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Abstract
We consider the sparse optimization problem with nonlinear constraints and an objec-
tive function, which is given by the sum of a general smoothmapping and an additional
term defined by the �0-quasi-norm. This term is used to obtain sparse solutions, but
difficult to handle due to its nonconvexity and nonsmoothness (the sparsity-improving
term is even discontinuous). The aim of this paper is to present two reformulations of
this program as a smooth nonlinear program with complementarity-type constraints.
We show that these programs are equivalent in terms of local and global minima and
introduce a problem-tailored stationarity concept, which turns out to coincide with the
standard KKT conditions of the two reformulated problems. In addition, a suitable
constraint qualification as well as second-order conditions for the sparse optimization
problem are investigated. These are then used to show that three Lagrange–Newton-
type methods are locally fast convergent. Numerical results on different classes of test
problems indicate that these methods can be used to drastically improve sparse solu-
tions obtained by some other (globally convergent) methods for sparse optimization
problems.
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1 Introduction

The sparse(st) optimization problem considered in this paper is the constrained prob-
lem

min
x

f (x) + ρ‖x‖0 s.t. x ∈ X , (SPO)

with a parameter ρ > 0, a feasible set X (usually) given by

X = {x ∈ R
n | g(x) ≤ 0, h(x) = 0}

with (at least) continuous functions f : Rn → R, g : Rn → R
m , h : Rn → R

p and
‖x‖0 being the number of nonzero components xi of the vector x . Following standard
terminology, we call ‖x‖0 the �0-norm throughout this manuscript though it is not a
norm. Typical applications, where sparse solutions of a given optimization problem
are required, include compressed sensing for sparse representation of signals or image
data, sparse portfolio selection problems, feature selection in classification learning,
sparse regression or the sparse principal component analysis, see [34, Section 2] for
an overview and references.

Following [23], the solution methods for problems like SPO can be divided into the
following three categories: (a) convex approximations, (b) nonconvex approximations,
and (c) nonconvex exact reformulations.

The most common convex approximation technique uses the �1-norm instead of
the �0-norm in SPO. An overview on such �1-surrogate models, their advantages and
solution approaches can be found in [34, Section 4.1]. Provided that f and X them-
selves are convex, the resulting optimization problem is convex (though nonsmooth)
and can therefore be solved by a variety of methods for convex optimization, see [1].
This approach is very popular, for example, in solving compressed sensing problems.
On the other hand, there exist prominent applications, where the �1-norm provides
absolutely no sparsity (like the portfolio optimization problem used in our numerical
section).

This drawback leads to other sparsity improving terms that result in noncon-
vex approximation schemes. A natural choice is to use the �p-quasi-norm for some
p ∈ (0, 1), which is no longer convex, but still continuous, see [19]. Despite its non-
convexity, if there are no constraints (i.e., X = R

n), the resulting problem can still be
solved relatively efficiently by a proximal-typemethod. For additional constraints, one
can apply an augmented Lagrangian-type method and use the proximal-type approach
to solve the resulting (unconstrained) subproblems, see [10, 26]. In principle, these
techniques can also be used for the �0-norm, but the discontinuity still causes some
trouble and typically leads to slowly convergent (proximal-type) gradient methods,
see [26]. Another method belonging to the class of nonconvex approximations is
the penalty decomposition method [25], which introduces an additional variable and
solves the resulting problem by an alternating minimization technique. Also the DC-
type methods (DC = difference of convex) described in [23] result in a nonconvex
approximation which is shown to be exact under some additional assumptions, see
also the DC-reformulation of the �0-norm from [20] (this reformulation, however, is
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The sparse(st) optimization problem: reformulations... 79

applied to cardinality-constrained problems where the �0-term is not in the objective
function but in the constraints, see below for a more detailed discussion).

Finally, regarding the class (c) of exact nonconvex reformulations, there are, to
the best of our knowledge, still just a very few papers providing such reformulations.
A natural choice is to use a mixed-integer program, cf. reformulation MIP. This is
useful for finding sparse solutions of – often quadratic – problems, whose dimension
is not too large, and allows, in principle, to compute a global minimum, see e.g.
[2]. By modifying the objective function with a suitable regularizing term, c.f. [3],
also larger problem dimensions can be handled. For nonlinear programs or large-scale
problems, however, this typically leads to an intractable reformulation. One alternative
approach is the complementarity-type reformulation suggested in [16], see also [4] for
a similar approach in the context of low-rank matrix recovery, which can be shown to
be completely equivalent to the original sparse optimization problem SPO. The focus
of the paper [16], however, is slightly different.

More precisely, in this paper, we present two reformulations of the general sparse
optimization problem SPO. These reformulations are introduced in Sect. 2, and
partially motivated by a related approach from [6, 8] for cardinality-constrained
optimization problems, cf. the corresponding discussion in Sect. 2. One of the two
reformulations is exactly the one from [16] that we already mentioned previously.
Note that the subsequent results shown for our two reformulated problems are even
new for the approach from [16]. In particular, we verify in Sect. 3 that problem SPO
and our two reformulations are equivalent in terms of both local and global minima
an observation not stated in [16]. We further stress that the related approaches for
cardinality-constrained problems [6, 8] yield a complete equivalence with respect to
global minima only, not with respect to local minima. The full equivalence between
both global nad local minima in the case of SPO is therefore a quite surprising and
impressive observation. Section3 introduces a problem-tailored strong stationarity
concept and a corresponding constraint qualification and shows that these correspond
to the standard KKT conditions and a standard constraint qualification of the two
reformulated problems. We then discuss suitably adapted second-order conditions in
Sect. 5.

Though the main goal of this paper is to lay the foundations of two exact non-
convex reformulations of the sparse optimization problem SPO, the corresponding
discussion leads, in a very natural way, to Lagrange–Newton-type methods for the
solution of SPO, see Sect. 6. Like all Newton-type methods, this is primarily a locally
(fast) convergent algorithm, whereas a central difficulty for the solution of sparse opti-
mization problems is to design suitable globally convergent methods. Nevertheless,
the corresponding numerical results in Sect. 7 indicate that the Lagrange–Newton-type
methods can be used to obtain significant improvements over solutions calculated by
other (globally convergent) sparse solvers.We closewith some final remarks in Sect. 8.

Notation: Throughout thismanuscript, ei ∈ R
n denotes the i-th unit vector, whereas

e := (1, . . . , 1)T ∈ R
n is the all-one vector. Given x ∈ R

n and x∗ ∈ X , we define the
index sets

I0(x) := {i | xi = 0} and Ig(x
∗) := {i | gi (x∗) = 0}
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80 C. Kanzow et al.

of zero components of x and active inequality constraints at x∗, respectively. For an
arbitrary vector x , we write diag(x) for the corresponding diagonal matrix, whose
diagonal entries are given by the elements of x . Given two vectors x, y ∈ R

n , the
Hadamard (elementwise) product is denoted by x ◦ y, i.e., the elements of this vector
are given by xi · yi for all i = 1, . . . , n.

2 Two smooth reformulations of SPO

In this section we derive two smooth reformulations of SPO and show that the local
and global minima of these reformulated problems coincide with the local and global
minima of the original sparse optimization problem SPO. One of these reformulations
is already known from [16], whereas the other one is new and will be more suited
for our numerical experiments later on. Note that the results stated in this manuscript
for the known formulation from [16] are still new and not contained in that reference.
Throughout this section, we only require f , g, h to be continuous.

Let us consider the sparse optimization problem from SPO with an arbitrary set
X ⊆ R

n . For any x ∈ R
n , define a corresponding binary variable y ∈ {0, 1}n by

setting yi := 0 for xi 	= 0 and yi := 1 for xi = 0. Using this y, we can calculate the
�0-norm of x as

‖x‖0 =
∑

xi 	=0

1 =
n∑

i=1

(1 − yi ) = n − eT y.

Thus, we could rewrite problem SPO by the following mixed-integer problem

min
x,y

f (x) + ρ(n − eT y) s.t. x ∈ X , x ◦ y = 0, y ∈ {0, 1}n . (MIP)

In order to move to a continuous optimization problem, we discard the binary con-
straints on y. We need to retain the constraint y ≤ e, because otherwise the objective
function of (MIP) does not admit a minimum. This leads us to the reformulation

min
(x,y)

f (x) + ρ(n − eT y) s.t. x ∈ X , x ◦ y = 0, y ≤ e. (SPOlin)

Since the auxiliary variable y enters the objective function linearly, we denote this
problem SPOlin. This is in contrast to our second formulation

min
(x,y)

f (x) + ρ

2

n∑

i=1

yi (yi − 2) s.t. x ∈ X , x ◦ y = 0 (SPOsq)

called SPOsq, since we add a quadratic term to the objective function. Note that this
quadratic term is designed in such a way that it vanishes, whenever xi 	= 0 (due to the
complementarity-type constraint), and that it attains its minimum at yi = 1 whenever
this variable is unconstrained, i.e., for all i with xi = 0., see Fig. 1.
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Fig. 1 Comparison of the terms −yi used in SPOlin and yi (yi − 2) used in SPOsq

Problem SPOlin corresponds to the reformulation already introduced in [16],
whereas SPOsq seems to be new. Observe that, if the feasible set X contains no
inequality constraints, then the new formulation SPOsq boils down to an equality-
constrained optimization problem, in contrast to SPOlin, which still includes the
inequalities y ≤ e. This observation is particularly useful in our setting since, later, we
will apply a Lagrange–Newton-type method in order to solve the sparse optimization
problem.

Before we take a closer look at the relaxed problems SPOlin and SPOsq, we would
like to briefly discuss the relation of the sparse problem SPO and its relaxations to the
two closely related problem classes of cardinality-constrained problems

min
x

f (x) s.t. x ∈ X , ‖x‖0 ≤ κ

and cardinality minimization problems

min
x

‖x‖0 s.t. x ∈ X , f (x) ≤ δ,

where κ ∈ N and δ ∈ R are given constants. Using the same ideas as above, these
problems can be relaxed to the continuous problems

min
x,y

f (x) s.t. x ∈ X , x ◦ y = 0, y ≤ e, n − eT y ≤ κ,

min
x,y

n − eT y s.t. x ∈ X , x ◦ y = 0, y ≤ e, f (x) ≤ δ,

respectively. As we show below, for problem SPO the two relaxations are equivalent to
the original problem in terms of global and local minima. Using the same arguments,
it is also possible to show this equivalence for the cardinality minimization problem.
However, for the cardinality-constrained problem it is known, see [6], that only the
global minima of the original problem and its relaxation coincide, but the relaxation
may have additional local minima.

Furthermore, one may be tempted to view problem SPO as a penalty reformulation
of either of the other two problems. However, while a solution x∗ of SPO is always a
solution of the other two problems with κ := ‖x∗‖0 or δ := f (x∗), respectively, the
opposite implication is in general not true. This means that solutions of the cardinality-
constrained problem or cardinality minimization problem cannot always be recovered
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82 C. Kanzow et al.

as solutions of SPO. More details on these relations can be found in [34, Proposition
1.1].

3 Properties of reformulations

In the moment, it is not clear why we can view the programs SPOlin and SPOsq as
reformulations of the given nonsmooth and discontinuous sparse optimization prob-
lem SPO. But, as we show below, these three programs are completely equivalent in
terms of both global and local minima. Even their corresponding stationary points
coincide, see Sect. 4 for details on this. Some of statements presented in Sect. 3 can
be proven in an elementary and straightforward manner. For the sake of completion
they have thus been moved to the appendix.

In order to verify these statements, we first need some preliminary results. Note
that x is obviously feasible for the given problem SPO if and only if there exists a
suitable vector y ∈ R

n such that (x, y) is feasible for SPOlin or SPOsq. Furthermore,
we have the following relations for feasible points of these two programs.

Lemma 3.1 The following statements hold:

(i) Let (x, y) be feasible for SPOlin. Then ‖x‖0 ≤ n − eT y, with equality if and
only if yi = 1 for all i ∈ I0(x).

(ii) Let (x, y) be feasible for SPOsq. Then ‖x‖0−n ≤ ∑n
i=1 yi (yi −2),with equality

if and only if yi = 1 for all i ∈ I0(x).

Proof cf. appendix. 
�
The following result shows that the constellation yi = 1 for i ∈ I0(x) is indeed the
most preferable one.

Lemma 3.2 Let (x∗, y∗) be a local minimum of SPOlin or SPOsq. Then we have
y∗
i = 1 for all i ∈ I0(x∗).

Proof cf. appendix. 
�
Next, we show that the set of local minima of the sparse optimization problem SPO
is independent of the particular choice of the penalty parameter. Note that, this is due
to the discontinuity of the �0-norm and that a similar result for sparse optimization
problems involving the �1-norm, e.g., does not hold. This observation may actually
be viewed as an advantage of the �0-norm, since this implies that a suitable choice
of the penalty parameter is much less critical for the �0-formulation of the sparse
optimization problem than other (continuous) formulations like the one based on the
�1-norm or the �q -quasi-norm for q ∈ (0, 1).

Proposition 3.3 Let x∗ be a local minimum of SPO with penalty parameter ρ1 > 0.
Then x∗ is also a local minimum of SPO for any other penalty parameter ρ2 > 0.

Proof cf. appendix. 
�
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The sparse(st) optimization problem: reformulations... 83

The previous statement also holds for the two reformulated programs SPOlin and
SPOsq. This is a consequence, e.g., of the following result, which states that x∗ is a
local minimum of the sparse optimization problem SPO if and only if there exists a
vector y∗ such that the pair (x∗, y∗) is a local minimum of either SPOlin or SPOsq.

Theorem 3.4 (Equivalence ofLocalMinima)The following statements are equivalent:

(i) x∗ is a local optimum of SPO.
(ii) There exists y∗ such that (x∗, y∗) is a local optimum of SPOlin.
(iii) There exists y∗ such that (x∗, y∗) is a local optimum of SPOsq.

Proof Notice that, by Lemma 3.2, y∗ has to be of the form

y∗
i =

{
1 for i ∈ I0(x∗),
0 otherwise,

(*)

in order for (x∗, y∗) to be a local minimum of SPOlin or SPOsq.

(i) �⇒ (i i): Let x∗ be a local minimum of SPO and let y∗ be defined as in (*). Then

f (x∗) + ρ
(
n − eT y∗) = f (x∗) + ρ

∥∥x∗∥∥
0 ≤ f (x) + ρ ‖x‖0 ≤ f (x) + ρ

(
n − eT y

)

for all feasible (x, y) with x sufficiently close to x∗, where the first equality and the
last inequality follow from Lemma 3.1(i).
(i i) �⇒ (i): Let (x∗, y∗) be the local minimum of SPOlin with y∗ as in (*). Assume
that x∗ is not a local minimum of SPO. Then there exists a sequence {xk} ⊆ X such
that xk → x∗ and

f (xk) + ρ

∥∥∥xk
∥∥∥
0

< f (x∗) + ρ
∥∥x∗∥∥

0 ∀k ∈ N. (1)

Recall that
∥∥xk

∥∥
0 ≥ ‖x∗‖0 holds for all k sufficiently large. Hence we either have a

subsequence {xk}K such that
∥∥xk

∥∥
0 = ‖x∗‖0 holds for all k ∈ K , or ‖x∗‖0 + 1 ≤∥∥xk

∥∥
0 is true for almost all k ∈ N. In the former case, it follows that (xk, y∗) is

feasible for SPOlin, henceweobtain fromLemma3.1(i) and theminimality of (x∗, y∗)
for SPOlin that

f (xk) + ρ

∥∥∥xk
∥∥∥
0

= f (xk) + ρ
∥∥x∗∥∥

0

= f (xk) + ρ(n − eT y∗) ≥ f (x∗) + ρ(n − eT y∗)
= f (x∗) + ρ

∥∥x∗∥∥
0 ,

which contradicts (1). Otherwise, we have ‖x∗‖0 + 1 ≤ ∥∥xk
∥∥
0 and, by continuity,

also f (x∗) ≤ f (xk) + ρ for all k ∈ N sufficiently large, which, in turn, gives

f (xk) + ρ

∥∥∥xk
∥∥∥
0

≥ f (xk) + ρ + ρ
∥∥x∗∥∥

0 ≥ f (x∗) + ρ
∥∥x∗∥∥

0 .
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84 C. Kanzow et al.

Hence, also in this situation, we have a contradiction to (1).

(i) �⇒ (i i i): Let x∗ be a local minimum of SPO. Then x∗ is also a local minimum
of the optimization problem

min f (x) + ρ

2

( ‖x‖0 − n
)

s.t. x ∈ X , (2)

since, by Proposition 3.3, we can modify the penalty parameter, and since adding a
constant to the objective function does not change the location of the local minima.
Now, let y∗ be defined as in statement (*). Then

f (x∗) + ρ

2

n∑

i=1

y∗
i

(
y∗
i − 2

) = f (x∗) + ρ

2

( ∥∥x∗∥∥
0 − n

) ≤ f (x) + ρ

2

( ‖x‖0 − n
)

≤ f (x) + ρ

2

n∑

i=1

yi
(
yi − 2

)
,

for all feasible (x, y) with x sufficiently close to x∗, where the first equality and the
last inequality follow from Lemma 3.1(i i).
(i i i) �⇒ (i): Let (x∗, y∗) be a local minimum of SPOsq with y∗ as in (*). Assume
that x∗ is not a local minimum of SPO. Then x∗ is not a local minimum of (2). Hence,
there exists a sequence {xk} ⊆ X such that xk → x∗ and

f (xk) + ρ

2

( ∥∥∥xk
∥∥∥
0
− n

)
< f (x∗) + ρ

2

( ∥∥x∗∥∥
0 − n

) ∀k ∈ N. (3)

Recall that
∥∥xk

∥∥
0 ≥ ‖x∗‖0 holds for all k sufficiently large. Thus, once again, we

either have a subsequence {xk}K such that
∥∥xk

∥∥
0 = ‖x∗‖0 holds for all k ∈ K ,

or ‖x∗‖0 + 1 ≤ ∥∥xk
∥∥
0 is true for almost all k ∈ N. In the former case, it follows

that (xk, y∗) is feasible for SPOsq, hence we obtain from Lemma 3.1(i i) and the
minimality of (x∗, y∗) for SPOsq that

f (xk) + ρ

2

( ∥∥∥xk
∥∥∥
0
− n

) = f (xk) + ρ

2

( ∥∥x∗∥∥
0 − n

) = f (xk) + ρ

2

n∑

k=1

y∗
i

(
y∗
i − 2

)

≥ f (x∗) + ρ

2

n∑

k=1

y∗
i

(
y∗
i − 2

) = f (x∗) + ρ

2

( ∥∥x∗∥∥
0 − n

)
,

which contradicts (3). Otherwise, we have ‖x∗‖0 + 1 ≤ ∥∥xk
∥∥
0 and, by continuity,

also f (x∗) ≤ f (xk) + ρ
2 for all k ∈ N sufficiently large, which, in turn, gives

f (xk) + ρ

2

( ∥∥∥xk
∥∥∥
0
− n

) ≥ f (xk) + ρ

2
+ ρ

2

( ∥∥x∗∥∥
0 − n

) ≥ f (x∗) + ρ

2

( ∥∥x∗∥∥
0 − n

)
.

Hence, also in this situation, we have a contradiction to (3). 
�
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Scaling the penalty parameter ρ as in the proof of the previous result has, of course,
an impact on the global minima of SPO. We therefore do not obtain equivalence of
the global minima in the above sense, i.e., independent of the choice of the penalty
parameter. However, the following result holds.

Theorem 3.5 (Equivalence of Global Minima) The following statements hold:

(i) x∗ is a global minimum of SPO if and only if there exists y∗ such that (x∗, y∗)
is a global minimum of SPOlin.

(ii) x∗ is a global minimum of SPO with penalty parameter ρ
2 if and only if there

exists y∗ such that (x∗, y∗) is a global minimum of SPOsq.

Proof According to Lemma3.1 (i), the inequality f (x)+ρ(n−eT y) ≥ f (x)+ρ ‖x‖0
holds for all (x, y) feasible for SPOlin, with equality if and only if yi = 1 for all
i ∈ I0(x). The pair (x∗, y∗) therefore solves SPOlin if and only if x∗ solves SPO, with
y∗
i = 1 for all i ∈ I0(x∗).
To prove part (i i), we recall that x∗ is a global minimum of SPO with penalty

parameter ρ
2 if and only if x∗ is a solution of

min
x

f (x) + ρ

2

( ‖x‖0 − n
)

s.t. x ∈ X .

Using Lemma 3.1 (i i), the claim follows analogously to the proof of part (i). 
�
Effectively, formulation SPOsq can be considered as a reformulation of the scaled
problem

min
x

f (x) + ρ

2
‖x‖0 s.t. x ∈ X .

Nevertheless, invariance of the local minima to the chosen parameter ρ is also reflected
in the stationary conditions, which we derive in the next section. We therefore neglect
the scaling issue in our subsequent analysis of a local Newton-type method, as any
solution found cannot guaranteed to be globally optimal.

4 Stationary conditions

This section introduces a stationarity concept for the nonsmooth and discontinuous
sparse optimization problem SPO and relates it to the KKT conditions of the two
smooth reformulations from SPOlin and SPOsq. Throughout this section, we assume
that all functions f , g, h are continuously differentiable.

To this end, let us introduce the function

LSP (x, λ, μ) := f (x) + λT g(x) + μT h(x),

which is exactly the Lagrangian of SPO except that we do not include the term with
the �0-norm. In particular, LSP is therefore a smooth function. Based on LSP , the
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86 C. Kanzow et al.

ordinary Lagrangians of the smooth optimization problems SPOlin and SPOsq can be
written as

Llin(x, y, λ, μ, γ, σ ) := LSP (x, λ, μ) + ρ(n − eT y) + γ T (x ◦ y) + σ T (y − e)

and

Lsq(x, y, λ, μ, γ ) := LSP (x, λ, μ) + ρ

2

n∑

i=1

yi (yi − 2) + γ T (x ◦ y),

respectively. The standard KKT conditions of SPOlin are therefore given by

∇x L
lin(x, y, λ, μ, γ, σ ) = ∇x L

SP (x, λ, μ) + γ ◦ y = 0, (4)

∇y L
lin(x, y, λ, μ, γ, σ ) = −ρe + γ ◦ x + σ = 0, (5)

λ ≥ 0, g(x) ≤ 0, λ ◦ g(x) = 0, (6)

h(x) = 0, (7)

x ◦ y = 0, (8)

σ ≥ 0, y ≤ e, σ ◦ (y − e) = 0. (9)

We take a closer look at system (5), (8), (9) componentwise for i = 1, . . . , n

−ρ + γi xi + σi = 0, (10)

xi · yi = 0, (11)

σi ≥ 0, yi ≤ 1, σi (yi − 1) = 0, (12)

and assume there is a solution (x∗
i , y∗

i , γ ∗
i , σ ∗

i ). We distinguish two cases. First, let
x∗
i = 0, then clearly σ ∗

i = ρ and y∗
i = 1, whereas γ ∗

i is arbitrary. In the second case,
we have x∗

i 	= 0, which immediately implies y∗
i = 0, σ ∗

i = 0 and further γ ∗
i = ρ/x∗

i .
Hence, (x∗

i , y∗
i , γ ∗

i ) also solves

ρ(yi − 1) + γi xi = 0 and xi · yi = 0. (13)

Conversely, let (x∗
i , y∗

i , γ ∗
i ) be a solution of equation (13). Then with σ ∗

i = ρ, if
x∗
i = 0 and σ ∗

i = 0, if x∗
i 	= 0 the tuple (x∗

i , y∗
i , γ ∗

i , σ ∗
i ) is clearly a solution of

system (10), (11), (12).
Using this reasoning, we can compress the system (4)–(9) by deleting the variable

σ to the system

∇x L
SP (x, λ, μ) + γ ◦ y = 0, (14)

ρ(y − e) + γ ◦ x = 0, (15)

λ ≥ 0, g(x) ≤ 0, λ ◦ g(x) = 0, (16)

h(x) = 0, (17)

x ◦ y = 0, (18)
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Now, it is easy to see that (14)–(16) are precisely the KKT conditions of prob-
lem SPOsq. In summary, we have the following result.

Proposition 4.1 (Equivalence of KKT Points) The vector (x∗, y∗, λ∗, μ∗, γ ∗) is a
KKT point of SPOsq if and only if there exists σ ∗ such that (x∗, y∗, λ∗, μ∗, γ ∗, σ ∗) is
a KKT point of SPOlin. The multipliers σ ∗, γ ∗ and the variable y∗ depend uniquely
on (x∗, λ∗, μ∗) with

y∗
i =

{
1, i ∈ I0(x∗),
0, i /∈ I0(x∗),

γ ∗
i =

{−∇xi L
SP (x∗, λ∗, μ∗) i ∈ I0(x∗),

ρ
x∗
i

i /∈ I0(x∗),

σ ∗
i =

{
ρ, i ∈ I0(x∗),
0, i /∈ I0(x∗).

Proof The equivalence of the two KKT systems is an immediate result by the equiva-
lence of (5) and (9) to (15) under the condition (8) present in both systems, which we
established componentwise. Additionally, we already verified the unique dependence
of y∗ and σ ∗ on x∗, as well as γ ∗

i = ρ/x∗
i for i /∈ I0(x∗). The representation of γ ∗

i
for i ∈ I0(x∗), on the other hand, can be obtained by (4). 
�
For a fixed triple (x, λ, μ), the only possible choice of (y, γ, σ ) with which a KKT
point of either of the above systems could be obtained, is therefore already determined.
This, in turn, tells us that the possibility to satisfy the KKT conditions depends on the
values of (x, λ, μ) only. Thismotivates us to define a stationary concept for the original
sparse optimization problem SPO in the following way.

Definition 4.2 We call a point x∗ an S-stationary point (strongly stationary point)
of SPO if there exist multipliers (λ∗, μ∗) such that the following conditions hold:

∇xi L
SP (x∗, λ∗, μ∗) = 0, ∀i /∈ I0(x

∗),
λ∗ ≥ 0, g(x∗) ≤ 0, λ∗ ◦ g(x∗) = 0,

h(x∗) = 0.

(19)

Note that there exist a couple of different stationarity concepts like W-, C-, M-, and
S-stationarity for a number of related problem classes, including mathematical pro-
grams with complementarity constraints [22], cardinality constraints [8], vanishing
constraints [21], and switching constraints [28]. Similarly, it would be possible to
state some of these other stationarity concepts for problem SPO as well. However, on
the one hand, it turns out that suitable methods for the solution of sparse optimization
problems can be shown to converge to S-stationary points, see [32] for some prelim-
inary results in this direction, which is in contrast to the other classes of problems
mentioned before and which indicates that there is no need to introduce these weaker
stationarity concepts for sparse optimization problems, and, on the other hand, for
the purpose of the approach presented here, we only require the S-stationarity from
Definition 4.2. The system (19) can be understood as the KKT conditions of

min
x

f (x) s.t. x ∈ X , xi = 0, i ∈ I0(x
∗).
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To compute an S-stationary point, one may be tempted to simply restrict the feasible
set to some subspace U := {x | xi = 0, i ∈ I } for an arbitrary I . Note, however, that
X ∩ U might be empty or only contain stationary points, which are unfavourable for
the initial problem SPO. From a computational standpoint it is therefore beneficial to
vary the indexset I , which is exactly the task of auxiliary variable y.

S-stationarity turns out to be equivalent to the KKT conditions of the reformulated
problems SPOlin and SPOsq.

Theorem 4.3 (Equivalence of S-Stationary and KKT Points) The following are equiv-
alent:

(i) x∗ is S-stationary for SPO with some multipliers (λ∗, μ∗).
(ii) There exists (y∗, γ ∗, σ ∗), depending on (x∗, λ∗, μ∗) only, such that (x∗, y∗, λ∗,

μ∗, γ ∗, σ ∗) is a KKT point of SPOlin.
(iii) There exists (y∗, γ ∗), depending on (x∗, λ∗, μ∗) only, such that (x∗, y∗, λ∗,

μ∗, γ ∗) is a KKT point of SPOsq.

Proof Assume x∗ is S-stationary for SPO. Then there exists (λ∗, μ∗) such that (19)
holds. Choosing y∗ and γ ∗ as in Proposition 4.1, we obtain a KKT point of SPOsq.
Conversely, let (x∗, y∗, λ∗, μ∗, γ ∗) be a KKT point of SPOsq. Then (14) holds. Hence
(19) is satisfied for (x∗, λ∗, μ∗), which implies that x∗ is an S-stationary point of SPO.
The remaining equivalence follows from Proposition 4.1. 
�
We next introduce a problem-tailored constraint qualification which, in particular,
guarantees that a local minimum of SPO is an S-stationary point. This constraint qual-
ification is relatively strong, and much weaker ones will be discussed in a forthcoming
report. For the purpose of this paper, where we plan to consider a Lagrange–Newton-
type method for the solution of sparse optimization problems, the following condition
is the most suitable one.

Definition 4.4 A feasible point x∗ ∈ X of SPO satisfies the sparse LICQ ( SP-LICQ,
for short) if the vectors

∇gi (x
∗) (i ∈ Ig(x

∗)), ∇hi (x
∗) (i = 1, . . . , p), ei (i ∈ I0(x

∗))

are linearly independent.

The linear independence constraint qualification (LICQ) is well-known within non-
linear programming and is said to hold if all the gradients w.r.t. to active constraints
are linearly independent [29]. As such, note that SP-LICQ corresponds to standard
LICQ of the tightened nonlinear program

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0, xi = 0 (i ∈ I0(x
∗)) (20)

depending on a feasible point x∗ ∈ X . We establish the following connection between
SP-LICQ for SPO with standard LICQ for SPOlin and SPOsq.
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Theorem 4.5 (EquivalenceofLICQ-typeConditions)Let (x∗, y∗)be feasible for SPOlin
and SPOsq, respectively and assume {i | x∗

i = y∗
i = 0} = ∅. Then the following are

equivalent:

(i) SP-LICQ is satisfied at x∗,
(ii) Standard LICQ holds at (x∗, y∗) for SPOlin,
(iii) Standard LICQ holds at (x∗, y∗) for Problem SPOsq.

Proof It is easy to see that SP-LICQ holds at x∗ for SPO if and only if the following
vectors are linearly independent:

(∇gi (x∗)
0

)
(i ∈ Ig(x

∗)),
(∇hi (x∗)

0

)
(i = 1, . . . , p),

(
αi ei
0

)
(i ∈ I0(x

∗)),
(

0
βi ei

)
(i /∈ I0(x

∗))
(

0
ξi ei

)
(i ∈ J ),

(21)

for arbitrary αi , βi , ξi ∈ R \ {0} and an arbitrary subset J ⊆ I0(x∗).
Case 1: Choose (x∗, y∗) feasible for SPOlin with {i | x∗

i = y∗
i = 0} = ∅. Now, set

αi := y∗
i for i ∈ I0(x∗), βi := x∗

i for i /∈ I0(x∗). Furthermore, set J := {i | y∗
i =

1} ⊂ I0(x∗) and ξi := 1 for i ∈ J , respectively. Plugging our choices of α, β, ξ , and
J into (21) yields the set of gradients of the equality and active inequality constraints
of SPOlin. The claim follows.
Case 2: Let (x∗, y∗) feasible for SPOsq with {i | x∗

i = y∗
i = 0} = ∅. Choose J := ∅

and α, β as in case 1. Then system (21) collapses to the set of gradients of the equality
and active inequality constraints of SPOsq. The claim follows. 
�
The central assumption in Theorem 4.5 is, of course, that the bi-active set {i | x∗

i =
y∗
i = 0} is empty. In the context of sparse optimization problems and our reformula-
tions, however, this assumption turns out to be veryweak and is automatically satisfied,
for example, if x∗ is a local minimum of SPO or at a KKT-point of either SPOlin
or SPOsq. This is an immediate consequence of Lemma 3.2.

Therefore, if SP-LICQ holds at a local optimum x∗ of SPO, it follows that there
is a unique vector y∗ with y∗

i = 1 for all i ∈ I0(x∗) such that the KKT conditions
of SPOlin and SPOsq, respectively, have a unique solution guaranteed by standard
LICQ, which holds for both of the smooth reformulations. In particular, local minima
of x∗ of SPO, where SP-LICQ holds, are thus S-stationary with uniquely defined
multipliers. Nevertheless, SP-LICQ is a relatively strong constraint qualification, and
we will come back to this point later.

5 Second-order conditions

The aim of this section is to introduce problem-tailored second-order conditions for the
sparse optimization Problem SPO and to relate these conditions to standard second-
order conditions associated with the two smooth reformulations SPOlin and SPOsq,
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respectively. Naturally, these second-order conditions play a central role for our sub-
sequent development of Lagrange–Newton-type methods for the solution of sparse
optimization problems. Note that, throughout this section, we make the implicit
assumption that all functions f , g, h are twice continuously differentiable.

Definition 5.1 Let x∗ be an S-stationary point of SPO, with multipliers (λ∗, μ∗). We
call

CSPO(x∗, λ∗) := {d | ∇gi (x
∗)T d = 0 ∀i ∈ Ig(x

∗), λ∗
i > 0,

∇gi (x
∗)T d ≤ 0 ∀i ∈ Ig(x

∗), λ∗
i = 0,

∇h(x∗)T d = 0,

di = 0 ∀i ∈ I0(x
∗)},

and

SCSPO(x∗, λ∗) := {d | ∇gi (x
∗)T d = 0 ∀i ∈ Ig(x

∗), λ∗
i > 0,

∇h(x∗)T d = 0,

di = 0 ∀i ∈ I0(x
∗)},

the critical cone and critical subspace, respectively, of SPO at x∗ with multiplier λ∗.

Note that the critical cone and the critical subspace of problem SPO are problem-
tailored definitions, which can also be interpreted as the standard critical cone and
the standard critical subspace of the corresponding tightened nonlinear program from
(20). The usual critical cone and critical subspace of problem SPO would not contain
the condition that eTi d = 0 for i ∈ I0(x∗) and, hence, these standard sets would be
larger than those from the previous definition.

Definition 5.1 allows the following formulation of sparse second-order sufficiency
conditions.

Definition 5.2 Let x∗ be an S-stationary point of SPO, with multipliers (λ∗, μ∗). Then
we say that (x∗, λ∗, μ∗) satisfies

(i) SP-SOSC (sparse second-order sufficiency condition) if

dT∇2
xx L

SP (x∗, λ∗, μ∗)d > 0, ∀d ∈ CSPO(x∗, λ∗) \ {0},

(ii) strong SP-SOSC (strong sparse second-order sufficiency condition) if

dT∇2
xx L

SP (x∗, λ∗, μ∗)d > 0, ∀d ∈ SCSPO(x∗, λ∗) \ {0}.

Note that the Hessian ∇2
xx L

SP (x∗, λ∗, μ∗) depends only on f , g, h, whereas the
sparsity term is encoded in the critical cone/subspace. We clarify the significance
of SP-SOSC in the following result.
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Theorem 5.3 (Second-Order Sufficiency Conditions) Let (x∗, λ∗, μ∗) be an S-
stationary point such that (strong) SP-SOSCholds in x∗. Then the following statements
hold:

(i) (Strong) SOSC for SPOlin holds at (x∗, y∗, λ∗, μ∗, γ ∗, σ ∗) with (y∗, γ ∗, σ ∗)
defined in Proposition 4.1.

(ii) (Strong) SOSC for SPOsq holds at (x∗, y∗, λ∗, μ∗, γ ∗) with (y∗, γ ∗) defined in
Proposition 4.1.

(iii) x∗ is a local minimizer of SPO.

Proof For a given S-stationary point (x∗, λ∗, μ∗) let y∗, γ ∗, and σ ∗ be chosen as in
Proposition 4.1 and define z := (x, y). The Hessian matrices of the Lagrangians of
problems SPOlin and SPOsq with respect to z are given by

∇2
zz L

lin(x∗, y∗, λ∗, μ∗, γ ∗, σ ∗) =
(∇2

xx L
SP (x∗, λ∗, μ∗) diag(γ ∗)
diag(γ ∗) 0

)
and

∇2
zz L

sq(x∗, y∗, λ∗, μ∗, γ ∗) =
(∇2

xx L
SP (x∗, λ∗, μ∗) diag(γ ∗)
diag(γ ∗) ρ In

)
,

respectively, where In denotes the identity matrix in R
n×n . Since y∗

i = 1 and σ ∗
i =

ρ > 0 for all i ∈ I0(x∗), we obtain the following critical cones for the smooth
problems SPOlin and SPOsq, respectively:

Clin(z∗, λ∗) = {d = (dx , dy)
T | ∇gi (x

∗)T dx = 0 ∀i ∈ Ig(x
∗), λ∗

i > 0,

∇gi (x
∗)T dx ≤ 0 ∀i ∈ Ig(x

∗), λ∗
i = 0,

∇h(x∗)T dx = 0,

(dx )i = 0 ∀i ∈ I0(x
∗),

dy = 0},
Csq(z∗, λ∗) = {d = (dx , dy)

T | ∇gi (x
∗)T dx = 0 ∀i ∈ Ig(x

∗), λ∗
i > 0,

∇gi (x
∗)T dx ≤ 0 ∀i ∈ Ig(x

∗), λ∗
i = 0,

∇h(x∗)T dx = 0,

(dx )i = 0 ∀i ∈ I0(x
∗),

(dy)i = 0 ∀i /∈ I0(x
∗)}

and, similarly, the critical subspaces

SClin(z∗, λ∗) := {d = (dx , dy)
T | ∇gi (x

∗)T dx = 0 ∀i ∈ Ig(x
∗), λ∗

i > 0,

∇h(x∗)T dx = 0,

(dx )i = 0 ∀i ∈ I0(x
∗),

dy = 0},
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SCsq(z∗, λ∗) := {d = (dx , dy)
T | ∇gi (x

∗)T dx = 0 ∀i ∈ Ig(x
∗), λ∗

i > 0,

∇h(x∗)T dx = 0,

(dx )i = 0 ∀i ∈ I0(x
∗),

(dy)i = 0 ∀i /∈ I0(x
∗)}.

For a vector d = (dx , dy)T , we obtain

(
dx
dy

)T

∇2
zz L

sq
(
dx
dy

)
=

(
dx
dy

)T

∇2
zz L

lin
(
dx
dy

)
+ ρ

∥∥dy
∥∥2
2

= dx
T∇2

xx L
SP (x∗, λ∗, μ∗)dx

+2(γ ∗)T (dx ◦ dy) + ρ
∥∥dy

∥∥2
2 . (22)

Assume d = (dx , dy)T ∈ Clin(x∗, λ∗) is a nonzero vector. Then we have

dx ∈ CSPO(x∗, λ∗), dy = 0.

In particular, this implies dx 	= 0. According to (22), the SP-SOSC immediately
implies claim (i). The proof for strong SOSC is analogous.

Assume d = (dx , dy)T ∈ Csq(x∗, λ∗) is a nontrivial vector. It holds

dx ∈ CSPO(x∗, λ∗), (dy)i = 0, i /∈ I0(x
∗).

At least one of the two vectors dx , dy is nonzero and we know dx ◦dy = 0. Hence SP-
SOSC implies (i i), according to inequality (22). Strong SOSC can again be verified
analogously.

Finally, the validity of SOSC for either SPOlin or SPOsq immediately yields (i i i)
due to the equivalence of local minima. 
�
Wenext state a second-order necessary optimality condition for the sparse optimization
problem SPO, which can be derived via the relation to the corresponding second-
order conditions of one of the two smooth reformulations SPOlin or SPOsq. Note
that this necessary condition will not be used later, but is stated here for the sake of
completeness.

Theorem 5.4 (Second-Order Necessary Condition) Let x∗ be a local minimum of SPO
satisfying SP-LICQ. Then there exist uniquemultipliers (λ∗, μ∗) such that (x∗, λ∗, μ∗)
is an S-stationary point of SPO satisfying the second-order necessary condition

dT∇xx L
SP (x∗, λ∗, μ∗)d ≥ 0, ∀ d ∈ CSPO(x∗, λ∗).

Proof The existence and uniqueness of the multipliers (λ∗, μ∗) such that the triple
(x∗, λ∗, μ∗) satisfies the S-stationarity conditions is an immediate consequence of
Theorems 4.3 and 4.5.
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Furthermore, we know from these results that there exist (uniquely defined) vectors
y∗ and σ ∗ such that (x∗, y∗, λ∗, μ∗, σ ∗) is a KKT point of SPOsq satisfying standard
LICQ, and with (x∗, y∗) being a local minimizer of SPOsq, cf. Theorem 3.4. Hence
the standard second-order necessary optimality condition holds for SPOsq, i.e., we
have

(
dx
dy

)T (∇2
xx L

SP (x∗, μ∗, λ∗) diag(γ ∗)
diag(γ ∗) ρ In

) (
dx
dy

)
≥ 0, ∀

(
dx
dy

)
∈ Csq(x∗, λ∗).

This is equivalent to

(dx )
T ∇2

xx L
SP (x∗, μ∗, λ∗) dx + ρ

∥∥dy
∥∥2
2 ≥ 0, ∀

(
dx
dy

)
∈ Csq(x∗, λ∗), (23)

where we used the fact that (dx )i · (dy)i = 0, cf. the previous proof. Now it is easy to
see that any vector d = (dx , dy)T with dx ∈ CSPO(x∗, λ∗) and dy = 0 is contained
in Csq(x∗, λ∗). In view of (23), this directly yields

(dx )
T ∇2

xx L
SP (x∗, μ∗, λ∗) dx ≥ 0, ∀dx ∈ CSPO(x∗, λ∗).

This completes the proof. 
�
Note that there exist more general second-order conditions for standard nonlinear
programs, see, e.g., [5]. In principle, it is possible to translate these conditions also
to problem-tailored second-order optimality conditions for the sparse optimization
problem SPO due to its relation to the standard second-order optimality conditions to
one of the reformulated smooth problemsSPOlin or SPOsq.Weomit the corresponding
details.

6 Lagrange–Newton-typemethods

The aim of this section is to present some Lagrange–Newton-type methods for the
(local) solution of the sparse optimization problem SPO. The idea is to use one of
our smooth reformulations and to apply a Newton-type method to the corresponding
KKT conditions. In principle, we could take either the reformulation SPOlin or the
one from SPOsq. Here we decide to consider the reformulation SPOsq which, in par-
ticular, has the advantage that the corresponding KKT conditions consist of nonlinear
equations only, if the original problem SPO contains not inequalities. This observation
might be useful for Lagrange–Newton-type approaches. Nevertheless, the theory also
covers the case where inequality constraints are present.

More precisely, we consider three different Newton-type methods: First, we take
the full KKT system of SPOsq and investigate the local convergence properties of a
corresponding nonsmoothNewtonmethod applied to this system. Second,we consider
a reduced variant of this method which eliminates the y-variables and show that it
converges under the same set of assumptions as the previous approach. Third, we deal
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with a method which tries to overcome some singularity problems for some classes of
sparse optimization problems, which include nonnegativity constraints.

But before we get into the details, let us briefly recall the central ideas behind a
nonsmooth version of the Newton method.

Remark 6.1 (Nonsmooth Newton’s method in a nutshell) Given a mapping T : Rn →
R
n , we can try to compute a root of T with a Newton-type iteration scheme

zk+1 = zk − H−1
k T (zk) ∀k = 0, 1, 2, . . . ,

where Hk ∈ R
n×n is a matrix typically related to the derivative of T at zk .

If we want to apply this to the KKT system of SPOsq, we first have to reformulate
the conditions

λi ≥ 0, gi (x) ≤ 0, λi gi (x) = 0 ∀i = 1, . . . ,m

into m equality constraints. This can be achieved by using a suitable NCP-function
ϕ : R2 → R, which is defined by the property

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Two prominent examples are the minimum function and the Fischer-Burmeister func-
tion

φm(a, b) := min{a, b} and φFB(a, b) :=
√
a2 + b2 − a − b.

Defining the function �g : Rn × R
m → R

m componentwise as

(�g)i (x, λ) = φ(−gi (x), λi ),

we can thus replace the conditions on g and λ by the equation system �g(x, λ) = 0.
However, most NCP functions are (by design) nonsmooth at least in the origin.

We thus cannot use the Jacobian Hk = T ′(zk) as in the classical Newton’s method,
but instead need some tools from nonsmooth analysis. If the mapping T is a locally
Lipschitz continuous mapping, then Rademacher’s Theorem implies that T is almost
everywhere differentiable. Hence the set

∂BT (z) := {
H

∣∣ ∃{zk} ⊆ DT : zk → z and T ′(zk) → H
}

is nonempty and bounded, where DT denotes the set of differentiable points of T .
The set ∂BT (z) is called the B-subdifferential of T in z and its convex hull gives
the generalized Jacobian ∂T (z) by Clarke [11]. A point z is called BD-regular, if all
elements in ∂BT (z) are nonsingular.

If we use amatrix Hk ∈ ∂BT (zk) in the Newton-type iteration scheme, the resulting
nonsmoothNewton’smethod is known to be locally superlinearly or even quadratically
convergent to a root z∗, if this root z∗ is BD-regular and T satisfies an additional
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smoothness property called semismoothness and strong semismoothness, respectively.
For the precise definitions and proofs of the previous statements, the interested reader
is referred to the papers [30, 31] and the monograph [14].

Throughout this section,we assume that all functions f , g, h are twice continuously
differentiable. Furthermore, φ denotes either the minimum or the Fischer-Burmeister
function, unless we state something else explicitly. Then it is known that the three
operators T used below are semismooth. They are strongly semismooth if, in addition,
the second-order derivatives of f , g, h are locally Lipschitz continuous. In order to
verify the local fast convergence of the nonsmooth Newton method applied to T (z) =
0, it thus suffices to prove BD-regularity in the root z∗. For more details on this, we
refer the reader, for instance, to [15].

The first Newton-type method presented in this section uses the operator

T (x, y, λ, μ, γ ) :=

⎛

⎜⎜⎜⎜⎝

∇x LSP (x, λ, μ) + γ ◦ y
ρ(y − e) + γ ◦ x

�g(x, λ)

h(x)
x ◦ y

⎞

⎟⎟⎟⎟⎠
,

where �g is defined as in Remark 6.1. Due to the defining property of an NCP-
function, it follows that (x∗, y∗, λ∗, μ∗, γ ∗) is a KKT point of the reformulated
problem SPOsq if and only if it solves the (in general nonsmooth) system of equations
T (x, y, λ, μ, γ ) = 0.

In order to ensure fast local convergence of the nonsmooth Newton method applied
to the system T (z) = 0, it suffices to show that a solution z∗ = (x∗, y∗, λ∗, μ∗, γ ∗)
thereof is BD-regular under suitable assumptions.

Theorem 6.2 Let z∗ = (x∗, y∗, λ∗, μ∗, γ ∗) be a solution of T (z) = 0 such that the
following assumptions hold:

(i) SP-LICQ is satisfied at x∗.
(ii) Strong SP-SOSC is satisfied at (x∗, λ∗, μ∗).
Then z∗ is a BD-regular point of T .

Proof Based on our previous result, the statement can be traced back to existing results
in the literature. Since z∗ is a KKT point of SPOsq, we know that the bi-active set
{i | x∗

i = 0 = y∗
i } is empty. Therefore, it follows from assumption (i) and Theorem 4.5

that ordinary LICQ holds for SPOsq at z∗. Similarly, assumption (i i) and Theorem 5.3
imply that the strong second-order sufficiency conditions holds for SPOsq at z∗. Stan-
dard results on the local convergence of nonsmooth Newton methods then imply that
all elements H ∈ ∂BT (z∗) are nonsingular, see, e.g., [13, 14, 17]. 
�
We next consider a reduced formulation of the system T (z) = 0. To this end, note that
T (z) = 0 immediately gives

y = e − γ ◦ x

ρ
, (24)
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cf. (15). Hence, eliminating the variable y in the definition of T by replacing it with
the above expression, we obtain the reduced operator

Tred(x, λ, μ, γ ) =

⎛

⎜⎜⎝

∇x LSP (x, λ, μ) + γ ◦ (e − γ ◦x
ρ

)

�(−g(x), λ)

h(x)
x ◦ (e − γ ◦x

ρ
)

⎞

⎟⎟⎠ ,

which is independent of y. In view of its derivation, it still holds that any zero of
Tred yields a KKT point of SPOsq and vice versa, whenever the variable y is defined
as above. In order to locally solve the KKT system of SPOsq, we can therefore,
alternatively, apply a nonsmooth Newton method to the system Tred(w) = 0, where
w = (x, λ, μ, γ ). The central point for the local fast convergence of this approach is
again the BD-regularity of a solution w∗.

Theorem 6.3 T is BD-regular in (x, y, λ, μ, γ ) with y = (e− γ ◦ x/ρ) if and only if
Tred is BD-regular in (x, λ, μ, γ ).

Proof Let w = (x, λ, μ, γ ) and z = (x, y, λ, μ, γ ) with y = e − γ ◦ x/ρ. The
definition of the B-subdifferential then yields

H ∈ ∂BT (z) ⇐⇒ H =

⎛

⎜⎜⎜⎜⎝

∇2
xx L

SP (x, λ, μ) diag(γ ) g′(x)T h′(x)T diag(y)
diag(γ ) ρ In 0 0 diag(x)
J1�g 0 J2�g 0 0
h′(x) 0 0 0 0
diag(y) diag(x) 0 0 0

⎞

⎟⎟⎟⎟⎠
,

and, similarly, Hred ∈ ∂BTred(w) if and only if

Hred =

⎛

⎜⎜⎜⎝

∇2
xx L

SP (x, λ, μ) − diag(γ )2

ρ
g′(x)T h′(x)T diag(e − 2γ ◦x

ρ
)

J1�g J2�g 0 0
h′(x) 0 0 0

diag(e − 2γ ◦x
ρ

) 0 0 − diag(x)2

ρ

⎞

⎟⎟⎟⎠ ,

with (J1�g, J2�g) ∈ ∂B�g(x, λ). Assumew is BD-regular for Tred . Let H ∈ ∂BT (z)
and consider the system

Hd = 0 with appropriately partitioned d = (dx , dy, dλ, dμ, dγ ). (25)
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Solving for dy explicitly and plugging in y = e − γ ◦ x/ρ yields

1

ρ
(−γ ◦ dx − x ◦ dγ ) − dy = 0,

⎛

⎜⎜⎜⎝

∇2
xx L

SP (x, λ, μ) − diag(γ )2

ρ
g′(x)T h′(x)T diag(e − 2γ ◦x

ρ
)

J1�g J2�g 0 0
h′(x) 0 0 0

diag(e − 2γ ◦x
ρ

) 0 0 − diag(x)2

ρ

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎝

dx
dλ

dμ

dγ

⎞

⎟⎟⎠ = 0 .

(26)

BD-regularity of Tred implies (dx , dλ, dμ, dγ ) = (0, 0, 0, 0) and therefore also dy =
0. Hence H is nonsingular. Since this holds for arbitrary H ∈ ∂BT (z), the BD-
regularity of T in z follows.

The proof of the converse statement is similar: Assume Tred is not BD-regular inw.
Then there is a singular matrix H∗

red ∈ ∂BTred(w∗), i.e., there exists (J1�∗
g, J2�

∗
g) ∈

∂B�g(x∗, λ∗) such that the corresponding element H∗
red is singular. This means that

there is a nontrivial element d0 = (d10 , d
3
0 , d

4
0 , d

5
0 )

T ∈ ker(H∗
red). Setting d20 :=

1
ρ
(−γ ◦ d10 − x ◦ d50 ) and reversing the previous arguments, we obtain a singular

element in ∂BT (z). 
�

Note that the assumption y = (e− γ ◦ x/ρ) used in Theorem 6.3 holds automatically
at any KKT point. Theorem 6.3 therefore allows to translate the result from Theo-
rem 6.2 directly to the reduced operator Tred . A potential disadvantage of the reduced
formulation is the fact that the replacement of the variable y by the expression (24)
increases the nonlinearity of the resulting operator Tred .

Finally, we turn to a third Newton-type method for the solution of sparse optimiza-
tion problems SPO, whose feasible set X contains nonnegativity constraints for some
or all variables. For notational simplicity, we consider only the fully nonnegative case

x ≥ 0.

In our general approach, we have to view these constraints as part of the inequalities
g(x) ≤ 0, which causes problems with the constraint qualification. SP-LICQ would
require the linear independence of the gradient vectors −ei (resulting from the con-
straint xi ≥ 0 as an inequality) and ei (resulting from the sparsity in the definition of
SP-LICQ) for all i ∈ I0(x∗), which is obviously impossible.

We can overcome this situation in the following way: In any local minimum of
SPOsq, we have y ≥ 0 according to Lemma 3.2. Together with the constraint x ◦ y =
0 and the nonnegativity constraint x ≥ 0 we thus obtain the full complementarity
conditions x ≥ 0, y ≥ 0, x ◦ y = 0, which we can replace by an additional NCP-
function �(x, y) = 0 with �i (x, y) = φ(xi , yi ) for all i = 1, . . . , n. The constraints
x ≥ 0 then do not need to be considered as a part of the standard inequality constraints
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g(x) ≤ 0 any more. This motivates to consider the nonlinear system of equations

TC (x, y, λ, μ, γ ) = 0 with TC (x, y, λ, μ, γ ) :=

⎛

⎜⎜⎜⎜⎝

∇x LSP (x, λ, μ) + γ ◦ y
ρ(y − e) + γ ◦ x

�g(x, λ)

h(x)
�(x, y)

⎞

⎟⎟⎟⎟⎠
,

with two NCP-functions �g,�. Then SP-LICQ is a reasonable assumption for this
reformulation, and the following result holds.

Theorem 6.4 Let z∗ = (x∗, y∗, λ∗, μ∗, γ ∗) be a solution of TC (z) = 0 such that the
assumptions of Theorem 6.2 hold. Then z∗ is a BD-regular point of TC .

Proof First observe that TC (z∗) = 0 implies T (z∗) = 0, hence z∗ is a KKT point
of SPOsq. In view of Proposition 4.1, we therefore have that the bi-active set {i | x∗

i =
y∗
i = 0} is empty. This implies that� is continuously differentiable in a neighborhood
of (x∗, y∗), with componentwise derivatives given by (recall that � is defined either
by the Fischer-Burmeister function or by the minimum function)

∇φFB(x∗
i , 0) = (0,−1)T and ∇φm(x∗

i , 0) = (0, 1)T ,

∇φFB(0, y∗
i ) = (−1, 0)T and ∇φm(0, y∗

i ) = (1, 0)T .

Thus, each element HC ∈ ∂BTC (z∗) can be written as:

HC =

⎛

⎜⎜⎜⎜⎝

∇2
xx L

SP (x∗, λ∗, μ∗) diag(γ ∗) g′(x∗)T h′(x∗)T diag(y∗)
diag(γ ∗) ρ In 0 0 diag(x∗)
J1�g 0 J2�g 0 0
h′(x∗) 0 0 0 0
diag(cx ) diag(cy) 0 0 0

⎞

⎟⎟⎟⎟⎠
,

with cx , cy such that

((cx )i , (cy)i ) ∈
{

{−1, 1} × {0} if i ∈ I0(x∗),
{0} × {−1, 1} otherwise,

and arbitrary (J1�g, J2�g) ∈ ∂B�g(x∗, λ∗). Define

A :=
(
I2n+m+p 0

0 diag
(
(cx + cy) ◦ (x∗ + y∗)

)
)

,

and observe that A is nonsingular. Then a simple calculation shows that A · HC ∈
∂BT (z∗). Since A is nonsingular and all elements in ∂BT (z∗) are nonsingular by
Theorem 6.2, it follows that HC is nonsingular. This completes the proof. 
�
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Though the third formulation using the operator TC is mainly designed for problems
having additional nonnegativity constraints, we can also apply this idea also to prob-
lems without these nonnegativity constraints, by splitting the variables x = x+ − x−
into their positive and negative parts x+x− ≥ 0. Since this is a pretty standard approach
also used in [16], we skip the corresponding details.

Some additional remarks on the choice of the NCP-function are in order. Assume
that problem SPO has a feasible set described by inequality constraints and we choose

�g(x, λ) = min{−g(x), λ},

to be understood componentwisely. Then the lower part of ∂BT (z) reads

(−diag(cx )g′(x) 0 diag(cy) 0
diag(y) diag(x) 0 0

)

such that thematrix
(
diag(cx ), diag(cy)

)
belongs to the subdifferential ∂B

(
min{a, b}).

Then, in particular, if g(x) > 0,we always have diag(cy) = 0.Depending on the values
of x , y and g′(x) we may encounter a singularity. The situation is even worse for the
operator TC . To this end, consider the minimum-function min{x, y} as surrogate for
x ◦ y and assume we have an iterate (xk, yk) with yki > xki (which is, for instance, the
case in the portfolio setting, since, in general, we initialize y0i = 1 for all i = 1, . . . , n).
Then, with any equality constraints h in place, the lower part of ∂BTC (zk) reads

(
h′(x) 0 0 0
En 0 0 0

)
,

and we immediately encounter a singularity. In our subsequent implementation, we
therefore prefer to use the Fischer-Burmeister approach simply because the (gen-
eralized) partial derivatives of the minimum function have 0-1-entries, whereas the
corresponding partial derivatives of the Fischer-Burmeister-function are usually both
different from zero (unless we are in a KKT point).

7 Numerical results

In this section we present some numerical results obtained by applying the previously
developed Lagrange–Newton-typemethods to some commonly known fields of sparse
optimization problems. We start with some preliminaries regarding our implementa-
tion.

7.1 Implementation

Initial values
Lagrange–Newton-type methods are mainly locally convergent approaches. Our

aim is to show these methods can be used to improve solutions obtained by globally
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convergent techniques. Therefore, we pre-process the problem by first solving the
�1-surrogate problem

min
x

f (x) + ρ ‖x‖1 s.t. x ∈ X ,

with f , X as in SPO.We then use the solution x�1 of the �1-surrogate problem as initial
point x0 for the Lagrange–Newton-type methods, which we consider post-processing
of the �1-surrogate problem. Accumulation points x∗ of our Lagrange–Newton-type
methods should (hopefully) be preferable for SPO over the �1-solution.

Note that it is, in general, not useful to have x0 = 0 as the initial guess. In fact,
in cases where constraints do not exist, the initial guess x0 = 0 does already yield
an S-stationary point. The starting point x0 = x�1 , obtained by the pre-preprocessing
phase, may also have many zero components, but should, nonetheless, be a much
better choice than the zero vector. Furthermore, we found it beneficial to initialize
y0 := e since we want to see a majority of 0-entries in the accumulation point x∗ of
the algorithm, which would correlate with a y∗ consisting of mainly 1-entries. For any
of the Lagrangian multipliers (λ, μ, γ ) we worked with the canonical choice: λ0 = 0,
μ0 = 0, γ 0 = 0, in the respective dimensions. Note that any choice of γ 0 might be
arbitrarily bad since, for an accumulation point x∗ with an entry 10−4 ≈ |x∗

i | 	= 0,
one has to expect γ ∗

i ≈ ρ sign(x∗)104.
In our numerical test, we were able to improve upon the �1-solution x0 in terms of

the target value of the respective SPO and also in terms of the initial sparsity.
Dealing with the B-subdifferential

We only consider the Fischer-Burmeister function, whenever an NCP-function is
required in our computations. Themethod to obtain an element in the B-subdifferential
of the Fischer-Burmeister function is widely known, compare [12]. We fix a point
z = (x, y, λ, μ, γ ) and consider the operator TC with the components:

φFB(xi , yi ), (i = 1, . . . , n), φFB(−g j (x), λ j ), ( j = 1, . . . ,m),

and

I xy := {i | xi = yi = 0}, I gλ := { j | g j (x) = λ j = 0}.

Define:

(xt , yt , λt ) := (x − te(n), y − te(n), λ − te(p)), for t > 0,

with e = (1, 1, . . . , 1)T of the appropriate dimension. Passing to the limit t ↘ 0
yields

lim
t↘0

∇(xi ,yi )φFB(xti , y
t
i )

T =

⎧
⎪⎨

⎪⎩

(
xi√

x2i +y2i
− 1, yi√

x2i +y2i
− 1

)
, i /∈ I xy,

(
− 1√

2
− 1, − 1√

2
− 1

)
, i ∈ I xy,

(27)
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and by applying the mean-value theorem to g j , we further have

lim
t↘0

∇(x j ,λ j )φFB(−g j (x
t ), λtj )

T =

=

⎧
⎪⎨

⎪⎩

((
g j (x)√

g j (x)2+λ2j

+ 1
)
g′
j (x),

λ j√
g j (x)2+λ2j

− 1
)
, j /∈ I gλ,

((
− ∇g j (x)T e√

(∇g(x)T e)2+1
+ 1

)
g′
j (x), − 1√

(∇g(x)T e)2+1
− 1

)
, j ∈ I gλ,

(28)

which are elements of the B-subdifferential of the Fischer-Burmeister function.
Termination criterion

The canonical condition for terminating one of our Newton-type methods with
operator T would be

‖T (x)‖ ≤ ε,

with some sufficiently small tolerance ε. Unfortunately, we occasionally observe the
problematic behavior that in some components xki → 0, but at the same time yki → 0
and γ k

i → ∞. Recall that at aminimum or stationary point (x∗, y∗), we should instead
have y∗

i = 1 for all i with x∗
i = 0.When we observe the behavior, typically the iterates

xk are nonetheless sufficiently feasible and the gradient of the Lagrangian to LSP is
sufficiently small in every component i with xki 	≈ 0, which points to the fact that the
accumulation point is S-stationary. We therefore terminate the algorithms, when the
following check for S-stationarity is satisfied:

(S.1) Choose tolerances δ ≥ 0, ε ≥ 0 and define the set of nonzero components as

I 	=0 := {i | |xki | ≥ δ}.

(S.2) Set L := ∇x LSP (xk, μk, λk) = ∇ f (xk)+g′(xk)T λk+h′(xk)Tμk and compute

res =
∥∥∥∥∥∥

⎛

⎝
L I 	=0

�g(xk, λk)
h(xk)

⎞

⎠

∥∥∥∥∥∥
⎛

⎜⎜⎝or res =

∥∥∥∥∥∥∥∥

⎛

⎜⎜⎝

L I 	=0

�g(xk, λk)
h(xk)

max{0,−xk
I 	=0}

⎞

⎟⎟⎠

∥∥∥∥∥∥∥∥
in case x ≥ 0

⎞

⎟⎟⎠ .

(S.3) Terminate the iteration, if res ≤ ε.

In our application, we set δ = 10−4 and ε = 10−6.
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7.2 Sparse portfolio selection

The portfolio optimization problem in the sense of Markowitz [27] can be represented
as

min
x

1

2
xT Qx s.t. eT x = 1, αT x ≥ β, x ≥ 0, (29)

where xi denotes the amount of asset i bought, αi is the expected payout of asset
i and Q ∈ R

n×n is the covariance matrix of all payouts. If additionally an investor
is interested in having only a few active assets, this can be formulated as a sparse
optimization problem

min
x

1

2
xT Qx + ρ ‖x‖0 s.t. eT x = 1, αT x ≥ β, x ≥ 0. (30)

Pre-processing this sparse problem with the �1-norm does not yield any useful result,
because for all x ≥ 0wehave ‖x‖1 = eT x , which is constant on the feasible set of (30).
Therefore, solutions of the �1-surrogate problem for (30) coincide with solutions of
(29). We thus solve (29) in our numerical tests to obtain an initial point x0 minimizing
xT Qx on the feasible set and then use Lagrange–Newton-type methods to search for
a sparse value x∗ in its vicinity.

We ran our tests in MATLAB1 R2020b and used the set of synthetic portfolio
selection test problems from Frangioni andGentile2 in Sect. 7.2.1 and some real-world
financial data acquired via the python module yfinance3 in Sect. 7.2.2.

7.2.1 Test examples by frangioni and gentile

In order to obtain the form (30), we neglected the upper and lower bounds on entries
i /∈ I0(x) of x given in the test collection. The initial point x0 was obtained by applying
the quadprog-function ofMATLAB to problem (29). In the Lagrange–Newton-type
methods, the restriction x ≥ 0was then only explicitly incorporated in the operator TC .
For T and Tred these sign constraints were only considered in the termination criterion,
but not present in the Lagrange–Newton-step. Nonetheless, for all test instances and
all operators T , Tred , TC the algorithms terminated within 100 steps in an ε-feasible
point.

The goals was to iterate from the x0 to a point, which is still sufficiently good with
regards to the objective f (x), but is of much higher sparsity than x0. For ρ = 1 and
dimension n = 400, the resulting values of f (x) + ‖x‖0 for the initial value x0 and
the three Lagrange-Newton-type methods are given in Fig. 2. The average amount of
necessary iterations, as well as the required (system-)time (including 0.02s on average
to procure a solution by the call to quadprog) to obtain a stationary point for each
of the three methods is shown in Table 1.

1 https://de.mathworks.com/products/matlab.html.
2 http://groups.di.unipi.it/optimize/Data/MV.html.
3 https://pypi.org/project/yfinance/.
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Fig. 2 Target value f (x) + ‖x‖0 and �0-norm for portfolio selection with dimension n = 400

Table 1 A comparison of
runtime and number of iterations

TC Tred T

Average number of iterations 12.9 40.7 35.9

Average system-time 0.65s 0.93s 1.85s

In every instance we were able to improve on the initial point x0, computed with
quadprog applied to (29), with any of the solutions obtained by T , Tred and TC .
Almost always, Tred led to the best results followed by TC and finally T . However, Tred
as well as T have a much higher iteration count than anticipated for a Newton-type
method, which could be caused by the difficult structure of the constraints x ◦ y = 0
and x ◦ (1 − γ ◦ x/ρ) = 0, and the lack of a good initial guess x0. Only TC , where
complementarity between x and y was handled by φFB , delivered a sufficiently low
iteration count. To have an idea of the quality of the obtained stationary points, we
applied themixed-integer solverGUROBI4 with a runtime of 300 seconds system-time
to the 30 instances of dimension n = 400. We compared the results of GUROBI to the
ones achieved by Tred , since the latter one performed the best amongst our proposed
operators. The results are detailed in Fig. 3. We see that the solutions obtained by
our approach are usually not too far away from those found by GUROBI, in some
instances even better. Note that the average running time of Tred was at 0.93s, whereas
GUROBI was set so 300s, which is by a factor of approximately 322.58 slower than
the aformentioned Lagrange–Newton method.

7.2.2 Financial data

We picked 198 stocks with medium to mega cap in the US region among the top stock
gainers as listed on yahoo finance on February 5th 2024. To generate the Markov
risk model we acquired financial data for these 193 assets between January 1st 2015
and February 5th 2024 via the yahoo finance API. The covariance matrix Q and the
vector α of expected returns were generated by the pyoptportfolio5 package.
The matrix Q was created with the risk_matrix function, where ledoit_wolf
was chosen as the method and the annual expected returns α were estimated by a

4 https://www.gurobi.com.
5 https://pyportfolioopt.readthedocs.io/en/latest/.
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Fig. 3 Comparison of the target value f (x) + ‖x‖0 between Tred and GUROBI for n = 400

Table 2 Finance data overview

f (x) + ‖x‖0 f (x) ‖x‖0 CPU-time #Iterations (annual) exp. return (annual) Sharpe ratio1

�1 196.03 0.03 196 0.16s - 21.097 123.82

T 136.04 0.04 136 0.28s 57 23.22 118.76

Tred 5.28 4.28 1 0.19s 68 1174.9 568.24

TC 31.19 0.19 31 0.08 11 46.73 107.37

1Introduced by William F. Sharpe. For reference see [33]

call to the mean_historical_return function. In order to construct a feasible
problem, we chose

β = 1

n

n∑

i=1

αi (≈ 21.097).

The numerical test was carried out in exactly the sameway as described in the previous
subsection. We detail the results6 in Table 2.

In a second test, arbitrary upper bounds u ∈ [0, 1]n were introduced to the set
of constraints. The components ui were drawn from a uniform distribution over the
interval [0, 1]. We observed Tred sometimes generating negative entries in x , which
has to be considered as a failed run. As we explicitly cannot add x ≥ 0 to our set of
constraints we instead augmented the target function with a penalty term

f (x) + ρyT (y − 2) + α ‖min{0, x}‖22 ,

6 Newton’s method failed to converge for Tred when starting at x0 generated by the �1-solver. We instead
applied the method directly to x0 = 0, where the first iteration was taken as a least squares approximation.
However, the initial point x0 = 0 did not work for T and TC as T failed entirely and TC returned
significantly worse values. For this reason, we started T and TC as in the previous section with the initial
point x0 generated by the �1-solver and only started Tred with x0 = 0. (Note that in general x0 = 0 is not
an ideal initial point, because the corresponding Jacobian of all there of the above operators are singular in
x = 0.).
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Table 3 Finance data with upper bounds overview

f (x) + ‖x‖0 f (x) ‖x‖0 CPU-time #Iterations (annual) exp. return (annual) Sharpe ratio

�1 196.03 0.03 196 0.16s – 21.097 123.82

T 136.24 0.04 136.2 2.58s 51.4 25.76 129.61

Tred 7.17 3.07 4.1 1.7s 55 811.32 481.36

TC 82.09 0.09 82 0.55s 10 41.24 130.37

with an α > 0. Notice that the new target function remains C1, whereas its gradient
is still semismooth. As the given covariance matrix Q was strictly positive definite
and the newly added penalty term is convex, we may recover BD-regularity at zeros
of the respective operators. For computational purposes we went with the somewhat
canonical choice of setting α = 1/2. In Table 3, we detail the average results over 10
indivdual runs.

7.3 Compressive sensing

In its essence, compressive sensing deals with reconstructing an n-dimensional vector
x encoded by some sensing-matrix A ∈ R

m×n with m � n into a signal Ax = b of
much lower dimension. Assuming that the original signal x was sparse leads to the
following formulation for compressive sensing

min
x

‖x‖0 s.t. Ax = b, (31)

which was studied by Tao and Candès [7]. Problem (31) can be seen as an instance
of SPO with f ≡ 0. Since we need some second order information for our local
Newton-type methods, instead of the noise-free problem (31) we are more interested
in the problem

min
x

‖x‖0 s.t.
∥∥Ax − b

∥∥
2 ≤ δ,

with some tolerance δ > 0. This problem is motivated by the assumption that the
received signal is b = b + r with some noise r . However, this formulation requires
that the noise level δ is known at least approximately. To avoid this problem, a penalty
formulation

min
x

1

2

∥∥Ax − b
∥∥2
2 + ρ ‖x‖0 (32)

as seen in [35] is often considered instead. Replacing the �0-norm with the convex,
sparsity inducing �1-norm results in the basis persuit denoising problem, presented as
in [9]:

min
x

1

2

∥∥Ax − b
∥∥2
2 + ρ ‖x‖1 . (33)
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In our numerical test, we compute an initial point x0 by solving the �1-surrogate
problem (33) and then use x0 together with the three Newton-type methods to solve
(32).

We set up our examples as in [37]: Let SA ∈ R
(m+p)×n be some sensing-matrix

and x ∈ R
n be some sparse vector. We set:

Sb := SA · x,

and split SA and Sb into:

SA =
(
A
C

)
, A ∈ R

m×n,C ∈ R
p×n, Sb =

(
b
d

)
, b ∈ R

m, d ∈ R
p.

We then consider the following problem

min
x

Fρ(x) := 1

2
‖Ax − b‖22 + ρ ‖x‖0 s.t. Cx = d, (34)

where the linear constraints Cx = d can be considered as noise-free information and
exclude x = 0 from the feasible set. The dimensions were set to n = 512,m = 128
and p = 8, the sparsity of x was chosen as s = ‖x‖0 = 32. The sensing-matrix SA
was initialized as a Gauß-matrix as in [36], such that:

SA j ∼ N (0, Ep+m/(p + m)), ∀ j = 1, . . . , n.

Closely following [37], we initialized the components of (34) as

x̄ = zeros(n, 1), � = randperm(n), x̄(�(1 : s)) = randn(s, 1),

Sb = SAx̄,

J = randperm(p + m), J1 = J (1 : m), J2 = J (m + 1 : end),
A = SA(J1), b = Sb(J1), C = SA(J2),

d = Sb(J2).

To obtain an initial guess x0, we considered the �1-problem (33) as a quadratic program
and applied MATLAB’s quadprog as seen in [18], which required the split x =
x+−x− with x+, x− ≥ 0. From the solution (x0+, x0−)we could recover x0 = x0+−x0−.
Note that in order to invoke the operator TC , we now have to split x into positive and
negative part, because otherwise we do not have any nonnegativity constraints. For TC
we thus used (x0+, x0−) as is to initialize the algorithm. Unfortunately, this split leads
to a much higher computational cost for TC , since in every Newton-step a system of
6n + m equations had to be solved.

This time we chose a discrete set {0.1, 0.5, 1, 2, 3, 4, 5} of values for ρ and ran
100 test examples for each of those values. We were faced with some unsuccessful
runs regarding TC , where the algorithm failed to converge in 5.6% of all tests, since
either the iteration number exceeded the maximum of 100 steps or we had to terminate
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Fig. 4 Average target value of f (x) + ρ ‖x‖0 and �0-Norm for successful compressive sensing runs

early, as the error in the Newton-step with respect to the �2-norm went past the safety
threshold of 100. For all values of ρ, the resulting average value f (x) + ρ ‖x‖0 of all
successful runs is shown in Fig. 4. Again, we observe a significant improvement of the
objective function value for all operators T , Tred , TC , but now with less pronounced
differences between the three operators.

7.4 Logistic regression

Consider the following sparse optimization problem

min
w

m∑

i=1

log(1 + exp(−yi · wT xi )) + ρ ‖w‖0 , (35)

which we refer to as the penalized maximum log-likelihood function. This estimator
is applied to match a sigmoid-function to a set of measurements x1, . . . , xm and cor-
responding Bernoulli-variables y1, . . . , yn ∈ {−1, 1}m , where additionally sparsity is
promoted in the parameters wi . Replacing ‖·‖0 by ‖·‖1 in (35), we obtain a convex
composite optimization problem, which can be tackled by FISTA or proximal BFGS
methods, compare [24].

In our numerical test, we consider the problem gisette from the NIPS 2003 feature
selection challenge,whichwas acquired from theLIBSVM-website.7 The classification
problem is high-dimensional (n = 5000,m = 6000) and was scaled to [−1, 1].
Recall that applying either of the Newton-type methods with TC , T or Tred to the
gisette problem leads to a drastic increase in the dimensionality (in the case of TC :
n = 30,000). Computation was therefore outsourced to a faster PC and handled in
Python.

We computed an initial point x0 by solving the �1-surrogate problem to (35) with
FISTA. Running the three Newton-type methods with this initial point then lead to
the results in Fig. 5. The abbreviations TCx, Tx, Rx show the solutions found by the
respective operators TC , T and Tred. As one can see, all three of the operators lead to

7 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Fig. 5 Comparison of target value f (x) + ‖x‖0 and sparsity ‖x‖0 for logistic regression. TCx, Tx and Rx
show the solutions found by the operators TC , T and Tred, respectively

an improved sparsity ‖x‖0 and an improved function value f (x) + ‖x‖0, meaning a
better solution of the original problem (35).

8 Final remarks

The aim of this paper was mainly to lay the theoretical foundation for two reformu-
lations of the highly difficult sparse optimization problem SPO. In particular, it was
shown that we get full equivalence of problem SPO with these two reformulations in
terms of global and local minima. Moreover, the corresponding stationary conditions
also coincide and corresponding second-order conditions are closely related. These
results can be used to develop and investigate Lagrange–Newton-type methods for the
numerical solution of problem SPO and the numerical results indicate that one can
use these methods in order to get significant improvements of solutions obtained by
some other techniques.

The Lagrange–Newton-type methods, of course, are local in nature, but result
quite naturally as a direct consequence of our theoretical considerations.8 Our future
research, however, will concentrate on the development of globally convergent meth-
ods based on our reformulations. Some preliminary results in this direction can already
be found in [32].

8 https://pypi.org/project/yfinance/.
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Appendix: Proofs for Section 3

Proof of Lemma 3.1 (i) The definition of the index set I0(x) and the assumed feasi-
bility of (x, y) implies

n − eT y = n −
∑

i∈I0(x)
yi −

∑

i /∈I0(x)
yi = n −

∑

i∈I0(x)
yi ≥ n −

∑

i∈I0(x)
1 = ‖x‖0 .

This also shows that equality holds if and only if yi = 1 for all i ∈ I0(x).

(ii) Recall that the function yi �→ yi (yi − 2) attains its (unique) minimum at yi = 1
with corresponding minimal function value −1. The definition of the index set
I0(x) and the feasibility of (x, y) therefore yield

n∑

i=1

yi (yi − 2) =
∑

i∈I0(x)
yi (yi − 2) ≥

∑

i∈I0(x)
−1 =

(
n −

∑

i∈I0(x)
1
)

− n = ‖x‖0 − n,

and equality holds if and only if yi = 1 for all i ∈ I0(x).

�

Proof of Lemma 3.2 Let (x∗, y∗) be a local minimum of SPOlin. We can fix x = x∗
and know that y∗ solves

max
y

eT y s.t. yi = 0, i /∈ I0(x
∗), y ≤ e.

Similarly, let (x∗, y∗) be a local minimum of SPOsq. We can fix x = x∗ and know
that y∗ solves

min
y

n∑

i=1

yi (yi − 2) s.t. yi = 0, i /∈ I0(x
∗).

In both cases the statement follows. 
�
Proof of Proposition 3.3 Let ρ1 and ρ2 be two penalty parameters, and let x∗ be a local
minimum of

min
x

f (x) + ρ1 ‖x‖0 s.t. x ∈ X . (36)

Assume that x∗ is not a local minimum of

min
x

f (x) + ρ2 ‖x‖0 s.t. x ∈ X .

Then there exists a sequence {xk} ⊆ X with xk → x∗ such that

f (xk) + ρ2

∥∥∥xk
∥∥∥
0

< f (x∗) + ρ2
∥∥x∗∥∥

0 ∀k ∈ N. (37)
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Note that
∥∥xk

∥∥
0 ≥ ‖x∗‖0 holds for all k sufficiently large. First consider the case that

there exists a subsequence such that
∥∥xk

∥∥
0 = ‖x∗‖0 holds for all k ∈ K . Then we

obtain

f (xk) + ρ1

∥∥∥xk
∥∥∥
0

= f (xk) + ρ2

∥∥∥xk
∥∥∥
0
+ (ρ1 − ρ2)

∥∥∥xk
∥∥∥
0

< f (x∗) + ρ2
∥∥x∗∥∥

0 + (ρ1 − ρ2)

∥∥∥xk
∥∥∥
0

= f (x∗) + ρ2
∥∥x∗∥∥

0 + (ρ1 − ρ2)
∥∥x∗∥∥

0 = f (x∗) + ρ1
∥∥x∗∥∥

0

for all k ∈ K , contradicting the assumption that x∗ is a local minimum of (36). In the
other case, we have

∥∥xk
∥∥
0 > ‖x∗‖0 and, therefore, ‖x∗‖0 + 1 ≤ ∥∥xk

∥∥
0 for almost all

k ∈ N. Furthermore, by continuity of f , it follows that f (x∗) ≤ f (xk) + ρ2 for all k
sufficiently large. This implies

f (x∗) + ρ2
∥∥x∗∥∥

0 ≤ f (xk) + ρ2 + ρ2 ‖x∗‖0 = f (xk) + ρ2
(
1 + ‖x∗‖0

)

≤ f (xk) + ρ2
∥∥xk

∥∥
0 ,

a contradiction to (37). Altogether, this completes the proof. 
�
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