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Abstract
The pursuit of novel food products with good nutritional value for both direct and indirect 
human consumption is crucial. Given the nutritional benefits of insects and the sustainabil-
ity of this sort of farming, using them as food for farmed animals is a promising alternative. 
In this regard, the black soldier fly (Hermetia illucens) is most capable of efficiently con-
verting a wide variety of organic materials, from food waste to manure, into insect biomass 
generating value and closing nutrient loops as they reduce pollution and costs. Their larvae 
have 29% fat and 42% crude protein, yet they have more saturated fats than most insects. 
They don’t concentrate hazards such as mycotoxins or insecticides. Although rapid devel-
opment is expected, insects remain underutilized in the animal feed industry mainly due 
to technical, financial, and regulatory barriers. The social stigmas and legal prohibitions 
against eating organisms that eat waste are added to extant taboos facing insect consump-
tion. Bridging the knowledge gap is crucial to bring together stakeholders and to better 
understand the opportunities and challenges of this novel industry, so as to develop guide-
lines on producing insects on an industrial scale to facilitate the wider use of BSF products 
as animal feed, and fertilizer.

Keywords Black soldier fly · Fertilizer · Animal feed · Opportunities · Challenges · Fish · 
Poultry

1 Introduction

According to research, the world’s population will increase to roughly 9.6 billion people 
by 2050. Hence, to feed the population in 2050, the Food & Agricultural Organization 
(FAO) predicts food production will need to rise by 70%, with double meat production 
in beef, poultry, and hog (Higa et al., 2021). Therefore, the demand for meat and sea-
food is speculated to rise with the rising of aquaculture business. Food manufacturers 
have been compelled to develop novel alternative protein-based products to muscle meat 
in response to consumer demand for sustainable food. The production of muscle meat 
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from livestock animals contributes to the deterioration of the ecosystem worldwide by 
consuming land (30%) and its water (8%) in addition to the gas emissions (14.5%) (over 
those from transportation) (Lamb et al., 2021; Siddiqui et al., 2022). Eutrophication and 
deforestation, which account for greenhouse gas (GHG) emissions (34%), are further 
growing problems brought on by cattle production (Siddiqui et al., 2022).

In several nations throughout the world, insects have recently been recognized as a 
significant potential source of sustainable raw materials for animal feeds. In terms of 
nutritional make-up, amino acid profile, and feed acceptance—as a component of vari-
ous animal species’ natural diets—insects satisfy the dietary needs of animals (Schi-
avone et  al., 2018). The mass production of insect-based proteins could be a promis-
ing alternative to animal meat. Insect-based protein production requires less land, emits 
low GHGs, has low feed-food compatibility, and has the ability to transform organic 
wastes into valuable proteins, making the insects good for the environment (van Huis & 
Oonincx, 2017). For instance, using insects to bioconvert waste materials is an innova-
tive strategy and a striking illustration of a circular economy that is sustainable (Sogari 
et al., 2019).

Given their nutritional value, minimal space demand, and high acceptance by various 
animals, including fish, poultry, and reptiles who consume insects in their natural habitat, 
insects have a lot of promise as feed (Makkar, 2018). Furthermore, it is ethically accept-
able to produce insects used as feed on organic wastes like fish offal and dung (Oteri et al., 
2022). High nutritional qualities, feed efficiency, and reproductive capabilities are advan-
tages of employing insects as cattle feed (Van Huis & Gasco, 2023). Insects can provide 
by-products, are naturally found in the diets of some livestock (such as fish, poultry, and 
pigs), and can have additional socioeconomic and environmental advantages (Devi & Kim, 
2014). There are many types of insects that are acceptable, including mealworms, grass-
hoppers, crickets, locust, house fly larvae, silkworms, and black soldier fly (BSF) and its 
larvae (BSFL) (Sogari et al., 2019).

BSFL, Hermetia illucens L. (Diptera: Stratiomyidae), is thought to have the most poten-
tial for use as feed. Insect production depends on the environment, but generally speak-
ing, they use less area and emit significantly less water and GHG than conventional feed 
(Rehman et al., 2023). Assuring a certain level of safety is a crucial component in com-
mercializing any product. A major concern with using insects as food is standardization, 
because different insects are reared on different substrates, and different insect-consuming 
nations consequently have different legal systems (Riera, 2018). Laws governing the safety 
of the substrate that insects are raised on, for example, may not be as stringent in some 
areas as they are in the European Union (EU). According to experts, the primary obstacle 
preventing the sector from taking off globally is the stringent EU rules (Van Huis & Gasco, 
2023). The poorest and most vulnerable people in society can gain from insect rearing. 
Insects will eventually replace traditional feed as a more affordable and environmentally 
friendly source of protein with significant technological advancements. Insects raised on 
waste have the potential to reduce and value global waste sources (Heuel et al., 2021). By 
making investments in renewable energy, insect farming will become less dependent on 
fossil fuels (Surendra et al., 2016).

The BSF market has a limited economic potential now, but it is anticipated to rise rap-
idly over the next few years. The global market had a 2019 value of $128 million but is 
expected to increase to $3.4 billion by 2030 (Foo & Li, 2021). In addition, Asia Pacific 
held the greatest share of the global market in 2019 in terms of volume (57.1%) and value 
(almost 50%). The demand for meat and seafood is expected to rise along with the global 
population, and the aquaculture business is expanding as well (Foo & Li, 2021).
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In the past ten years, BSFL treatment has emerged as a viable way of treating biode-
gradable garbage that may contribute to the three difficulties listed. Biodegradable waste is 
transformed into two products in this insect-based treatment: a larval biomass rich in pro-
teins and lipids that may be utilized in animal feed and a processing residue known as frass 
that can be used as fertilizer in a variety of ways (Kumar et al., 2018). This method adheres 
to the concepts of a circular bio economy, in which the waste from one process becomes 
the resource in another because two valuable goods are produced (van der Fels-Klerx et al., 
2020). One of the key outcomes of the process was frass, which may take the place of tra-
ditional N fertilizers and reduce the risk of global warming that comes with using any type 
of conventional N fertilizer (Schmitt & de Vries, 2020). Reports indicate that the process 
for frass production from BSFL shows less environmental damage, minimal utilization of 
energy and water, and less impact on global warming and other impact categories than the 
process of organic fertilizer (Lopes et al., 2022). It is interesting to note that the environ-
mental advantages of producing insect frass are strongly tied to the substrate source used 
to feed the larvae, with lesser impacts being documented when using non-utilized waste 
streams instead of conventional items like soybean meal (Heuel et  al., 2021). Frass has 
begun to draw attention in recent years due to its ongoing production in waste treatment 
facilities, plenty of plant nutrients, and potential to help the agribusiness industry gener-
ate cash (Lugato et al., 2020). However, compared to the larval biomass obtained through 
the same method, frass has not received as much attention. Particularly, there are several 
information gaps about the application of frass and its advantages in farming and other 
cultivation-related activities (Lopes et al., 2022).

BSFL composting, using organic wastes to produce frass, and also using BSF as animal 
feed have all been the subject of extensive investigation. This study will provide the reader 
with an extensive and succinct source of knowledge by summarizing the results of selected 
prior studies on BSFL organic waste treatment and the potential use of BSF by-products 
that focused on larvae and frass.

2  Methodology

2.1  Eligibility criteria, articles search strategy and dataset development

We applied the following inclusion in this review by following population, intervention, 
comparators, outcomes, and study design (PICOS) as follows: (1) Consumers; (2) BSF 
products; (3) consumer studies focused on future opportunities for products derived from 
the black soldier fly treatment as animal feed and fertilizer; (4) articles consistently written 
in English and published after being peer reviewed. After careful evaluation, a raw dataset 
that reported consumer studies focused on future opportunities for products derived from 
the black soldier fly treatment as animal feed and fertilizer was constructed and extracted. 
The articles were carefully chosen and selected following the Preferred Reporting Items 
for Systematic Reviews (PRISMA) guidelines (Moher et al., 2009). Published articles were 
extracted into Mendeley references manager (https:// www. mende ley. com/) with the follow-
ing criteria: (1) name of the author; (2) publication year; (3) year of study; (4) type of BSF 
product derived and evaluated; and (5) results obtained.

Initially, 1050 results were achieved through the Science Direct database (https:// 
www. scien cedir ect. com/). From these, 200 articles were excluded due to not being 
related to our topic, future opportunities for products derived from the BSF treatment 

https://www.mendeley.com/
https://www.sciencedirect.com/
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as animal feed and fertilizer and 185 articles for being duplicates; 435 articles were 
excluded as they did not discuss the effects of different BSF products derived and 15 
articles for the language (non-English); 37 articles were excluded for non-peer reviewed 
papers/ inappropriate interpretation of results/ non-availability of full texts; finally, 178 
articles remained for systematic review for consumer studies focused on future oppor-
tunities for products derived from the black soldier fly treatment as animal feed and fer-
tilizer (Fig. 1). The algorithm search key for the published article was set from 2012 to 
2022, using the terms (“Black soldier fly”) AND (“BSF products”) AND (“animal feed” 
OR “fertilizer” OR “Life Cycle Assessment” OR “opportunities and challenges”).

Fig. 1  Diagram flow of article selection
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3  Products derived from black soldier fly treatment

3.1  Animal feed

Animal feed is a food item that is consumed by the domestic animals in the course of Ani-
mal Husbandry. Animal feed is the most important source of nutrition intake by animals 
that ensures improved immunity, accelerated growth, and good health. With an increasing 
initiative for the production of sustainable protein animal feed acts as a high-value pro-
tein source for both livestock and fish. The commercial livestock farming success hugely 
depends on the constant best quality nutritious feeds supply. The livestock and the animal 
feed market are in harmony with each other in growth. The animal feed market is expected 
to surge in the coming years with furiously growing per capita consumption of eggs, boiler 
meat, and milk (Henchion et al., 2021). By 2050, the FAO of the United Nations predicts 
that 70% more food must be produced globally (van Dijk et al., 2021). Global meat output 
per person is expected to rise by 0.3% P.A. to 35.4 kg in retail weight equivalent by 2030, 
according to the OECD-FAO Agricultural Outlook 2021–2030 (OECD/FAO, 2021). As 
per the International Feed Industry Federation (IFIF), the manufacture of meat (poultry, 
swine, and cattle) will even double in the nearby future (Veldkamp & Bosch, 2015). The 
majority of the increase in meat production is, overall, attributed to developing regions, 
which will produce 80% more than they do now (https:// www. inves tment monit or. ai). Addi-
tionally, it was noted that during the following ten years, beef consumption is expected to 
rise to 76 Mt, accounting for almost 16% of the overall growth in meat consumption over 
the baseline period (OECD/FAO, 2021). Additionally, it is anticipated that during the next 
ten years, the global consumption of pig meat would rise to 127 Mt, making up 28% of the 
overall growth in meat consumption (OECD/FAO, 2021). As a effect, it is anticipated that 
the market for animal feed will be driven by an increase in meat consumption followed by 
population growth.

Currently, fish meal, processed animal proteins, and soybean meal are significant pro-
tein constituents for animal feed (Veldkamp et al., 2012). However, the usage of processed 
animal proteins in animal feed is outlawed in the European Union as a result of TSE 
laws (Fumière et al., 2009). The quantity of land that can be utilised for soya farming is 
also constrained globally, while overfishing in the ocean has decreased the population of 
small pelagic forage fish, which are needed to produce fish meal and fish oil (Veldkamp 
et  al., 2012). In the previous five years, prices have risen due to the increasing scarcity 
of resources needed to create these more in-demand ingredients, which already account 
for 60–70% of production expenses (Veldkamp et al., 2012). Alternative (animal) protein 
sources are thus desperately needed for aquaculture and cattle (Veldkamp et  al., 2012). 
Insects are an alternate source of animal protein that can be sustainably farmed on organic 
side streams. Many factors contribute to their high feed conversion efficiency, but their cold 
blood is most certainly one of them. On a dry matter basis, insects have a protein content of 
30–70% (Veldkamp et al., 2012). When a drought or other extreme weather event brought 
on by climate change affects farmers or herders, they frequently have to switch to more 
expensive manufactured animal feed, which can have a negative impact on their capacity to 
make a living (Gitz et al., 2016).

Today insect protein is used in fish feed and pet food. A brief overview of feed resources 
used to prepare different animal feeds and major nutritional composition (Table  2) for 
poultry, livestock, fish, and pets is depicted in Table 1. The next step will be to authorize 
the use of insect protein for poultry feed and other livestock. Many articles deal with using 

https://www.investmentmonitor.ai
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insects as feed for pets, pigs, poultry, and as aquafeed. Of all feed produced in the world 
(1.1 billion tons), poultry takes 44.8%, pigs 25.9%, ruminants 22.2%, aquaculture 4.5% and 
pets 2.6% (Alltech, 2016). In general, it seems that the nutritional composition of insects, 
such as the high protein, lauric acid omega 6, and omega 3, and bioactive compounds, 
such as chitin, seems to have potential in animal feeding (Shah et al., 2022). A schematic 
summary of how animal feed and fertilizer (BSF Frass) is produced from BSF is given in 
Fig. 2, where the inputs of organic waste are converted by BSFL by artificial rearing in at 
controlled environment to get outputs as protein meal, lipids, chitin and biofertilizer.

3.1.1  Commercial animal feed versus products derived from BSF larvae

3.1.1.1 Aqua feed By 2030, aquaculture, or fish farming, is anticipated to contribute 62% 
of the world’s fish supply (FAO, 2014). The need of fish for human feeding and depleted 
fisheries, amongst other factors, have increased the price and driven up the cost of fish meal 
and oil, forcing fisheries to look for alternatives like vegetable oils despite the fact that it 
is well acknowledged that they are essential for aquaculture (Li et al., 2016). Fishmeal and 
fish oil are the main source of protein and essential fats in aquatic feed production. For the 
manufacture of these, 18 million tons was used in 2018 which is 10% of the total production 

Fig. 2  Schematic summary of how animal feed and fertilizer is produced from Black Soldier Fly treatment
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of world fisheries and aquaculture (FAO, 2020). A major protein source in aquafeeds is soy-
bean meal but its increasing price, poor content of methionine and lysine, and the presence 
of anti-nutritional factors, especially trypsin inhibitor, is a drawback (Chakraborty et al., 
2019; Chen et al., 2019). Processed animal proteins (PAPs) which are allowable to be used 
in fish feed, are not yet included in many of the feed products on the market today.

Insect protein has similar characteristics to PAPs and provides a good, sustainable alter-
native. The demand for formulated fish feed presents an opportunity for the insect sector. 
If given a diet that is sufficiently high in lipids, BSFL can hoard fats in their bodies. Veg-
etable oils are typically less appetising to fish than BSFL. When fish offal is added to the 
larval diet, pre-pupae that are enriched in omega-3 fatty acids are formed (St-Hilaire et al., 
2007). When related to regular fish meals, these "enriched" pre-pupae are fit fish feeds, 
producing no appreciable changes in fish development and vision (Oncorhynchus mykiss, 
rainbow trout) (Sealey et al., 2011). Nairuti et al. (2021) reviewed several studies for pos-
sible replacement levels of fishmeal with BSF meal and this ranged from 10% for meager 
juveniles (Argyrosomus regius) to 25% for Siberian sturgeon (Acipenser baerii) and pacific 
white shrimp (Litopenaeus vannamei), 50% for European sea bass (Dicentrarchus labrax) 
to 100% for Nile tilapia (Oreochromis niloticus).

According to sensory investigation of trout fillets, fish given fish meal, BSFL, or 
enriched BSFL diets did not differ in any manner (Sealey et al., 2011). One more study on 
rainbow trout (Renna et al., 2017) suggested supplementing the diet with up to 40% defat-
ted BSFL with no contrary effects on the physical quality of the fillet or the fish’s physi-
ology, but they did notice a drop in beneficial polyunsaturated fats. In another study on 
rainbow trout, the top limit for BSFL in the diet for unaffected fish growth was determined 
at 15% (Renna et al., 2017). No differences in growth performance between BSFL oil and 
soybean oil were detected in a study on young Jian carp (Cyprinus carpio var. Jian), but it 
was found that as BSFL oil’s share of the diet increased, carp lipid deposition decreased 
(Li et al., 2016). After trials with the African catfish, Clarias gariepinus demonstrated that 
total BSFL replacement of fish meal in diets (where it made up just 25%) had no conse-
quence on development rate and nutrient utilisation indicators, BSFL were proposed as an 
alternative due to their lower cost.

Finally, BSFL can considerably contribute to sustainable aquaculture as a partial or full 
meal replacement, for aquatic invertebrates like prawns (Cummins et  al., 2017). This is 
the conclusion reached by numerous writers. This is due to BSFL’s capacity to transform 
potentially low-protein organic wastes into protein-rich edible biomass. Tran et al. (2024) 
reviewed 107 studies dealing with 23 freshwater and 17 marine fish species, and 17 insect 
species as a replacement for fishmeal. While in general high levels of BSF seem to depress 
fish growth (Hua, 2021). The major factors limiting inclusion of insects in aquafeed are: 
reduction in protein digestibility, imbalanced amino acid profile and increasing levels of 
saturated fatty acid (Liland et al., 2021). Although Quang Tran et al. (2022) consider insect 
meal as an excellent potential to supply protein for aquafeeds, they recommend addressing 
nutritional composition and environmental aspects and developing suitable insect-specific 
substrates as aquafeed.

Future research should focus on nutritive values of different insect species and the 
necessity to identify optimal levels for different types of insect meals. In July 2017, insect 
proteins from seven insect species were authorised in the EU for use in aqua feed, opening 
new feed markets for insect producers. Like other farmed animals, these insect species may 
only be fed with ‘feed grade materials’ such as materials of plant origin, processed eggs, 
milk and their derived products. Above 5000 tonnes of insect protein have been commer-
cialised by European insect producers in total, since the authorisation of insect proteins 
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for use in aqua feed. Today, the aqua feed market consumes more than 50% of European 
animal feed made from insects and this is expected to increase in the coming years (Liland 
et al., 2021).

3.1.1.2 Poultry feed Today insect proteins cannot be fed to poultry in European Union as 
legislation passed after the BSE (bovine spongiform encephalopathy) crisis in the late 1990s 
prevents processed animal proteins from being fed to livestock. Only fishmeal may be used 
and yet, over 90% of EU insect feed producers see poultry feed as a ‘promising opportunity’ 
(IPIFF, 2018). Dörper et al. (2021) concluded that partial replacement of soybean meal by 
larvae of BSF or housefly in feed is beneficial for poultry. Chodova and Tumova (2020) 
reviewed a number of studies, and identified that insect meals can have a positive influence 
on growth of chickens without adverse impact on carcass and meat quality characteristics.

BSFL has been used in poultry feed as an incomplete replacement for maize- or soy-
based feeds. The species naturally colonizes and decomposes poultry manure. Where popu-
lations of it are routinely maintained by poultry farms for the benefit of waste management 
and pollution reduction. There was no difference in productive act, breast meat weight, or 
yield between the control group and either of the two BSFL meal proportions in experi-
ments with grill quails, Coturnix coturnix japonica (Cullere et  al., 2018). The oxidative 
status, lipid content, and sensory and flavour judgements of breast meat were unchanged by 
BSFL supplementation. However, it did increase the meat’s amino acid content, improving 
its nutritional value (by increasing glutamic acid, alanine, aspartic acid, serine, tyrosine, 
and threonine). The amounts of undesirable saturated and monounsaturated fatty acids did, 
however, rise (Cullere et al., 2018).

Similar outcomes were attained by adding BSFL to the feed of domestic broiler chick-
ens (Gallus gallus), with the caveat that utilising defatted BSFL diminished the detrimental 
effects on fatty acid profiles. In both instances (partial or total replacement of soybean oil 
by BSFL fat), Schiavone et al. (2017) discovered that BSFL was a suitable source of pro-
tein for chicken feed, with the authors depicting that BSFL “inclusion definite satisfactory 
creative performances, carcass traits and complete meat quality” (Schiavone et al., 2017). 
The health or concert of the laying hens or the quality of the eggs were not affected by the 
addition of BSFL (50%) or the complete substitution of soybean cake in the diets of the 
hens (Maurer et al., 2016). As a result, BSFL are a probable partial replacement for poultry 
feed since they add extra protein and have the added benefit of being able to be raised on 
the waste of the same animals that will eventually consume them.

3.1.1.3 Pet feed Pet food is a mainstream market for European insect producers. Insect 
products are well-suited to the particular needs of pet food, due to their high digestibility 
and palatability. Some European pet food companies already incorporate insects in their 
feed formula, notably as a means to expand their products’ range e.g. in hypoallergenic 
products. This trend is expected to continue to grow in the next few years. While only 3% 
of all feed produced is for pets, 50% of the insect industry is engaged in producing for this 
sector (van Huis, 2022). In vitro assays displayed that fraction containing BSF larvae protein 
significantly inhibited the growth of Clostridium perfringens, which is for 28% of the cases 
responsible for diarrhoea in dogs (Dong et al., 2021). However, Bosch and Swanson (2021) 
caution that health-promoting effects of insect products need to be studied more as well as 
the long-term impact of insects as food on the nutritional status of dogs and cats. Concern-
ing indispensable amino acids, the limiting ones with BSF methionine and threonine for 
dogs and the first methionine for cats (Bosch et al., 2019).
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3.1.1.4 Pig feed It is assessed that soybean meal accounts for 85% of the protein sup-
plements fed to pigs (Florou-Paneri et al., 2014). BSF larvae can partly replace soybean 
meal, and in addition may have interesting functional properties (Kar et  al., 2021). 
The beneficial effects of BSF larvae intake on weaned pigs are diarrhoea reduction, 
better immune response, and improved small intestinal morphology (Choi & Hassan-
zadeh, 2019). BSF prepupae are rich in lauric acid, known for its antimicrobial effects 
on Gram positive bacteria (Spranghers et al., 2017). The amino acid digestibility and 
growth performance in pigs fed BSF larval meal is analogous to that of soybean meal 
and fishmeal (Hong & Kim, 2022). In commercial conditions damaging behavior such 
as tail biting often occurs in post weaning pigs. Providing small amounts of live BSFL 
daily to piglets after weaning can improve piglet welfare while maintaining piglet per-
formance (Ipema et al., 2021). However, the current price of insect meal is still higher 
than that of soybean, the reason to explore the potential added value of BSF compared 
to conventional protein sources.

The necessity to consider different quality factors is a crucial component of suc-
cessfully introducing insects into the feed chain. In this regard, the extended quality 
triangle proposed by Luning and Marcelis (2009) defines three quality aspects related 
to the product itself. This successful introduction of insect protein in feed is thought 
to depend on these three factors: insect quality as such, insect availability, and costs. 
Choosing appropriate insect species and strains, locating affordable rearing substrate 
(if possible by utilising organic waste side-streams, but ensuring feedstock safety when 
rearing insects on organic waste and manure), managing diseases and establishing 
sanitation procedures, producing a consistent supply of high-quality insects (including 
quality assurance), developing innovative and cost-effective production systems, and 
increasing a crop’s yield are the main challenges to using insects as feed. These factors 
can all be connected to one or more feed chain processes and will be further explored 
in this text (Veldkamp et al., 2012).

Whereas, insects are the natural component of the diets of animals, such as carnivo-
rous fish, poultry and pigs. They are high in protein from 50 to 82% (as a dry prod-
uct) and can be added to animal feed with up to 40% insect content for fish feed and 
30% for chicken feed. The environmental benefits of insect mass production include 
low greenhouse gas emissions (van Huis & Oonincx, 2017), the small amount of land 
required to produce 1 kg of protein (Oonincx & de Boer, 2012), reduced land use due 
to lower feed-food competition (Makkar, 2018), and the ability to transform organic 
waste streams into high-value protein products (Meneguz et  al., 2018). One innova-
tive strategy and outstanding illustration of a sustainable circular economy is the use 
of insects in the bioconversion of waste materials (Meneguz et al., 2018). Therefore, 
it is well recognised that BSFL can be utilised as a substrate for a range of vertebrate 
wastes and can be used to feed a variety of vertebrates (Tomberlin et al., 2015). This 
has noteworthy repercussions for low-input, sustainable agriculture in underdeveloped 
nations (Nyakeri et al., 2017), yet it has no effect on how tasty the meat from BSFL-fed 
animals is for human consumption. Although the potential assistances are greatest in 
these developing nations, BSFL and added insect feeds are projected to assume larger 
roles over time in wealthy nations like the United States due to commitments to mini-
mise waste made by food companies seeking approval from consumers and regulators 
who are becoming more environmentally sensible, as well as the fluctuating costs of 
fish meal and other feed driving the producers to pursue alternatives (Klonick, 2017).
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3.1.2  Types of products derived from black soldier fly larvae

3.1.2.1 Dried larvae BSF larvae meals are a valid, cost-effective, and highly nutritive alter-
native source of animal protein feed (Edea et al., 2022). Sources of protein in animal feed 
play an important role in forming body tissues and vital metabolism such as enzymes, hor-
mones, antibodies, and so on (Beski et al., 2015). The use of insects as a source of protein 
has been widely studied and discussed around the world. Protein from insects is known to 
be more economical, environment friendly, easy for mass production and has high feed con-
version efficiency (Van Huis, 2013). They are also part of natural feed for poultry (Makkar 
et al., 2014). One of the determinants of animal feed quality is expressed in terms of crude 
protein content and essential amino acids profile based on dry feed ingredients. BSF larvae 
is an alternative feed protein source that cannot be stored in the fresh form for a long time 
without drying. Fifteen days old larvae of BSF were dried either using the stove oven dry-
ing for 75 min or using 800 Watts of microwave drying for 25 min. The study concludes 
protein content of BSF larvae, were not significantly different between drying treatments, 
while the amino acid content was higher in the microwave drying than stove drying method. 
This study concludes that the above two methods can be used in preserving BSF larvae as a 
source of dietary protein for farm animals (Purnamasari et al., 2021).

The protein content in larvae of BSF is used as animal feed. Larvae are living materi-
als that, if not treated, will continue to grow into adult flies. In addition, if stored in a 
dead condition, the larval product will rot because it has a high-water content. Drying is an 
easy and inexpensive method to extend the shelf life of the product. Drying is a process of 
hydrating or removing water from material. The purpose of drying is to increase durabil-
ity, reduce packaging costs, reduce transport weight, improve the taste of the ingredients, 
and maintain the nutritional content of the ingredients (Achanta & Okos, 2000). Therefore, 
BSF larvae need proper processing strategies to maintain nutrient content in ingredients, to 
be able to extend a longer shelf life and, make it easier to be used in formulations of feed 
ration.

3.1.2.2 Protein meal BSF protein meal has high-quality amino acids, lipids and micro 
nutrients to boost the animal’s health naturally. It fully replaces conventional protein in 
many dry and wet pet food and aquaculture applications, while adding functional benefits 
and superior palatability. A well-balanced combination of high-quality amino acids, lipids 
and micro nutrients, easily digestible proteins (> 85%), superior palatability, high freshness 
index (BAI < 1), suitable for hypoallergenic diets in pet food, and other functional character-
istics (Rawski et al., 2021). The protein content of the insect species is within the soybean/
fish meal range and fat content is higher especially compared to (defatted) soybean meal. 
The pet industry has boomed during the pandemic, with purchase and adoption of pets ris-
ing, spending on pets hitting a record in 2020, and the trend so intense veterinarians have 
struggled to keep up with demand (Hornyak, 2021).

BSFL can be processed in different ways which results in ingredients for the feed indus-
try with different protein and fat contents. The defatted BSFL meal (D-BSFL) is pro-
duced by partial or total fat extraction using pressing or organic solvents, and the resulting 
defatted meal is then posteriorly dried and ground. D-BSFL has around 60% protein and 
10–12% lipid content (Barroso et al., 2014; Monteiro dos Santos et al., 2023). The full-fat 
BSFL (FF-BSFL) meal is easy to produce by drying and posteriorly grinding. The FF-
BSFL is a low-cost technology when related to D-BSFL as it avoids expenses associated 
with fat extraction processes. FF-BSFL has an average content of 42% crude protein and 
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30% lipids (Magalhães et al., 2017; Veldkamp et al., 2012). Insects as feed ingredients for 
aquafeeds are on the rise in science and industry sectors, since there is an emergent neces-
sity for alternative protein sources to fish meal and fish oil (Rawski et al., 2021).

3.1.2.3 Oil Insect lipid that provides a quick source of energy due to high levels of eas-
ily digestible medium-chain fatty acids. contains 40% lauric acid, which is recognized for 
its antimicrobial properties in the digestive tract. A healthy gut means a stronger immune 
system. is an especially valuable energy source for younger animals that suffer from diges-
tive problems and have impaired nutrient absorption. The animals grow healthy while the 
industry reduces its ecological footprint.

Oil extraction efficiency could be improved by acid hydrolysis prior to down-stream 
processing of BSFL. The separated oil from conventional down-stream process has a high 
content of trilaurin giving a melting point at 26  °C that may cause technical issues for 
some feed and food applications. Lower trilaurin content and melting point can be achieved 
by acid hydrolysis of BSFL and/or winterization of the oils. This will allow producers of 
BSFL to tailor oil properties to various markets (Bogevik et al., 2022). BSFL oil is domi-
nated by a few fatty acids (mainly 12:0, lauric acid) (Ushakova et al., 2019) which limit 
its inclusion levels in cold-water aquaculture feeds. These feeds normally include fish oil 
and rapeseed oil with a large distribution of fatty acids including polyunsaturated acids. 
Replacement of corn oil with BSFL oil at 0, 4, 6 and 8% showed a linear increase of 
growth in nursery pigs (Heugten et al., 2019). In addition, lauric acid from BSFL demon-
strated antimicrobial properties on gastrointestinal bacteria. While 5% inclusion of BSFL 
oil to a basal broiler chicken diet had no effect on growth, 50 and 100% replacement of 
soybean oil with BSFL oil reduced growth in broiler chickens (Kim et al., 2020). In a diet 
to rainbow trout (Oncorhynchus mykiss), replacement of fish oil with BSFL oil had no 
effect on growth (Kim et al., 2020). Increased inclusion of BSFL meal or oils in diets has 
generally caused increased saturated fatty acid content in edible meat products. The con-
tent of saturated fatty acids in meat is closely related to the texture (Belghit et al., 2019a, 
2019b). Thus, an increased ratio of polyunsaturated fatty acids is more desirable both for 
meat quality and human health (Hong et al., 2013; Wood et al., 2004) Nevertheless, the 
high saturated fatty acid content of the BSFL could be beneficial in terms of energy and 
antimicrobial activity (Świątkiewicz et al., 2016).

3.2  Frass as fertilizer

According to Commission Regulation (EU) 2021/1925, frass is defined as a mixture of 
excrements derived from farmed insects, the feeding substrate, parts of farmed insects, 
dead eggs and with a content of dead farmed insects of not more than 5% in volume and 
not more than 3% in weight (EU, 2021). A large variety of organic waste streams (e.g. 
manure, food waste, biogas slurries) can be converted by BSF larvae into new insect bio-
mass and the residual fraction is called frass (Elissen et al., 2023). The composition of the 
produced frass is variable depending on the composition of the substrates (Elissen et al., 
2023) especially P, K and micronutrient concentrations (Lopes et al., 2022). Frass can con-
tain significant amounts of N, P, K, organic matter and other components such as chitin 
(from the larvae skins). Beesigamukama et  al. (2022) concluded that BSF frass has sig-
nificantly higher N (20–130%) and K (17–193%) concentrations compared to frasses of 
other insects. However, frass is a biologically unstable product, due to its rapid breakdown 
and the presence of substances with potential phytotoxic properties. As a P dominated 
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fertilizer, N supplementation is necessary to make BSF frass a more balanced fertilizer 
product (Lopes et al., 2022). The frass can be used for different applications: direct or com-
posted as fertilizer or soil conditioner, or for biogas production (e.g. Bulak et al., 2020; Hol 
et al., 2022). BSF frass application led to the highest seed germination rate/index (Beesiga-
mukama et al., 2022). Table 2 highlights the nutrient composition of BSF frass obtained by 
using different organic wastes.

3.2.1  Commercial fertilizer versus black soldier fly frass

The world-wide agricultural industry is confronted with numerous issues. According to the 
UN, by 2050, the world population will have surpassed nine billion people. This will put a 
lot of pressure on agricultural business, which is already suffering from a loss of productiv-
ity. Farmers are forced to use fertilizers to enhance their agricultural output due to loss of 
arable land across the globe and to meet requirement of growing population (FAO, 2017). 
Being expensive, the organic and synthetic fertilizers can’t be affordable by farmers. Many 
of the organic fertilizers supply limited nutrients and release the nutrients slowly (Shaji 
et al., 2021). Synthetic fertilizers are toxic to the skin and respiratory system and damage 
the plants and reduce soil fertility by easy washout of nutrients and also cause eutrophi-
cation. This paves a way to use insect frass as potential fertilizer. In fact, the capacity of 
frass to supply nutrients to plants and enhance plant growth has been compared to that of 
synthetic fertilizer and its potential to replace conventional fertilizers has been pointed out 
(Houben et al., 2020).

It’s a relatively recent idea to use insect BSF frass as organic fertilizer. Any farming 
system that uses a novel idea or product as fertilizer has to know how it performs in terms 
of how it affects crop development, yield, nutrient uptake, and usage efficiency in com-
parison to other fertilizers. The source, nutrient content, mineralization stage, and storage 
technique of organic fertilizers all have a significant impact on their efficacy (Ebanyat, 
2009; Ndambi et al., 2019; Rufino et al., 2007). For instance, the source, mineralization 
level, and C/N ratio of manure all have a significant impact on the availability of nutrients 
(Grigatti et al., 2015; Musyoka et al., 2019). BSF frass being an organic fertilizer is com-
parable to poultry manures but it has low nutrient contents compared to high-value com-
mercial organic fertilizers (Gärttling & Schulz, 2022). Organic matter content of BSF frass 
is higher than all other manure and compost types. N content and C/N ratio are closest to 
the values of cow slurry, while P content is most comparable to that of pig slurry and K 
content is most comparable to that of poultry manure (Gärttling & Schulz, 2022). Rela-
tively low C/N ratio (13–16 on average) of BSF frass paves a way for easy nutrient uptake 
(Beesigamukama et al., 2021a) and pH of 6–8 which is a good value for mature compost 
for agronomic purposes (Basri et al., 2022). C/N ratios of BSF frasses from cow, chicken 
and pig manure usually tends to be lower than 20, which is indicative of a mature compost 
(i.e. lower than 25 according to the authors). In addition, germination indexes and nutrient 
concentrations of all frasses are more than their respective manure (Liu et al., 2019).

In comparison to urea and SAFI (a combination of chicken manure, charcoal, and rock 
phosphate), BSF frass as fertilizer is more successful in increasing yield when applied to 
maize at rates of 2.5 t  ha−1 and 30 kg N  ha−1, respectively, while SAFI needs to be applied 
at double the rates to get the same yield. Plots treated with BSF frass display the tallest 
plants, maximum chlorophyll concentrations, and higher nitrogen recovery efficiency. In 
comparison to the value obtained with an equivalent rate of SAFI, the agronomic N usage 
efficiency and nitrogen fixing efficiency of maize treated with 2.5 t ha-1 of BSF frass are 
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2.4 and 2.5 times greater, respectively (Beesigamukama et al., 2020a). But, composition of 
BSF frass is highly variable (especially regarding micronutrients) and needs to be assessed 
on an individual basis for specific purposes (Gärttling & Schulz, 2022) and frass can-
not be applied at high concentrations, possibly due to ammonia toxicity (Gärttling et al., 
2020). High conductivity values and sodium content are also the drawbacks for application 
(Chavez & Uchanski, 2021). Thus, it is recommended by Chavez and Uchanski (2021) that 
insect frass in mixture with inorganic fertilizers can be used for best results on crop and 
pathogen/disease resistance with a typical effective dosage of 10–40% of the total fertilizer 
volume administered.

Hopeful evidences on how the BSF frass affects the plant growth and development by 
modifying the factors such as better use efficiency of P and K (Putra et al., 2017), improved 
soil fertility and defence against pathogens (Choi & Hassanzadeh, 2019), suppression 
against Pythium ultimum (Ellison et al., 2019), influence on soil N availability (Kagata & 
Ohgushi, 2012), stimulation of soil microbial activity and diversity (Houben et al., 2020), 
not impairing hygienic properties of soils (Klammsteiner et  al., 2020), improvement of 
beneficial microbial activity (Houben et  al., 2021), increased dehydrogenase activity 
(Menino et al., 2021), and increased enzyme activity (dehydrogenase and β-glucosidase) 
(Esteves, 2020) are reported by many authors. Some pot tests have shown the potential of 
BSF frass, obtained from substrates of various kinds in reducing mineral fertilization in 
several crops like lettuce (Esteves, 2020; Kebli & Sinaj, 2017), ryegrass (Kebli & Sinaj, 
2017; Klammsteiner et  al., 2020), maize (Beesigamukama et  al., 2020b), Brassica olar-
aceae (Wantulla et al., 2023) and swiss chard (Chirere et al., 2021).

In terms of N, P, K, and organic matter, Choi et al. (2009) compared BSF larvae frass 
with a commercial fertilizer (unspecified origin) for Chinese cabbage and found that both 
fertilisers were equally effective (same number of leaves, leaf length and width, and nutri-
ent accumulation), with the exception of P absorption by plants, which was low when fer-
tilized with BSF frass. Wantulla et al. (2023) reported that soil amendment with BSF frass 
almost halved Dalia radicum fly emergence from the soil by the action of chitinase enzyme 
as compared to the synthetic fertilizer treatment in Brassica olaraceae plants and thus 
increased the yield by reducing the damage. When exposed to tiny amounts of BSF exu-
viae, Brassica nigra displayed larger plants, more blooms, more pollinators, and eventually 
more seeds (Barragan-Fonseca et al., 2017). Stronger growth, as demonstrated in lettuce 
plants that thrived when exposed to BSF frass, may be the cause of this impact (Putra et al., 
2017; Setti et al., 2019). Alattar et al. (2016) tested BSF larval frass as a fertilizer for maize 
plants, using a 1:2 (w/w) frass to soil mixture, without mentioning the nutrient composition 
of the frass and reported that frass impacted plant growth (dwarf plants and fewer leaves) 
more negatively than did a micro-aerobic fermentation product made from the same feed 
substrate (food waste) used to feed the larvae.

According to the authors, the reduced growth could be caused by the high concentra-
tions of ammonia in the frass. BSF frass delivered poor growth results (yield, dry matter 
production, leaf area and nutrient use efficiency) in maize when compared with other by-
products (larval skins and dead adult flies) and the controls (organic and chemical commer-
cial fertilizers) (Gärttling et al., 2020). The author attributed the poor fertilization property 
to the frass being a P-dominated fertilizer, rather than a N-dominated. In addition, the poor 
growth of the test crop was indicative that the frass may not have an optimal nutrient com-
position for certain crops. Kawasaki et al. (2020) assessed the fertilizing potential of BSF 
larvae frass in Brassica rapa and recommended an application rate of 1/20–1/30 of frass in 
relation to the amount of soil, in order to benefit growth, as plant growth was impaired with 
yellow leaves when applied at a higher application rate (1/10). Quilliam et al. (2020) tested 
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BSF larvae frass made from poultry waste, brewery waste and green market waste as ferti-
lizers for growing maize, pepper and shallots in a field experiment in Ghana and reported 
that amendment of soil with frass bio-fertilizer had no significant effect on yield. This may 
have been due to the more diffuse broadcast application method that was used and lim-
ited the availability of key nutrients at crucial stages of crop development (Fatondji et al., 
2009). Chiam et al. (2021) tested okara-derived BSF larvae frass as a fertilizer for lettuce 
plants, mixing frass with soil at 10, 20 and 30% concentrations (v/v).

Interestingly, the general application (20–30%) of frass resulted in poor growth of let-
tuce, except for when the frass level was at 10%. The authors speculated that this unde-
sired growth response at high frass levels may be attributed to the low C/N ratio of the 
fertilizer (7.2), which induced rapid mineralization of nutrients in the soil. Plants with 
the highest chlorophyll concentrations, increased mineral N concentration, highest maize 
grain yield and 27% more P accumulation than SAFI fertilizer was observed in maize when 
treated with BSF frass (Beesigamukama et al., 2020b). When BSF larval frass was used 
as fertiliser, Menino et al. (2021) saw consistent growth, increased biomass, and increased 
overall ryegrass yield. Along the plant cycle, however, shoot biomass also decreased sig-
nificantly. Soil’s immobilisation of nutrients and the stimulation of microbial activity, as 
indicated by the rise in dehydrogenase activity may be the possible reasons for the results. 
Kale plants grew to much larger heights and produced more leaves after being treated with 
100% BSF Frass as Fertilizer (BSFFF). The tallest kale plants were grown using a daily 
irrigation schedule combined with 100% BSFFF, and the maximum chlorophyll concentra-
tions were attained in the leaves of kale and Swiss chard when 50% BSFFF + 50% NPK 
or 100% BSFFF were applied. Kale and Swiss chard grown in soil modified with BSFFF 
had the lowest insect infestation rates and significantly higher fresh shoot weight and leaf 
dry matter than kale and Swiss chard cultivated in soil without fertilizer. In comparison to 
NPK treatments, soil amendment with BSFFF preserved higher levels of kale (41–50%) 
and Swiss chard (33–49%) leaf dry matter during times of water stress (Abiya et al., 2022).

3.2.2  Benefits of black soldier fly frass

Numerous characteristics make the frass of BSFL interesting for use in our overworked 
agricultural system. It offers similar application potentials as a soil fertiliser to currently 
available products, but with a lesser impact on the environment (Gärttling & Schulz, 2022; 
Smetana et al., 2019). Specific components of the insect by-products, such as exuviae acts 
as bio-stimulants for plants that come in contact with them (Zande et al., 2023) In terms of 
profitability, producing the frass can be more advantageous than making biogas or com-
posting because in addition to producing frass, the process also creates proteins, lipids, and 
other goods that can be sold for more money than the soil conditioners and gas produced 
by the other two production processes. Below we outline a few advantages of adopting BSF 
frass as fertilizer.

3.2.2.1 Contain chitin BSF larvae contain 14.5% (DM) and the pupae contain 18% 
chitin (Coudron et al., 2019) which is non-toxic, biodegradable linear polymer said to 
have fungicidal and nematicidal effects (Gärttling et  al., 2020) and can induce plant 
defence mechanisms against insects. Chitin being the main component of BSF exoskel-
eton reported to induce beneficial changes in the soil micro biome by increasing the 
numbers of chitin-degrading bacteria (e.g. some Gamma proteobacteria) frass amended 
soils (Nurfikari, 2022) and thus stimulate ecological systems by reducing pest pres-
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sure. Many researches pointed out that chitin is protecting crops from pests, patho-
gens and physiological disorders. Modes of action include antibiosis and induction of 
plant defences. A number of cell surface receptors, including the macrophage mannose 
receptor, toll-like receptor 2 (TLR-2), and Dectin-1, have been found to be involved in 
the recruitment and activation of innate immune cells as well as the induction of the 
production of cytokines and chemokines by chitin (Lee et al., 2008). Higher chitinase 
activity in the soil is linked to chitin in the frass. Chitin is also a major component of 
the cell wall of fungi and is thus prone to degradation by chitinase enzymes (Nagaraj-
kumar et al., 2004) and therefore the frass shows antifungal behaviour (Zhang & Yuen, 
2000). It is reported that frass and digestates from pig slurry treatments significantly 
suppressed the development of Rhizoctonia solani in bean plants (Phaseolus vulgaris 
cv. Prelude) (Gebremikael et  al., 2020) and adding BSF exuviae to Brussels sprouts 
boosted the influx of parasitoid wasps from the neighbourhood, which fought against 
crop pests (Zande et al., 2019).

3.2.2.2 Promote beneficial microorganisms The microbiological compositions of 
organic fertilizers could benefit more sustainable production systems and has been 
noted that soil amendment with insect frass could stimulate the activity of beneficial 
microbes (Poveda et al., 2019) and sustain the microbial biomass for a more extended 
period (Zhang et al., 2020) even under limited nutrient conditions (Gebremikael et al., 
2020). Due to the chitin content of the frass and easily degradable components with 
high N content, numbers of chitin-degrading bacteria (e.g. some Gamma proteobac-
teria) and some fast-growing high N containing fungi (e.g. Mortierellomycota) can be 
found in frass amended soils. The beneficial micro-biota of frass also include Sporosar-
cina spp., Corynebacterium spp. and Bacillus spp. (Kawasaki et al., 2020), Lactobacil-
lus spp., Bacillus spp., Actinobacteria spp., and Pseudomonas spp. (Ahemad & Kibret, 
2014; Babalola, 2010; Lugtenberg & Kamilova, 2009) and PGPR (Abbott et al., 2018; 
Ahmad et al., 2020; Pathania et al., 2020; Pérez-Montaño et al., 2014; Treonis et al., 
2010) and the microbial composition changes according to the feed substrate supplied 
to the larvae (Gold et al., 2020; Wynants et al., 2019). These microorganisms act in the 
rhizosphere, which is the fine region of soil that is influenced by the secretions of plant 
roots (root exudates) and can be stimulated by the input of organic fertilizers, benefit-
ing the soil and the plant as a whole (Berendsen et al., 2012; Lugtenberg & Kamilova, 
2009). The presence of valuable microorganisms in the soil develops higher nutrient 
use efficiency, improve soil quality, resistance to abiotic stress conditions and improve 
plants growth, performance and crop yields (Balestrini et al., 2017; Mącik et al., 2020; 
Poveda et al., 2019).

3.2.2.3 Rich in nutrient content The characteristics of frass from BSF larvae reported 
in literature indicated that it is a rich source of plant nutrients. The total C, N, P and K 
content in the frass vary from 26. 8–48.8%, 1.8–5.1%, 0.5–5.2% and 0.2–4.1% respec-
tively (Lopes et  al., 2022) depending upon the feed substrate used during the larval 
growing period (Table 2). It also contains the secondary nutrients like calcium (0.2–
45 g/kg), magnesium (0.2–10.5 g/kg) and sodium (0.3–5 g/kg), and also the micronu-
trients like iron (3.7–600 mg/kg), copper (0.7–46.1 mg/kg), manganese (0.2–149 mg/
kg) and zinc (0.1–140 mg/kg) in appreciable quantities which promote very good plant 
growth and development and thus significantly yield higher crop yield (Lopes et  al., 
2022).
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3.2.3  Physiochemical properties of BSF frass

3.2.3.1 Moisture content The moisture content of the BSF frass varies from 30% from 
brewery spent grain substrate (Beesigamukama et al., 2020b) to 72% from the food waste, 
chicken faeces, and sawdust mixture (3:2:1 ratio) (Attiogbe et al., 2019). The moisture con-
tent of other commercial fertilizers varies from 30 to 61% (Basri et al., 2022). The beneficial 
effect of BSFL frass with low moisture content is good for soil aeration and solubility; on 
the other hand, the BSFL frass with high moisture content could have inadequate oxygen 
supply for the plant (Klammsteiner et al., 2020), have adverse impact of BSFL frass lea-
chates, could also cause ammonia poisoning in the plant and may stunt plant development 
(Zahn & Quilliam, 2017). High moisture content of frass can lead to anaerobic conditions 
and should be post-processed to be further degraded, for example by composting or anaero-
bic digestion (Klammsteiner et al., 2020).

3.2.3.2 pH The pH of BSFL frass from various food waste ranges from the lowest of 5.6 in 
fruit and vegetables (Klammsteiner et al., 2020) to the highest as 8.0 pH value in mixture of 
food waste, chicken faeces, and sawdust (3:2:1 ratio) (Klammsteiner et al., 2020) and maize 
straw substrates (Gao et al., 2019). The pH of BSFL frass typically ranges between 7.0 and 
8.0 which is comparable with other commercial fertilizers (pH 6—8.1) and is the optimum 
range for promoting plant growth (Surendra et al., 2020) and providing a conducive environ-
ment for the beneficial bacterial communities in BSFL frass (Choi & Hassanzadeh, 2019).

3.2.3.3 Temperature Temperature is an essential factor in determining whether decompo-
sition proceeds at the mesophilic or thermophilic level, or even reaches the maturity level 
to generate natural plant fertiliser (Kamaruzzaman et al., 2018). BSFL frass temperature 
ranges from 24 to 27 °C ((Attiogbe et al., 2019; Basri et al., 2022; Sarpong et al., 2019), 
when compared to the temperature of other composts viz., compost from windrow compost-
ing (26–28 °C), composting bin (30 °C), and aerated composting (32 °C); all reach an ambi-
ent temperature and is considered to have entered maturation phase (Hamid et al., 2019; Ho 
et al., 2022). The temperature of the BSF composting is mesophilic and the aeration can be 
improved on the compost system by the movement and natural turning of the waste by the 
larvae (Sarpong et al., 2019). As suggested by Cooperband (2002), the optimum tempera-
tures for bacterial decomposition are at 21–49 °C. While, other researchers have reported 
that high temperature (i.e. 45 °C or more) could cut down the pathogenic loads of the final 
compost (Banks, 2014; Dortmans, 2015; Tirado, 2008). As temperature is one of the impor-
tant factors which affect the nutrient availability (Pang et  al., 2020) and optimum waste 
consumption by BSFL, maintaining relatively constant waste temperature (about 30  °C) 
is inevitable (Pang et al., 2020). Rearing BSFL at the optimum temperature improves their 
ability to reduce Escherichia coli (Liu et al., 2008). Chen et al. (2019) stated that the con-
tinuous movement of BSFL could reduce the BSFL frass temperature, which helps retain 
nitrogen in the BSFL frass and ensure a high nitrogen content in the BSFL frass.

3.2.3.4 C/N ratio The C/N ratio of BSFL frass derived from different types of food may 
range from 8:1 to 27:1; kitchen waste range from 8:1 to 17:1, municipal food waste range 
from 8:1 to 9:1, household food waste at 17:1, fruits and vegetables at 27:1, okara and wheat 
bran at 8:1 (fresh frass), okara and wheat bran (composted frass) at 10:1, and brewery spent 
grain at 17:1 (Lopes et al., 2022). In a well-conducted composting process, the C/N will 
decrease constantly due to the biological mineralization of carbon compounds and loss as 
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 CO2 (Insam et al., 2007). Compost with a C/N ratio higher than 30 is more likely to immo-
bilize nitrogen for plant uptake (Sarpong et al., 2019). BSF frass has a relatively low C/N 
ratio (13–16 on average) and thus makes the nutrients easily available for plant uptake (Basri 
et al., 2022). C/N ratio can be increased by providing substrates like brewery spent grains 
with sawdust to BSF larvae (Beesigamukama et al., 2021b). Liu et al. (2019) found that the 
C/N ratios of frasses from cow, chicken and pig manure after 9 days were all minor than 20, 
which is indicative of a mature compost (i.e. lower than 25 according to the authors). The 
C/N ratio of various commercial other fertilizers varies from 6:1 to 36:1.

3.2.3.5 Contaminants (heavy metals, residual pesticides) BSF frass reported to have low 
concentration of heavy metals and pesticide residues due to the ability of BSFL to biologi-
cally accumulate heavy metals in their tissues and to degrade the pesticides with the help of 
enzymes (e.g. dehydrogenase) (Menino et al., 2021). Salomone et al. (2017) conducted an 
experiment where he measured the concentrations of toxic metals in the BSFL frass fed with 
food waste substrates and found that the concentration of toxic was below the limits stated 
in the Italian regulation for fertilizer and thus proved the ability of BSFL to reduce and 
accumulate various forms of heavy metals in the BSFL treatment process. One more study 
was carried out where large quantities of mercury have been added to the BSFL feedstock to 
be observed in a 13-day experiment and resulting in low mercury levels in the BSFL frass 
and were noted to be below the European Union’s (EU’s) threshold values of 0.7–10 mg Hg/
kg (Attiogbe et al., 2019). Assessment of the heavy metal contents in BSFL frass showed 
92–98% (0.0002–0.0008 mg/kg) removal of Arsenic, 99–100% (0.00029–0.00170 mg/kg) 
of Cadmium, and 80–90% (0.001–0.002 mg/kg) of Lead (Sarpong et al., 2019).

3.2.3.6 Maturity and stability Compost maturity refers to the degree of completeness 
of composting and absence of phytotoxic compounds and plant or animal pathogens that 
could negatively affect seed germination, plant growth and soil health (Bernal et  al., 
2017). The stability of compost can be identified when one that is no longer undergoing 
rapid decomposition and whose nutrients are tightly bonded; unstable compost, on the 
other hand, may either release nutrients into the soil owing to additional decomposi-
tion or tie up nitrogen from the soil (Insam et al., 2007). Within a short period of BSFL 
rapid composting (two weeks to a month), organic wastes fed by the BSFL may not be 
properly composted (Kawasaki et al., 2020; Song et al., 2021). The BSFL composting 
process must also stop when the larvae reach the prepupae stage, as a result, producing 
impartial compost, biologically unstable and immature compost (Insam et al., 2007; Setti 
et al., 2019). Therefore, it is preferred that this product should be given some sort of post-
treatment (e.g. thermophilic composting), in order to stabilize it and making it suitable as 
a bio-fertilizer for cultivation (Alattar et al., 2016; Chirere et al., 2021; Song et al., 2021) 
and to promote the degradation of its organic matter and the mineralization of nutrients 
(Bernal et al., 2009; Chen et al., 2014). But, the stability of BSF frass is better than that of 
S. gregaria, B. mori, S. icipe and T. molitor and G. krucki (Beesigamukama et al., 2022). 
The formation of humic substances during composting of organic materials is one of the 
main indicators of compost stability (resistance to decomposition) and maturity (use for 
a determined purpose) (Zhou et al., 2014). These substances contribute to several soil 
fertility parameters by regulating soil acidity, improving the cation exchange capacity, 
increasing the water holding capacity, improving the uptake of nutrients and stimulating 
plant growth (Abbott et  al., 2018; Canellas & Olivares, 2014; Conselvan et  al., 2018; 
Olaetxea et al., 2018; Sutton & Sposito, 2005). According to studies (Barral & Paradelo, 
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2011; Emino & Warman, 2004; Luo et al., 2018; Musyoka et al., 2019), the application 
of immature and unstable compost results in nutrient immobilisation and phytotoxic-
ity, which inhibit seed germination and produce poor crop growth and yield. According 
to Liu et al. (2019), the feed substrate’s high electrical conductivity and concentration 
of N-NH4

+ may have contributed to the frass’s lack of maturity. In contrast, Setti et al. 
(2019) found that the germination indexes were above 70%, indicating no sign of phyto-
toxicity. BSFL frass temperature range from 24 to 27 °C, if compared to the temperature 
of other compost (El-Haggar, 2007; Ho et  al., 2022), which is suitable for microbial 
activity. The frass always has a lower C/N ratio than the feed substrate provided (Sar-
pong et al., 2019). The moisture content of BSFL frass varies from 10 to 65% depending 
upon substrate on which the BSF larvae feeds and the BSFL frass derived from fruit and 
vegetables is at 10% which is not suitable for agronomic purposes and may lead to hydro-
phobicity and be difficult to rewet (Basri et al., 2022).

4  Challenges and opportunities of products derived from black soldier 
fly treatment

4.1  Opportunities of products derived from black soldier fly

Global population growth, increasing wealth, and urbanization, particularly in Asia and 
Africa, create changes in global consumption patterns, lifestyles and food preferences, 
leading to an increase in animal protein demands (Smith & Barnes, 2015; Van Huis, 
2013). This will affect the demand for livestock feed and inevitably place heavy pres-
sure on already limited resources (Van Huis, 2013). Additionally, this will have an effect 
on the demand for animal feed and inevitably put a significant strain on already scarce 
resources (Van Huis, 2013). Protein shortages are caused by the rising demand, hence 
alternate sources of sustainable protein are required (Halloran et  al., 2016; Van Huis 
et al., 2015). The cost of feed, including replacements like fishmeal and soybean meal, 
which accounts for 60–70% of production expenses, is one of the main restrictions (Van-
tomme et al., 2012). Protein sources, among other conventional feed streams, are subject 
to supply and import price fluctuations. According to recent estimates, the global feed 
market demand for poultry, pigs, cultured fish, and pets, respectively, is 464, 254, 35, 
and 23 million megagrams (Mg) (Alltech, 2016). Insect-based feeds are therefore antici-
pated to provide a significant contribution to the world’s feed supply while minimising 
negative environmental effects (Dobermann et al., 2017; Makkar et al., 2014).

BSF are being used more and more sustainably to recycle organic waste into high-qual-
ity protein feed and organic fertiliser with no impact on the environment. Recent studies 
(Abro et al., 2020; Chia et al., 2019) demonstrate the technological and possible economic 
viability of BSF. According to Makkar et  al. (2014), the dry BSF larvae contain about 
42–49% crude proteins, 38% lipids, 20% crude fibre, 20% ash, and vitamins, all of which 
have been shown to enhance the production of pig, fish, and poultry (Kierończyk et  al., 
2020; Schiavone et al., 2017; Sypniewski et al., 2020). Due to its high nutrient content and 
potential for use as organic fertiliser, the BSF frass fertiliser is a by-product that is growing 
in popularity (Anyega et al., 2021; Bortolini et al., 2020; Gärttling et al., 2020; Lalander 
et al., 2015; Oonincx et al., 2015; Setti et al., 2019). Farmers who already raise BSF larvae 
for use as animal feed would benefit from the creation of frass fertiliser from BSF farming.
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Globally, BSFL business development yields an opportunity to initiate a zero-waste 
campus according to academics, helping to reduce food waste in cafeterias and colleges 
and other institutional settings (prisons, hospitals, and etc.). Segregated food waste from 
the community and oil palm wastes could be used as feed for BSFL. Production and 
insect milling processes in remote areas, support livelihood options in rural locations 
(Raman et al., 2022). BSFL produced at a large-scale can be marketed locally and com-
mercial BSFL industries could expand and look to export BSFL products. Smallholder 
BSFL farmers could substitute costly animal or fish feed with low-cost BSFL as an 
alternative protein source for local poultry and aquaculture which reduce dependence on 
imported and high-cost animal feed (Raman et al., 2022).

4.1.1  Economical perspectives

Insects appear to be a component of a sustainable solution given the demand on natural 
resources and rising costs of conventional feed. Therefore, combining frass fertilizer from 
insects with animal feed offers greater economic advantages. This may enhance the lives 
and food security of smallholder farmers (Beesigamukama et al., 2022). Using BSFL frass 
as a value-added product has been added profitable for BSFL farming than using just the 
net income from BSFL animal feed. Compost-like qualities can be seen in BSFL frass 
(Bortolini et al., 2020). According to several studies (Attiogbe et al., 2019; Bortolini et al., 
2020; Gao et al., 2019; Sarpong et al., 2019), the quick composting of organic waste by 
BSFL produced compacted BSFL frass with high macronutrients (NPK), micronutrients, 
and organic material contents that are immediately usable for agricultural application. In 
contrast to BSF farming alone, using BSFL frass fertiliser increased farmers’ net income 
by 5–15 times, according to a study by Beesigamukama et  al. (2020a). Rearing insects 
can provide livelihood diversification methods for many small-scale producers, thereby 
reducing vulnerability and supporting women’s empowerment (FAO, 2014; Halloran 
et al., 2016; Crysantus, 2016). One megagram (Mg) of dried BSF larvae (USD 900) yields 
10–34 Mg of BSFL frass fertiliser (USD 3000–$10,200) per megagram (Mg) of dried BSF 
larvae. Field trials were also used to assess the agronomic efficacy of BSFL frass fertilizer 
on maize crops.

Maize planted on BSFL frass fertilizer-treated plots had net revenue that was 29–44% 
more than maize grown on commercial organic fertilizer-treated plots. Furthermore, small-
holder insect farmers who use BSFL frass fertilizer directly for maize growing will gener-
ate 30–232% more net revenue than farmers who buy identical BSFL frass fertilizer. The 
presence of chitin in BSFL frass also helps promote plant development and trigger plant 
defences (Surendra et al., 2020). Applying even a minimum amount of BSFL frass chitin 
to plants results in better growth, more flowers and seeds, and attracts more pollinators 
(Choi & Hassanzadeh, 2019). BSFL frass has a rich beneficial microbe (Gold et al., 2020), 
such as nitrifying and nitrogen-fixing bacteria that make nitrogen available for plant uptake 
(Choi & Hassanzadeh, 2019; Poveda et  al., 2019). Nitrogen-fixing and nitrifying bacte-
ria are crucial because fixed nitrogen is a limited nutrient in most ecosystems, and nitrate 
assimilation into plant roots makes soils more resilient to flood, drought, and land degrada-
tion. In addition, by enhancing nitrogen uptake, the high phosphorus concentration in the 
BSFL frass has aided in promoting nitrogen accumulation in plants since phosphorus is 
essential for energy transfer (Klammsteiner et al., 2020). BSFL frass can recapture nitro-
gen and phosphorus from the food chain for reuse as fertilizer, thus reducing the need for 
chemical fertilizers. Frass fertiliser can be used to obtain a lower optimum N rate (79 kg N/
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ha), which suggests that employing it would result in cheaper fertiliser costs and higher net 
profits, returns on investment, and gross profit margins (Beesigamukama et al., 2022).

4.1.2  Environmental perspectives

Unfortunately, there hasn’t been much research done on how insect farming and using the 
frass as fertiliser affect the environment. Insect farming will gain more benefits because 
of BSF farming’s social and environmental services. Therefore, additional research is 
needed to assess the economic viability and social-environmental benefits of BSF farming 
across various production systems in order to scale up insect-based feed and frass ferti-
liser sustainable and innovative technologies (Beesigamukama et  al., 2022). Almost half 
of the global waste generation is food waste, which 37% of them go in landfills and 33% 
of them are disposed in open dumps area (Kaza et al., 2018). However, this food stream, 
which contains high concentrations of organic matter, macro- and micronutrients, if not 
properly disposed of, might constitute harm to the environment. Therefore, in ecological 
perspectives, BSFL frass production has contributed to the recycling of nutrients from food 
waste and has prevented the environment from becoming a concern owing to the emission 
of greenhouse gases and soil/water contamination with poisonous chemicals and nutrients 
from leachates (Lopes et al., 2022; Pang et al., 2020). Although the manufacture of insects 
depends on the environment, they generally have low land and water requirements and sig-
nificantly reduced greenhouse gas (GHG) emissions (Halloran & Vantomme, 2013; Oon-
incx et al., 2010) as compared to other livestock production (Van Huis, 2013; Smith and 
Bernes, 2015; Oonincx et al., 2010) where, livestock was found to be responsible for 9% 
of  CO2, 35–40% of  CH4, 65% of  N2O, and 64% of  NH3 productions of all anthropogenic 
greenhouse gas emissions (Steinfeld, 2006). The production of insects has a much lower 
global water footprint than that of meat because they are cold-blooded, can obtain their 
moistness needs from food rather than necessarily needing drinking water, and can grow 
on organic waste (Mekonnen & Hoekstra, 2010; Miglietta et  al., 2015). This helps con-
serve water.

4.2  Challenges of products derived from black soldier fly

4.2.1  Animal feed

Being a novel sector, production and sale of insects as feed faces several challenges, 
from legal to consumer acceptance and to industrialization and growth. Although the 
legal framework is changing and adapting to this new reality, consumers still have to 
prepare for it, and insect producers have a lot to learn from other livestock and indus-
trial sectors (Alhujaili et al., 2023). According to Regulation EC Nr 1069/2009, insects 
used as food are regarded as Processed Animal Proteins (PAPs) in the EU (Smith & 
Barnes, 2015). Insects were no longer allowed to be used as animal feed as a result 
of Regulation EC Nr 999/2001’s restriction on PAPs following the BSE crisis (EFSA 
Scientific Committee, 2015). Aquaculture species can now be fed non-ruminant PAPs 
according to an amendment to Regulation EC Nr 56/2013. Processed insect protein, 
however, is exempt from this requirement (EFSA Scientific Committee, 2015; Smith 
& Barnes, 2015). Additionally, on-farm killing of livestock, including insects, is pro-
hibited by European legislation governing abattoir regulations. Since this law was not 
intended for insect killing, it hinders effective insect farming (Charlton et  al., 2015; 
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Smith & Barnes, 2015). In Australia, there are significant challenges to importing any 
kind of live insect, and companies must get approval to bring in insect-derived feed 
products. This will be a challenge for startups like AgriProtein as they look to enter 
the Aussie market with their branded MagMeal™ product (Nolet, 2017). A potential 
allergenic issue of the products derived from the BSF larvae is one more challenge 
to the farmers who are engaged in the rearing and processing (Halloran et  al., 2016; 
Fitches, 2016). Therefore, for the large-scale insect farming sector to flourish glob-
ally, feasible production techniques must be devised (Fitches, 2016). The creation of a 
legal framework that must be upheld globally and across the board in order to achieve 
industry-wide standardisation is required. Since each government has different priori-
ties (e.g., addressing the issue of food waste), it can be difficult to establish standardi-
sation in terms of international trade (Vantomme et  al., 2012). But dealing with this 
issue is essential (Vantomme et al., 2012). Leveraging BSFL as a sustainable food and 
feed source holds the promise of effectively managing waste, mitigating environmen-
tal pollution, and tackling the urgent challenge of food security in an environmentally 
conscious manner. Nonetheless, it is imperative to conduct additional research and fos-
ter innovation to guarantee the safety, quality, and economic feasibility of products 
derived from BSF for consumption by both animals and humans (Siddiqui et al., 2024).

High capital and operational costs to build and run the BSFL production, securing 
sufficient breeding stock, identifying a cost-effective BSFL production system, ensur-
ing a constant and sufficient supply of organic waste of BSFL, high price of BSFL, 
challenges in obtaining constant BSFL supplies as an animal feed ingredient, lack of 
financial resources to conduct research, lack of knowledge on insect studies and skilled 
expertise to work in BSFL industries, lack of education of workers in food and bever-
age departments to segregate food waste in an industry with high staff turnover, high 
costs of a large supply of feed source for BSFL, challenges in ensuring constant BSFL 
nutrient quality as an animal feed ingredient (Raman et al., 2022). Dried BSF larvae 
nutritional value contains up to 50% protein, 35% fat, 6% calcium, 1.2% phosphorus, 
1% magnesium, and 0.3% sodium but is greatly varies according to the source of sub-
strate fed (Raman et al., 2022). Ministry of Agriculture and Food Industries of Malay-
sia mentioned that the current price of BSFL is similar to that of fishmeal, so despite 
its potential, BSFL’s competitiveness (both in terms of price and nutritional value) 
needs improvement before it could replace fishmeal (Raman et al., 2022). Public per-
ception of BSF as yucky insect and therefore public concerns about smell and hygiene 
for BSFL rearing area is of great importance. Convincing the government for potential 
use of BSFL as an animal feed ingredient is a difficult task. In order to prevent contam-
ination and spoiling and to guarantee the safety of food and feed, safety considerations 
like adequate processing, handling, and storage are necessary. According to Schabel 
(2010), entomophagy has been linked to cases of botulism, parasitoses, and food poi-
soning, such as aflatoxins, and the zoonotic danger of insects as a whole need to be 
taken into consideration. While the BSF industry has successfully established a supply 
chain that revolves around utilizing waste and by-products to produce feedstuff through 
the larvae, there is an ongoing exploration of alternative and more challenging sub-
strates for rearing the larvae. Simultaneously, there is a growing interest in uncovering 
novel applications of bioactive molecules derived from BSF beyond the traditional use 
in animal feed. This indicates a dynamic shift towards diversification and innovation 
within the BSF industry (Tettamanti & Bruno, 2024).
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4.2.2  Frass as fertilizer

Even though the BSFL treatment process may be sufficient for producing BSF larvae, 
the BSFL frass might be immature or unstable compost product because of its high 
moisture content. The characteristics of BSFL frass are influenced primarily by the 
properties of the substrate fed to BSFL (Surendra et al., 2020). Many organic waste sub-
strates have a high moisture content (> 80%) (Lalander et al., 2020). Food waste from 
human consumption has a very high moisture content (about 85%), which is a favour-
able condition for BSFL production and could rapidly degrade food waste (Liu et  al., 
2019). However, the BSFL product from the food waste substrate has produce moist, 
grey, and clay-like texture. Although this wet BSFL frass does not represent mature 
compost characteristics, it also contains high ammonium concentration and has low 
porosity that could stunt plant growth when being applied as a soil amendment (Alat-
tar et al., 2016). Kawasaki et al. (2020) also has conducted an in-depth investigation on 
the agriculture value of BSFL frass from food waste substrate. The result showed that 
the BSFL frass has a higher ammonium nitrogen concentration but lower nitrate–nitro-
gen content showing that BSFL frass in an anaerobic condition due to the present of 
high moisture content. Nitrate serves primarily as a source of nitrogen that ensures suf-
ficient nutrition for plant development and soil microorganisms (USDA, 2014). A sub-
strate with high moisture content could also reduce the efficiency of a BSFL treatment 
process and dry separation of BSF larvae and frass (Lalander et al., 2020). Cheng et al. 
(2017) reported that dry separation of the larvae from the frass is not possible when the 
moisture content of a food waste substrate exceeds 80%. However, the BSFL frass can 
be easily separated from the insect biomass using a 2.36 mm sieve when the moisture 
content of the food waste is 70–75%.

Reducing moisture content in the BSFL treatment process could result in slower 
BSFL growth. The BSFL also tend to crawl out of the treatment container as the high 
water content will lead to a lower temperature for BSFL to live at as they need a meso-
philic temperature (~ 30) for optimum waste conversion (Pang et  al., 2020). The wet 
separation process of BSFL frass is also cumbersome and time-consuming if the mois-
ture content has not evaporated sufficiently during the BSFL composting (Cheng et al., 
2017; Dortmans et  al., 2017; Lalander et  al., 2020). The BSFL frass must have 50% 
dry matter content for easy separation of the BSFL frass from the larvae (Cheng et al., 
2017). The beneficial effect of BSFL frass with low moisture content is good for soil 
aeration and solubility; on the other hand, the BSFL frass with high moisture content 
could have inadequate oxygen supply for the plant (Klammsteiner et  al., 2020). The 
adverse impact of BSFL frass leachates caused by the excess moisture content could 
also cause ammonia poisoning in the plant and stunt plant development if the BSFL 
frass is not appropriately applied (Zahn & Quilliam, 2017).

Bio-waste characteristics, including bio-waste and BSFL gut microbes, determine 
the properties of the BSFL frass (Gold et  al., 2018). Even though BSFL reduces the 
heavy metals content in BSFL frass, the ecological risk posed by the BSFL producing 
BSFL frass containing pathogenic microorganisms is a grave concern (Surendra et al., 
2020). The type of substrate determines the BSFL gut microbiome, and the BSFL excre-
ment determines the microbiome in the BSFL frass (Klammsteiner et al., 2020). Some 
studies have identified the presence of potential foodborne pathogens, such as Salmo-
nella spp. and Bacillus cereus (Kawasaki et al., 2020; Wynants et al., 2019) found a low 
presence of Escherichia coli in BSFL frass, but a disease-causing bacterium in plants, 
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Xanthomonadaceae, is present in BSFL frass harvested from the treatment of food waste 
substrate. BSFL frass harvested from food waste (fruit/vegetable mix waste) serves as a 
reservoir for coliforms and gram-negative bacteria. The negative microbial community 
in BSFL frass could come from the microbial community of the initial substrate, and the 
inactivation of it by sterilization using high-energy electronic beam is rather unpromis-
ing result for BSFL rearing. Gold et al. (2020) reported that inactivating the microbial 
community in the initial food waste substrate reduced the efficiency of BSFL rearing, 
indicating that the microbial community of the initial food waste substrate is benefi-
cial for substrate decomposition and/or BSFL growth. It is essential to conduct more 
research on the ability of common species of the BSFL intestinal microbiota (Providen-
cia, Dysgonomonas, Morganella, and Proteus) due to their abundance in the BSFL frass 
produced from food waste substrate. Furthermore, both pre and post treatment could 
be crucial to increasing the revenue from BSFL frass as it may give significant impact 
to the maturity and stability of BSFL frass. The feed substrate has a large effect on the 
nutrients in the frass (Elissen et  al., 2023). The nutrient availability of BSFFF is not 
optimum for plant growth, not for extended root growth which limits the potential of 
roots to explore nutrients from deeper soil layers (Gebremikael et al., 2022). The neutral 
to alkaline pH of the frass can lead to  NH3 emissions in case of higher  NH4 content, but 
high dry matter contents (Palma et al. (2020) and cannot be applied at high concentra-
tions (Gärttling et al., 2020).

Depending on the geographical region, there may be obstacles in terms of regulations 
and the absence of established standards for utilizing insect-derived frass as a fertilizer 
(Poveda, 2021). The evolving use of insect frass in agriculture may outpace regulatory 
frameworks. Moreover, the nutrient composition of frass is subject to variations based on 
the diet of the larvae. If the larvae are not consistently and adequately nourished, the frass 
may not align with the specific requirements of certain crops (Kragt et al., 2023). Main-
taining consistent quality poses a challenge, with factors like larval rearing conditions, 
feedstock, and processing methods all influencing frass quality. Implementing robust qual-
ity control measures is imperative for dependable and efficient fertilizer production (Sid-
diqui et al., 2024). The acceptance of insect-derived products in agriculture may encounter 
resistance, with consumers or farmers expressing skepticism, particularly if there is a lack 
of awareness regarding the benefits and safety of using insect frass as fertilizer (Poveda, 
2021). Scaling up frass production to meet the demands of large-scale agriculture presents 
challenges, and the cost-effectiveness of mass production must be carefully evaluated to 
ensure viability for farmers (Beesigamukama et al., 2022). Proper storage conditions are 
essential for preserving frass quality, as inadequate storage may lead to a decline in its 
nutrient content over time. Establishing a reasonable shelf life is crucial for the practicality 
and usability of the product.

5  Global market of products derived from black soldier fly treatment

Many low-cost technologies, including CORS (Conversion of Organic Refuse by Sap-
rophages), have been developed to raise BSFL as animal feed using biosolids like market 
wastes and human waste. These systems have the benefit of not requiring any additional 
facilities or structures (Klunder et al., 2012). It has been evaluated and determined that pilot 
and full-scale BSFL raising facilities are effective, however there are still technical issues 
with expanding the current BSFL systems. Commercial BSFL manufacturing as animal 
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feed is a specialty of several businesses, but because their processes are confidential, aca-
demics cannot access them (Buiani, 2015). This is not necessarily a problem because new 
businesses will enter the production market and invest in R&D to better compete if the 
demand for BSFL increases. Innovation. After raising, BSFL or any other insects must be 
properly prepared, cleaned, processed, packaged, and stored throughout the process to be 
used as a safe animal food in markets that follow regulations (Wang & Shelomi, 2017).

Both Newton et al. (2005) and Kim et al. (2021), discovered that fresh organic biomass 
(1248 g) treated with BSF (1200 larvae) showed 60% reduction in organic matter and pro-
duce 1% biodiesel (15.6 g), 4% residual larvae (54.4 g), and 8% sugar (96.2 g). In addition, 
simultaneous improvement in BSFL body composition as rich in crude protein (42%) and 
crude fat (38%) also observed (Kim et al., 2021).

The impact of BSFL as a diets of channel catfish and tilapia was investigated by Bondari 
& Sheppard et al., in 1981. Consumers found the fish in this trial to be appetizing because 
there were no changes to its flavor or texture. The market’s growing demand for sustainable 
food has compelled food companies to seek out novel protein-based alternatives that can 
substitute traditional muscle meat (Calderon et al., 2018).

5.1  Marketing perspectives of products derived from black soldier fly larvae: 
as animal feed and fertilizer

BSF can be sold in a variety of stages and forms. Marketable ingredients derived from 
the BSFL include whole BSF meal, the oil fraction, defatted protein meal, and various 
by-products (Mouithys-mickalad et al., 2020). The BSF possesses a dry matter content of 
approximately 95% and can be marketed in its entirety, either dried or processed into meal. 
In this approach, the protein composition and oil content of the BSF remain combined, as 
the product is not subjected to defatting. Consequently, the protein content of the product 
stands at around 40%, while its average dried oil content amounts to 30% (Amrul et al., 
2022). It is possible to process and isolate the oil fraction from the BSFL’s protein content. 
Protein levels in BSF protein meals can reach over 60% when they have been defatted (Jeon 
et al., 2011). Amino acids make up the protein. In its basic state, the BSFL’s amino acid 
makeup is strikingly close to the protein content of soybean meal. When raised on organic 
waste streams, the BSF’s precise amino acid content remains rather stable (Mwaniki et al., 
2020). Upon processing the BSFL, it is possible to extract both the oil fraction and the 
protein fraction. The concentration of oil in the BSFL can vary significantly, ranging from 
15 to 49%, depending on the substrates on which the BSFL were cultivated. In contrast, the 
protein component of the BSFL remains consistently stable (Bogevik et al., 2022). Accord-
ing to research, BSF fed with poultry dung achieves the lowest values while BSF fed with 
oil-rich meal achieves the best values. The BSFL’s oil component is a complicated concoc-
tion of components. The fatty acid lauric acid and its esters make up the majority of the 
oil. One of the key ingredients in coconut oil is lauric acid (Ullah et al., 2022). The BSF 
contains additional valuable bioactive substances that remain in the larval mass after the 
mass’s proteins and lipids have been removed. The precise oil and protein content of the 
BSFL determines the byproducts’ specific percentage. Enzymes like ligninases and cellu-
lases, which are utilized by the BSFL, among other things, to digest cellulose, are left over 
after proteins and oils have been removed from the BSFL (Rehman et al., 2023; Zhu et al., 
2019). In addition, the BSF has chitins and peptides that fight germs (Van Huis & Gasco, 
2023). Acetyl glucosamine sugar moieties are the main component of the polysaccharide 
known as chitins. The sugar chitosan can be removed via the chemical procedure known as 
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alkaline deacetylation (Oteri et al., 2022). The BSF also includes antimicrobial peptides, 
which are useful as antibiotics, according to numerous studies (Sogari et al., 2019). BSF 
also includes additional by-products, such as residual compounds that are expelled after 
rearing. This primarily consists of feces, organic waste remnants, and BSF casts (Schmitt 
& de Vries, 2020).

5.1.1  BSF as animal feed

Currently, livestock are fed diets that contain soybean oil. An alternative is required since 
this type of oil has negative environmental effects. Some studies tested what would hap-
pen if BSF oil were substituted for soybean oil in the diet of broiler chickens (Van Huis & 
Gasco, 2023). When soybean oil was totally substituted with BSF oil in the feeds of broiler 
chickens, neither performance nor meat quality showed a discernible difference across the 
studies (Wang & Shelomi, 2017). One study also reported encouraging outcomes in terms 
of the amount of total cholesterol and liver fat in hens (Chen et al., 2022).

In an experiment involving the inclusion of BSF oils in the pig feed has been made. This 
trial demonstrated the usefulness of BSF oil for piglets in the nursery. It was shown that the 
nursery piglets responded favorably to the replacement of corn oil (another replacement 
for soybean oil) with BSF oil at a maximum proportion of 6% in their meals (Chen et al., 
2022). The experiment had no unfavorable effects, and it even helped the pigs develop 
more quickly. In addition to feeding live BSFL to laying hens demonstrated that it will 
help to reduce the feather plucking associated problems and improve natural habitat. About 
40% of the time spent by free-range hens is spent looking for and consuming insects. This 
aids in resolving problems with chicken welfare in present farms, such as feather plucking. 
The larvae are also a source of nutrition for hens, so it serves as more than just a stimulant 
for natural behavior. According to the results of the experiment, live BSFL can replace 
soybean meal if they are fed with some extra local protein. It had no detrimental effects on 
the performance or output of laying hens. Since there was less feather plucking among the 
chickens, it even improved the condition of the laying hens’ feathers (Star et al., 2020).

In 2016, the Dutch feed manufacturer Coppens Diervoeding B.V. introduced its prod-
ucts and became the first company in the world to integrate insect oil into their chicken and 
pig feed (Van Huis & Gasco, 2023). Protix is an idea whereby laying hens from a certain 
poultry farmer are given live BSF, and since 2016, the eggs are sold to consumers under 
the brand name Oerei in shops in the Netherlands (Jackson, 2020). Grand View Research’s 
estimates that the global poultry market had a total value of over 175 billion US dollars in 
2018 and would continue to expand at a compound annual growth rate of 4.5% through 
2025 (Global Industry Report, 2019–2025). The market for pig feed was valued at over 106 
billion US dollars, with a compound annual growth rate of 3.5%, according to the same 
research firm. However, due to limited availability and legislation, numerous specialists at 
Protix claim that current market volumes containing insects are extremely small and incon-
sequential in comparison to the overall market. BSF oil is a viable substitute for soybean 
oil in the diets of broiler chickens and nursery pigs. Additionally, live BSFL supplemented 
with regional proteins can be used to replace soybean meal in the diets of laying hens. 
To enable a farmer to offer an innovative egg concept of chickens fed with live larvae in 
supermarkets, Protix is supplying the farmer with live larvae. The product BSF oil is now 
used in the production of pig and chicken feed; this is a market application for the product. 
Another current product market application is the use of live insects in the production of 
poultry feed (Hilkens & De Klerk, 2016).
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The primary market for insect production, which primarily consists of live BSF and 
mealworms, is the hobby pet food sector. On this market, people can buy fish bait, birds, 
reptiles, and amphibians (Lähteenmäki-Uutela et al., 2018). These critters feed on insects 
in the wild. Production firms that have been established for a while and primarily supply 
hobby-pet stores and zoos are the ones that focus on those markets. Although this market 
is seasonal, due to bird breeding season and reptile hibernation, there is less demand in 
the winter and the autumn (Lähteenmäki-Uutela et al., 2018). Dogs and cats make up the 
largest category of hobby pets globally; in 2018, there were over 470 million dogs and 370 
million cats owned as pets globally (Okin, 2017).

In the USA, there is a sizable pet food market; the two main species, cats and dogs, 
are primarily carnivores. According to a study on the effects of cats and dogs on the envi-
ronment, "if just one-quarter of the estimated 33% animal-derived energy in pet food was 
consumable by humans, it alone would support the animal-derived energy consumption 
of 26 million Americans" (assuming that the typical American diet consists of about 19% 
animal-derived foods). Therefore, the possibility for using insects in pet food is quite high 
(Higa et al., 2021).

BSF is a species deemed safe for incorporation in pet food. In Europe, BSFL, meal, 
and oil have received approval for utilization in pet food for several years. Authors are 
delighted to share that pet food manufacturers in the United States can now also embrace 
these innovative ingredients in the production of dog food and treats. This recent devel-
opment occurred when the Association of American Feed Control Officials (AAFCO) 
decided to include adult dogs as one of the animals for which whole dried BSFL, BSF 
meal, and BSF oil are suitable. It is anticipated that the approval of BSF ingredients for use 
in cat food by AAFCO will transpire in 2022.

BSFL can also be used as pet food. Since meat is the primary source of protein for pet 
cats and dogs, the pet food industry is thought to be responsible for around 25% of the 
environmental effects of the meat industry. The number of pets globally is growing, accord-
ing to research. The development of new protein sources is encouraged by the expanding 
rivalry because the pet food sector competes for the same resources as other food and feed 
industries (Kumcu & Woolverton, 2015; Okin, 2017). Insects can effectively replace (part 
of) the meat in pet food as a source of protein, according to Hilkens and De Klerk (2016). 
There have been three studies on the use of BSF in the diets of dogs or cats. The first trial 
demonstrated that feeding 2% whole BSF meal to beagle dogs enhanced their digestibility 
and had anti-inflammatory and anti-oxidative benefits (Zielińska et al., 2018). The results 
of a second experiment suggested that dog food utilizing whole BSF meal as a protein 
source was more easily digestible than dog food including typical proteins, such as meat 
(Higa et al., 2021). In the third trial with cats, whole BSF meal was used in place of the kit-
ties’ usual sources of protein. The majority of the cats in this experiment tolerated the BSF-
containing chow, according to research, but the researchers still suggest more study. The 
partial replacement of traditional proteins in cat and dog food with BSF full BSF meal has 
shown positive outcomes in investigation. However, more investigation is required before 
any judgments can be made (Okin, 2017).

5.1.2  BSF frass

The market potential of BSF frass is substantial, thanks to its numerous benefits and the 
increasing demand for sustainable and organic agricultural products. As concerns about the 
environmental impact of conventional farming practices rise, the need for sustainable and 
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organic alternatives is growing. BSF frass, being a natural and organic fertilizer, perfectly 
aligns with these principles, making it highly appealing to environmentally conscious con-
sumers (Lopes et al., 2022).

One of the primary reasons for the high value placed on BSF frass is its nutrient-rich 
composition. Packed with essential nutrients like nitrogen, phosphorus, potassium, and 
micronutrients, it presents an attractive option for enhancing soil fertility and promot-
ing robust plant growth (Beesigamukama et al., 2020a). By applying BSF frass to soil or 
plants, nutrient availability and uptake can be improved, leading to increased crop yield 
and improved produce quality (Berendsen et al., 2012). This benefit is particularly attrac-
tive to farmers seeking to optimize productivity and maximize the nutritional value of their 
harvests (Beesigamukama et al., 2021a).

Moreover, the remarkable ability of BSF larvae to consume and break down organic 
waste contributes to its market potential. This characteristic makes the larvae valuable in 
waste management systems, including food waste recycling and livestock manure manage-
ment. Utilizing BSF frass helps convert waste into a valuable resource, effectively reducing 
the environmental impact associated with waste disposal (Beesigamukama et  al., 2021a; 
Bernal et al., 2009). The versatility of BSF frass is another aspect that drives its market 
potential. It can be used across various agricultural applications, including field crops, veg-
etables, fruits, herbs, flowers, and even hydroponic systems. Its compatibility with different 
growing systems makes it adaptable to a wide range of market segments, enhancing its 
appeal to farmers and gardeners alike (Nyakeri et al., 2017; Wang & Shelomi, 2017).

While the use of BSF frass is not yet as widespread as other fertilizers, there is a grow-
ing awareness of its benefits and potential. As more research and information become 
available, along with increased adoption and success stories from early adopters, market 
awareness and demand for BSF frass are expected to expand. Overall, the market potential 
for BSF frass is promising, driven by the increasing demand for sustainable agriculture, 
organic products, and effective waste management solutions. As the market continues to 
evolve and more consumers and producers recognize its value, the demand for BSF frass is 
expected to grow.

5.2  Top global companies and countries leading the market of products derived 
from black soldier fly larvae: as animal feed and fertilizer

By 2033, the BSF market is anticipated to develop at a 30.5% CAGR (Compound annual 
growth rate) from 2022 to $3.96 billion (Meticulous Market Report, 2022). This market is 
anticipated to expand in volume by 36.9% CAGR from 2022 to 8003.7 thousand tons by 
2033 (Meticulous Market Report, 2022). The rising demand for meat worldwide is the key 
factor driving the expansion of the black soldier fly business. The market for black soldier 
flies is also being driven by the expanding aquaculture sector, rising soymeal prices, grow-
ing government support for the use of insect meal in livestock feed, rising investment by 
major BSF industry players, and rising demand from the animal feed sector for alternative 
proteins.

According to Meticulous Market Report (2022), top ten leading companies in BSF mar-
ket are Agriprotein, Biofly Tech, Protix B.V., Entofeed Sdn Bhd, Nutrition Technologies 
Group, Enviro Flight Corporation, SFly Comgrof SAS, HexaFly, F4FSpA, and Innova-
Feed. The primary market segments for black soldier flies are based on product, applica-
tion, and region. According to product, the protein meal category is anticipated to hold the 
greatest market share for black soldier flies in 2022. The significant market share is mostly 
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related to the rising demand for protein meals from producers of animal feed, the rising 
costs of soy and fish meals, and government backing and approval for the use of insect 
meal in animal feed. Additionally, the biofertilizers (frass) industry is anticipated to hold 
the greatest proportion of the overall black soldier fly market in terms of volume in 2022. 
The animal feed market is anticipated to experience rapid expansion over the course of the 
forecast period, depending on application. The rapid expansion of this industry is primar-
ily related to increased demand for animal-derived goods and the ensuing rise in demand 
for animal feed high in protein, rising soy meal prices, and official approval of the use of 
BSF as an ingredient in animal feed. Additionally, there are numerous potentials for market 
expansion due to the increasing use of insects as a substitute source of protein in animal 
feed.

In terms of geography, Europe is projected to have the largest market share for BSF in 
2022. This substantial market share can be attributed to the expanding aquaculture sec-
tor, increased interest in alternative protein sources for animal feed, and the upward trend 
in fish meal prices. Furthermore, throughout the projected period, Europe is expected to 
experience the highest (CAGR) in this field. Additionally, this region is anticipated to con-
trol the highest proportion of the worldwide black soldier fly market in terms of volume in 
2022.

The global black soldier fly market is characterized by the presence of several key play-
ers, including Protix B.V. (Netherlands), Enterra Feed Corporation (Canada), InnovaFeed 
(France), EnviroFlight LLC (U.S.), Bioflytech (Spain), Entobel Holding PTE. Ltd. (Singa-
pore), Entofood (Malaysia), Sfly (France), Hexafly (Ireland), F4F (Chile), Nutrition Tech-
nologies Group (Malaysia), nextProtein (France), and Protenga Pte Ltd (Singapore), among 
others, which are mentioned by Meticulous Research Market (2022). Some of the key lead-
ing companies in BSF market as animal feed and frass production are listed in Table 3.

6  Policy and regulations of products derived from black soldier fly 
treatment

In order to create more and larger batches of insects, it is necessary to be aware of potential 
techniques for stabilizing insects as intermediate or final goods, ideally with a cost–benefit 
analysis. Dehydration has so far drawn the most interest as a method of insect preserva-
tion in both industry and research. Chemical and microbiological breakdown processes are 
known to be slowed down or even stopped when water is removed from a product (Van 
Campenhout et  al., 2021). The chemical and/or microbiological stability of dried edible 
insects during storage has been the subject of several investigations as for BSFL (Kamau 
et al., 2020; Larouche et al., 2019), for long horned grasshopper (Fombong et al., 2017), 
for yellow mealworm (Kröncke et al., 2018, 2019; Lenaerts et al., 2018), and for different 
cricket species (Bawa et al., 2020; Lee et al., 2020; Lucas-González et al., 2019; Vandew-
eyer et al., 2018).

Industrial-scale insect production primarily serves as a replacement for less environ-
mentally friendly protein sources in feed. Currently, the most significant species raised for 
this purpose are the BSFL. The larvae must be transported and stored in a stable man-
ner following production to prevent degradation. Both fermentation and vacuum packag-
ing technology are viable stabilization options (Van Campenhout et al., 2021). The logis-
tic chain includes stabilization, storage, and transportation in addition to the creation of 
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larvae. A good preservation technique to pursue for the storage and transportation of BSFL 
is not thought to be vacuum packaging (Van Campenhout et al., 2021).

Van Campenhout et  al. (2021), investigated the potential perseveration technology 
between vacuum packaging and fermentation for the BSFL. The vacuum packaging was 
applied to living, blanched and frozen larvae while fermentation pulverised blanched BSFL 
were used for the investigation. The vacuum packaged BSFL were stored for 6–10 days at 
various temperatures and gas composition, for the killed larvae-microbial counts while for 
the living larvae- survival rate recorded. In fermentation, the pulverised BSFL were fer-
mented for one week at 35 °C and stored at 4 °C for two weeks, pH and microbial counts 
was observed and recorded. Author reported that fermentation allowed for the storage of 
pulverized larvae. However, certain factors to consider were the rapid decrease in pH and 
the presence of bacterial endospores. On the other hand, vacuum packaging did not offer 
any additional benefits compared to cooling alone. This conclusion applied to all types 
of larvae investigated. Thus, vacuum packaging is not considered a valuable preservation 
technique to pursue for the storage and transportation of BSFL (Van Campenhout et al., 
2021).

Salomone et al. (2017), conducted measurements of toxic and essential metal concentra-
tions in the BSFL frass that was fed with food waste substrates. The results revealed that 
the concentrations of both toxic and essential metals were below the limits specified in the 
Italian regulation for fertilizers. This indicates that BSFL frass has minimal amounts of 
heavy metals due to the capability of BSFL to effectively decrease and accumulate differ-
ent forms of heavy metals during the treatment process (Basri et al., 2022).

In actuality, storage and transportation methods should be able to maximize the survival 
of living insects and (microbiological) quality of insects that have already been killed. The 
BSFL placed in pouches without a vacuum had the highest rate of survival (Rumpold & 
Schlüter, 2013). A lower storage temperature led to better survival, which indicated that the 
storage temperature was a significant influencing factor. Vacuum packaging has no benefi-
cial effects on the microbiological quality of dead BSFL. The microbiological quality and 
dynamics of the gas composition in the package were significantly influenced by the ini-
tial microbiological quality following killing (which was better after blanching than merely 
freezing). Additionally, the insects’ quality during storage was marginally improved by the 
lower temperature (Vandeweyer et al., 2021).

The "traditional" usage of insects as food is not usually connected to the regulatory 
framework governing the use of insects as feed, which varies greatly between nations glob-
ally. Table 4 gives a succinct overview of the laws that are now in effect in the different 
countries or union around the globe regarding the use of insects as feed.

Insects are a rising source of protein that is relevant to farmers, feed manufacturers, 
food producers, and food marketers worldwide. Due to antiquated food and feed restric-
tions regarding the use of insects, this industry’s expansion is somewhat constrained. Since 
2018, measures bringing insects under the purview of Regulation (EU) 2015/2283 on 
new foods have been in effect with regard to insects as food for human consumption. In 
accordance with this new Regulation, EFSA-approved marketing of insect feeding items 
is the only condition for their sale (Lähteenmäki-Uutela et al., 2018). Regulation (EU) No 
2017/893 brought about one of the most significant modifications in 2017 with regard to 
insects used as animal feed. This legislation brought about amendments to Regulations 
(EC) No 999/2001 and (EU) No 142/2011, permitting the utilization of seven insect spe-
cies as feed for aquaculture animals (Lähteenmäki-Uutela et  al., 2021). These species 
include the house cricket (Acheta domesticus), black soldier fly (Hermetia illucens), com-
mon housefly (Musca domestica), yellow mealworm (Tenebrio molitor), lesser mealworm 
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(Alphitobius diaperinus), banded cricket (Gryllodes sigillatus), and field cricket (Gryllus 
assimilis) (Lahteenmaki-Uutela et al., 2017).

Only one species of bug has been defined by the Association of American Feed Control 
Officials (AAFCO) as an animal food item for cattle feed. Aquaculture salmonids includ-
ing salmon, trout, and char can be fed BSFL, including dried entire larvae (since 2016) and 
processed BSF meal (since 2018). The AAFCO’s choice has been examined and author-
ized by the FDA (Belluco et al., 2017). It is worth noting that various feed-grade materials, 
such as pre-consumer food waste used as a substrate, by-products from food production 
like brewery grains, and other approved feed-grade materials, can all be utilized for the 
cultivation of black soldier fly larvae. Products made from black soldier flies have been 
approved for use in the feeding of broiler chickens, tilapia, salmonids, and other poultry 
such as chickens, turkey, ducks, and geese.

Another regulation category is pet foods. Mealworms, silkworm pupae, and black army 
fly larvae are all offered for sale as pet food in Canada (Arbour & Hoeung, 2016; Pisanello 
& Caruso, 2018). Brazilian scientists, farmers, and businesses are becoming more and 
more interested in using insects as food and feed, especially when it comes to feeding poul-
try black soldier fly meal instead of soybean meal. The use of insects as food and feed 
might one day be regulated internationally. The scientific community may approve the use 
of insects worldwide as food and feed (Allegretti et al., 2018). In the absence of a global 
food and feed administration organization, the global harmonization of substantive and 
procedural norms would prove advantageous for both business owners and authorities. The 
FAO/Who is Codex Alimentarius Commission is the setting for creating international feed 
and food standards (Lähteenmäki-Uutela et al., 2021).

Due to current ambiguous statutory limitations surrounding its usage as feed, the com-
mercialization of BSFL is restricted. Under certain restrictions, the manufacture and trade 
of BSFL as feed is particularly permitted in the European Union, Australia, Canada, and 
the United States. It is interesting to note that while regulatory frameworks are now being 
developed, the majority of nations where entomophagy is a tradition lack particular restric-
tions regarding their usage as feed. Harmonizing the industrial upscaling of BSFL as ani-
mal feed requires an understanding of the legislative structure (Alagappan et al., 2022).

7  Life cycle assessment of products derived from black soldier fly 
treatment

It is necessary to enumerate the environmental effects connected with the entire life cycle 
of these processes in order to estimate the environmental profile of products derived from 
insects. An important method for analysing and assessing the environmental influence of 
industrial processes and insect-based products is life cycle assessment (LCA) (Spinelli 
et al., 2019). Technical advancements can aid a shift towards renewable energy, lessening 
the possibility for global warming. LCA demonstrate increased energy use in the genera-
tion of some insects, such as BSF and housefly larvae (van Zanten et al., 2015). According 
to Smith and Barnes (2015), "regions with year-round high temperatures, high density of 
concentrated animal operations, and presence of food processing industry facilities" are 
where the best insect-rearing facilities can be found. According to IPIFF, adding insects to 
conventional feed (such soybean or fishmeal) will ease the strain on the environment, pro-
tected areas, and the world’s fish populations. The various parameters considered for LCA 
studies on BSF by different authors are discussed in Table 5. A comprehensive LCA offers 
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a holistic perspective on the environmental impact of products derived from black soldier 
fly treatment. Analyzing each stage of the life cycle allows for the identification of potential 
environmental hotspots and informs sustainable practices in the production and utilization 
of these valuable insect-derived materials (Boakye-Yiadom et al., 2021).

7.1  The environmental benefits of products derived from BSF larvae: as animal 
feed and fertilizer

Because food systems are the main cause of environmental deterioration, recent publica-
tions have highlighted the need for diet change (FAO, 2021; Kim et al., 2020). In compari-
son to the base period average of 2018–2020, the output of meat worldwide is predicted 
to rise by 13% (44 Mt) over the next ten years, reaching 374 Mt by 2030 (OECD/FAO, 
2021; p. 48). According to FAOSTAT 2021, the percentage of all agricultural emissions 
attributed to animals through intestinal fermentation and manure is 44% and 20%, respec-
tively, in 2019. According to OECD/FAO (2021; p. 165), greenhouse gas productions from 
agriculture over the 2018–2020 period accounted for around 54% of all emissions (on  CO2 
equivalence basis). Edible insects could be created to replace meat products and also be 
used as feed elements because they have a high protein content on the edge and a strong 
nutrient profile, making them a significant substitute to conventional cattle (Rumpold & 
Schlüter, 2013). Insects require very little land or energy to produce, and they can be pro-
duced quickly and all year round, unlike other feedstock such as soybeans. FAO endorsed 
insects for their sustainability benefits, saying, “Insects have a high food conversion rate, 
e.g. crickets require six times less feed than cattle, four times a lesser amount of than sheep, 
and twice less than pigs and broiler chickens to produce the same amount of protein.” And 
finally, insects can serve as a protein-rich substitute for the wild-caught fish that are often 
used as aquaculture inputs, rendering aquaculture a sustainable solution to overfishing (Sli-
men et al., 2023).

According to Celitron, 2021, cattle need 7.7 kg of feed to produce 1 kg of meat, sheep 
needs 6.3 kg, pork needs 3.6 kg, chicken needs 2.2 kg, and BSFL meat needs 1.5 kg. This 
leads to the inference that plant-based diets are preferable to animal products obtained 
from conventional cattle in terms of global water consumption as well as the increased 
demand for food brought on by an expanding worldwide population (Celitron, 2021). It 
would be exciting to compare insects’ water footprint with that of animal products as well 
as feed crops in terms of nutritional quality because they have a much higher feed conver-
sion efficiency since they are cold-blooded, can derive their moisture demand from food 
and do not necessarily need drinking water, and can grow on organic waste (Van Huis, 
2015). Nevertheless, it has to be considered, that the feed conversion efficiency of BSF is 
temperature-dependent (Chia et al., 2018). It may be inferred that temperature-controlled 
raising containers are required for insects to gain maximum mass in the shortest amount of 
time, use the least amount of food, and emit the fewest amount of emissions, which indi-
cates greater energy consumption than for conventional livestock (Rumpold & Schlüter, 
2013). In addition to the water used in the manufacture of food and feed, its effects on 
greenhouse gas emissions must be taken into account. Regarding livestock’s overall world-
wide contribution to greenhouse gas emissions, it was discovered that cattle produced 9% 
of  CO2, 35–40% of CH4, 65% of N2O, and 64% of NH3 of all anthropogenetic greenhouse 
gas emissions (Rumpold & Schlüter, 2013). When comparing the environmental impact of 
lab-grown meat and mycoprotein-based analogues scored highest and insect-based and soy 
meal-based substitutes lowest (Smetana et al., 2015). But Onwezen et al. (2021) found that 
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consumer acceptance is a challenge, because insect-based protein scored lowest, followed 
by cultured meat, while plant-based alternative proteins scored highest.

One of the ecological services that insects may offer is the decomposition of organic 
waste, and the insect diet and feed industry benefits from this ability (Aidoo et al., 2023). 
Dung burial is one ecological service offered by insects in nature (van Huis, 2022). Insects 
are frequently employed to break down agricultural and culinary waste when raising insects 
in large numbers for food. According to UNEP (2021), 931 million tonnes of food were 
wasted in 2019 (households 61%, food services 26%, and retail 13% of the total amount of 
food produced worldwide). BSF is one of the most effective bioconverters (Surendra et al., 
2020). BSF can also create useful products like fertiliser, medicines, biofuels, lubricants, 
surfactants, cosmetics, and insect biomass (proteins, lipids) at the same time (Fowles & 
Nansen, 2020). House fly breeding was stopped by BSFL, which reduced manure by up 
to 50% (Edea et al., 2022). The larvae aerate and dry the waste as they process it, which 
inhibits bacterial development. Salmonella enterica and Escherichia coli 0157:H7 may be 
reduced by the larvae’s alteration of the microbiota in manure (van Huis, 2013). BSF lar-
vae decrease the nutrient concentration and the amount of manure residue, which results in 
a decrease in pollution that may be as much as 50–60% (Newton et al., 2005) and makes 
the environment less hospitable to house fly larvae. The sum of all these qualities results in 
less pollution and odours (Diener et al., 2011).

It is frequently emphasised as a benefit of BSF-based organics conversion that it is sus-
tainable. With an emphasis on protein, several life-cycle assessments have looked into the 
sustainability elements of producing products produced from BSF (Suryati et  al., 2023). 
BSF production was extremely efficient in terms of land use, but this scale of production 
had a higher impact on global warming than similar sources of protein for feed, like soy 
meal (Salomone et al., 2017; Smetana et al., 2016). BSF meat has less of an impact than 
food proteins like chicken meat in a number of areas, including acidification, land use, and 
the creation of greenhouse gases. The environmental influence of frass and what causes 
its variation may only be inferred indirectly from a conclusion about the effects of protein 
production, but it can still be useful for determining whether it might have a lower envi-
ronmental impact than another source (Aragao et al., 2023). For instance, the production 
of BSF frass is anticipated to have a minor environmental effect than the production of 
chicken manure since BSF meat has a lower environmental influence than chicken meat 
across a wide variety of categories. Advanced estimations have been performed in two 
additional recent papers (Bosch et al., 2019; Smetana et al., 2019) on how the feed ingested 
by BSF affects the environmental consequence of their production. According to both stud-
ies, the environmental impact of the feed that BSF eats is a significant factor in influencing 
the environmental impact of the products made from BSF. Fortunately, BSF can eat a vari-
ety of environmentally friendly feed sources, even though some are currently prohibited by 
laws. The effects of feed sourcing on frass have an impact on the ecosystem as well. The 
reduction in our dependence on pesticides could have significant implications for biodi-
versity in the event that the bio stimulant capabilities of insect by-products in the frass are 
decisively proved to boost plant resilience to pests. Additionally, applying frass introduces 
organic matter that is absent from chemical fertilisers. The application of frass would also 
have the added benefit of increasing soil biodiversity in our agricultural ecosystems if frass 
research shows that the soil microbiome diversifies when it is treated. The effects of apply-
ing BSF frass on soil quality have not yet been thoroughly explored (Schmitt & de Vries, 
2020).

BSFL has also been used in poultry feed as a partial replacement for maize or soy-based 
feeds, mainly because the species naturally colonizes and breaks down poultry manure and 
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populations are often kept by poultry farms for the purpose of waste management and pol-
lution reduction (Cullere et al., 2018). The environmental aids of insect mass production 
include low greenhouse gas emissions (van Huis, 2017), the small amount of land required 
to produce 1 kg of protein (Oonincx & de Boer, 2012), reduced land use due to lower feed-
food competition (Makkar, 2018), and the ability to transform organic waste streams into 
high-value protein products (Meneguz et al., 2018). One innovative strategy and outstand-
ing illustration of a sustainable circular economy is the usage of insects in the bioconver-
sion of waste materials (Meneguz et al., 2018).

7.2  Life cycle assessment of black soldier fly farming: potency for animal feed 
and fertilizer

LCA is a decision-making tool that provides a comprehensive overview for evaluating a 
product’s environmental performance during its entire life cycle such as climate change, 
GHG emission, acidification, and eutrophication (Larrey-lassalle et al., 2022). LCA offers 
a strong ecological tool in the movement toward sustainability and can support research 
and development, product and process development, labelling, marketing, and policy mak-
ing. LCA communication can positively influence the purchase of eco-friendly products 
amid the growing consumer interest in environmental sustainability (Boakye-Yiadom 
et al., 2021; Cooper & Fava, 2006). The method complies with ISO 14040 and ISO 14044 
requirements and entails gathering and assessing a product’s inputs, outputs, and poten-
tial environmental effects across the course of its existence. Goal and scope definition, life 
cycle inventory analysis (LCI), life cycle impact assessment (LCIA), and result interpreta-
tion are the four interconnected elements that make up the technique (ISO 2006a, b). It is 
complex and iterative but flexible enough to allow life cycle experts to modify and model 
their product systems (Foppa Pedretti et  al., 2021; Sultana et  al., 2022). A systemized 
multi-season database of BSF production and processing from a pilot facility producing 
above average volumes is used to conduct an LCA for BSFL products. In order to define 
more sustainable solutions, these data are then analysed using attributional (definition of 
the best production and allocation amongst products) and consequential life cycle assess-
ment methodologies (Smetana et al., 2019). Life cycle assessment containing the steps as 
Gaol and scope, Life cycle inventory. Life cycle impact assessment and Interpretation of 
black soldier fly farming for animal feed and fertilizer is depicted in Fig. 3.

7.2.1  Goal and scope

The production of insects is about to go from a pilot scale to an industrial scale. To 
show the potential of their production technique, producers at the pilot size have con-
centrated on stable, safe production (Smetana et al., 2019). The use of BSFL as animal 
feed, as well as its derived products, is limited by the type of feeding material for its 
rearing. EC No. 1069/2009 restricts the use of food waste as feeding material, espe-
cially when it contains or is derived from catering waste (European Commission, 2019). 
However, agri-food residues are permissible. Thus, studies with food waste as the sub-
strate (50%) have focused solely on the environmental impact of organic waste biocon-
version by the BSFL with bio-treated waste as the main product, though insect products 
could also be obtained. A BSFL value chain can generate several high-value products. 
Crude protein from the insect cake can be further processed to obtain bioplastic film 
(Nuvoli et al., 2021; Rosa et al., 2020; Setti et al., 2020). The bioplastics thus derived 
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can be used in the agricultural sector (e.g. sheet mulching), aside from carrying out 
their primary function, act as a slow-release fertilizer, releasing nitrogen during their 
decomposition (Rosa et  al., 2020; Spinelli et  al., 2019). Chitin from insect meals can 
also be refined to produce an edible film, surgical thread, binders, and chitosan (Suren-
dra et  al., 2020). Refined fats/oil can also be re-refined into biodiesel and lubricating 
agents (Franco et  al., 2021; Li et  al., 2011; Wong et  al., 2020). The residue, which is 
not assimilated by the larvae, is also useful for agronomic purposes, as it is high qual-
ity compost (Spinelli et al., 2019). According to Smetana et al. (2019), evaluations of 
these BSF-derived goods quantify their scope and identify the most promising avenues 
for the sector to realise the upcycling potential of insects. LCA has, however, been used 
on a few BSFL products. As a result, there is still a lot of room to lessen the impact that 
insects have on the ecosystem (Smetana et al., 2019).

The LCA take a multi-dimensional approach in order to understand the various envi-
ronmental implications of insect production (Beyers et al., 2023). Any life cycle assess-
ment system’s typical objective is to evaluate the factors that affect the environmental 
impacts of intermediate insect-based products (useful for feed, food, and fertiliser) and 
to offer recommendations on how the industry should proceed in order to maximise the 
use of insects while minimising their environmental impact, with a focus on the poten-
tial use of unused biomass from the food and feed industries (Smetana et al., 2019). The 
study typically has two sections. The historical production data from a pilot plant are 
first subjected to LCA assessments. These are carried out to comprehend the environ-
mental dynamics of the production of BSF. To identify areas for improvement to reduce 
the environmental impact, sensitivity analysis of industrial advancement is performed 
in the second stage (Smetana et al., 2019). The goals for LCA studies are discussed in 
Table 6 studied under various LCA model by different researchers.

Fig. 3  Life cycle assessment of black soldier fly farming for animal feed and fertilizer
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7.2.2  Life cycle inventory

The harmonisation of LCA methodology is essential for a fair and more accurate compari-
son of environmental sustainability between different products (Santero & Hendry, 2016). 
Therefore, Life cycle inventory (LCI) analysis involves creating an inventory of flows from 
and to nature for a product system. Inventory flows include inputs of water, energy and raw 
materials, and releases to air, land and water. Using information on inputs and outputs, a 
flow model of the technical system is built in order to generate the inventory. The accuracy 
and reliability of LCA results can be strongly impacted by the quality of the data and criti-
cal assumptions, which might result in incorrect conclusions (Zargar et al., 2022). Some-
times, the unavailability of the correct inventory data can hinder the inclusion of key inputs 
or emissions in inventory modelling. Conducting an LCA for BSFL products requires data 
on direct GHG emissions from the bioconversion phase. Most LCA studies on BSFL strug-
gle to consider these emissions as part of their inventory modelling, mainly due to the una-
vailability of reliable background data (Boakye-Yiadom et al., 2022). Some studies did not 
include it under the assumption that it was negligible (Salomone et al., 2017). Others also 
included emission data for other insects (Smetana et al., 2019), which is not ideal. Mertenat 
et  al. (2019) analysed the systems viz., BSF rearing, waste-processing, waste treatment, 
product harvesting, larvae processing, residue composting, cleaning, avoided emissions, 
fishmeal production, transport and composting.

Results show that the overall Global Warming Potential (GWP) for BSF treatment 
mainly depends on the type of residue post-processing and the electricity consumption and 
energy source used (Mertenat et al., 2019). Non-agro residues, insect production, energy 
and materials consumption and remaining emissions are stages included in conventional 
agro-residue treatments and insect production (Beyers et al., 2023) indicates that the bal-
ance between insect production and alternative protein sources depends greatly on the 
insect feed used and the source of energy for heating during insect production. Salomone 
et al. (2017) considered parameters viz., transport of input materials, egg and larvae pro-
duction, substratum production and compost & dried larvae production for LCA analysis 
during LCA of BSF for studying the environmental impact of food waste bioconversion by 
insects.

7.2.3  Life cycle impact assessment

All of the many inputs entered during the LCI phase are given environmental burdens by 
the LCIA. The environmental impacts are first categorised into the proper impact cate-
gories and referred to an intermediate position along the cause-effect chain, resulting in 
the so-called midpoint results. Thereafter, they are grouped into damage categories and 
allocated at the location where the environmental effect occurs (i.e., the end point results) 
(Rosa et al., 2020). The Environmental Footprint 3.0 technique was chosen for the impact 
assessment because it was established for Europe and provides for simple normalisation 
and weighting (Fazio et  al., 2018). The broad suggestions of the Product Environmental 
Footprint (PEF) Method (Annex I of PEF) are also permitted to the greatest extent pos-
sible since no Product Environmental Footprint Category Rule has been defined for insect 
production (European union website). To calculate the environmental impact, the LCIA 
data were modelled using the IMPACT 2002 + approach (Jolliet et  al., 2003). Compared 
to other techniques, this impact assessment method contains more compounds and covers 
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more impact categories. It offers a thorough assessment of the environmental performance 
because it is middle and endpoint orientated. However, in order to describe the system 
under consideration in a more representative manner, the following additions and modi-
fications were made: modification to land use (different types of land transformations are 
considered), mineral extraction categories (additional resources are added), and radioactive 
waste (radioactive waste and its occupied volume are evaluated) (Spinelli et al., 2019). The 
midpoint and endpoint values are used to calculate the LCIA results. We only report the 
endpoint outcomes, though, in order to keep this short. These effects are typically depicted 
as having an effect on ecosystem quality, climate change, and resource depletion. The 
results of LCI can be used to evaluate the life cycle impact, including its effects on the 
environment. According to the associated inventory, five impact categories were selected: 
GWP, terrestrial eutrophication, marine eutrophication, acidification and particulate mat-
ter. The International Reference Life Cycle Data System (ILCD) Handbook (Laurent et al., 
2014) will be used to determine the characteristics of the corresponding inventories in the 
selected impact categories. To evaluate how the systems under consideration would affect 
the environment, SimaPro 8 software (Prè Consultant, 2010) is employed.

7.2.4  Interpretation

According to Cao (2017), life cycle interpretation is a systematic process aimed at identify-
ing, quantifying, verifying, and assessing data obtained from both the life cycle inventory 
and life cycle impact assessment. The interpretation phase involves condensing the results 
of the inventory study and impact assessment, ultimately leading to the generation of find-
ings and recommendations. As defined by ISO 14040:2006, this phase encompasses the 
identification of major concerns based on the outcomes of the LCI and LCIA stages in a 
LCA. It involves estimating the study’s completeness, sensitivity, and consistency through 
thorough checks, and addressing findings, limitations, and recommendations.

A key objective of life cycle interpretation, in accordance with Cao (2017), is to deter-
mine the level of confidence in the final conclusions and communicate them in a fair, thor-
ough, and accurate manner. This emphasizes the importance of transparent and clear com-
munication of the assessment results.

Additionally, in line with the advice from Clavreul et  al. (2012), a sensitivity analy-
sis was conducted. This analysis aimed to identify which factors had a disproportionate 
impact on the final outcomes of the life cycle assessment. Sensitivity analysis is crucial for 
understanding the robustness of the results and recognizing key variables that significantly 
influence the overall findings. By considering the advice of Clavreul et al. (2012), the inter-
pretation phase becomes a more robust and comprehensive process, ensuring that the LCA 
outcomes are reliable and well-informed.

8  Conclusion

This review aimed to assess the viability of utilizing products derived from black soldier 
fly (BSF) for animal feeds and fertilizers. In the realm of animal feeds, BSF emerges as a 
sustainable protein source with applications in diverse food products for consumers. Par-
ticularly noteworthy is the suitability of BSF protein meal as a substitute for soybean meal 
in the diets of laying hens, weaning and growing pigs, finishing pigs, and fish. Incorporat-
ing BSF and BSFL into finishing pig diets even enhances meat and carcass quality. Despite 



30335Future opportunities for products derived from black soldier…

these benefits, current regulations hinder the introduction of these products into the west-
ern livestock feed market. Additionally, by-products of BSF, such as antimicrobial pep-
tides, show potential for serving as novel antimicrobial medicines for animals and humans. 
Chitin, another BSF by-product, exhibits immunological effects on human lung diseases 
and holds promise for medical applications.

In the domain of organic fertilizers, BSF larvae frass emerges as a valuable option 
for sustainable cultivation globally. However, further investigation is needed regarding 
the potential of frass obtained from composting biodegradable wastes using BSF larvae. 
The composition of frass varies considerably, with nutrient concentrations like P, K, and 
micronutrients being heavily dependent on the feed substrate. As frass may not possess 
the optimal nutrient composition, particularly being P-dominated, supplementing it with 
another nutrient input, specifically N-dominated, could create a more balanced fertilizer. 
Future studies should explore nutrient supplementation for frass-based fertilizers to meet 
the specific needs of different crops. Additionally, the role of bio-stimulants, plant growth-
promoting rhizobacteria, and fungi in BSFL frass requires further exploration, offering sig-
nificant potential for advancing sustainable cultivation practices globally. A comprehen-
sive approach connecting different process steps with various aspects of interest is crucial 
for fully understanding the potential of BSF-derived products in animal feeds and waste-
derived fertilizers.
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