
Gebken, Bennet

Article — Published Version

A note on the convergence of deterministic gradient
sampling in nonsmooth optimization

Computational Optimization and Applications

Provided in Cooperation with:
Springer Nature

Suggested Citation: Gebken, Bennet (2024) : A note on the convergence of deterministic gradient
sampling in nonsmooth optimization, Computational Optimization and Applications, ISSN
1573-2894, Springer US, New York, NY, Vol. 88, Iss. 1, pp. 151-165,
https://doi.org/10.1007/s10589-024-00552-0

This Version is available at:
https://hdl.handle.net/10419/315243

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10589-024-00552-0%0A
https://hdl.handle.net/10419/315243
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Computational Optimization and Applications (2024) 88:151–165
https://doi.org/10.1007/s10589-024-00552-0

A note on the convergence of deterministic gradient
sampling in nonsmooth optimization

Bennet Gebken1

Received: 5 July 2023 / Accepted: 4 January 2024 / Published online: 6 February 2024
© The Author(s) 2024

Abstract
Approximation of subdifferentials is one of the main tasks when computing descent
directions for nonsmooth optimization problems. In this article, we propose a bisection
method for weakly lower semismooth functions which is able to compute new subgra-
dients that improve a given approximation in case a direction with insufficient descent
was computed. Combined with a recently proposed deterministic gradient sampling
approach, this yields a deterministic and provably convergent way to approximate
subdifferentials for computing descent directions.

Keywords Nonsmooth optimization · Nonsmooth analysis · Nonconvex
optimization · Gradient sampling

1 Introduction

Nonsmooth optimization is concernedwith the optimization of a function f : Rn → R

which is not necessarily continuously differentiable. For such functions, one cannot
rely on the gradient for describing the local behavior around a given point. As a
replacement, generalized concepts from nonsmooth analysis can be employed. If the
objective is still locally Lipschitz continuous, as is the case in many practical applica-
tions, then the standard approach is to use the Clarke subdifferential ∂ f [1]. However,
since ∂ f (x) reduces to the gradient if f is continuously differentiable at x , and since f
is typically continuously differentiable almost everywhere, the Clarke subdifferential
cannot be used to capture nonsmoothness numerically. To circumvent this issue, the
(Goldstein) ε-subdifferential ∂ε f [2] may be used instead, which is the convex hull of
all Clarke subdifferentials in an ε-ball around a given point. For the ε-subdifferential,
it is sufficient for x to have a distance of at most ε to a nonsmooth point of f to capture

B Bennet Gebken
bgebken@math.upb.de

1 Insitute of Mathematics, Paderborn University, Warburger Str. 100, Paderborn 33098, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-024-00552-0&domain=pdf
http://orcid.org/0000-0002-4542-8620

152 B. Gebken

the nonsmoothness. As such, it can be interpreted as a stabilized version of the Clarke
subdifferential.

It is well-known that the element v̄ ∈ −∂ε f (x0)with the smallest norm is a descent
direction for f at x0 [1, 2]. Unfortunately, the full ε-subdifferential that is required
to compute this direction is rarely available in practice and has to be approximated
instead. To this end, in the gradient sampling method [3–5], the idea is to approxi-
mate ∂ε f (x0) by the convex hull of the gradients at randomly generated points in the
ε-ball around x0 where f is differentiable. While this is easy to implement and con-
vergence can be shown with probability 1, randomly computing gradients means that
one generally computes more gradients than would be necessary. Furthermore, a good
approximation may require a large and a priori unknown number of sample points
(which is highlighted in Appendix 1). As an alternative, in [6–8], a deterministic sam-
pling approach was used. There, the idea is to compute the approximation of ∂ε f (x0)
iteratively, by starting with W = {ξ} for a subgradient ξ ∈ ∂ f (x0) at x0, and then
adding new elements of ∂ε f (x0) to W until conv(W) is a satisfactory approximation.
The mechanism for finding new elements of ∂ε f (x0) is based on the observation that
if v is a direction that yields less descent than expected (based on the current approxi-
mation conv(W)), then there has to be a point x0 + tv with t > 0 in the ε-ball at which
a new subgradient ξ ′ ∈ ∂ f (x0 + tv) ⊆ ∂ε f (x0) with ξ ′ /∈ conv(W) can be sampled.
To find such a t , a subroutine based on bisection of the interval (0, ε/‖v‖) is used.
While in [6–8], it was analyzed why this subroutine likely works (i.e., terminates) in
practice and while termination was also observed in all numerical examples, a full
proof (under reasonable assumptions for f) was not given.

The goal of this note is to close the above mentioned gap in the convergence theory
of the deterministic gradient sampling approach. The bisection algorithm in [6–8] is
based on reformulating the problem of finding a new element of ∂ε f (x0) as finding
a point t > 0 in which a certain nonsmooth function h : R → R is increasing. The
convergence issues arise in cases where the bisection converges to a critical point t̄
of h (i.e., to a point t̄ with 0 ∈ ∂h(t̄)). To fix these issues, we replace h by a slightly
modified function hc̃. We then show convergence of the resulting method for the case
where f is weakly lower semismooth [9, 10] (meaning that − f is weakly upper
semismooth). Since semismooth functions [11] are weakly lower semismooth, this
case includes continuously differentiable functions, convex functions and piecewise
differentiable functions [12]. As our result is essentially just concerned with the deter-
ministic computation of new ε-subgradients (not necessarily in the context of [6–8]),
it has also use in other methods based on gradient sampling, like [13, 14]. Our method
has strong similarities to Procedure 4.1 in [15], which is used for the computation of
new subgradients in a bundle framework. It is based on the same idea, but differs in
the condition used for bisection and the stopping criterion.

The remainder of this article is structured as follows: In Sect. 2 we introduce the
basics of gradient sampling and the bisection algorithm from [7] (which is identical
to the one in [8] and almost identical to the one in [6]). In [7], the bisection was
only a small part of a larger algorithm, but we will introduce it here in a stand-alone
way for convenience. In Sect. 3 we construct the improved bisection algorithm and
show its convergence when f is weakly lower semismooth. In Sect. 4 we visualize the

123

A note on the convergence of... 153

behavior of the improved bisection method in a simple example. Finally, in Sect. 5,
we summarize our results and discuss possible directions for future research.

2 Computing descent directions for nonsmooth functions

In this section, we summarize the basic ideas of gradient sampling from [3–8]. To this
end, let f : Rn → R be locally Lipschitz continuous. The Clarke subdifferential [1]
of f at x ∈ R

n is given by

∂ f (x) := conv

({
ξ ∈ R

n : ∃(x j) j ∈ R
n \ � with lim

j→∞ x j = x and

lim
j→∞ ∇ f (x j) = ξ

})
,

(1)

where � ⊆ R
n is the set of points at which f is not differentiable. (By Rademacher’s

Theorem [1], � has measure zero.) The elements of ∂ f (x) are called (Clarke) sub-
gradients. In theory, the Clarke subdifferential can be used similarly to the standard
gradient, as it can be used in generalized versions of results like the mean value theo-
rem, the chain rule and optimality conditions [1]. In practice however, there are severe
problems: ∂ f (x) only captures the nonsmoothness of f if x is a point where f is not
continuously differentiable, which is typically a null set. Furthermore, when x ∈ �,
there is no general way of computing the full subdifferential, i.e., all subgradients.
Instead, a reasonable assumption is that we can only evaluate a single, arbitrary sub-
gradient from ∂ f (x) at any x ∈ R

n . Further explanations and examples for these
issues can be found in [16]. To circumvent these problems, a more suitable object to
use as a generalized derivative for constructing descent methods is the (Goldstein)
ε-subdifferential [2]

∂ε f (x) := conv

⎛
⎝ ⋃

y∈Bε(x)

∂ f (y)

⎞
⎠ ,

where ε ≥ 0, Bε(x) := {y ∈ R
n : ‖y − x‖ ≤ ε} and ‖ · ‖ is the Euclidean norm. The

elements of ∂ε f (x) are called ε-subgradients. The ε-subdifferential can be interpreted
as a “stabilized” Clarke subdifferential. In particular, it can be used to compute descent
directions, as we demonstrate in the following.

Let x0 ∈ R
n , v ∈ R

n\{0} and ε > 0. Then a simple application of the mean value
theorem ([1], Theorem 2.3.7) shows that

f (x0 + tv) ≤ f (x0) + t max
ξ∈∂ε f (x0)

〈ξ, v〉 ∀t ∈
(
0,

ε

‖v‖
]

. (2)

Thus, directions v with 〈ξ, v〉 < 0 for all ξ ∈ ∂ε f (x0) are descent directions for f at
x0. Based on convex analysis [17], the direction that minimizes the maximum of the

123

154 B. Gebken

inner products on the right-hand side of (2), called the ε-steepest descent direction,
can be computed as

v̄ := − argminξ∈∂ε f (x0) ‖ξ‖2. (3)

It holds either v̄ = 0, in which case 0 ∈ ∂ε f (x0) and x0 is called ε-critical, or

〈ξ, v̄〉 ≤ −‖v̄‖2 < 0 ∀ξ ∈ ∂ε f (x0) (4)

and, due to (2),

f

(
x0 + ε

‖v̄‖ v̄

)
≤ f (x0) − ε‖v̄‖. (5)

Unfortunately, the full ε-subdifferential required to solve Problem (3) is rarely avail-
able in practice. Thus, the direction v̄ has to be approximated.

2.1 Random gradient sampling

In the standard gradient sampling framework [3–5], the ε-subdifferential is approx-
imated by randomly (independently and uniformly) sampling m ≥ n + 1 elements
x1, . . . , xm ∈ Bε(x0)\� and setting

W := {∇ f (x0),∇ f (x1), . . . ,∇ f (xm)} ⊆ ∂ε f (x0).

(The differentiability of f at the current iterate x0 is enforced via a differentiability
check.) As an approximation of v̄ from (3), the direction

vGS := − argminξ∈conv(W) ‖ξ‖2 (6)

is computed, and an Armijo-like backtracking line search is used to assure decrease
in f . It can be shown that when dynamically reducing the sampling radius ε, then
the resulting descent method (cf. [4], GS Algorithm) produces a sequence converging
to a critical point of f with probability 1. Unfortunately, sampling randomly means
that a large number of sample points m may be required to assure that vGS is a good
approximation of v̄, i.e., to assure thatmeaningful decrease is achieved in every descent
step. This drawback is highlighted in Appendix 1.

2.2 Deterministic gradient sampling

Instead of randomly sampling points from Bε(x0) for the approximation of ∂ε f (x0),
there is also a deterministic approach [7]. (In [7] multiobjective problems are consid-
ered, but we will only consider the special case of a single objective here.) Assume
that x0 is not ε-critical. The idea is to start with a subsetW ⊆ ∂ε f (x0) (e.g.,W = {ξ}
for ξ ∈ ∂ f (x0)) and to then iteratively add new subgradients to W until a direction

123

A note on the convergence of... 155

ṽ := − argminξ∈conv(W) ‖ξ‖2 (7)

is found that yields sufficient descent. The meaning of “sufficient descent” can be
derived from (5): For some fixed c ∈ (0, 1), we want to have at least

f

(
x0 + ε

‖ṽ‖ ṽ

)
≤ f (x0) − cε‖ṽ‖. (8)

To find a new subgradient (that is not already contained in conv(W)) in case ṽ does
not yield sufficient descent, note that the mean value theorem implies that there are
t ′ ∈ (0, ε/‖ṽ‖) and ξ ′ ∈ ∂ f (x0 + t ′ṽ) with

ε

‖ṽ‖〈ξ ′, ṽ〉 = f

(
x0 + ε

‖ṽ‖ ṽ

)
− f (x0) > −cε‖ṽ‖

⇔ 〈ξ ′, ṽ〉 > −c‖ṽ‖2. (9)

Analogously to (3) and (4), it holds

〈ξ, ṽ〉 ≤ −‖ṽ‖2 < 0 ∀ξ ∈ conv(W).

Thus, (9) implies that ξ ′ /∈ conv(W), so adding ξ ′ toW improves the approximation of
∂ε f (x0). In [6, 7], it was proven that iteratively computing ṽ via (7) while adding new
subgradients toW as above yields a finite algorithmwhich deterministically computes
descent directions satisfying (8) (as long as 0 /∈ ∂ε f (x0)). (For a formal definition of
this algorithm, see Algorithm 2 in [7] for k = 1.)

Unfortunately, the above application of the mean value theorem does not yield an
explicit formula for the computation of ξ ′ as in (9), so additional effort is required in
practice. To this end, a strategy based on bisection can be used: Let

h : R → R, t �→ f (x0 + t ṽ) − f (x0) + ct‖ṽ‖2. (10)

By the chain rule ([1], Theorem 2.3.9) it holds

∂h(t) ⊆ 〈∂ f (x0 + t ṽ), ṽ〉 + c‖ṽ‖2, (11)

so ∂h(t ′) ∩ R
>0 �= ∅ for t ′ ∈ (0, ε/‖ṽ‖) would imply that there is some ξ ′ ∈

∂ f (x0+t ′ṽ) as in (9). Thus, roughly speaking, the idea is to search for some interval in
(0, ε/‖ṽ‖) on which h is monotonically increasing. In [7] this was done via Algorithm
1.
It performs bisections such that h(a j) < h(b j) for all j ∈ N, while checking whether
a ξ ′ was found satisfying (9). In [6–8], it was argued why the algorithm is likely to
terminate in practice, and termination was also observed in all numerical examples,
but a proper analysis was not carried out. There are basically two issues that may cause
the algorithm not to terminate:

123

156 B. Gebken

Algorithm 1 Computation of new ε-subgradients
Require: Point x0 ∈ R

n , radius ε > 0, descent parameter c ∈ (0, 1), direction ṽ ∈ R
n \ {0} violating (8).

1: Initialize j = 1, a1 = 0, b1 = ε
‖ṽ‖ and t1 = 1

2 (a1 + b1).

2: Compute ξ ′ ∈ ∂ f (x0 + t j ṽ).

3: If 〈ξ ′, ṽ〉 > −c‖ṽ‖2 then stop.
4: If h(b j) > h(t j) then set a j+1 = t j and b j+1 = b j . Otherwise set a j+1 = a j and b j+1 = t j .

5: Set t j+1 = 1
2 (a j+1 + b j+1), j = j + 1 and go to step 2.

1. One may never encounter a t j with ∂h(t j) ∩R
≥0 �= ∅ during the bisection, even if

∂h(t̄) ∩ R
>0 �= ∅ holds for the limit t̄ ∈ [0, ε/‖ṽ‖] of (t j) j .

2. The subgradient ξ ′ evaluated in step 2may not correspond to a subgradient 〈ξ ′, ṽ〉+
c‖ṽ‖2 ∈ ∂h(t j), since we do not have equality in (11). So one could have 〈ξ ′, ṽ〉 ≤
−c‖ṽ‖2 even when ∂h(t j) ⊆ R

>0.

In [8], Example 4.3.4, an example was constructed for which Algorithm 1 does not
terminate with a function h that is not semismooth (cf. [11]). In the following, we
will construct a more nuanced example that shows that the algorithm may also fail for
semismooth functions.

Example 1 For i ∈ N ∪ {0} let

x1i := 1 − 7 · 2−i−3, ϕ1
i := 1 − 9 · 2−2i−3,

x2i := 1 − 5 · 2−i−3, ϕ2
i := 1 − 3 · 2−2i−4.

Then x1i < x2i < x1i+1 for all i ∈ N ∪ {0}. We construct a function ϕ : R → R as

follows: For x < 0 let ϕ(x) := − 1
2 x , for x ≥ 1 let ϕ(x) := 1 and on [0, 1) let ϕ be

the piecewise linear function with ϕ(0) = 0 and

ϕ(x1i) = ϕ1
i and ϕ(x2i) = ϕ2

i ∀i ∈ N ∪ {0}.

The graph of ϕ is shown in Fig. 1a. Figure1b shows the gradient of ϕ at points where
ϕ is differentiable, and a vertical line from smallest to the largest subgradient at points
where ϕ is not differentiable. We see that in the limit x → 1, all subgradients tend to
0. Based on this observation, it can be shown that ϕ is semismooth.

Now let

f : R → R, x �→ ϕ(x) − 1

2
x

as shown in Fig. 1c. Let x0 = 0, ε = 1 and c = 1/2. Assume that we have evaluated
the subgradient ξ := −1 ∈ ∂ f (0) = [−3/2,−1]. Then for W = {ξ}, the direction ṽ

from (7) is simply ṽ = −ξ = 1. When checking whether ṽ yields sufficient decrease,
we see that

f

(
x0 + ε

‖ṽ‖ ṽ

)
− f (x0) = f (1) − f (0) = 1

2
> −1

2
= −cε‖ṽ‖,

123

A note on the convergence of... 157

Fig. 1 The graphs of a ϕ = h, b ∂ϕ = ∂h and c f in Example 1. The red lines show the values of
t j = 1 − 2− j for j ∈ N (color figure online)

i.e., ṽ does not yield sufficient (or even any) decrease.
For Algorithm 1 we have

h(t) = f (x0 + t ṽ) − f (x0) + ct‖ṽ‖2 = f (t) + 1

2
t = ϕ(t).

Since 1 = h(1) = h(b1) > h(t) for all t ∈ [0, 1), we have

a j = 1 − 2− j+1, b j = 1, t j = 1 − 2− j ∀ j ∈ N,

as indicated in Fig. 1a and b. By construction (cf. Figure1b), f is continuously differ-
entiable at all x0 + t j ṽ = t j and

∂ f (x0 + t j ṽ) = {∇ f (t j)} =
{
−2− j − 1

2

}
∀ j ∈ N,

so

〈ξ ′, ṽ〉 = −2− j − 1

2
< −1

2
= −c‖ṽ‖2 ∀ j ∈ N.

Thus, Algorithm 1 does not terminate.

Note that in the previous example, only the nonsmoothness of f at x = 1 is
relevant for the failure of the algorithm. Thus, by “smoothing” the objective f at all
kinks except 1, one could even construct a semismooth function which is continuously
differentiable everywhere outside of a single point for which the algorithm fails.

3 Improved bisectionmethod

In this section, we propose a slightly modified version of Algorithm 1 and prove
termination for the case where the objective f is weakly lower semismooth. For any

123

158 B. Gebken

x ∈ R
n , we assume that we are only able to evaluate a single, arbitrary subgradient of

the locally Lipschitz continuous f at x .

3.1 Derivation of the improvedmethod

Roughly speaking, the idea is to use a smaller parameter c̃ < c in h (cf. (10)) to try to
find a new subgradient that satisfies a stricter version of inequality (9). This will solve
the first of the issues described in Sect. 2.2, as even points in which ∂h is negative but
close to zero then suffice to find subgradients that satisfy the weaker requirement with
respect to c.

More precisely, note that ṽ is an unacceptable descent direction if and only if

f

(
x0 + ε

‖ṽ‖ ṽ

)
> f (x0) − cε‖ṽ‖

⇔ cmin := −
f
(
x0 + ε

‖ṽ‖ ṽ
)

− f (x0)

ε‖ṽ‖ < c.

Thus, if ṽ is an unacceptable direction, then it is also unacceptable if we replace c in
(8) by any c̃ ∈ (cmin, c) �= ∅. In other words, we could apply Algorithm 1 for any
c̃ ∈ (cmin, c) and the method would still produce sequences with hc̃(a j) < hc̃(b j) for
all j ∈ N, where, analogously to (10),

hc̃ : R → R, t �→ f (x0 + t ṽ) − f (x0) + c̃t‖ṽ‖2.

In step 3, the method would check whether 〈ξ ′, ṽ〉 > −c̃‖ṽ‖2. But since c̃ < c, this
inequality is stricter than (9). Thus, instead, we apply Algorithm 1 with only h being
replaced by hc̃ and the rest unchanged. In terms of the subdifferential of hc̃, this means
that the method may stop as soon as

∃g ∈ ∂hc̃(t j) : g = 〈ξ ′, ṽ〉 + c̃‖ṽ‖2 > (c̃ − c)‖ṽ‖2, (12)

where (c̃ − c)‖ṽ‖2 < 0. For clarity, this modified algorithm is denoted in Algorithm
2.

Algorithm 2 Improved computation of new ε-subgradients
Require: Point x0 ∈ R

n , radius ε > 0, descent parameters c ∈ (0, 1), c̃ ∈ (cmin, c), direction ṽ ∈ R
n \ {0}

violating (8).
1: Initialize j = 1, a1 = 0, b1 = ε

‖ṽ‖ and t1 = 1
2 (a1 + b1).

2: Compute ξ ′ ∈ ∂ f (x0 + t j ṽ).

3: If 〈ξ ′, ṽ〉 > −c‖ṽ‖2 then stop.
4: If hc̃(b j) > hc̃(t j) then set a j+1 = t j and b j+1 = b j . Otherwise set a j+1 = a j and b j+1 = t j .

5: Set t j+1 = 1
2 (a j+1 + b j+1), j = j + 1 and go to step 2.

123

A note on the convergence of... 159

3.2 Proof of termination

We begin the analysis of Algorithm 2 with some simple, technical results.

Lemma 1 If Algorithm 2 does not terminate, then

(i) (a j) j , (b j) j and (t j) j have the same limit t̄ ∈ [0, ε/‖ṽ‖],
(ii) t̄ ∈ [a j , b j] for all j ∈ N,
(iii) (hc̃(b j)) j is monotonically increasing and hc̃(a j) < hc̃(b j) for all j ∈ N,
(iv) t j < t̄ for infinitely many j ∈ N.

Proof (i)By construction (a j) j ismonotonically increasing and (b j) j ismonotonically
decreasing in [0, ε/‖ṽ‖], so both sequences converge. Since Algorithm 2 does not
terminate, it holds lim j→∞ b j − a j = 0, so they must converge to the same limit
t̄ ∈ [0, ε/‖ṽ‖]. Since t j ∈ (a j , b j) for all j ∈ N, (t j) j must have the same limit.

(ii) Assume that t̄ /∈ [a j , b j] for some j ∈ N. Then either t̄ < a j or t̄ > b j . Due
to the monotonicity of (a j) j and (b j) j , this is a contradiction to t̄ being the limit of
both sequences.

(iii) By construction, the value of (b j) j only changes when hc̃(b j) ≤ hc̃(t j) in
step 4. In this case b j+1 is set to t j , so we have hc̃(b j+1) = hc̃(t j) ≥ hc̃(b j) and
hc̃(a j+1) = hc̃(a j). If, on the other hand, hc̃(b j) > hc̃(t j), then a j+1 = t j , so
hc̃(a j+1) = hc̃(t j) < hc̃(b j) = hc̃(b j+1). The proof follows by induction.

(iv)Assume that this does not hold. Then there is some N ∈ N such that t j ≥ t̄ for all
j > N . By construction of (t j) j , t j = t̄ may only hold once, so we can assumew.l.o.g.
that t j > t̄ for all j > N . Since t̄ ∈ [a j , b j] for all j ∈ N and t j is the midpoint of
[a j , b j], this implies that a j = aN for all j > N . In particular, t̄ = lim j→∞ a j = aN .
Since hc̃(t̄) = hc̃(aN) < hc̃(bN) and (hc̃(b j)) j is monotonically increasing with
lim j→∞ hc̃(b j) = hc̃(t̄) due to continuity, this is a contradiction. ��

To be able to fix the second of the two issues mentioned in Sect. 2.2, we need a
stronger assumption for f . An easy way to solve the issue would be to force equality in
the chain rule (11) by assuming that f is regular (cf. [1], Definition 2.3.4). While the
class of regular functions includes convex functions, even simple nonconvex functions
like x �→ −|x | are not regular. As such, this assumption would heavily restrict the
applicability of the method. Fortunately, we do not actually need equality in (11) as we
are only interested in the behavior of 〈∂ f (x0 + t ṽ), ṽ〉 for t → t̄ , and not necessarily
in 〈∂ f (x0 + t̄ ṽ), ṽ〉 itself. Thus, we will see that it suffices to assume that f is weakly
lower semismooth [9, 10], which means that it is locally Lipschitz and for x ∈ R

n ,
v ∈ R

n and sequences (si)i ∈ R
>0, (ξi)i ∈ R

n with si ↘ 0 and ξi ∈ ∂ f (x + siv) for
all i ∈ N, it holds

lim sup
i→∞

〈ξi , v〉 ≤ lim inf
s↘0

f (x + sv) − f (x)

s
. (13)

Roughly speaking, weak lower semismoothness means that there is a semicontinuous
relationship between directional derivatives and sequences of subgradients (via the
inner product). In our case, we are interested in inequality (13) for x = x0 + t̄ ṽ and

123

160 B. Gebken

v = −ṽ. This will give us a lower estimate for 〈ξ ′, ṽ〉 in step 3 of Algorithm 2, which
we can use to show termination.

To this end, we will first derive an upper bound for the right-hand side of (13) in
the following lemma.

Lemma 2 Assume that Algorithm 2 does not terminate. Let t̄ as in Lemma 1. Then

lim inf
s↘0

f (x0 + t̄ ṽ − sṽ) − f (x0 + t̄ ṽ)

s
≤ c̃‖ṽ‖2. (14)

Proof ByLemma 1we have t j < t̄ for infinitelymany j ∈ N. Let (ji)i be the sequence
of such j . Note that monotonicity of (hc̃(b j)) j and t ji < t̄ imply that

hc̃(t̄) = lim
j→∞ hc̃(b j) ≥ hc̃(b ji) > hc̃(t ji) ∀i ∈ N.

In particular, writing f (x0 + t ji ṽ) = f (x0 + t̄ ṽ − (t̄ − t ji)ṽ), it holds

0 > hc̃(t ji) − hc̃(t̄) = f (x0 + t̄ ṽ − (t̄ − t ji)ṽ) − f (x0 + t̄ ṽ) + c̃(t ji − t̄)‖ṽ‖2

⇔ f (x0 + t̄ ṽ − (t̄ − t ji)ṽ) − f (x0 + t̄ ṽ)

t̄ − t ji
< c̃‖ṽ‖2

for all i ∈ N. Since t̄ − t ji ↘ 0 and the limit inferior is taken in (14), this completes
the proof. ��

The previous lemma enables us to prove our main result.

Theorem 1 Assume that f is weakly lower semismooth. Then Algorithm 2 terminates.

Proof Assume that Algorithm 2 does not terminate. Choose (ji)i as in the proof of
Lemma 2 and let ξ ′

i ∈ ∂ f (x0 + t ji ṽ) be the subgradient evaluated in step 3 in iteration
ji . Let si := t̄ − t ji . Then ξ ′

i ∈ ∂ f (x0 + t ji ṽ) = ∂ f (x0 + t̄ ṽ − si ṽ) and si ↘ 0, so by
Lemma 2 and weak lower semismoothness, it holds

lim inf
i→∞ 〈ξ ′

i , ṽ〉 = − lim sup
i→∞

〈ξ ′
i ,−ṽ〉 ≥ − lim inf

s↘0

f (x0 + t̄ ṽ − sṽ) − f (x0 + t̄ ṽ)

s

≥ −c̃‖ṽ‖2 > −c‖ṽ‖2,

since c̃ ∈ (cmin, c). In particular, we must have

〈ξ ′
i , ṽ〉 > −c‖ṽ‖2

after finitely many iterations, causing the algorithm to stop in step 3. ��

123

A note on the convergence of... 161

Fig. 2 The graphs of a hc̃ and b ∂hc̃ for c = 1/2, c̃ = 1/4 in Example 2. The vertical lines show the
sequence (t j) j fromAlgorithm 2, with the final value colored in blue. The dashed horizontal line in bmarks

the value (c̃ − c)‖ṽ‖2 = −1/4 above which ∂hc̃(t j) must lie for the method to stop (cf. (12)) (color figure
online)

4 Example

In this section, we visualize the difference between Algorithms 1 and 2 by revisiting
Example 1.

Example 2 (a) In the situation of Example 1, it holds

cmin = − f (0 + 1) − f (0)

1
= −1

2
,

so any c̃ ∈ (−1/2, c) = (−1/2, 1/2) can be chosen for Algorithm 2. Figure2
shows the graphs of hc̃ and ∂hc̃ when choosing c̃ = 1/4. We see that the algorithm
terminates after two iterations with t3 = 5/8 and the new ε-subgradient ξ ′ =
11/8 /∈ conv(W) = {−1}.

(b) Note that part (a) essentially solved the problem by simply choosing a different
value for c in h (leading to a more well-behaved function hc̃). To better visualize
differences of Algorithms 1 and 2, assume that we chose c = 3/4, such that
we may choose c̃ = 1/2 ∈ (cmin, c). Then Algorithm 2 has to deal with the
same problematic function as Algorithm 1 in Example 1. The resulting graphs
of hc̃ and ∂hc̃ are shown in Fig. 3. Since, in Algorithm 2, it is sufficient to have
g > (c̃ − c)‖ṽ‖2 for a subgradient g = 〈ξ ′, ṽ〉 + c̃‖ṽ‖2 ∈ ∂hc̃(t j) (cf. (12)), and
since all subgradients at hc̃(t) tend to 0 as t → 1, the method already stops in
t3 = 7/8 with the new ε-subgradient ξ ′ = −5/8 /∈ conv(W) = {−1}.

5 Conclusion and future work

In this article, we showed how the gap in the convergence theory of the deterministic
gradient sampling methods from [6–8] can be closed for weakly lower semismooth
functions by a more careful handling of the sufficient decrease condition in the bisec-
tion.

123

162 B. Gebken

Fig. 3 Same as Fig. 2 but for c̃ = 1/2 and c = 3/4

For future work, it might be worth to analyze the behavior of Algorithm 2 in a more
general setting. In [18], the convergence theory for the original gradient sampling
method from [4]was generalized to directionallyLipschitzian functions, and already in
[4], gradient samplingwas successfully applied to evenmore general, non-Lipschitzian
functions. Furthermore, the general strategy of approximating the ε-subdifferential in
a deterministic fashion as in [6–8, 15] may lead to interesting new methods when
combined with other methods that rely on random sampling, like [13, 14]. In the long
run, we believe that this strategy may lead one step closer to a unified framework
for both gradient sampling and bundle methods. For example, when comparing the
standard gradient sampling method in [4] and the bundle method of [15], one could
“hide” all the null steps in the bundle method in a subroutine and end up with a method
that is similar to the gradient samplingmethod, justwith a differentway to approximate
the ε-subdifferential.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availibility Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflicts of interest The author has no competing interests to declare that are relevant to the content of this
article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

A note on the convergence of... 163

Appendix A A drawback of random sampling

Example 3 For n > 1 let pr : Rn → R
n−1, x �→ (x1, . . . , xn−1)

�, be the projection
onto the first n − 1 components. Let

f : Rn → R, x �→ |xn − ‖ pr(x)‖| + 1

2
xn .

Then f is continuously differentiable in D1 ∪ D2, where

D1 := {x ∈ R
n : pr(x) �= 0, xn < ‖ pr(x)‖},

D2 := {x ∈ R
n : pr(x) �= 0, xn > ‖ pr(x)‖}.

For n = 2, the graph of f and the sets D1, D2 are shown in Fig. 4.
For the gradient we have

∇ f (x) =
(
pr(x)/‖ pr(x)‖

−1/2

)
∀x ∈ D1, ∇ f (x) =

(− pr(x)/‖ pr(x)‖
3/2

)
∀x ∈ D2.

Thus, it is easy to see that x = 0 is a critical point of f . In particular, if x0 ∈ R
n and

ε > 0 such that 0 ∈ Bε(x0), then the solution of (3) is v̄ = 0.
Clearly, to have vGS = 0 in (6), it is necessary to sample at least one gradient from

D2
ε := D2∩Bε(x0). For x0 = 0 and ε = 1, the probability that y ∈ D2

ε for a uniformly
sampled y ∈ Bε(x0) can be computed by comparing the hypervolume Vn(D2

ε) of D
2
ε

(which can be computed via a partition of D2
ε into a hypercone and a hyperspherical

cap) to Vn(Bε(x0)). In [4], m = 2n gradients are sampled in every iteration for the
approximation of ∂ε f (x0). The resulting probabilities of having at least one of the 2n
sample points in D2

ε are shown in Table 1.
We see that when increasing the dimension n, it quickly becomes highly unlikely

that random gradient sampling correctly identifies x0 = 0 as ε-critical. Note that this
is not related to x0 = 0 being a nonsmooth point of f , and we get a similar (or even
worse) result when choosing some x0 ∈ D1 close to zero. (It would just become
more difficult to compute the exact probabilities as in the table for x0 �= 0.) In this
case, the method from [4] would perform descent steps with short step lengths (and
little descent), which would require many function evaluations due to the backtracking
nature of the line search, without recognizing that the iterates are already ε-critical.

If deterministic sampling is used instead (cf. Sect. 2.2), then a simple computation
shows that if the first two subgradients ξ1 and ξ2 were sampled from D1, then the next
ṽ from (7) (for W = {ξ1, ξ2}) must be ṽ = (0, . . . , 0, 1/2)�, so the next subgradient
is sampled at x0 +1/2 ṽ (cf. Algorithm 2). If x0 is close to zero, then x0 +1/2 ṽ ∈ D2

such that a subgradient from D2 is sampled. After at most one additional iteration,
the procedure stops and correctly obtains ṽ = v̄ = 0. Thus, for arbitrary n, at most 4
subgradients have to be sampled when sampling deterministically.

123

164 B. Gebken

Fig. 4 a The graph of f for n = 2 in Example 3. The red lines indicate the points in which f is not
differentiable. b The boundary of the unit sphere B1(0) (dashed) and the sets D1 (green) and D2 (blue)
(color figure online)

Table 1 Probability that at least one of the 2n sample points lies in D2
ε in Example 3

n 2 3 5 10 20 50 100

Prob 0.6836 0.6133 0.4502 0.1394 0.0067 3.3 · 10−7 2.2 · 10−14

References

1. Clarke, F.H.: Optimization and nonsmooth analysis. Soc. Ind. Appl. Math. (1990). https://doi.org/10.
1137/1.9781611971309

2. Goldstein, A.A.: Optimization of lipschitz continuous functions. Math. Progr. 13(1), 14–22 (1977).
https://doi.org/10.1007/bf01584320

3. Burke, J.V., Lewis, A.S., Overton, M.L.: Approximating subdifferentials by random sampling of gra-
dients. Math. Operat. Res. 27(3), 567–584 (2002). https://doi.org/10.1287/moor.27.3.567.317

4. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, non-
convex optimization. SIAM J. Optimiz. 15(3), 751–779 (2005). https://doi.org/10.1137/030601296

5. Burke, J.V., Curtis, F.E., Lewis, A.S., Overton, M.L., Simões, L.E.A.: Gradient sampling methods for
nonsmooth optimization. In: Numerical Nonsmooth Optimization: State of the Art Algorithms, pp.
201–225. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34910-3_6

6. Mahdavi-Amiri, N., Yousefpour, R.: An effective nonsmooth optimization algorithm for locally lips-
chitz functions. J. Optimizat. Theory Appl. 155(1), 180–195 (2012). https://doi.org/10.1007/s10957-
012-0024-7

7. Gebken, B., Peitz, S.: An efficient descent method for locally lipschitz multiobjective optimization
problems. J. Optimizat. Theory Appl. 80, 3–29 (2021). https://doi.org/10.1007/s10957-020-01803-w

8. Gebken, B.: Computation and analysis of Pareto critical sets in smooth and nonsmooth multiobjective
optimization. PhD Thesis, Paderborn University (2022) https://doi.org/10.17619/UNIPB/1-1327

9. Mifflin, R.: An algorithm for constrained optimization with semismooth functions. Math. Operat. Res.
2(2), 191–207 (1977). https://doi.org/10.1287/moor.2.2.191

10. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Progr. 141,
135–163 (2013). https://doi.org/10.1007/s10107-012-0514-2

11. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control
Optimiz. 15(6), 959–972 (1977). https://doi.org/10.1137/0315061

12. Sun, D., Sun, J.: Löwner’s operator and spectral functions in euclidean jordan algebras. Math. Operat.
Res. 33(2), 421–445 (2008). https://doi.org/10.1287/moor.1070.0300

123

https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1007/bf01584320
https://doi.org/10.1287/moor.27.3.567.317
https://doi.org/10.1137/030601296
https://doi.org/10.1007/978-3-030-34910-3_6
https://doi.org/10.1007/s10957-012-0024-7
https://doi.org/10.1007/s10957-012-0024-7
https://doi.org/10.1007/s10957-020-01803-w
https://doi.org/10.17619/UNIPB/1-1327
https://doi.org/10.1287/moor.2.2.191
https://doi.org/10.1007/s10107-012-0514-2
https://doi.org/10.1137/0315061
https://doi.org/10.1287/moor.1070.0300

A note on the convergence of... 165

13. Curtis, F.E., Que, X.: An adaptive gradient sampling algorithm for non-smooth optimization. Optimiz.
Methods Softw. 28(6), 1302–1324 (2013). https://doi.org/10.1080/10556788.2012.714781

14. Curtis, F.E., Que, X.: A quasi-Newton algorithm for nonconvex, nonsmooth optimization with global
convergence guarantees. Math. Progr. Comput. 7(4), 399–428 (2015). https://doi.org/10.1007/s12532-
015-0086-2

15. Kiwiel, K.C.: Improved convergence result for the discrete gradient and secant methods for nonsmooth
optimization. J. Optimiz. Theory Appl 144(1), 69–75 (2009). https://doi.org/10.1007/s10957-009-
9584-6

16. Lemaréchal, C.: Chapter VII. Nondifferentiable optimization. In: Handbooks in Operations Research
and Management Science, pp. 529–572. Elsevier, Amsterdam (1989). https://doi.org/10.1016/s0927-
0507(89)01008-x

17. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10(3), 448–448
(1959). https://doi.org/10.1090/s0002-9939-1959-0105008-8

18. Burke, J.V., Lin, Q.: Convergence of the gradient sampling algorithm on directionally lipschitz func-
tions. Set-Valued Var. Anal. 29(4), 949–966 (2021). https://doi.org/10.1007/s11228-021-00610-3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1080/10556788.2012.714781
https://doi.org/10.1007/s12532-015-0086-2
https://doi.org/10.1007/s12532-015-0086-2
https://doi.org/10.1007/s10957-009-9584-6
https://doi.org/10.1007/s10957-009-9584-6
https://doi.org/10.1016/s0927-0507(89)01008-x
https://doi.org/10.1016/s0927-0507(89)01008-x
https://doi.org/10.1090/s0002-9939-1959-0105008-8
https://doi.org/10.1007/s11228-021-00610-3

	A note on the convergence of deterministic gradient sampling in nonsmooth optimization
	Abstract
	1 Introduction
	2 Computing descent directions for nonsmooth functions
	2.1 Random gradient sampling
	2.2 Deterministic gradient sampling

	3 Improved bisection method
	3.1 Derivation of the improved method
	3.2 Proof of termination

	4 Example
	5 Conclusion and future work
	Appendix A A drawback of random sampling
	References

