‖ ≤ (1+ θ)(1+ ‖Gk‖)
μk

‖r(xk)‖.

This completes the proof. ��

The following result provides (implicitly) a condition under which the quotient
between the actual and the predicted reduction is greater than a suitable constant
(note that, in the following, we often exploit the observation from Remark 3 that the
predicted reduction is a positive number, without explicitly mentioning this fact).
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Lemma 10 Let c ≤ 1. For every k ≥ 0, there exists ξ k on the line segment between xk

and x̂k such that

aredk − c predk ≥
1

2

(
(1− c)μk − ‖∇2 f (ξ k)−∇2 f (xk)‖

)
‖dk‖2. (21)

Proof It follows from Taylor’s formula and the convexity of dom ϕ that, for every
k ≥ 0, there exists ξ k ∈ dom ϕ on the line segment between xk and x̂ k such that

f (x̂ k)− f (xk)−∇ f (xk)	dk = 1

2
(dk)	∇2 f (ξ k)dk .

This yields

F(x̂ k)− qk(x̂
k) = f (x̂ k)− f (xk)−∇ f (xk)	dk − 1

2
(dk)	∇2 f (xk)dk

= 1

2
(dk)	(∇2 f (ξ k)−∇2 f (xk))dk

≤ 1

2
‖∇2 f (ξ k)−∇2 f (xk)‖‖dk‖2.

Using this inequality together with (17), we get

aredk − c predk = (1− c)predk − predk + aredk = (1− c)predk −
(
F(x̂k)− qk(x̂

k)
)

≥ 1− c

2
μk‖dk‖2 − 1

2
‖∇2 f (ξk)− ∇2 f (xk)‖‖dk‖2

= 1

2

(
(1− c)μk − ‖∇2 f (ξk)− ∇2 f (xk)‖

)
‖dk‖2.

This completes the proof. ��
We next show that Algorithm 1 generates infinitely many successful or highly suc-
cessful iterates.

Theorem 11 Suppose ‖r(xk)‖ �= 0 for all k ≥ 0. Then Algorithm 1 performs infinitely
many successful or highly successful iterations.

Proof Suppose there exists k0 ≥ 0 such that all iterations k ≥ k0 are unsuccessful.
Then, for all k ≥ k0, at least one of the following two inequalities holds:

ρk ≤ c1, predk ≤ pmin(1− θ)‖dk‖min{‖r(xk)‖, ‖r(xk)‖κ }. (22)

We will derive a contradiction and show that both inequalities are eventually violated.
First note that Lemma 5(b) implies xk = xk0 for all k ≥ k0 and {μk} → ∞ whereas
both {‖r(xk)‖} and {‖Hk‖} are bounded. Thus, remembering ‖Gk‖ = ‖Hk‖ + μk , it
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follows from the first inequality in Lemma 9 that {‖dk‖} is bounded by some d > 0.
For all k ≥ k0 it then holds that ξ k (from Lemma 10) belongs to the compact set
Bd(x

k0) ∩ � (recall that � was supposed to be a closed set). From the continuity of
∇2 f (·) on � it then follows that

‖∇2 f (ξ k)− ∇2 f (xk)‖ < (1− c1)μk (23)

for sufficiently large k ≥ k0, which together with Lemma 10 guarantees

aredk − c1predk > 0,

and therefore ρk > c1, thus violating the first inequality in (22).
The second inequality in Lemma 9 ensures that ‖dk‖ > 0 for all k ≥ 0. Thus, from

Lemma 9, we get

‖r(xk)‖
‖dk‖μk

≤ 1+ ‖Gk‖
(1− θ)μk

≤ 1+ ‖Hk‖ + μk

(1− θ)μk

for all k ≥ k0. Taking k → ∞, it follows that the expression on the right-hand side
tends to 1/(1− θ). Hence, for k ≥ k0 sufficiently large it holds that

‖r(xk)‖
‖dk‖μk

<
1

2pmin(1− θ)
.

This inequality together with (17) then yields

predk ≥
μk

2
‖dk‖2 > pmin(1− θ)‖r(xk)‖‖dk‖

≥ pmin(1− θ)‖dk‖min{‖r(xk)‖, ‖r(xk)‖κ }

for sufficiently large k ≥ k0, which contradicts the second inequality in (22). ��
We next present our first global convergence result for Algorithm 1.

Theorem 12 The sequence {xk}generatedbyAlgorithm1 satisfies lim infk→∞ ‖r(xk)‖
= 0.

Proof Let S ⊂ N be the set of successful or highly successful iterations, and recall
that this set is infinite due to Theorem 11. Assume, by contradiction, that

lim inf
k→∞ ‖r(xk)‖ > 0.

Then there exists ε > 0 such that min{‖r(xk)‖, ‖r(xk)‖κ } ≥ ε for all k ≥ 0. Lemma 7
implies that the set K is finite, hence the set S := S\K is still infinite. By definition,
it holds for all k ∈ S that
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F(xk)− F(x̂ k) = aredk > c1predk > c1 pmin(1− θ)‖dk‖min{‖r(xk)‖, ‖r(xk)‖κ }
≥ c1 pmin(1− θ)‖dk‖ε,

cf. Lemma 5. Since F is bounded from below, summation yields

∞ >

∞∑

k=0

[F(xk)− F(xk+1)] ≥
∑

k∈S
[F(xk)− F(x̂ k)] ≥ c1 pmin(1− θ)ε

∑

k∈S
‖dk‖

(where we used the fact that F(xk)− F(xk+1) ≥ 0 for all k). Taking into account that
xk is not updated in unsuccessful steps, it follows that

∞ >
∑

k∈S
‖dk‖ +

∑

k∈K
‖dk‖

=
∑

k∈S
‖dk‖ =

∑

k∈S
‖xk+1 − xk‖ =

∞∑

k=0

‖xk+1 − xk‖, (24)

where we used the previous inequality and the finiteness of K in the first inequality.
Hence, {xk} is a Cauchy sequence and therefore convergent to some x ∈ R

n . The
mapping x �→ ∇2 f (x) + a[−λmin(∇2ψ(Ax − b))]+A	A is continuous, i.e., the
sequence {Hk} is also convergent. Define M := sup{‖Hk‖ | k ≥ 0} < ∞. Since ‖r(·)‖
is continuous, we have ‖r(x)‖ = limk→∞ ‖r(xk)‖ ≥ ε and x is not a stationary point
of (1). Using the boundedness of {Hk} together with Lemma 9 yields

‖r(xk)‖ ≤ 1+ M + μk

1− θ
‖dk‖.

Note that (24) implies ‖dk‖ →S 0. If there were a subset S ′ ⊆ S such that
{μk}S ′ is bounded, then {‖r(xk)‖}S ′ would converge to zero, a contradiction. Hence,
{μk} →S ∞. Since μk can not decrease during unsuccessful iterations, it follows
that {μk} → ∞. According to Lemma 5(c), μk can not increase during successful
or highly successful iterations. Therefore, Algorithm 1 also performs infinitely many
unsuccessful iterations. For every k ≥ 0, Taylor’s formula yields the existence of a vec-
tor ξ k on the straight line between xk and x̂ k such that f (x̂ k)− f (xk) = ∇ f (ξ k)	dk .
Note that, similar to the proof of Theorem 11, {‖dk‖} is bounded. Hence, for some
d > 0 and k sufficiently large, ξ k belongs to the compact set Bd(x)∩�. Note that∇ f
is continuously differentiable and therefore also locally Lipschitz continuous, hence
Lipschitz continuous on compact sets. In particular, there exists a constant L > 0 such
that

‖∇ f (ξ k)− ∇ f (xk)‖ ≤ L‖ξ k − xk‖ ≤ L‖dk‖ (25)
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holds for k sufficiently large. By using (17) in the first, Taylor’s formula in the second
and (25) in the last inequality, we obtain

|ρk − 1| =
∣∣
∣∣
aredk
predk

− 1

∣∣
∣∣ =

∣∣
∣∣
aredk − predk

predk

∣∣
∣∣ =

∣∣
∣∣
F(x̂ k)− qk(x̂ k)

predk

∣∣
∣∣

≤ | f (x̂ k)− f (xk)− ∇ f (xk)	dk − 1
2 (d

k)	∇2 f (xk)dk |
1
2μk‖dk‖2

≤ 2
∣∣∇ f (ξ k)	dk − ∇ f (xk)	dk

∣∣+ ∣∣(dk)	∇2 f (xk)dk
∣∣

μk‖dk‖2

≤ 2‖∇ f (ξ k)−∇ f (xk)‖‖dk‖ + ‖∇2 f (xk)‖‖dk‖2
μk‖dk‖2

≤ 2L + ‖∇2 f (xk)‖
μk

→ 0

for k → ∞. Hence, {ρk} → 1, i.e., eventually all steps are highly successful, which
yields a contradiction and therefore lim infk→∞ ‖r(xk)‖ = 0. ��

The following global convergence theorem is the same as [19, Theorem 5.7]. Its
proof is only slightly adapted to our case.

Theorem 13 Assume that∇ f is uniformly continuous on a setX satisfying {xk} ⊆ X .
Then limk→∞ ‖r(xk)‖ = 0 holds. In particular, every accumulation point of {xk} is a
stationary point of F.

Proof Assume, by contradiction, that there exists ε > 0 and L ⊂ N such that
‖r(xk)‖ ≥ 2ε for all k ∈ L. Set ε := min{ε, εκ }. By Theorem 12, for each k ∈ L,
there is an index lk > k such that ‖r(xl)‖ ≥ ε for all k ≤ l < lk and ‖r(xlk )‖ < ε. If,
for k ∈ L, an iteration k ≤ l < lk is successful or highly successful, we get

F(xl)− F(xl+1) ≥ c1predl > c1(1− θ)pmin‖dl‖‖r(xl)‖
≥ c1(1− θ)pminε‖xl+1 − xl‖.

For unsuccessful iterations l, this estimate holds trivially. Thus,

(1− θ)pminc1ε‖xlk − xk‖ ≤ (1− θ)pminc1ε
lk−1∑

l=k

‖xl+1 − xl‖

≤
lk−1∑

l=k

F(xl)− F(xl+1) = F(xk)− F(xlk )

holds for all k ∈ L. ByAssumption1(c), F is bounded frombelow, andbyconstruction,
the sequence {F(xk)} ismonotonically decreasing, hence convergent. This implies that
the sequence {F(xk)− F(xlk )}L converges to 0. Hence, we get {‖xlk − xk‖}L → 0.
The uniform continuity of∇ f and of the proximity operator together with the fact that
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the composition of uniformly continuous functions is uniformly continuous, yields the
uniformcontinuity of the residual funciton r(·). Thus,weget {‖r(xlk )−r(xk)‖}L → 0.
On the other hand, by the choice of lk , we have

‖r(xk)− r(xlk )‖ ≥ ‖r(xk)‖ − ‖r(xlk )‖ ≥ 2ε − ε = ε

for all k ∈ L, which yields the desired contradiction. ��

5 Local superlinear convergence

The aim of this section is to prove local fast superlinear convergence of Algorithm 1
under the following (fairly mild) assumptions.

Assumption 2 (a) The set X ∗ of second-order stationary points of (1) is nonempty
and there exists an accumulation point x∗ ∈ X ∗ of {xk}K.

(b) ∇2ψ is locally Lipschitz continuous at Ax∗ − b relative to A(dom ϕ)− b, i.e.,
there exists ε > 0 and Lψ > 0 such that

‖∇2ψ(Ax − b)−∇2ψ(Ay − b)‖ ≤ Lψ‖Ax − Ay‖, ∀x, y ∈ Bε(x
∗) ∩ dom ϕ.

(c) ‖r(x)‖ provides a local Hölderian error bound for problem (1) on Bε(x∗) ∩
dom ϕ, i.e., there exist constants β > 0 and q > max{δ, 1− δ} such that

β dist(x,X ∗) ≤ ‖r(x)‖q , ∀x ∈ Bε(x
∗) ∩ dom ϕ, (26)

where δ > 0 denotes the constant from Algorithm 1.

Note that Lemma 7 and Theorem 12 ensure that K is an infinite set. Hence, the
subsequence {xk}K in Assumption 2(a) is well-defined. Define

ε0 := min
{
ε, ε/‖A‖} ≤ ε,

where ε > 0 denotes the radius from Assumption 2(b). For x, y ∈ Bε0(x
∗)∩dom ϕ, it

then follows from (2) and Assumption 2(b) that ∇2 f is locally Lipschitz continuous
at x∗ relative to dom ϕ with Lipschitz constant L := ‖A‖3Lψ , i.e.

‖∇2 f (x)−∇2 f (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Bε0(x
∗). (27)

This, in turn, implies that

‖∇ f (x)− ∇ f (y)− ∇2 f (x)(x − y)‖ ≤ L

2
‖x − y‖2, ∀x, y ∈ Bε0(x

∗). (28)

Furthermore, since f is twice continuously differentiable, ∇ f is continuously dif-
ferentiable and, therefore, locally Lipschitz continuous. Consequently, there exists a
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constant Lg > 0 such that

‖∇ f (x)−∇ f (y)‖ ≤ Lg‖x − y‖, ∀x, y ∈ Bε0(x
∗). (29)

In particular, we therefore have

‖∇2 f (x)‖ ≤ Lg, ∀x ∈ Bε0(x
∗). (30)

In the following, for each k ≥ 0, we denote by x̃ k a point satisfying the properties

‖xk − x̃ k‖ = dist(xk,X ∗), x̃ k ∈ X ∗, (31)

i.e., x̃ k is a (not necessarily unique) projection of xk onto the nonempty and closed
(not necessarily convex) set X ∗.

Lemma 14 Suppose that Assumptions 2 hold. Then, for every iteration k ≥ 0 with
xk ∈ Bε0/2(x

∗), it holds that

‖r(xk)‖ ≤ (2+ Lg) dist(x
k,X ∗).

Proof First observe that

‖x̃ k − x∗‖ ≤ ‖xk − x∗‖ + ‖x̃ k − xk‖ ≤ 2‖xk − x∗‖, (32)

i.e., for xk ∈ Bε0/2(x
∗), it holds that x̃ k ∈ Bε0(x

∗). Remembering the definition of
x̃ k , we obtain

‖r(xk)‖ = ‖r(xk)− r (̃xk)‖
= ‖ proxϕ(xk − ∇ f (xk))− xk − proxϕ(̃xk −∇ f (̃xk))+ x̃ k‖
≤ ‖ proxϕ(xk − ∇ f (xk))− proxϕ(̃xk −∇ f (̃xk))‖ + ‖xk − x̃ k‖
≤ ‖xk − x̃ k − ∇ f (xk)+∇ f (̃xk)‖ + ‖xk − x̃ k‖
≤ ‖∇ f (xk)−∇ f (̃xk)‖ + 2‖xk − x̃ k‖
≤ (2+ Lg) dist(x

k,X ∗),

where the second inequality follows from the non-expansiveness of the proximity
operator and the last inequality follows from (29), taking into account that xk, x̃ k ∈
Bε0(x

∗). ��
The following lemma is almost identical to [23, Lemma 4.2]. For the convenience of
our readers, its proof is provided here, with slight adaptations to our case.

Lemma 15 For each k ∈ K, it holds that ‖x̂ k−xk‖ ≤ ν−1
minθ(1+‖Gk‖)‖r(xk)‖1+τ−δ .
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Proof Consider a fixed index k ∈ K. From the definition of Rk(x̂ k) and relation (8),
it follows that

x̂ k − Rk(x̂
k) ∈ x̂ k −∇ f (xk)− Gkd

k − ∂ϕ(x̂ k − Rk(x̂
k))

⇐⇒ Rk(x̂
k)−∇ f (xk)− Gkd

k ∈ ∂ϕ(x̂ k − Rk(x̂
k)).

Since xk is the exact solution of (12) it holds by Fermat’s theorem that

−∇ f (xk)− Gk(x
k − xk) ∈ ∂ϕ(xk).

By the monotonicity of ∂ϕ, we have

〈Rk(x̂
k)− Gk(x̂

k − xk), x̂ k − Rk(x̂
k)− xk〉 ≥ 0.

Reordering yields

〈x̂ k − xk,Gk(x̂
k − xk)〉 ≤ 〈Rk(x̂

k), x̂ k − xk − Rk(x̂
k)+ Gk(x̂

k − xk)〉
≤ 〈Rk(x̂

k), (I + Gk)(x̂
k − xk)〉.

Combining this inequality with Gk � μk I and using (13) yields

μk‖x̂ k − xk‖2 ≤ (1+ ‖Gk‖)‖Rk(x̂
k)‖‖x̂ k − xk‖

≤ θ(1+ ‖Gk‖)‖r(xk)‖1+τ‖x̂ k − xk‖.

Dividing by μk‖x̂ k − xk‖ (the case ‖x̂ k − xk‖ = 0 is trivial) and using Lemma 6(b)
along with νk ≥ νmin demonstrates that the desired result holds. ��
The following lemma is identical to [23, Lemma 4.4]. Again, its proof is presented
here, only adapting the notation to our case.

Lemma 16 Suppose that Assumptions 2 hold. Then for every k ≥ 0 with xk ∈
Bε0/2(x

∗) it holds that

�k ≤ aLψ‖A‖ dist(xk,X ∗).

Proof Let xk ∈ Bε0/2(x
∗) be fixed. By definition of�k , it suffices to consider the case

where λmin(∇2ψ(Axk − b)) < 0. In view of (32), we obtain ‖x̃ k − x∗‖ ≤ ε0, and
consequently x̃ k ∈ Bε(x∗) ∩ dom ϕ. From x̃ k ∈ X ∗, we have ∇2ψ(Ax̃k − b) � 0.
When λmin(∇2ψ(Ax̃k − b)) = 0, then

�k = −aλmin(∇2ψ(Axk − b)) = a[λmin(∇2ψ(Ax̃k − b))− λmin(∇2ψ(Axk − b))]
≤ a‖∇2ψ(Ax̃k − b)− ∇2ψ(Axk − b)‖ ≤ aLψ‖A‖‖xk − x̃k‖,
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where the first inequality is by the Lipschitz continuity of the function S
n � Z �→

λmin(Z)with modulus 1 (follows fromWeyl’s inequality), and the second one is using
Assumption 2(b). So we only need to consider the case λmin(∇2ψ(Ax̃k−b)) > 0. For
this purpose, let φk(t) := λmin[∇2ψ(Axk−b+ t A(̃xk−xk))] for t ≥ 0. Clearly, φk is
continuous on any open interval containing [0, 1]. Note that φk(0) < 0 and φk(1) > 0.
Hence, there exists tk ∈ (0, 1) such that φk(tk) = 0. Consequently,

�k = −aλmin(∇2ψ(Axk − b))

= a[λmin(∇2ψ(Axk − b + tk A(̃xk − xk)))− λmin(∇2ψ(Axk − b))]
≤ a‖∇2ψ(Axk − b + tk A(̃xk − xk))− ∇2ψ(Axk − b)‖ ≤ aLψ‖A‖‖x̃ k − xk‖.

This shows that the desired result holds. ��

Lemma 17 Suppose that Assumption 2 holds. Define ε1 := min
{ 1
2+Lg

, ε0
2

}
. Then, for

k ∈ K with xk ∈ Bε1(x
∗), it holds that

‖dk‖ ≤ c dist(xk,X ∗),

where c := ν−1
minθ(2+ Lg)

1+τ−δ(1+ Lg + aL + ν(2+ Lg)
δ)+ L+2aL

2νminβ
+ 2.

Proof Let k ∈ K and xk ∈ Bε1(x
∗) be fixed. From the definition of x̃ k it follows that

0 ∈ ∇ f (̃xk)+ ∂ϕ(̃xk) and thus

∇ f (xk)− ∇ f (̃xk)+ (Hk + μk I )(̃x
k − xk) ∈ ∇ f (xk)

+(Hk + μk I )(̃x
k − xk)+ ∂ϕ(̃xk). (33)

Together with

0 ∈ ∇ f (xk)+ (Hk + μk I )(x
k − xk)+ ∂ϕ(xk) (34)

it follows from the strong monotonicity of the mapping ∇ f (xk) + (Hk + μk I )(· −
xk)+ ∂ϕ(·) on Rn that

〈
∇ f (xk)−∇ f (̃xk)+ (Hk + μk I )(̃x

k − xk), x̃ k − xk
〉
≥ μk‖x̃ k − xk‖2. (35)
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As in (32) it holds that x̃ k ∈ Bε0(x
∗) and from Lemma 14 it follows that ‖r(xk)‖ ≤ 1.

We now get

‖xk − xk‖ = ‖xk − x̃ k + x̃ k − xk‖ ≤ ‖xk − x̃ k‖ + ‖x̃ k − xk‖
≤ 1

μk
‖∇ f (xk)− ∇ f (̃xk)+ (Hk + μk I )(̃x

k − xk)‖ + ‖x̃ k − xk‖

≤ 1

μk

(
‖∇ f (xk)− ∇ f (̃xk)+ Hk (̃x

k − xk)‖
)
+ 2‖x̃ k − xk‖

≤ 1

μk

(
L

2
‖x̃ k − xk‖2 +�k‖A2‖‖x̃ k − xk‖

)
+ 2‖x̃ k − xk‖

≤ L + 2aLψ‖A‖3
2μk

dist(xk,X ∗)2 + 2 dist(xk,X ∗)

= L + 2aL

2νk‖r(xk)‖δ
dist(xk,X ∗)2 + 2 dist(xk,X ∗)

≤ L + 2aL

2νk‖r(xk)‖q dist(xk,X ∗)2 + 2 dist(xk,X ∗)

≤ L + 2aL

2νminβ dist(xk,X ∗)
dist(xk,X ∗)2 + 2 dist(xk,X ∗)

=
(
L + 2aL

2νminβ
+ 2

)
dist(xk,X ∗),

(36)

where we used (35) together with the Cauchy-Schwarz inequality in the second, the
triangle inequality and (28) in the fourth, Lemma 16 and the definition of x̃ k in the
fifth, q ≥ δ together with ‖r(xk)‖ ≤ 1 in the sixth, and Assumption 2(c) in the seventh
inequality. In the second equality we used Lemma 6(b). Since k ∈ K, it holds that

‖Gk‖ ≤ ‖∇2 f (xk)‖ +�k‖A	A‖ + μk ≤ Lg + aL dist(xk,X ∗)+ ν‖r(xk)‖δ

≤ Lg + aL dist(xk,X ∗)+ ν(2+ Lg)
δ dist(xk,X ∗)δ

≤ Lg + aL + ν(2+ Lg)
δ,

where we used the triangle inequality in the first, (30), Lemmas 16 and 6(e) in the
second, Lemma 14 in the third, and dist(xk,X ∗) ≤ 1 (simply because xk ∈ Bε1(x

∗)
and ε1 < 1) in the last inequality. We now obtain

‖dk‖ = ‖x̂ k − xk + xk − xk‖ ≤ ‖x̂ k − xk‖ + ‖xk − xk‖
≤ ν−1

minθ(1+ ‖Gk‖)‖r(xk)‖1+τ−δ + ‖xk − xk‖
≤ ν−1

minθ(1+ Lg + aL + ν(2+ Lg)
δ)(2+ Lg)

1+τ−δ dist(xk,X ∗)+ ‖xk − xk‖
≤ c dist(xk,X ∗),

where we used Lemma 15 in the second, Lemma 14, dist(xk,X ∗) ≤ 1, τ ≥ δ and the
previous inequality in the third, and (36) in the last inequality. ��
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Lemma 18 Suppose that Assumption 2 holds. Define ε2 := min
{ 1
2+Lg

, 1
aLψ‖A‖ ,

ε0
1+c

}
,

where c > 0 is the constant from Lemma 17. For k ∈ K with xk ∈ Bε2(x
∗), it then

holds that

‖r(x̂ k)‖ ≤ ĉ‖r(xk)‖min{δ+q,1+τ }, (37)

dist(x̂ k,X ∗) ≤ c̃ dist(xk,X ∗)(1+δ)q , (38)

with constants ĉ and c̃ defined by

ĉ := c2L + 2acLψ‖A‖3 + 2βcν

2β2 + θ,

c̃ := 1

β

(
c2L

2
+ acLψ‖A‖3 + cν(2+ Lg)

δ + θ(2+ Lg)
1+τ

)q

.

Proof Using the definition of ε2 as well as Lemmas 14 and 16, it follows that

dist(xk,X ∗) ≤ 1, ‖r(xk)‖ ≤ 1 and �k ≤ 1

whenever xk ∈ Bε2(x
∗). Additionally, for xk ∈ Bε2(x

∗) ⊆ Bε1(x
∗), it follows from

Lemma 17 that

‖x̂ k − x∗‖ ≤ ‖xk − x∗‖ + ‖dk‖ ≤ (1+ c)‖xk − x∗‖ ≤ ε0,

i.e., x̂ k ∈ Bε0(x
∗). We now get

‖r(x̂ k)‖ = ‖ proxϕ(x̂ k − ∇ f (x̂ k))− x̂ k‖
= ‖ proxϕ(x̂ k − ∇ f (x̂ k))− proxϕ(x̂ k −∇ f (xk)− (Hk + μk I )d

k)− Rk(x̂
k)‖

≤ ‖ proxϕ(x̂ k −∇ f (x̂ k))− proxϕ(x̂ k − ∇ f (xk)− (Hk + μk I )d
k)‖ + ‖Rk(x̂

k)‖
≤ ‖∇ f (x̂ k)−∇ f (xk)− (Hk + μk I )d

k‖ + ‖Rk(x̂
k)‖

≤ ‖∇ f (x̂ k)−∇ f (xk)−∇2 f (xk)dk‖ +�k‖A	Adk‖ + μk‖dk‖ + ‖Rk(x̂
k)‖

≤ L

2
‖dk‖2 +�k‖A‖2‖dk‖ + μk‖dk‖ + ‖Rk(x̂

k)‖

≤ c2L

2
dist(xk ,X ∗)2 + acLψ‖A‖3 dist(xk ,X ∗)2 + cμk dist(x

k ,X ∗)+ ‖Rk(x̂
k)‖

≤ c2L

2β2 ‖r(xk)‖2q +
acLψ‖A‖3

β2 ‖r(xk)‖2q + cν

β
‖r(xk)‖δ+q + θ‖r(xk)‖1+τ

≤
(
c2L + 2acLψ‖A‖3 + 2βcν

2β2 + θ

)
‖r(xk)‖min{δ+q,1+τ },

where we used the nonexpansiveness in the second, (28) and �k ≤ 1 in the fourth,
Lemmas 16 and 17 in the fifth, Assumption 2(c), Lemma 6(e) and the inexactness
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criterion (13) in the sixth, and q ≥ δ together with ‖r(xk)‖ ≤ 1 in the last inequality.
Reusing the fifth inequality from above we also get

‖r(x̂ k)‖ ≤ c2L

2
dist(xk,X ∗)2 + acLψ‖A‖3 dist(xk,X ∗)2

+ cμk dist(x
k,X ∗)+ ‖Rk(x̂

k)‖

≤
(
c2L

2
+ acLψ‖A‖3 + cν(2+ Lg)

δ

)
dist(xk,X ∗)1+δ + θ‖r(xk)‖1+τ

≤
(
c2L

2
+ acLψ‖A‖3 + cν(2+ Lg)

δ + θ(2+ Lg)
1+τ

)
dist(xk,X ∗)1+δ,

where we used Lemmas 6(e), 14, dist(xk,X ∗) ≤ 1 and the inexactness criterion
(13) in the second, and Lemma 14 as well as τ ≥ δ in the third inequality. From
Assumption 2(c) and the previous inequality, we then obtain

dist(x̂ k,X ∗) ≤ 1

β
‖r(x̂ k)‖q ≤ c̃ dist(xk,X ∗)(1+δ)q ,

and this completes the proof. ��

We finally present the main local rate-of-convergence result.

Theorem 19 Suppose that Assumption 2 holds. Then {xk} converges to x∗ and the
sequence {‖r(xk)‖} converges to 0 at the rate of ρ := min{1+ τ, δ + q} > 1.

Proof We define the constants

ε3 := 1

2+ Lg

(η

ĉ

) 1
ρ−1

, ε4 :=
(

(1− c1)νminβ

cL(2+ Lg)q−δ

) 1
q−δ

ε5 := 1

2+ Lg

(
1+ Lg + ‖A‖2 + ν

νmin

)− 1
κ−1−δ

ε6 := min{ε2, ε3, ε4, ε5}, ε7 :=
(

ε6/

(
1+ c(2+ Lg)

q

β(1− ηq)

)) 1
min(1,q)

.

Assumption 2(a) ensures the existence of a subsetL ⊂ K with {xk}L → x∗. Consider
some k0 ∈ L with xk0 ∈ Bε7(x

∗) ⊂ Bε6(x
∗). We want to show that for all k ≥ k0, it

holds that

k ∈ K, (39a)

xk ∈ Bε6(x
∗). (39b)
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For k0 the above properties hold. Suppose now that (39) is satisfied for k0, ..., k with
some k ≥ k0. Using Lemma 10, we then get

aredk − c3predk ≥
1

2

(
(1− c3)μk − ‖∇2 f (ξ k)− ∇2 f (xk)‖

)
‖dk‖2

≥ 1

2

(
(1− c3)νmin‖r(xk)‖δ−q‖r(xk)‖q − cL dist(xk,X ∗)

)
‖dk‖2

≥ 1

2

(
(1− c3)νminβ‖r(xk)‖δ−q − cL

)
dist(xk,X ∗)‖dk‖2

≥ 1

2

(
(1− c3)νminβ(2+ Lg)

δ−qεδ−q
6 − cL

)
dist(xk,X ∗)‖dk‖2

≥ 0
(40)

for some c3 ∈ (c1, 1), where the second inequality follows from Lemma 6(b), (27)
and Lemma 17, the third from Assumption 2(c), the fourth from Lemma 14 and (39b)
together with q > δ and the fifth from the definition of ε6 ≤ ε4. It follows that ρk > c1.
We also get

‖r(xk)‖κ

μk‖dk‖ = ‖r(xk)‖κ−1 ‖r(xk)‖
μk‖dk‖

≤ ‖r(xk)‖κ−1 1+ ‖Gk‖
(1− θ)μk

≤ ‖r(xk)‖κ−1−δ 1+ ‖Hk‖ + μk

(1− θ)νmin

≤ (2+ Lg)
κ−1−δ 1+ Lg + ‖A‖2 + ν

(1− θ)νmin
εκ−1−δ
6

≤ 1

1− θ
,

where the first inequality follows from Lemma 9, the second from Lemma 6(b) and
νk ≥ νmin , the third from Lemma 14, (30), Lemma 6(e), �k ≤ 1 and ‖r(xk)‖ ≤ 1,
and the fourth from the definition of ε6 ≤ ε5. Together with (17) it then follows that

predk ≥
μk

2
‖dk‖2 ≥ 1− θ

2
‖dk‖‖r(xk)‖κ > pmin(1− θ)‖dk‖‖r(xk)‖κ .

Therefore, iteration k is successful or highly successful. Furthermore it holds that

‖r(xk+1)‖ = ‖r(x̂ k)‖ ≤ ĉ‖r(xk)‖ρ

= ĉ‖r(xk)‖ρ−1‖r(xk)‖
≤ ĉ

(
(2+ Lg) dist(x

k,X ∗)
)ρ−1 ‖r(xk)‖

≤ ĉ(2+ Lg)
ρ−1

(
1

2+ Lg

(η

ĉ

) 1
ρ−1

)ρ−1

‖r(xk)‖

= η‖r(xk)‖ = ηrk,
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where we used (37) in the first, Lemma 14 and ρ > 1 in the second, and the definition
of ε6 ≤ ε3 in the third inequality. In the last equality we used Lemma 6(b). It follows
that k + 1 ∈ K. For all j = k0, ..., k + 1 it holds that j ∈ K and thus

‖r(x j )‖ ≤ ηr j−1 = η‖r(x j−1)‖ ≤ ... ≤ η j−k0rk0 = η j−k0‖r(xk0)‖, (41)

by using Lemmas 6(a) and 6(b) repeatedly. Moreover, it holds that x j = x̂ j−1 =
x j−1+d j−1 as all iterations k0, ..., k are successful or highly successful by definition
of K. Thus we get

‖xk+1 − xk0‖ =
k∑

j=k0

‖d j‖ ≤ c
k∑

j=k0

dist(x j ,X ∗)

≤ c

β

k∑

j=k0

‖r(x j )‖q ≤ c

β
‖r(xk0)‖q

k∑

j=k0

(ηq) j−k0

≤ c

β
‖r(xk0)‖q

∞∑

j=0

(ηq) j = c

β(1− ηq)
‖r(xk0)‖q

≤ c(2+ Lg)
q

β(1− ηq)
‖xk0 − x∗‖q , (42)

where we used Lemma 17 in the first, Assumption 2(c) in the second, (41) in the third
and Lemma 14 in the last inequality. This implies

‖xk+1 − x∗‖ ≤ ‖xk+1 − xk0‖ + ‖xk0 − x∗‖ ≤ c(2+ Lg)
q

β(1− ηq)
ε7

q + ε7

≤
(
c(2+ Lg)

q

β(1− ηq)
+ 1

)
ε
min(1,q)
7 = ε6.

By induction, it follows that (39) holds for all k ≥ k0. For an iteration k ≥ k0 define
lk as the iteration which satisfies the following three properties:

lk ≤ k, lk ∈ L and j /∈ L for lk < j ≤ k. (43)

In words, lk is the last iteration belonging to L before iteration k. By construction it
follows that lk → ∞ if k → ∞ and therefore {xlk } → x∗. Similar to (42) it follows
for k ≥ lk ≥ k0 that

‖xk − x∗‖ ≤ ‖xk − xlk‖ + ‖xlk − x∗‖ ≤ c(2+ Lg)
q

β(1− ηq)
‖xlk − x∗‖q + ‖xlk − x∗‖.

Hence, {xk} converges to x∗. Now it immediately follows from (37) that {‖r(xk)‖}
converges to 0 at the rate of ρ > 1. ��
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Remark 20 Inequality (40) in the proof of Theorem 19 above is the reason why the
case q = δ is not covered by this local convergence theory (as in [23]). In particular,
q = δ = 1 is not allowed, which corresponds to the well-known case of quadratic
convergence under a Lipschitzian local error bound. Previous works on regularized
proximal Newton methods include this case, and it would be worthwhile to investigate
further why it must be excluded here.

Corollary 21 Suppose that Assumption 2 holds with q > 1
1+δ

. Then {xk} converges to
x∗, {‖r(xk)‖} converges to 0 at the rate of ρ > 1 and {dist(xk,X ∗)} converges to 0
at the rate of (1+ δ)q > 1.

Proof It holds that 1
1+δ

> 1−δ2

1+δ
= (1+δ)(1−δ)

1+δ
= 1 − δ, i.e. the assumption here is

stronger than in Assumption 2(c). The result follows directly from Theorem 19 and
(38). ��

6 Numerical results

In this section, we present the numerical results of Algorithm 1 (denoted as IRPNM-
reg) for various instances of Problem 1. We compare these results with the outcomes
of the inexact regularized proximal Newton method using line-search (IRPNM-ls)
proposed in [23], as well as a modern FISTA-type method (AC-FISTA) from [22].
Additionally,we consider a combined approach called IRPNM-reg-ls,which integrates
both IRPNM-reg and IRPNM-ls. In this method, the updates forμk (starting from line
6 in Algorithm 1) are performed after the line-search procedure described in step 4 of
[23, Algorithm 1].

We start by considering the convex logistic regression problem with l1-regularizer
(Sect. 6.1) and group regularizer (Sect. 6.2). Subsequently, we investigate three non-
convex problem classes introduced in [23]: l1-regularized Student’s t-regression
(Sect. 6.3), Group regularized Student’s t-regression (Sect. 6.4), and Restoration of
a blurred image (Sect. 6.5).

For all tests, we fix the parameters for IRPNM-reg (and IRPNM-reg-ls) as follows:
c1 = 10−4, c2 = 0.9, σ1 = 0.5, σ2 = 4, η = 0.9999, θ = 0.9999, α = 0.99,

a = 1, νmin = 10−8, ν0 = min
(

10−2

max(1,‖r(x0)‖) , 10
−4

)
, ν = 100, δ = 0.45, τ ≥ δ,

pmin = 10−8, and κ = 2. For IRPNM-ls and AC-FISTA, we adopt the recommended
parameters from their respective papers.

The tests are conducted using Matlab R2024a on a 64-bit Linux system with an
Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz and 16 GB RAM.

Since IRPNM-reg solves exactly the same subproblems as IRPNM-ls, we employ
the efficient strategy developed in [23]. This strategy solves the dual of an equivalent
reformulation of (12) using an augmented Lagrangian method. The semismooth sys-
tem of equations arising from the augmented Lagrangian method is solved using the
semismooth Newton method. Notably, this strategy is tailored to address problems
where ψ is a separable function, a characteristic shared by many applications, includ-
ing those under consideration here. Formore comprehensive details on the subproblem
solver, please refer to [23, Section 5.1].

123



An inexact regularized proximal Newton method without… 613

We terminate each of the tested methods once the current iterate xk satisfies
‖r(xk)‖ ≤ tol. Here, tol is chosen independently for each problem class and
further distinguished between the three second-order methods and AC-FISTA.

6.1 Solving of subproblems

The most important part in the implementation of Algorithm 1 is finding an approxi-
mate minimizer of subproblem (12). As we solve exactly the same subproblems as in
[23], we employ the efficient strategy developed in this paper, where the dual problem
of an equivalent reformulation of (12) is solved utilizing an augmented lagrangian
method. In the following we briefly summarize the idea of this method. For more
comprehensive details, please refer to [23, Section 5.1].

We can write Hk = A	k Ak with Ak = (Dk + a(−λmin(Dk))+ I )1/2A for Dk =
∇2ψ(Axk − b). When the function ψ is separable, it is very cheap to achieve such a
reformulation of Hk as Dk is a diagonal matrix. Let bk = (Hk + μk I )xk − ∇ f (xk)
and ϕk(·) ≡ ϕ(·)+ μk

2 ‖ · ‖2. Then, subproblem (12) can be equivalently written as

min
y∈Rn ,z∈Rm

{
1

2
‖z‖2 − b	k y + ϕk(y) s.t. Ak y − z = 0

}
, (44)

which is a Lasso problemwhen ϕ takes the l1-norm. Let g∗k : Rn → R be the conjugate
function of gk . The dual problem of (44) is

min
ξ∈Rm ,ζ∈Rn

{
1

2
‖ξ‖2 + ϕ∗k (ζ ) s.t. A	k ξ + ζ − bk = 0

}
. (45)

The basic iterate steps of the augmented Lagrangian method for (45) are

(
ξ j+1, ζ j+1

)
:= argmin

ξ∈Rm ,ζ∈Rn
Lσ j (ξ, ζ ; x j ), (46a)

x j+1 := x j + σ j

(
A	k ξ j+1 + ζ j+1 − bk

)
, (46b)

σ j+1 ↑ σ∞ ≤ ∞, (46c)

where Lσ (·, ·; x) is the augmented Lagrangian function of (45) associated to the
penalty factor σ > 0 and the Lagrange multiplier x . For the ALM, the main computa-
tion cost is the solution of the subproblem (46a). An elementary calculation can verify
that ζ j+1 = P

σ−1
j

ϕ∗k (bk − A	k ξ j+1 − σ−1
j x j ) with

ξ j+1 = argmin
ξ∈Rn

� j (ξ) := 1

2
‖ξ‖2 + e

σ−1
j

ϕ∗k (bk − A	k ξ − σ−1
j x j ). (47)

By the strong convexity of � j , ξ j+1 is a solution of (47) if and only if it is the unique
root to the system∇� j (ξ) = 0, which is semismooth, and is also strongly semismooth
if ϕ is a piecewise linear-quadratic convex function. The Clarke Jacobian of ∇� j is
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always nonsingular due to its strong monotonicity. Moreover, for some specific ϕ, one
can achieve the exact characterization of its Clarke Jacobian. Hence, we apply the
semismooth Newton method for seeking a root of solving ∇� j (ξ) = 0.

By combining the optimality conditions of (46a) with equation (46b), we deduce
that ζ j+1 ∈ ∂ϕk(−x j+1), which implies that w j+1 := (Hk +μk I )x̂ k − bk + ζ j+1 ∈
∂q̂k(x̂ k) if take x̂ k = −x j+1. Inspired by this and inexactness criterion (13), we ter-
minate the ALM at iterate (ξ j+1, ζ j+1, x j+1 when q̂k(−x j+1) ≤ F(xk) − αμk

2 ‖ −
x j+1 − xk‖2 and Rk(−x j+1) ≤ εALM := ηmin{‖r(xk)‖, ‖r(xk)‖1+τ }. In the imple-
mentation of the dual SNALM, we adjust the penalty factor σ j in terms of the primal
and dual infeasibility.

6.2 l1-regularized logistic regression

First we explore the logistic regression problem defined as

min
y,v

1

m

m∑

i=1

log
(
1+ exp

(
−bi (a

	
i y + v)

))
+ λ‖y‖1. (48)

In this context, ai ∈ R
n denotes feature vectors, bi ∈ {−1, 1} represents corresponding

labels for i = 1, ...,m, and we have λ > 0, y ∈ R
n , and v ∈ R. In standard instances

of this problem, m ! n. The logistic regression problem aligns with the general form
of (1), where ψ : Rn+1 → R is defined as

ψ(u) := 1

m

m∑

i=0

log(1+ exp(−ui )), u := (y	, v)	,

where the i-th row of the matrix A ∈ R
m×(n+1) takes the form of (bia	i , bi ), and

b = 0 ∈ R
m . The regularization function ϕ : Rn+1 → R is given by ϕ(u) := λ‖y‖1.

Following the methodology outlined in [5] and, we create test problems using
n = 104 feature vectors and m = 106 training sets. Each ai has approximately s ∈
{10, 100} nonzero entries, independently sampled from a standard normal distribution.
We choose ytrue ∈ R

n with 10s non-zero entries and vtrue ∈ R, independently sampled
from a standard normal distribution. Labels bi are determined by

bi = sign
(
a	i ytrue + vtrue + vi

)
,

where vi ∈ R, i = 1, ...,m, are generated independently from a normal distribution
with variance 0.1. Similar to [16], the regularization parameterλ takes the form cλλmax,
with cλ ∈ {1, 0.1, 0.01}, and

λmax = 1

m

∥
∥∥∥∥∥

m−
m

∑

i : bi=1

ai + m+
m

∑

i : bi=−1

ai

∥
∥∥∥∥∥

,
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Table 1 Averaged results of IRPNM-reg and IRPNM-ls for 10 independent trials with tolerance tol =
10−5

cλ s IRPNM-reg IRPNM-ls

Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

1 10 63.0 0.0904 7.72e−06 39.8 63.0 0.0904 7.73e−06 34.8

100 4.4 0.4518 3.48e−06 18.1 4.4 0.4518 3.49e−06 17.8

0.1 10 49.6 0.0785 9.98e−06 149.2 32.0 0.0785 9.99e−06 116.5

100 7.9 0.2434 9.62e−06 252.6 8.2 0.2434 9.63e−06 262.2

0.01 10 117.3 0.0727 1.00e−05 227.4 87.3 0.0727 1.00e−05 193.2

100 13.6 0.0844 9.92e−06 734.7 16.6 0.0844 9.98e−06 1038.2

Table 2 Averaged results of IRPNM-reg-ls and AC-FISTA for 10 independent trials with tolerance tol =
10−5

cλ s IRPNM-reg-ls AC-FISTA

Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

1 10 63.0 0.0904 7.72e−06 36.4 21.2 0.0904 6.36e−06 13.4

100 4.4 0.4518 3.48e−06 18.7 10.0 0.4518 6.14e−06 50.9

0.1 10 66.1 0.0785 9.98e−06 136.9 210.2 0.0784 9.73e−06 129.5

100 7.9 0.2434 9.62e−06 251.6 100.9 0.2434 8.02e−06 449.0

0.01 10 119.2 0.0727 9.99e−06 188.7 272.4 0.0727 9.84e−06 162.9

100 13.6 0.0844 9.92e−06 757.4 179.8 0.0844 8.80e−06 759.7

representing the smallest value such that y∗ = (0, v∗) is a solution of (48). Here, m+
and m− represent the counts of indices where bi is equal to +1 or −1, respectively.
The selection of this value is motivated in [18]. For each method, we select the starting
point as x0 = 0 and carry out 10 independent trials—that is, with ten sets of randomly
generated data—for every combination of parameters s and cλ. Tables 1 and 2 present
the averaged number of (outer) iterations, objective values, residuals and running times
for the three second-order methods and AC-FISTA, respectively.

We observe that IRPNM-reg and IRPNM-ls produce identical objective values.
Both methods exhibit improved performance for larger values of cλ. Additionally,
the algorithms perform better with sparser data (s = 10) for cλ ∈ {0.1, 0.01}, but
worse for cλ = 1. The performance of the methods is comparable, with IRPNM-
ls demonstrating slightly superior results in the case of s = 10, while IRPNM-reg
performs better when s = 100 and cλ = 0.01.

Runtimes of IRPNM-reg-ls are comparable to those of IRPNM-reg, achieving the
best results of the three second-order methods in two cases. AC-FISTA produces
nearly identical objective values as the second-ordermethods. It generally outperforms
the second-order methods for s = 10 but performs worse for s = 100, with some
exceptions. Notably, in the case of s = 10 and cλ = 0.1, IRPNM-ls is slightly faster
than AC-FISTA. Conversely, for s = 100 and cλ = 0.01, AC-FISTA significantly
outperforms IRPNM-ls, nearly matching the runtime of IRPNM-reg.
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6.3 Group regularized logistic regression

We consider the group regularized logistic regression problem, given by

min
y,v

1

m

m∑

i=1

log
(
1+ exp

(
−bi (a

	
i y + v)

))
+ λ

l∑

i=1

‖xJi ‖2,

where the data ai ∈ R
n , bi ∈ {−1, 1} for i = 1, ...,m and v ∈ R follows the same

generation process as in Sect. 6.2 (with s = 10). The index sets J1, ..., Jl form a
partition of {1, ..., n}, i.e. they satisfy Ji ∩ J j = ∅ for i �= j and ∪l

i=1 Ji = {1, ..., n}.
We organize the n = 104 in two different configurations: l = 1000 groups of 100
variables and l = 100 groups of 1000 variables, while consistently preserving a
sequential group structure. The regularization parameter λmirrors the one in Sect. 6.2
with cλ ∈ {1, 0.1, 0.01}, and the initial value is set as x0 = 0. Similar to the previous
test problem, we conduct 10 independent trials for each value of cλ. Tables 3 and
4 present the averaged number of (outer) iterations, objective values, residuals and
running times for the two second-order methods and AC-FISTA, respectively.

Both methods yield the same objective values within comparable run times. In all
cases except one for IRPNM-reg, the problems with 1000 groups of 100 variables
were solved faster than those with 100 groups of 1000 variables.

While IRPNM-reg-ls generally performs slightly worse than IRPNM-reg in most
cases, it demonstrates superior speed in the scenario where l = 100 and cλ = 0.01.
There are only two cases where AC-FISTA returns slightly worse objective values
than the second-order methods. When l = 100, AC-FISTA underperforms compared
to the second-order methods. For l = 1000, AC-FISTA exhibits inferior performance
for large cλ values but superior performance for smaller cλ values.

Table 3 Averaged results of IRPNM-reg and IRPNM-ls for 10 independent trials with tolerance tol =
10−5

l cλ IRPNM-reg IRPNM-ls

Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

1000 1 7.3 0.3049 8.22e−06 16.3 7.4 0.3049 8.57e−06 23.7

0.1 11.6 0.2725 9.93e−06 104.9 9.6 0.2725 9.96e−06 99.2

0.01 23.2 0.2574 9.98e−06 184.6 22.2 0.2574 1.00e−05 180.9

100 1 13.8 0.3039 9.74e−06 62.6 7.1 0.3039 9.80e−06 57.4

0.1 10.0 0.2690 9.92e−06 88.0 9.9 0.2690 9.98e−06 123.9

0.01 25.0 0.2560 9.99e−06 223.5 24.3 0.2560 1.00e−05 258.2
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Table 4 Averaged results of IRPNM-reg-ls and AC-FISTA for 10 independent trials with tolerance tol =
10−5

l cλ IRPNM-reg-ls AC-FISTA

Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

1000 1 7.3 0.3049 8.22e−06 23.0 44.3 0.3049 8.23e−05 28.1

0.1 9.8 0.2725 9.92e−06 125.7 134.3 0.2726 9.23e−05 81.4

0.01 12.3 0.2574 9.98e−06 238.0 209.8 0.2582 9.84e−05 122.2

100 1 7.6 0.3039 9.70e−06 77.0 151.5 0.3039 9.44e−06 92.6

0.1 10.0 0.2690 9.92e−06 110.3 307.9 0.2690 9.76e−06 251.8

0.01 13.3 0.2560 9.99e−06 186.1 607.6 0.2560 9.90e−06 343.9

6.4 l1-regularized student’s t-regression

We consider the Student’s t-regression problem with l1-regularizer, given by

min
x

m∑

i=1

log(1+ (Ax − b)i/ν)+ λ‖x‖1,

where A ∈ R
m×n , b ∈ R

m , ν > 0 and λ > 0. The test examples are randomly gener-
ated following the same procedure as in [2, 23, 29]. The matrix A is formed by taking
m = n/8 random cosine measurements, i.e. Ax = (dct(x))J , where dct denotes
the discrete cosine transform, and J ⊆ {1, ..., n} is an index set selected at random
with |J | = m. A true sparse signal xtrue of length n = 5122 is created, featuring

s = " n
40# randomly selected non-zero entries, calculated as x truei = η1(i)10

dη2(i)
20 ,

where η1(i) ∈ {−1, 1} denotes a random sign and η2(i) is uniformly distributed in the
interval [0, 1]. The signal possesses a dynamic range of d dBwith d ∈ {20, 40, 60, 80}.
The vector b is then obtained by summing Ax true and Student’s t-noise with a degree
of freedom of 4, rescaled by 0.1.

The regularization parameter is expressed as λ = cλ‖∇ f (0)‖∞, where cλ ∈
{0.1, 0.01}. For each combination of values d and cλ we run the three solvers with
ν = 0.25 and xinit = A	b over 10 independent trials. Tables 5 and 6 present the
averaged number of (outer) iterations, objective values, residuals and running times
for IRPNM-reg, IRPNM-ls and IRPNM-reg-ls with tol = 10−5, and AC-FISTA
with tol = 10−4, respectively.

In most cases, the runtimes for the two methods are comparable. However, for
cλ = 0.01 and d ∈ {60, 80} IRPNM-reg performs better, requiring less than a third of
the runtime of IRPNM-ls for d = 80.

IRPNM-reg-ls performs similarly to IRPNM-reg. Notably, in most cases, the aver-
age number of iterations is exactly the same for bothmethods, indicating that thewhole
step size is consistently chosen in the line search. The two methods are essentially
identical in these scenarios. Note that here we chose tol = 10−4 for AC-FISTA
instead of 10−5. It solves all the problems and returns the same objective values. In all
cases it takes longer to solve the problems with tolerance 10−5 than the second-order
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Table 5 Averaged results of IRPNM-reg and IRPNM-ls for 10 independent trials with tolerance tol =
10−5

cλ d IRPNM-reg IRPNM-ls

Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

0.1 20 28.4 9532.54 8.78e−06 13.5 24.2 9532.54 8.92e−06 13.1

40 19.5 23812.88 6.00e−06 32.0 17.2 23812.87 6.75e−06 33.3

60 24.7 54228.01 8.07e−06 88.1 23.8 54228.01 6.85e−06 84.2

80 80.3 134779.26 8.54e−06 281.5 109.7 134779.26 8.03e−06 323.2

0.01 20 11.8 1020.43 7.09e−06 37.2 8.9 1020.44 7.08e−06 37.0

40 15.5 2395.07 7.90e−06 129.4 14.1 2395.07 7.63e−06 122.4

60 12.4 5424.40 7.33e−06 170.5 17.7 5424.40 7.65e−06 261.9

80 16.3 13478.10 6.17e−06 314.2 116.3 13478.10 7.50e−06 1103.9

Table 6 Averaged results of IRPNM-reg-ls and AC-FISTA for 10 independent trials with tolerance tol =
10−5 and tol = 10−4, respectively

IRPNM-reg-ls AC-FISTA

cλ d Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

0.1 20 24.6 9532.54 8.80e−06 13.0 507.5 9532.54 9.71e−05 31.4

40 16.1 23812.88 5.63e−06 32.2 1041.5 23812.88 9.84e−05 95.2

60 24.7 54228.01 8.07e−06 78.2 2238.9 54228.01 9.90e−05 134.6

80 80.3 134779.26 8.54e−06 265.6 7240.7 134779.26 9.95e−05 434.2

0.01 20 11.8 1020.43 7.09e−06 38.7 1488.8 1020.43 9.97e−05 98.0

40 15.5 2395.07 7.90e−06 142.9 2531.7 2395.07 9.98e−05 162.8

60 12.4 5424.40 7.33e−06 182.7 5391.4 5424.40 9.94e−05 327.9

80 16.3 13478.10 6.17e−06 306.1 20694.0 13478.10 9.93e−05 1243.0

methods with tolerance 10−6. However, in some cases (e.g. cλ = 0.01 and d = 80),
it does not perform much worse than IRPNM-ls.

6.5 Group penalized student’s t-regression

We consider the Student’s t-regression problem with group regularizer, given by

min
x

m∑

i=1

log(1+ (Ax − b)i/ν)+ λ

l∑

i=1

‖xJi ‖2.

This test problem is taken from [23, Section 5.3]. A true group sparse signal xtrue ∈ R
n

of length n = 5122 with s nonzero groups is generated, whose indices are chosen
randomly. Each nonzero entry of xtrue is calculated using the same formula as in
Sect. 6.3. The matrix A ∈ R

m×n and the vector b ∈ R
m are also obtained in the same
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way as in Sect. 6.3, with the only difference being the choice of degree of freedom 5
for the Student’s t-noise.

The regularization parameter is set as λ = 0.1‖∇ f (0)‖. For each combination of
values d ∈ {60, 80} dB and non-zero groups s = {16, 64, 128}we run the three solvers
with ν = 0.2 and xinit = A	b over 10 independent trials. Tables 7 and 8 present the
averaged number of (outer) iterations, objective values, residuals and running times
for IRPNM-reg and IRPNM-ls with tol = 10−5, and AC-FISTA with tol = 10−3,
respectively.

Bothmethods produce—essentially—the sameobjective values. IRPNM-reg shows
better performance than IRPNM-ls for d = 60 and significantly better for d = 80.

Again, runtimes of IRPNM-reg-ls are similar to those of IRPNM-reg. In this exam-
ple, we had to select tol = 10−3 for AC-FISTA. It is evident that this reduced
accuracy leads to higher average objective values. For this problem class, AC-FISTA
is clearly outperformed by both second-order methods.

6.6 Nonconvex image restoration

In this section we apply the algorithms to image restoration using real-world data.
The problem is the same as in [19, 23]. The goal is to find an approximation x ∈ R

n

Table 7 Averaged results of IRPNM-reg and IRPNM-ls for 10 independent trials with tolerance tol =
10−5

d s IRPNM-reg IRPNM-ls

Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

60 16 6.1 12711.86 6.54e−06 16.79 9.0 12711.86 8.44e−06 16.69

64 6.7 17852.99 8.65e−06 19.53 12.0 17852.99 8.08e−06 26.06

128 7.0 21670.18 8.64e−06 20.16 14.9 21670.18 9.13e−06 34.48

80 16 9.0 37037.71 9.26e−06 38.30 54.8 37037.71 9.67e−06 133.25

64 11.0 52741.58 7.40e−06 49.86 91.7 52741.58 9.77e−06 245.62

128 13.3 63451.74 7.07e−06 61.90 128.2 63451.74 9.40e−06 372.52

Table 8 Averaged results of IRPNM-reg-ls and AC-FISTA for 10 independent trials with tolerance tol =
10−5 and tol = 10−3, respectively

d s IRPNM-reg-ls AC-FISTA

Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

60 16 6.3 12711.87 6.96e−06 17.41 4204.3 12711.87 9.91e−04 318.76

64 7.0 17852.99 8.98e−06 18.10 6282.8 17853.02 1.00e−03 438.99

128 7.1 21670.19 7.56e−06 21.01 8936.6 21670.23 1.00e−03 592.16

80 16 9.1 37037.71 9.49e−06 38.27 20954.6 37037.97 9.97e−04 1493.72

64 11.0 52741.59 7.66e−06 49.80 30273.6 52742.38 9.93e−04 1926.70

128 13.3 63451.74 6.63e−06 64.73 31849.3 63452.89 9.91e−04 1925.60
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of the original image xtrue ∈ R
n from a noisy blurred image b ∈ R

n and a blur
operator A ∈ R

n×n , i.e., we seek x with Ax ≈ b. The objective function incorporates
a regularization term λ‖Bx‖1 to ensure smooth gradations and antialiasing in the final
image, where B : Rn → R

n is a two-dimensional discrete Haar wavelet transform.
The problem can be expressed as

min
x

m∑

i=1

log(1+ (Ax − b)i )+ λ‖Bx‖1,

with λ > 0. Making use of the orthogonality of B, the problem can be reformulated
equivalently as

min
y

m∑

i=1

log(1+ (AB	y − b)i )+ λ‖y‖1,

which clearly is an instance of the problem class considered in section 6.3.
The test setup being identical to [19, 23], we select the 256× 256 grayscale image

cameraman.tif as the test image xtrue ∈ R
n with n = 2562. The blur operator A

is a 9 × 9 Gaussian filter with a standard deviation of 4, and B is a two-dimensional
discrete Haar wavelet of level 4. The noisy image b is created by applying A to the
original cameraman test image xtrue and adding Student’s t-noise with degree of free-
dom 1 and rescaled by 10−3. For each λ ∈ {10−2, 10−3, 10−4}, we run the three
solvers with yinit = Bb and tol = 10−5 for 10 independent trials. Here we decided
to use νmin = 10−4 instead of 10−8. The reason for this change is that in this test sce-
nario, instances where the subproblem couldn’t be solvedwithin the desiredmaximum
number of iterations were much more frequent. Consequently, a significantly higher
number of unsuccessful iterations occurred. It is noteworthy that these unsuccessful
iterations tend to negatively affect IRPNM-reg more than IRPNM-ls. This is because
the line search enables the algorithm to still make some progress, whereas IRPNM-reg
simply repeats solving the same subproblem with a larger regularization parameter.
Given that subproblems become more challenging to solve with smaller regulariza-
tion parameters, selecting νmin = 10−4 instead of 10−8 notably reduced the number of
unsuccessful iterations and consequently enhanced the performance of IRPNM-reg.
See Fig. 1 for a comparison of the original, blurred, and reconstructed images using
IRPNM-regwithλ = 10−2. Table 9 presents the averaged number of (outer) iterations,
objective values, residuals and running times for the three second-order methods and
AC-FISTA.

All of the three second-order methods produce similar objective values for all
cases, with IRPNM-ls showing slightly better runtime performance than IRPNM-reg.
The hybrid method IRPNM-reg-ls yields similar results as IRPNM-ls, performing
slighty worse for λ = 10−3 and slightly better for λ = 10−4. We can see that AC-
FISTA converges (on average) to slightly better stationary points than the second-order
methods for λ = 10−3 and λ = 10−4. Additionally, it demonstrates good runtime
performance (Table 9).
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Fig. 1 Nonconvex image restoration with IRPNM-reg for λ = 10−2 and tol = 10−4 (reconstructed
images with other methods are omitted since they are indistinguishable from those obtained with IRPNM-
reg)

Table 9 Averaged results of IRPNM-reg, IRPNM-ls, IRPNM-reg-ls and AC-FISTA for 10 independent
trials with tolerance tol = 10−4

λ Iter F(x) ‖r(x)‖ Time Iter F(x) ‖r(x)‖ Time

IRPNM-reg IRPNM-ls

1e-2 97.4 11245.27 9.84e−05 200.15 99.3 11245.27 9.77e−05 201.37

1e-3 115.1 1199.45 9.38e−05 465.71 113.1 1199.45 8.77e−05 427.08

1e-4 122.7 146.99 9.10e−05 709.44 121.3 146.99 9.55e−05 667.09

IRPNM-reg-ls AC-FISTA

1e-2 97.4 11245.27 9.84e−05 199.33 2086.7 11245.27 9.88e−05 279.63

1e-3 113.3 1199.45 9.66e−05 445.34 3486.9 1199.38 9.86e−05 494.03

1e-4 118.7 146.99 9.20e−05 647.46 6825.9 146.79 9.85e−05 908.78

6.7 Discussion

Inmany test instances, the runtimes of the three second-ordermethods are comparable,
which is not surprising given that the subproblem solver plays a significant role and is
the same for allmethods. In the test problemswhere IRPNM-reg performs significantly
better than IRPNM-ls, the runtime difference seems to stem from the update strategy
for μk employed in this paper. We conclude this because the hybrid method, IRPNM-
reg-ls, performs similarly to IRPNM-reg in these cases, suggesting that the way in
which xk+1 is determined by the direction dk plays a minor role compared to the
update strategy of μk .

The only test problem where IRPNM-reg does not perform well with standard
parameters is the Nonconvex Image Restoration. Even though changing νmin to 10−4

led to IRPNM-reg performing similarly to IRPNM-ls, it is undesirable to have to
fine-tune parameters across different test problems. For this problem, IRPNM-reg-
ls performed similarly to IRPNM-ls, suggesting that IRPNM-reg-ls combines the
advantages of bothmethods,mirroring the performance ofwhichevermethod performs
better between IRPNM-reg and IRPNM-ls.

123



622 S. vom Dahl, C. Kanzow

7 Final remarks

In this work, we introduced an inexact proximal Newton method without line search,
ensuring global convergence through a careful update strategy for the regularization
parameter based on the previous iteration. A superlinear convergence rate of the iterate
sequence was shown under a local Hölderian error bound condition and confirmed in
numerical tests across various problem classes.
Our findings suggest several avenues for future research. Similar convergence results,
i.e. without requiring a global Lipschitz assumption on ∇ f , may be achievable for an
inexact proximal Newtonmethod using line search. Exploring analogous outcomes for
a proximalQuasi-Newtonmethod is another potential research direction. Additionally,
a convergence analysis for δ = 0 could be pursued under the assumption that F is
a KL (Kurdyka-Łojawiewicz) function, following the approach in [23]. Finally, the
concept of second-order stationarity is not standard and warrants further exploration.
It would be particularly interesting to determine whether similar convergence results
can be achieved for stationary points that do not satisfy second-order stationarity.
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