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Abstract
Markov chainMonte Carlo (MCMC)-based simulation approaches are by far the most
common method in Bayesian inference to access the posterior distribution. Recently,
motivated by successes in machine learning, variational inference (VI) has gained in
interest in statistics since it promises a computationally efficient alternative to MCMC
enabling approximate access to the posterior. Classical approaches such as mean-
field VI (MFVI), however, are based on the strong mean-field assumption for the
approximate posterior where parameters or parameter blocks are assumed to be mutu-
ally independent. As a consequence, parameter uncertainties are often underestimated
and alternatives such as semi-implicit VI (SIVI) have been suggested to avoid the
mean-field assumption and to improve uncertainty estimates. SIVI uses a hierarchical
construction of the variational parameters to restore parameter dependencies and relies
on a highly flexible implicit mixing distribution whose probability density function
is not analytic but samples can be taken via a stochastic procedure. With this paper,
we investigate how different forms of VI perform in semiparametric additive regres-
sion models as one of the most important fields of application of Bayesian inference
in statistics. A particular focus is on the ability of the rivalling approaches to quan-
tify uncertainty, especially with correlated covariates that are likely to aggravate the
difficulties of simplifying VI assumptions. Moreover, we propose a method, where
we combine both advantages of MFVI and SIVI and compare its performance. The
different VI approaches are studied in comparison with MCMC in simulations and an
application to tree height models of douglas fir based on a large-scale forestry data
set.
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1 Introduction

The Bayesian paradigm provides a convenient and attractive framework for perform-
ing inference in statistical models, allowing for the incorporation of prior knowledge
and, therefore, regularization of the effects of interest. However, the posterior distri-
bution resulting from Bayes’ theorem is, beyond simple conjugate cases, in general
not analytically tractable. The invention of Markov chain Monte Carlo (MCMC) sim-
ulation techniques has revolutionized the applicability of Bayesian inference even in
very complex statistical models, providing sampling-based numerical access to the
posterior. MCMC provides access to exact posterior even for small samples, including
exact uncertainty quantification also for complex functionals of the original model
parameters. On the downside, however, MCMC is also known for being notoriously
slow due to its sequential construction and it requires careful monitoring of mixing
and convergence towards the (unknown) stationary distribution, often including the
adaptive choice of tuning parameters. Hence, there is renewed interest in approxi-
mate approaches for Bayesian inference that bypass the need for MCMC sampling
techniques at the cost of only approximate access to the posterior.

One such approach that has gained considerably in popularity, especially inmachine
learning, is variational inference (VI) also called variational Bayes. The basic idea is
to find the optimal approximation to the posterior distribution within a pre-specified
class of variational distributions by searching for the parameters of the approximating
distribution with a deterministic optimization scheme (Ormerod andWand 2010; Blei
et al. 2017). In contrast to stochastic optimization techniques such as MCMC, the
direct optimization of an objective function promises much faster inference. However,
depending on the complexity of the approximating family chosen for VI, the approx-
imate posterior may not capture all aspects of the true posterior distribution and, in
particular, it has been reported that simple VI approaches may considerably under-
estimate uncertainty attached to the parameters of interest (Bishop 2006, Ch. 10).
This is particularly the case for the simplest of VI, mean-field VI (MFVI), where
the variational family assumes (blocks of) parameters to be mutually independent.
This assumption significantly reduces the complexity of the approximation problem
and often enables fast optimization steps resembling the structure of Gibbs updates
in MCMC. However, the restrictive assumption of posterior independence is often at
odds with the true posterior such that MFVI provides sensible point estimates but may
severely underestimate parameter uncertainty.

As a consequence, various approaches beyond simple MFVI have been suggested
(as reviewed, for example, in Zhang et al. 2018). One obvious remedy is to combine as
many parameters as possible in one block such that one multivariate variational distri-
bution is constructed, therefore mitigating the mean-field assumption (see for example
Hui et al. 2019; Luts et al. 2014). However, this comes at the price of determining a
fully unstructured covariancematrix for all parameters simultaneously, which requires
handling of large matrices, especially for a large number of effects. An alternative is
the semi-implicit VI (SIVI) approach recently developed by Yin and Zhou (2018).
Compared to MFVI, it increases the complexity of the variational distribution allow-
ing for some parameter dependencies. Firstly, SIVI uses a hierarchical construction of
the variational parameters to bring back parameter dependencies based on hierarchical
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VI (Ranganath et al. 2016). Secondly, the mixing distribution on the higher level of
the hierarchy does not need to be an analytic probability density function, meaning a
highly flexible implicit distribution can be chosen, i.e. the distribution is not required
to have an analytic probability density function but samples can be generated from it
(Diggle and Gratton 1984).While this approach brings simulations back into the infer-
ential procedure, the underlying reasoning relies on law of large numbers asymptotics
which are much easier to control and monitor than the distributional convergence of a
Markov chain towards its limiting stationary distribution.

In this paper, we are focusing on semiparametric additive models as a particularly
important special case of statistical modelling where Bayesian inference has gained
considerable interest and both Gibbs sampling (Lang and Brezger 2004) and simple
MFVI (Luts and Wand 2015; Waldmann and Kneib 2015; Hui et al. 2019) have been
developed. More precisely, we

• review different forms of VI, including MFVI and SIVI, in their general form,
• develop their specific forms in semiparametric additive models including an
improved MFVI approach where all regression coefficients associated with the
additive components are combined in one block following ideas developed in Luts
andWand (2015) andHui et al. (2019) and a combination of SIVI andMFVI (SIM-
FVI) that leads to more robust results and speeds up the optimization compared to
the SIVI approach,

• investigate the performance of the different forms of VI with a specific focus on
quantifying uncertainty in simulations to provide guidance on their reliability and
applicability, and

• apply themethods to a data set on tree height of Douglas fir in a large-scale forestry
data set.

We find that SIVI and SIMFVI effectively restore parameter uncertainty such that local
and simultaneous credible intervals are accurately represented. However, the improved
version of MFVI shows comparable performance such that combining all regression
parameters in one block and therefore incorporating across effect dependence seems
to be the crucial aspect in constructing an appropriate approximating distribution.

The structure of this article is as follows: In Sect. 2, we briefly introduce the nec-
essary background on Bayesian additive regression models. Section3 describes the
methodology of VI and derives the algorithms for the different forms of MFVI and
SIVI both in general and in the context of additive models. In Sect. 4, we compare
all introduced methods and the Gibbs sampler in a simulation study with a focus on
uncertainty quantification. Section5 describes an application of the presentedmethods
to tree heights of Douglas fir. In the final section, we summarize our results and briefly
discuss limitations and potential directions for future research.

2 Bayesian additive models

We consider Bayesian forms of semiparametric additive models for regression data
(yi , xi ), i = 1, . . . , n where yi denotes the response variable and xi is a vector
of explanatory variables of different type. More specifically, we assume the model
structure
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282 J. Lichter et al.

yi =
p∑

j=1

f j (xi j ) + εi ,

where εi ∼ N (0, σ 2) represents the independent Gaussian error term while the effect
of the covariates is additively decomposed into p effects f j (·) that may represent
linear, nonlinear, clustered (random), or spatial effects (among others) in a generic
form. Each of the effects is then expanded in d j basis functions as

f j (xi j ) =
d j∑

l=1

γ jl B
j
l (xi j )

with effect-specific basis functions B j
l (xi j ) and corresponding basis coefficients γ jl .

In vector–matrix notation, this implies the model

y = Z1γ 1 + . . . + Z pγ p + ε = Zγ + ε (1)

where y and ε are vectors of responses and error terms, the design matrices of basis
function evaluations are denoted as Z j and γ j are the corresponding vectors of basis
coefficients. Stacking all design matrices and basis coefficients into the matrix Z and
γ yields the final representation as a large linear model.

To regularize the estimation of the basis coefficients,we employmultivariate normal
priors

p(γ j |τ 2j ) ∝ 1
(
2πτ 2j

) rank(K j )
2

exp

(
−γ ′

j K jγ j

2τ 2j

)
, (2)

with zero mean and precision matrix K j/τ
2
j . The precision matrix is chosen to reflect

desirable regularization properties such as smoothness or shrinkage and may contain a
non-trivial null space rendering Equation (2) into a partially improper prior specifica-
tion.The impact of the prior on theposterior is regulatedby theprior varianceparameter
τ 2j . In the remainder of this paper, we will employ weakly informative inverse gamma

priors τ 2j ∼ IG(a j , b j ), with default values of a j = b j = 0.1, but other prior distribu-
tions are easily conceivable. Similarly, we assign weakly informative inverse Gamma
priors to σ 2, σ 2 ∼ IG(aσ 2 , bσ 2), with the same default values. Analytic forms of the
distribution of the likelihood and the priors are shown in Appendix Sect. 7.3.

Each effect type takes a specific form by choosing the basis functions B j
l (xi j ) and

the penalty matrix K j (see Fahrmeir et al. 2021, for details):

• For linear effects, the basis functions are the untransformed covariates, Z j = x· j ,
where x· j is a row vector representation of covariate j and a flat prior is obtained
by setting K j = 0.

• In the case of clustered “random” effects, the basis functions represent dummy
coding for the grouping variables and the penalty matrix equals the identity matrix,
i.e. K j = I j .
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• For nonlinear effects of continuous covariates, we use Bayesian P-splines (Lang
and Brezger 2004) that are based on B-Spline basis functions in combination
with a penalty matrix based on the kth-order random walk prior, e.g. a second-
order random walk defined as γ jl = 2γ j,l−1 − γ j,l−2 + u j , with Gaussian errors
u j ∼ N (0, τ 2j ) and flat priors for γ j1 and γ j2. In this way subsequent coefficients
are penalized leading to a smoother functional form. The penalty matrix can then
be constructed based on a difference matrix D j such that K j = D′

j D j .
• The concept of Bayesian P-splines can be extended to bivariate tensor product
P-splines for fitting spatial effects or interaction surfaces f j (x j1, x j2). This is
achieved by combining the two univariate spline basis matrices Z j1 and Z j2 in
terms of all d j1 · d j2 pairwise interactions. The penalty matrix is constructed by
combining the two univariate spline penalties, K j1 and K j2 to K j = K j1⊗ Id j2 +
Id j1 ⊗ K j2 such that smoothness is enforced in both covariate directions, see also
Appendix Sect. 7.1.

For univariate and bivariate effects as described here, the following two points
should be considered. Firstly, the penalty matrix K j is rank deficient and therefore the
prior is improper. However, it can be shown that the resulting posterior is still proper
(see Appendix Sect. 7.4). Secondly, further restrictions need to be imposed to ensure
the identifiability of the model. We use the restriction of a centering constraint in the
design matrix (see Appendix Sect. 7.2 for more details).

3 Variational inference in additive model

Variational inference (VI), as used in the Bayesian framework, casts the integration
problem associated with obtaining the posterior distribution into an optimization prob-
lem.During the optimization,VI searches among a set of candidate distributions for the
one approximating the posterior distribution best. If the set of candidate distributions
approaches the complexity of the true distribution, VI promises to be computationally
faster than MCMC while the quality of the results can be comparable. For instance,
You et al. (2014) and Wang and Blei (2019) showed consistency for the VI approach
in additive models. However, the procedure requires careful choices to be made which
determine the quality of the approximation:

• The variational familyQ, i.e. the set of candidate distributions since a misspecifi-
cation will directly limit the quality of the estimated posterior.

• The measure determining the quality of an element of the variational family rel-
ative to the exact posterior distribution. The classical divergence measure is the
Kullback–Leibler-divergence (KL-divergence), but also other more general mea-
sures as described in’ Zhang et al. (2018) are possible.

• The algorithm to searching for the best approximating variational distribution
by finding the best combination of variational parameters ψ by optimizing the
divergence measure. Again, Zhang et al. (2018) discuss different aspects including
algorithms and strategies for variance reduction in the context of stochastic VI.
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General overviews of variational inference are given in Bisho (2006, Ch. 10), Ormerod
and Wand (2010) and Blei et al. (2017). In this paper, we only address the first point
and describe possible extensions to the variational family Q.

In the following, we introduce four different variational families used in this article
to approximate the posterior distribution arising in Bayesian additive models. Two
of the approaches presented are based on mean field approximations (see Sects. 3.2.1
and 3.2.2) while the remaining families proposed are based on the idea of semi-implicit
variational inference (SIVI, Yin and Zhou 2018, see Sects. 3.2.3 and 3.2.4).

We denote the vector ofmodel parameters as θ and its posterior densitywith p(θ | y).
The elements of the variational familyQ, i.e. the variational distributions, are denoted
as qψ where ψ is the vector of variational parameters. The density of the variational
distribution is denoted as qψ (θ).

To measure the deviation between the variational distribution qψ and the posterior
distribution the Kullback–Leibler (KL) divergence,

KL(qψ (θ)||p(θ |y)) = Eθ∼qψ
[log qψ (θ)] − Eθ∼qψ

[log p(θ , y)] + log p(y),

is used (Jordan et al. 1999; Ormerod and Wand 2010). The KL divergence decreases
with increasing similarity of the two distributions and is zero for two identical distri-
butions. Hence, we want to findψ� minimizing the KL divergence. Instead of working
directlywith theKLdivergence, theminimization problem is reformulated as an equiv-
alent maximization problem. Precisely, ψ� is determined by maximizing the evidence
lower bound (ELBO),

L(ψ) = Eθ∼qψ
[log p(θ, y)] − Eθ∼qψ

[log qψ (θ)],

not containing the intractable marginal likelihood or model evidence p(y) which does
not depend on ψ . The ELBO serves as the lower bound to the model evidence.

3.1 Mean-field and semi-implicit VI

3.1.1 Mean-field VI

Mean-field variational inference (MFVI, Parisi 1988; Saul and Jordan 1998) is based
on a strong simplification assuming the posterior distribution can be approximated
using independent parameter blocks, thus allowing to express the variational density
as a product of the independent densities of the parameter blocks. The advantage
of this simplification lies in easing the computation (Wainwright and Jordan 2008,
p. 127-147) and the resulting speed gains. An iterative optimization scheme can be
constructed by iteratively updating the variational parameters associated with one
sub-vector such that the update mechanism maximizes the ELBO in each step. For
example, the coordinate ascend variational inference algorithm (CAVI, Bishop 2006,
Ch. 10) works in this way.

Suppose, the vector of model parameters is divided into p sub-vectors such that θ =
(θ ′

1, . . . , θ
′
p)

′. Using the MFVI approach, the variational density can be expressed as
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qψ (θ) = ∏p
i=1 qψ i

(θ i ),whereψ i are the variational parameters or a set of variational
parameters associated with the variational distribution of the i-th subvector of θ . Now
the variational density of the i-th sub-vector maximizing the ELBO is

q�(θ i ) ∝ exp
{
Eθ−i∼qψ−i

[
log(p( y|θ)p(θ))

]}
, (3)

where θ−i denotes the parameter vector θ without the i-th sub-vector and qψ−i
the

variational distribution with the associated variational parameters in the index of said
vector (Bishop 2006, Ch. 10).When selecting qψ−i

suitably and exploiting conditional
conjugacy, a closed-form solution to q� can be constructed by updating the variation
parameterψ i , similar to the parameters describing the sampling distribution in aGibbs
update step. CAVI then repeatedly iterates over i to update ψ i until convergence of
the ELBO.

3.1.2 Semi-implicit VI

SIVI (Yin and Zhou 2018) builds upon the idea of hierarchical variational inference
(HVI) proposed by Ranganath et al. (2016) to reintroduce dependencies between the
parameter blocks that are assumed independent in MFVI. To illustrate the concept of
HVIt, suppose, we have three parameter blocks θ = (θ1, θ2, θ3) and for the variational
parameters, namely, ψ2 and ψ3, a variational hyper-distribution qφ is assumed. The
variational density of θ with the variational parametersψ1 andφ can then be expressed
as

qψ1,φ(θ) = qψ1
(θ1)

∫
qψ2

(θ2)qψ3
(θ3)qφ(ψ2,ψ3)dψ2dψ3. (4)

Thus, the dependency between θ2 and θ3 in the posterior can be restored in the
variational distribution via dependency between ψ2 and ψ3 introduced via qφ . The
expansion of the variational family comes at the expense of increasing the compu-
tational burden. Hence, there is a trade-off between choosing MFVI as the faster
optimization method and HVI which gives better approximations to the posterior in
more complex settings but slows down the computational speed.

SIVI takes the idea ofHVI a step further by allowingqφ to be an implicit distribution,
meaning a distribution for which the density cannot be evaluated but for which we
can sample from. This renders Equation (4) not analytical solvable and we cannot
access the ELBO directly. Instead, the authors suggest constructing a lower bound to
the ELBO. More precisely, the lower bound L̃0 is constructed as,

L(ψ1,φ) = −E(ψ2,ψ3)∼qφ
KL(qψ (θ)||p(θ |y)) + log p(y)

≥ −KL(E(ψ2,ψ3)∼qφ
qψ (θ)||p(θ |y)) + log p(y) = L̃0(ψ1,φ)

using Jensen’s inequality with the observation that the KL-divergence can be viewed
as a convex functional (a proof is provided in Yin and Zhou 2018, Appendix A).
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L̃0 can be used to as a target optimize the variational parameters. In practice, the
implicit distribution is implied by the transformation of some noise ε ∼ D (e.g. D
is the k-dimensional standard normal distribution) with a deep neural net such that
(ψ ′

2,ψ
′
3)

′ = (Tφ(ε)′1, Tφ(ε)′2)′ = Tφ(ε). However, Yin and Zhou (2018) show in
Proposition 1 that optimizing L̃0 without early stopping can lead to a degenerated
distribution for ψ1, ψ2, i.e. a distribution with a single point-mass. To avoid this, the
author suggest to add a regularizing term to L̃0 yielding

L̃(ψ1,φ) = Eε∼DEθ∼q(ψ1,Tφ (ε))
Eε(1),...,ε(K )∼D

[
log p(θ , y) − log qψ1

(θ1)

− log
3∏

i=2

(
1

K + 1

(
qTφ(ε)i (θ i |Tφ(ε)i ) +

K∑

k=1

qTφ(ε(k))i
(θ i |Tφ(ε(k))i )

))]
(5)

as the target for optimization to which refer from here on as the lower bound ELBO
(lbELBO).

Yin and Zhou (2018) show that with increasing K the lbELBO approaches
the ELBO reaching equality for K → ∞. The expectations in the lbELBO
can be estimated via stochastic approximation. Note that the conditional densi-
ties qTφ(ε)i (θ i |Tφ(ε)i ) can also include non-hierarchical variational parameters, e.g.
qTφ(ε)i ,ψ i,2

(θ i |Tφ(ε)i ) with additional fixed parameters ψ i,2. Finally, updates to the
variational parameters are based on the respective gradients. The gradients are avail-
able via reverse-mode automatic differentiation exploiting the reparametrization trick
(Kingma and Welling 2014). In particular, the updates at iteration 	 are given by

φ(	) = φ(	−1) + ρ
(	)
1 ∇φ L̃(ψ1,φ),

ψ1
(	) = ψ1

(	−1) + ρ
(	)
2 ∇ψ1 L̃(ψ1,φ),

with exponential decaying learning rates ρ
(l)
1 , ρ

(l)
2 . Adding decaying learning rates

improved numerical stability and showed better results overall.
The flexibility of the variational family in SIVI is only limited in two ways: First,

the implicit variational prior distribution must be reparameterizable. That is, a dis-
tribution that can be sampled from using an auxiliary variable ε that is transformed
through a differentiable transformation T (.) e.g. ψ = Tφ(ε) with ε ∼ N (0, I). Sec-
ond, the conditional variational distribution of the coefficients must be analytic and
reparameterizable or, as demonstrated in Yin and Zhou (2018), the ELBO must be
analytic.

3.2 Mean-field and semi-implicit VI for additive models

In this section, we discuss the concrete implementations of twoMFVI approaches and
two SIVI approaches for the additive model.
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3.2.1 Mean-field VI with block-diagonal covariance matrix

In the additive model, the mean field factorization could be blocked as follows 
θ =
( 
γ ′

1, . . . , 
γ ′
p, τ1, . . . , τp, σ

2)′ with the variational density given by the factors

qψ (θ) = qψ
σ2

(σ 2)

p∏

j=1

qψγ j
(γ j ) qψ

τ2j
(τ 2j ), qψ ∈ QMFb,

(Waldmann andKneib 2015).UsingEquation (3) and exploiting conditional conjugacy
results in each qψγ j

to be multivariate Gaussian and the remaining distributions as

inverse gamma parametrized with the parameter vector in the index.
This formulation allows the construction of iterative updates to the variational

parameters as follows: For ψγ j
as re-parametrization of the mean vector and covari-

ance matrix, i.e. ψγ j
= (μ j ,� j ), in the variational distribution of γ j , the updates

are

� j =
(

νaσ 2

νbσ 2

Z′
j Z j + νa j

νb j

K j

)−1

, and

μ j = νaσ 2

νbσ 2

� j Z′
j

(
y − Z− jμ− j

])
.

The variational distribution q∗(σ 2) of the error variance is IG(νaσ 2 , νbσ 2 ) and the
updates for the variational parameters are

νaσ 2 = aσ 2 + N

2
, (6)

νbσ 2 = bσ 2 + 1

2

(
( y − Zμ)′( y − Zμ) + tr

(
Z′Z�

) )
, (7)

where Z = (Z1, . . . , Z p) and μ = (μ′
1, . . . ,μ

′
p)

′ are the stacked design matri-
ces and mean vectors, respectively. For the covariance matrix �, we can rewrite the
component-wise covariance matrices into one block diagonal covariance matrix, i.e.
� = blockdiag(�1, . . . ,� p). Therefore, we call this approach MFVI with block-
diagonal covariance matrix MFVI (block).

The variational distributions q∗(τ 2j ) of the smoothing parameters are IG(νa j , νb j ),

∀ j = 1, . . . , p and the updates for the variational parameters are

νa j = a j + rank(K j )

2
, (8)

νb j = b j + 1

2

(
tr
(
K j� j

) + μ′
j K jμ j

)
. (9)

The full derivations for the variational distribution of the coefficients, the error variance
and the smoothing parameters are shown in Appendix Sect. 7.4.
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3.2.2 Mean-field VI with full covariance matrix

In the special case of a multivariate Gaussian distribution for the coefficients, we
can use a single multivariate Gaussian distribution for all coefficients such that the
variational density factors to

qψ (θ) = qψ
σ2

(σ 2) qψγ
(γ )

p∏

j=1

qψ
τ2j

(τ 2j ), qψ ∈ QMFf,

with multivariate Gaussian distribution qψγ
. The iterative updates to the variational

parameters are,

� =
(

νaσ 2

νbσ 2

Z′Z + K
)−1

,

μ = νaσ 2

νbσ 2

�Z′ y,

with K = blockdiag

(
νa1

νb1
K 1, . . . ,

νap

νbp
K p

)
.

As the covariance matrix � is a full and unstructured covariance matrix we call the
approach MFVI with a full covariance matrix MFVI (full). The updates for the error
variance and the smoothing parameters are the same as in MFVI (block).

In MFVI (full), the mean-field assumption plays a crucial part but is not very
restrictive. First, the assumption of independence between the error variance and the
coefficients is only amild assumption. For instance, in the case of a diminishing penalty
term that is close to zero, we can use the properties of ordinary least squares. That is,
all columns of the design matrix are orthogonal to the residuals. For larger influences
of the penalty term, however, this assumption is violated. Second, the assumption
that smoothing parameters for each component are independent and that they are
independent of the error variance and conditionally on the coefficients only lead to
a mild restriction as this assumption is only imposed on the hyper-parameters. How-
ever, MFVI (full) is computationally very demanding for large variational covariance
matrices� because inverting them×m matrix� involves O(m3) computations. Fur-
thermore, MFVI (full) as discussed here in the case of conditional conjugate models is
not very flexible, as it is limited to the case of amultivariate Gaussian variational distri-
bution for the coefficients of all additive components. For smaller data sets, however,
a multivariate Gaussian variational distribution may not capture heavier tails.

3.2.3 Semi-implicit VI

Using SIVI has the advantage of retaining a blocked covariance matrix, but at the
same time increasing the flexibility of the variational distribution for the coefficients
and thus restoring coefficient dependencies. Additionally, more complex posterior
distributions can be captured. The variational density is
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qφ,ν(θ) = qψ
σ2

(σ 2)

p∏

j=1

qψ
τ2j

(τ 2j )

∫ ⎛

⎝
p∏

j=1

qψγ j
(γ j |ψγ j

)

⎞

⎠ qφ(ψγ )dψγ , qφ,ν ∈ QHVM, (10)

with ν = (ψσ 2 ,ψτ 21
, . . . ,ψτ 2p

). In this way the variational mean-field parameters for
the coefficients, ψγ , are marginalized out. The p coefficient blocks are designed to
be independent conditioned on ψγ , marginally, however, dependencies between the
blocks can be captured.

In line with the variational distributions of MFVI, we choose an inverse Gamma
distribution for σ 2 ∼ IG(νaσ 2 , νbσ 2 ) with ψσ 2 = (νaσ 2 , νbσ 2 ) and for each τ 2j ∼
IG(νa j , νb j ) with ψτ 2j

= (νa j , νb j ). For the conditional variational distribution, we

use a multivariate Gaussian distribution, i.e. γ j |ψγ j
∼ N (μ j ,�ξ j

) with ψγ j
=

(μ j ,�ξ j
). As the optimization was numerically unstable for conditioning on both μ j

and �ξ j
(also conditioning on variational parameters of smoothing parameters and

error variance lead to unreliable results), we apply the hierarchical expansion only on
the variational parameters μ = (μ′

1, . . . ,μ
′
p)

′, i.e. γ j |μ j ∼ N (μ j ,�ξ j
).

The variational parameter of the coefficients are generated as μ = Tφ(ε), with
ε ∼ N (0, I) and where Tφ transforms variables ε through a deep neural network with
weight and bias parameters φ.

The covariance matrix �ξ j
is parameterized with ξ j . It is the vectorized upper tri-

angular matrix and part of the Cholesky decomposition to build the covariance matrix,
i.e. �ξ j

= gU (ξ j )
′gU (ξ j ), where gU forms a Cholesky factor from its argument

vector.
For more details about the structure of SIVI, we provide an illustration in Fig. 6 in

Appendix Sect. 9.1 and a pseudo-algorithm in Algorithm 2 in Appendix Sect. 9.
The updates are determined by using a gradient-based approach. For variational

hyper-parameters we use the Adam optimizer (Kingma and Ba 2015) and for the
parameters ξ and ν we use a stochastic gradient descend optimizer. In order to estimate
the gradients, we rely on the lbELBO for additive models given by

L̃(φ, ξ , ν)

≈
p∑

j=1

Eτ 2j ∼qνa j ,νb j

[
ln p(τ 2j )

]
+ Eσ 2∼qνaσ 2 ,νbσ 2

[
ln p(σ 2)

]

−
p∑

j=1

Eτ 2j ∼qνa j ,νb j

[
ln qνa j ,νb j

(τ 2j )

]
− Eσ 2∼qψ

σ2

[
ln qνaσ 2 ,νbσ 2

(σ 2)

]

+ 1

S

S∑

s=1

{
Eσ 2∼qνaσ 2 ,νbσ 2

[
ln p(y|γ .,s, σ

2)

]

123



290 J. Lichter et al.

+
p∑

j=1

Eτ 2j ∼qνa j ,νb j

[
ln p(γ j,s |τ 2j )

]

− ln

( p∏

j=1

1

K + 1

(
qTφ(εs ) j ,ξ j

(γ j,s |Tφ(εs) j )

+
K∑

k=1

qTφ(εs ) j ,ξ j
(γ j |Tφ(ε(k)) j )

))}
, (11)

with γ .,s as the s-th sample of the stacked coefficient vector. All parts that include the
expectation with respect to σ 2 or each τ 2j of Formula (11) are available in analytic
form. Hence, we can use the same analytic derivations as for MFVI. The expectation
with respect to parameters γ 1, . . . , γ p is not tractable and needs to be approximated.
We use stochastic approximation by taking S samples of each γ j,s and average over
them.

The choices of the variational distributions are in accordance with MFVI for rea-
sons of comparison and the choice enables an analytic solution for MFVI. However,
different MFVI algorithms have been developed to go beyond conditional conjugate
models. In the case of SIVI, any arbitrary variational distribution for the error variance
and smoothing parameter(s) can be used. Additionally, the conditional variational dis-
tribution is not restricted to be multivariate Gaussian, but other symmetric, as well as
asymmetric distributions, can be considered.

3.2.4 Semi-implicit mean field VI

We propose an additional method which we call semi-implicit mean field variational
inference (SIMFVI) that can be viewed as a hybrid between SIVI andMFVI. SIMFVI
uses the same variational family as SIVI but the variational parameters are updated
differently. Wherever possible, we use the analytical updates as in Equation (3) with
noisy estimates of the expected values. For the additive model, this algorithm updates
the variational hyperparameters with the gradient-based method as in SIVI. � j and
ν are updated similar to the analytic MFVI (block) updates. Indeed, we need to use
a stochastic approximation of the expectation with respect to γ j . Hence, the updates
for the scale parameter of the error variance are,

νb
σ2

= bσ 2 + 1

2
E 
γ∼q 
ψ 
γ

[
(
y − 
Zγ )′(
y − 
Zγ )

]

≈ bσ 2 + 1

2

(

y′ 
y − 2

S

S∑

s=1


γ.,s 
Z ′ 
y + 1

S

S∑

s=1


γ ′
.,s


Z ′ 
Z 
γ.,s

)
,

The updates for the scale parameter of the smoothing parameter for component j are,

νb j = b j + 1

2
E 
γ∼q 
ψ 
γ

[ 
γ ′
j

K j 
γ j

] ≈ b j + 1

2S

S∑

s=1


γ ′
j,s


K j 
γ j,s .
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We provide a full implementation of the described approaches using the Python
programming language. The implementations incorporate the Python libraries numpy
(Harris et al. 2020) and pytorch (Paszke et al. 2019) for generation of random
numbers and automated differentiation.

4 Simulation

In the simulation study, we assess the uncertainty estimates across the introduced VI
methods based on empirical coverage percentages over repeated simulations. The cov-
erage percentage is the relative frequency of howmany times the credible interval (CI)
contains the true value. For a 95%CI, we, therefore, expect a coverage percentage that
equals about the nominal level of 95%. In Bayesian inference the CI is either based
on the highest density interval (Turkkan and Pham-Gia 1993) or on the quantiles of
the distribution. In this paper the CI’s are based on the quantiles.

In the case of MFVI (block), we suppose the coverage percentage will be below
the nominal level due to the strong assumption of independence between coefficient
blocks. We also presume that MFVI (full) accurately captures parameter uncertainty,
but it comes with the limitation of determining a fully unstructured covariance matrix
for all parameters simultaneously which requires handling of large matrices. On the
other hand, SIVI and SIMFVI combine the advantage of using a blocked structure
with a hierarchical construction to restore parameter dependencies. Therefore, we
hypothesize the coverage percentage of SIVI and SIMFVI is close to the nominal
level as well. Additionally, we compare the aforementioned methods with the Gibbs
sampler, which we use as a reference.

We assess both, the coverage of point-wise and simultaneous CI. For estimating
simultaneous CI, we develop an efficient algorithm (see Algorithm 2 in Appendix 8)
based on a fully Bayesian quantile-based approach (Krivobokova et al. 2010).

The data generating process (DGP) is based on two covariates that affect the
response in a nonlinear way. Hence, for the model, we can use P-splines and can
block the covariance matrix accordingly. The DGP has the form

(DGP) yi = f1(xi1) + f2(xi2) + εi .

The errors are independently generated from a Gaussian distribution with variance
0.5, i.e. εi ∼ N (0, 0.5). The values for the covariates xi1 and xi2 are generated
in two steps. In the first step, we generate values from a bivariate normal distribu-
tion, (zi1, zi2)′ = zi ∼ N (0, A), with A having ones on the diagonal and the value
ρ ∈ (−1, 1) on the off-diagonals to control for correlations between the variables.
We consider correlations of varied intensity, namely, no correlation (ρ = 0), medium
correlation (ρ = 0.45), and strong correlation (ρ = 0.9). In the second step, we
use a probability integral transform to the variables, such that xi1 = 5 · F(zi1) and
xi2 = 7 · F(zi2) − 1, with F(·) as univariate standard normal cumulative distribution
function.

The two functional forms of the nonlinear effects are,

f1(xi1) = sin
(π

4
xi1 − 1

)
+ 2 exp

(
−(xi1 − 1)2

)
, (12)
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Fig. 1 Coverage percentage among different methods for three selected scenarios. The blue dots represent
local and the yellow triangulars simultaneous CI coverages

f2(xi2) = sin

(
3π

16
xi2 − 1

2

)
+ 2 exp

(
−3

2
(xi2 − 1

2
)2
)

. (13)

The functional forms f1 and f2 have a similar shape, which additionally increases the
difficulty to distinguish between the two effects. Both functions have one sharp peak
around 1.2 and 0.6, respectively (see Fig. 7, in Appendix Sect. 9.2).

Moreover, we vary the sample sizes in the simulation study. For each of the three
scenarios with varying correlations, we run the simulation study using 50, 250, or 500
observations. This results in total to nine different scenarios. For each scenario, we
use 1000 replications.

We argue that the simulation results of using P-splines are transferable to other
effect types involving clustered or spatial effects as the coefficient structure in the
model remains the same. Only the basis functions and the number of coefficients
change. Hence, it appears to be sufficient to limit the extent of the simulation study to
two non-linear effects modeled with P-splines.

Simulation results, depicted in Fig. 1, show the coverage percentage for each spline
and method for three scenarios with the most significant differences across the meth-
ods. These are, not surprisingly, the scenarios with high or medium correlation and
a rather small sample size (the results of the other scenarios are shown in Fig. 8 in
Appendix Sect. 9.2).

In the scenario with a high correlation between the covariates (middle and right
plot), MFVI (block) has a very low coverage for both splines. The simultaneous CI
of the estimated function for f2 in the scenario with 50 observations has a coverage
of below 70% that is significantly below the nominal level of 95%. SIVI, SIMFVI
and also MFVI (full) show coverages of about the nominal level. For the scenario
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with medium correlation and 50 observations, however, the coverage percentage of
simultaneous CI for f2 for MFVI (block) as well as for MFVI (full) is well below the
nominal level. This might be due to the fact that for small sample sizes the Gaussian
distribution assumption on the coefficients might be too restrictive. The more flexible
methods SIVI and SIMFVI show improvements in the coverage, but are also slightly
below the nominal level.

For other criteria such as the mean squared error (MSE) for each spline and the
overall MSE on the fitted values, no significant differences across the methods are
visible. There is only a slight tendency that the different MSEs of SIVI and SIMFVI
are larger on average. For instance, in the scenario with 50 observations and a strong
correlation the smallest overall MSE value is the one of MFVI (block) with 0.116 and
the largest is the one of SIVI with 0.123 (see Table 2 in Appendix Sect. 9.2 for further
details about this scenario).

The simulations show very accurate results for the Gibbs sampler across all criteria
and scenarios. However, the coverage percentage of the local and, in particular, simul-
taneous CIs, were above the nominal level by about 0.4 to 4.2 percentage points in
all scenarios, indicating that the uncertainty is slightly overestimated.1 In particular,
the simultaneous CI bands of the estimated function for f1 appear to be too wide.
Nevertheless, we use the Gibbs sampler as the reference when comparing the methods
in the application, as the MCMC approach is expected to give asymptotically exact
results.

Assuming the samples of the MCMC approach to come from the desired posterior
distribution, we also evaluate the KL divergence for each VI method based on these
samples. This gives a more holistic evaluation over the complete distribution. We
approximately evaluate,

−KL (p(θ | y)||q(θ)) ≈ 1

S

S∑

s=1

log q(θ s) − 1

S

S∑

s=1

log p(θ s | y)

with Gibbs samples θ1, ..., θ S ∼ p(θ | y). Since we compare the different VI methods
based on the same samples we only need to evaluate the term 1

S

∑S
s=1 log q(θ s), that

is the average logarithmized density given the Gibbs samples (ALDG). Higher values
indicate better approximations to the true posterior. For SIVI and SIMFVI, we evaluate
the density of the coefficients by averaging them out,

log q(θ s) ≈
p∑

j

[
log

1

M

M∑

m=1

( qμ jm ,� j (γ js |μ jm)) + log qa j ,b j (τ
2
js)

]
+log qa,b(σ

2
s ),

with M samples out of the neural network. For MFVI a full factorization applies.
The results confirm our previous findings. In Fig. 2 we show the ALDG of the

coefficients for each VI method (we show figures of the total ALDG and for the
different model parameters for all scenarios in Figs. 9, 10, 11, 12, 13, 14, 15, 16 and

1 A tendency to overestimate the uncertainty is also found in other studies related toMCMCapproximations
(Fahrmeir et al. 2004)
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Fig. 2 The coefficient ALDG across all VI methods for three selected scenarios: 50 observations and
medium correlation (left), 50 observations and high correlation (middle) and 250 observations and high
correlation (right). The boxplots are based on 1000 simulations

17) in Appendix Sect. 9). MFVI (block) does not accurately capture the complete
distribution, whereas SIVI and SIMFVI show significant improvements. However,
evaluating the ALDG for high correlation between the covariates reveal that MFVI
(full) performs slightly better. Hence, the hierarchical approach with flexible mixing
distribution restores parameters dependencies to a large extend, but may fails to restore
all dependencies.

The extend to how good SIVI and SIMFVI restores parameter dependencies is
highly sensitive to the specifications of the neural network. Important considerations
are the neural net structure and the activation function. We see a deterioration of
the performance, if the neural net structure has more than 3 hidden layers and if the
activation function is Sigmoid, instead of ReLU or Tanh. The specification for the
input dimension, however, does not effect the results significantly (one example about
the sensitivity is shown in Fig. 18 Appendix Sect. 9.2). Most importantly, however, is
the choice of the learning rates for the parameter updates. In the simulation study it
appears that in general higher learning rates (up to 0.1) improve the results, but the
algorithm becomes less numerically stable. We show further details about the model
set up and the choice of hyper-parameters in Appendix Sect. 7.7.

5 Application to tree height models of douglas fir

Douglas fir is a non-native conifer species to Germany. It is expected to be resilient to
drought events and higher temperatures and, thus, with changing climatic conditions
may serve as an important addition to the tree species portfolio of German climate-
smart forestry. Modeling tree heights of Douglas fir is of high value for economic and
climate consideration concerning, e.g. returns from investment and carbon storage
potentials.

We use data from the national forestry inventory (NFI) of Germany and a climate
data set provided by the Nordwestdeutsche Forstliche Versuchsanstalt.
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Wemodel heights of Douglas fir in Germany using two types of covariates, namely,
tree- and climate-specific covariates. Someof those covariates have strong correlations.
Accordingly, a method should be used that can reflect the increased uncertainty of the
estimates. Therefore, we use the novel SIVI and SIMFVI methods and compare the
results to the standardMFVI.Additionally, we use theGibbs sampler as the benchmark
method.

5.1 Statistical additive model

For modeling the mean tree height of Douglas fir, we employ an additive model
(similar to Pya and Schmidt 2016). With the combined tree and climate data, we fit
the following model for the observed tree height,

hi = β0 + β1dbhi + β2dbh
2
i + f1(agei )

+ f2(preci ) + f3(ti ) + f4(alti ) + fgeo(longi , lati ) + εi , (14)

where we assume a Gaussian distributed error εi .
The tree-specific data are the tree height in meters (h) that we use as response

variable, the DBH in decimeters (dbh), and the age (age).
For all climate-specific variables, i.e. the accumulated precipitation per tree over

its lifespan (prec) and the accumulated temperature per tree over its lifespan (t), and
also for the adjusted altitude per location (alt) we use nonlinear effects as well.

Finally, to account for the spatial effect, we include a tensor product spline with
the approximated coordinates for each tract, i.e. the longitude and latitude (long, lat).
We provide more details about the model set up in Appendix Sect. 7.7.

We further split the data into 70% training and 30% test data to evaluate the pre-
dictive performance of each method. In total, we have 7,082 in the training and 3,035
observations in the test data set and overall 826 coefficients in the model.

5.2 Results

The results, as shown in Fig. 3, reveal the importance of considering climate variables
to understand the tree heights ofDouglas fir. Both increasing accumulated precipitation
and temperature increase the expected tree height when looking at moderate values of
the covariates. In case of more extreme values for accumulated temperature, the effect
on tree height is less clear. For high values of accumulated precipitation, the estimated
effect starts to decrease.

The estimated effect of age shows an expected functional form, basically following
the typical height growth pattern over age, i.e. large height increment in younger ages
and levelling off in older ages. The altitude of the tree location does not seem to play
an important role.

When comparing the different proposed methods, both similarities and distinct dif-
ferences are visible. The estimates for the mean effects are similar across all methods.
Only SIVI deviates in some parameters. For higher values of the estimatedmean effect
of altitude, SIVI tends to be slightly below the other methods. Additionally, the mean
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Fig. 3 Estimated effects with 95% simultaneous CIs colored by method

of the error variance term for SIVI is with about 7.97 estimated higher compared
to all other methods which estimates are in the range between 7.59 and 7.61 (see
Appendix Sect. 9.3, Table 4 for more information).

The differences between the methods become more apparent when considering the
CIs, in particular for the estimated effect of accumulated precipitation, accumulated
temperature, and altitude.Here,we dealwith the additional problem, that the covariates
are correlated. The results show a similar pattern for correlated effects as discovered in
the simulation study: the widths of the 95% simultaneous CI bands of MFVI (block)
are narrower compared to the other methods. However, as opposed to the simulation,
also SIVI is not able to match the CI widths of the Gibbs sampler. SIMFVI and
MFVI (full) show results much closer to the one from Gibbs sampler. In regions with
only a few observations, SIMFVI tends to have narrower CI bands compared to Gibbs
and MFVI (full).

The biggest differences are in the CI bands of altitude. For MFVI (block) and SIVI,
the CI bands are at one occasion above and at one below the zero line. Whereas for
Gibbs, MFVI (full), and SIMFVI, the CI bands cover the zero line across all values of
altitude.

Similarly, the spatial effects for the different methods show differences in uncer-
tainty levels (see Fig. 4). To highlight the differences in CI width, we visualize the CI
width of each VI method as share to the width of the Gibbs sampler. Darkblue areas
mean the CI is on par with Gibbs and yellow means the CI width is about 30% of the
one from Gibbs, which is the lowest measured share on a location.

The biggest differences are in south-west Germany. MFVI (block) and also SIVI
show much narrower CI widths at these locations compared to the other methods.
Similarly, in north Germany, the areas of MFVI (block) and SIVI are lighter shaded.
In areas without observations (without grey dots), there appears to be no difference
between the methods.
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Fig. 4 Width of 95% simultaneous CI of the two-dimensional spline as share to the CI width of Gibbs
sampler across different VI methods. 100% (darkblue) stands for the same width as Gibbs sampler. Tracts
with at least one Douglas fir are marked as grey dots

The accuracy of parameter uncertainty can still be improved in SIMFVI,2 when
altering some of the parameters for the algorithm. In particular, the number of samples
K out of the neural net that is used to approximate theELBO frombelow.Higher values
further tighten the lower bound but to the expense of computational time. We opt to
draw K = 100 samples out of the neural net for SIVI and SIMFVI, but increasing the
number to K = 300, brings the CI width slightly closer to the one of Gibbs (see an
example of the spatial effect with SIMFVI in Fig. 20 in Appendix Sect. 9.3). However,
it significantly comes to the expense of computational time.

2 For this application, the accuracy of parameter uncertainty is not improved with SIVI.
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Table 1 Estimated ALDG across VI methods

MFVI MFVI SIMF SIMF SIVI
(block) (full) MFVI init.

K=100 K=300 K=100

1
S
∑S

s=1 log q(θ s ) −2020.33 −1796.92 −1827.44 −1822.59 −1968.47

1
S
∑S

s=1 log q(γ s ) −2003.32 −1779.98 −1809.08 −1803.98 −1951.39

1
S
∑S

s=1 log q(τ2s ) −17.56 −17.53 −18.92 −19.18 −17.56

1
S
∑S

s=1 log q(σ 2
s ) 0.56 0.58 0.57 0.57 0.48

Numbers highlighted in green and yellow are the best and second best approximations to theGibbs posterior,
respectively. Additionally, the model parameter contributions to the ALDG are listed

The improvement of an increase inK is onlymarginal as canbe seenwhenevaluating
the whole distribution based on the Gibbs samples (see Table 1). SIMFVI with K =
300 is marginally closer to but still slightly worse than MFVI (full). In general, the
ALDG confirms the findings of improved approximations in SIMFVI over MFVI
(block). There is a substantial gap between the ALDG of those 2 methods, whereas
SIVI shows only minor improvements.

Finally, we compare the predictive performance of each method. The predictive
power is similar across all methods. For the MSE and the predictive coverage on the
test data, we do not find significant distinctions between the methods. The predictive
coverage is about 93 to 96% for all methods just as expected from the nominal level
(see Table 5 in Appendix Sect. 9.3 for more details).

6 Conclusion

As there is growing access to ever more data resources and with it a growing interest in
fast approximate methods, variational inference has gained considerably in popularity.
In our analyses of additive models, variational inference performs well in terms of
point estimates and parameter uncertainty, even despite making use of the strong
mean-field assumption. However, the performance might degrade, and in particular,
the parameter uncertainty is underestimated, if the mean-field assumption is placed on
critical parameters, such as different coefficient blocks. This, might nevertheless be of
interest, as treating all coefficients simultaneously,might need handling and estimation
of large matrices, in particular when using combinations of spatial and cluster effects
in a model, that requires numerous coefficients.

The SIVI and SIMFVI algorithms proposed are capable of using a blocked structure
on the coefficients, but they still give accurate results on parameter uncertainty. In cases
when a variational Gaussian distribution on the coefficients is too restrictive, SIVI and
SIMFVI can even outperform MFVI with a full covariance structure, due to allowing
more flexibility on the coefficients posterior distribution. Yet, the performance of
SIVI seems to deteriorate, if dealing with large matrices from e.g. spatial effects or a
large number of observations. In these cases, the gradient based approach to estimate
parameters of the covariance matrices appears to be rather inefficient. The SIMFVI
algorithm solves this issue and additionally, needs less computational time.
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There is, however, still much room for improvement when considering the compu-
tational time of SIVI and SIMFVI. More efficient implementations could make SIVI
and SIMFVI much faster.

We only investigate the use case of blocked versus fully unstructured covariance
matrices for the coefficients. Future research can address more complex scenarios
including complex hierarchical models and extensions to generalized additive models.
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7 Designmatrices, model and derivations

7.1 Bivariate tensor product P-spline

A two-dimensional surface is fitted by allowing the smooth of one continuous covariate
i.e. x j1 with basis function B(x j1) = Z j1 to vary smoothly with another continuous
covariate x j2 with basis function B(x j2) = Z j2. This is achieved by combining the
two univariate smooth design matrices Z j1 and Z j2 with the Kronecker product (⊗)

for each row. The i th row of the constructed bivariate design matrix Z j becomes,

zi j = zi j1 ⊗ zi j2.

The penalty is constructed by combining the univariate smooth penalties. The resulting
penalty matrix that accounts for row-wise and column-wise differences is given by:

K j = Id j2 ⊗ K j1 + K j2 ⊗ Id j1
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7.2 Centering constraint in designmatrix

To ensure identifiability in a model with more then one nonlinear predictor component
we set the constraint (Wood 2017, chapter 1.8.1 & 4.2):

1′Zu γ u = 0,

where Zu is the unconstraint N × p design matrix (so 1′Zu is a 1 × p vector) and
unconstraint coefficients γ u . One way of imposing the constraint is by using p − 1
unconstraint parameters with the QR decomposition. The column sums of the design
matrix can be factored to:

Z′
u1 = U

(
a
0

)
,

where U is a p × p orthogonal matrix and a is a scalar. As a next step, U can be
partitioned to U = (D : C) where C is a p × (p − 1) matrix. Then

C γ u = γ ,

will meet the constraints for any value of the p − 1 dimensional vector γ u .
The new design matrix is:

Z = ZuC,

such that,
1′Zγ = 0

7.3 Model likelihood and priors

1. Likelihood for y ∼ N (Zγ , σ 2 In):

p( y|γ , σ 2) =
n∏

i=1

N (yi |γ , σ 2)

= 1

(2πσ 2)
n
2
exp

(
− ( y − Zγ )′( y − Zγ )

2σ 2

)

2. Prior distribution for the error variance σ 2 ∼ IG(aσ 2 , bσ 2):

p(σ 2) = b
a
σ2

σ 2

�(aσ 2)

(
1

σ 2

)a
σ2+1

exp

(
−bσ 2

σ 2

)

3. Prior distribution for coefficients γ j :

p(γ j |τ 2j ) ∝ 1
(
2πτ 2j

) rank(K j )
2

exp

(
−γ ′

j K jγ j

2τ 2j

)
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4. Prior distribution for smoothing parameter of the τ 2j ∼ IG(a j , b j ):

p(τ 2j ) = b
a j
j

�(a j )

(
1

τ 2j

)a j+1

exp

(
−b j

τ 2j

)

7.4 Derivation of variational densities for MFVI

For notational convenience, we further do not add the distribution to the model param-
eter, when using the expectation.. Instead of e.g. Eγ∼qψγ

, we write Eγ .

1. Variational density for γ coefficients with Zγ − j = ∑
r �= j Zrγ r . Therefore, we

have E−γ j

[
Zγ − j

] = ∑
r �= j ZrEγ r

[
γ r

]
:

q(γ j ) ∝ exp

{
E−γ j

[
ln p( y|γ , σ 2) p(γ j |τ2j ) p(γ − j |τ2− j ) p(τ

2
j ) p(σ

2)
︸ ︷︷ ︸

const

]}

∝ exp

{
E−γ j

[
ln

(
1

(2πσ 2)
n
2

exp

(
− ( y − Zγ − j − Z jγ j )

′( y − Zγ − j − Z jγ j )

2σ 2

)

1
(
2πτ2

) d j−1
2

exp

(
− 1

2τ2j
γ ′
j K jγ j

))]}

= exp

{
E−γ j

[
− 1

2σ 2 ( y − Zγ − j − Z jγ j )
′( y − Zγ − j − Z jγ j )

− 1

2τ2j
γ ′
j K jγ j + const

]}

∝ exp

{
E−γ j

[
− 1

2σ 2

(
y′ y − Zγ ′− j y − y′Zγ − j + γ ′− j Z

′Zγ − j︸ ︷︷ ︸
does not contain γ j

− 2γ ′
j Z

′
j y + 2γ ′

j Z
′
j Zγ − j + γ ′

j Z
′
j Z jγ j

)

− 1

2τ2j
γ ′
j K jγ j

]}

∝ exp

{
E−γ j

[
1

σ 2 γ ′
j Z

′
j
(
y − Zγ − j

) − 1

2σ 2 γ ′
j Z

′
j Z jγ j − 1

2τ2j
γ ′
j K jγ j

]}

= exp

{
Eσ 2

[
1

σ 2

]
γ ′
j Z

′
j

(
y − Eγ − j

[
Zγ − j

])
− Eσ 2

[
1

σ 2

]
1

2
γ ′
j Z

′
j Z jγ j

− E
τ 2j

[
1

τ2j

]
1

2
γ ′
j K jγ j

}
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= exp

{
Eσ 2

[
1

σ 2

]
γ ′
j Z

′
j

(
y − Eγ − j

[
Zγ − j

])

− 1

2
γ ′
j

(
Eσ 2

[
1

σ 2

]
Z′
j Z j + E

τ 2j

[
1

τ2j

]
K j

)
γ j

}

= exp

{
− 1

2
γ ′
j

(
Eσ 2

[
1

σ 2

]
Z′
j Z j + E

τ 2j

[
1

τ2j

]
K j

)

︸ ︷︷ ︸
�−1

j

γ j

+ γ ′
j�

−1
j � jEσ 2

[
1

σ 2

]
Z′
j

(
y − Eγ − j

[
Zγ − j

])

︸ ︷︷ ︸
μ j

}

E(γ j ) = μ j = Eσ 2

[
1

σ 2

]
� j Z′

j

(
y − Eγ − j

[
Zγ − j

])

Var(γ j ) = � j =
(

Eσ 2

[
1

σ 2

]
Z′

j Z j + Eτ 2j

[
1

τ 2j

]
K j

)−1

For γ j = (
γ j1, γ j2, ..., γ jd j

)′ and μ j = (
μ j1, μ j2, ..., μ jd j

)′
Full Covariance update:

E(γ ) = μ = Eσ 2

[
1

σ 2

]
�Z′ y

)

Var(γ ) = � =
(

Eσ 2

[
1

σ 2

]
Z′Z + Eτ 2

[
K
])−1

With μ = (μ′
1, ...,μ

′
p)

′, Z = (Z1, ..., Z p) and

Eτ 2

[
K
]

= diag
(
Eτ 21

[
1
τ 21

]
K 1, ..., Eτ 2p

[
1
τ 2p

]
K p

)

2. Variational density for γ coefficients variance q(τ 2j ):

q(τ2j ) ∝ exp

{
E−τ 2

[
ln

(
p(τ2j ) p(γ j |τ2j )

)]}

= exp

{
E−τ 2j

[
ln

( b
a j
j

�(a j )

(
1

τ2

)a j+1
exp

(
−b j

τ2j

)

1

(2πτ2j )
rank(K j )

2

exp

(
− 1

2τ2j
γ ′
j K jγ j

))]}

∝ exp

{
E−τ 2j

[
(a j + 1) ln

(
1

τ2j

)
− b j

τ2j
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+ rank(K j )

2
ln

(
1

2πτ2j

)
− 1

2τ2j
γ ′
j K jγ j

]}

∝ exp

{
(a j + 1) ln

(
1

τ2j

)
+ rank(K j )

2
ln

(
1

τ2j

)

− b j

τ2j

− 1

2τ2j
Eγ j

[
γ ′
j K jγ j

]}

= exp

{
ln

(
1

τ2j

)(
a j + 1 + rank(K j )

2

)
− 1

τ2j

(
b j + 1

2
Eγ j

[
γ ′
j K jγ j

])}

=
(

1

τ2j

)a j+ rank(K j )
2︸ ︷︷ ︸

νa j

+1

exp

{
− 1

τ2j

(
b j + 1

2
Eγ j

[
γ ′
j K jγ j

])

︸ ︷︷ ︸
νb j

}

νa j = a j + rank(K j )

2

νb j = b j + 1

2
Eγ

[
γ ′
j K jγ j

]

= b j + 1

2

(
tr
(
K j� j

) + μ′
j K jμ j

)

E(τ2j ) = νb j

νa j − 1

E

(
1

τ2j

)
= νa j

νb j

3. Variational density for the variance of the error term:

q(σ 2) ∝ exp

{
E−σ 2

[
ln

(
p( y|γ , σ ) p(σ 2)

)]}

= exp

{
E−σ 2

[
ln

(
1

(2πσ 2)
n
2
exp

(
− ( y − Zγ )′( y − Zγ )

2σ 2

)

b
a
σ2

σ 2

�(a)

(
1

σ 2

)a
σ2+1

exp

(
−bσ 2

σ 2

))]}

∝ exp

{
E−σ 2

[
ln

(
1

σ 2

)
n

2
+ ln

(
1

σ 2

)
(aσ 2 + 1)

− ( y − Zγ )′( y − Zγ )

2σ 2 − bσ 2

σ 2

]}

= exp

{
ln

(
1

σ 2

)(n
2

+ aσ 2 + 1
)
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− 1

σ 2

(
bσ 2 + 1

2
Eγ

[
( y − Zγ )′( y − Zγ )

])}

=
(

1

σ 2

)a
σ2+ n

2︸ ︷︷ ︸
νa

σ2

+1

exp

{
− 1

σ 2

(
bσ 2 + 1

2
Eγ

[
( y − Zγ )′( y − Zγ )

])

︸ ︷︷ ︸
νb

σ2

}

νa
σ2

= aσ 2 + n

2

νb
σ2

= bσ 2 + 1

2
Eγ

[
( y − Zγ )′( y − Zγ )

]

= bσ 2 + 1

2

(
y′ y − 2Eγ

[
γ ′

]
Z′ y + Eγ

[
γ ′Z′Zγ

])

= bσ 2 + 1

2

(
y′ y − 2μ′Z′ y + tr

(
Z′Z�

) + μ′Z′Zμ

)

= bσ 2 + 1

2

(
( y − Zμ)′( y − Zμ) + tr

(
Z′Z�

) )

E(σ 2) = νb
σ2

νa
σ2

− 1

E

(
1

σ 2

)
= νa

σ2

νb
σ2

Note that � is either a blockdiagonal matrix with � = diag(�1, . . . ,� p) or fully
unstructured.

7.5 Derivation of ELBO for MFVI

L(μ,�, ν) =E(γ ,τ 2,σ 2)∼qμ,�,ν

[
ln p(γ , τ 2, σ 2, y)

]

− E(γ ,τ 2,σ 2)∼qμ,�,ν

[
ln q(γ , τ 2, σ 2)

]

= Eγ∼qψγ
,σ 2∼qψ

σ2

[
ln p( y|γ , σ 2)

]

︸ ︷︷ ︸
1

+
p∑

j=1

Eγ j∼qψγ j
,τ 2j ∼qψ

τ2j

[
ln p(γ j |τ 2j )

]

︸ ︷︷ ︸
2
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+
p∑

j=1

Eτ 2j ∼qψ
τ2j

[
ln p(τ 2j )

]

︸ ︷︷ ︸
3

+ Eσ 2∼qψ
σ2

[
ln p(σ 2)

]

︸ ︷︷ ︸
4

−
p∑

j=1

Eγ j∼qψγ j

[
ln q(γ j )

]

︸ ︷︷ ︸
5

−
p∑

j=1

Eτ 2j ∼qψ
τ2j

[
ln q(τ 2j )

]

︸ ︷︷ ︸
6

− Eσ 2∼qψ
σ2

[
ln q(σ 2)

]

︸ ︷︷ ︸
7

For notational convenience, we further do not add the distribution to the model
parameter, when using the expectation. Instead of e.g. Eγ∼qψγ

, we write Eγ .

1 Eγ ,σ 2

[
ln p( y|γ , σ 2)

]

=Eγ ,σ 2

[
ln

((
1

2πσ 2

) n
2

exp

(
− 1

2σ 2 ( y − Zγ )′( y − Zγ )

))]

∝Eγ ,σ 2

[
n

2
ln

(
1

σ 2

)
− 1

2σ 2

(
( y − Zγ )′( y − Zγ )

) ]

=n

2
Eσ 2

[
ln

(
1

σ 2

)]
− 1

2
Eσ 2

[
1

σ 2

](
y′ y − 2Eγ

[
γ ′

]
Z′ y + Eγ

[
γ ′Z′Zγ

])

=n

2
Eσ 2

[
ln

(
1

σ 2

)]
− 1

2

a∗

b∗
(
( y − Zμγ )′( y − Zμγ ) + tr

(
Z′Z�γ

) )

=n

2

(
�(a∗) − ln(b∗)

) − 1

2

a∗

b∗
(
( y − Zμγ )′( y − Zμγ ) + tr

(
Z′Z�γ

) )

Note if x ∼ InvGa(a, b) => 1
x ∼ Ga(a, b) then

E(ln( 1x )) = �(a) − ln(b), where �(x) is the digamma function.

2 Eγ j ,τ
2

[
ln p(γ j |τ 2j )

]

=Eγ j ,τ
2
j

[
ln

(
1

(2πτ 2)
rank(K j )

2

exp

(
−γ ′

j K jγ j

2τ 2j

))]

∝Eγ j ,τ
2
j

[
rank(K j )

2
ln

(
1

τ 2j

)
− 1

2τ 2j
γ ′

j K jγ j

]
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= rank(K j )

2
Eτ 2j

[
ln

(
1

τ 2j

)]
− 1

2
Eτ 2j

[
1

τ 2j

]
Eγ j

[
γ ′

j K jγ j

]

= rank(K j )

2

(
�(νa j ) − ln(νb j )

) − 1

2

νa j

νb j

(
tr
(
K j� j

) + μ′
j K jμ j

)

3 Eτ 2j

[
ln p(τ 2j )

]

=Eτ 2j

[
ln

( b
a j
j

�(a j )

(
1

τ 2j

)a j+1

exp

(
−b j

τ 2j

))]

∝Eτ 2j

[
(a j + 1) ln

(
1

τ 2j

)
− b j

τ 2j

]

=(a j + 1)Eτ 2j

[
ln

(
1

τ 2j

)]
− b jEτ 2j

[
1

τ 2j

]

=(a j + 1)
(
�(νa j ) − ln(νb j )

) − b j
νa j

νb j

4 Eσ 2

[
ln p(σ 2)

]

=Eσ 2

[
ln

(
b
a
σ2

σ 2

�(aσ 2)

(
1

σ 2

)a
σ2+1

exp

(
−bσ 2

σ 2

))]

∝Eσ 2

[
(aσ 2 + 1) ln

(
1

σ 2

)
− bσ 2

σ 2

]

=(aσ 2 + 1)Eσ 2

[
ln

(
1

σ 2

)]
− bσ 2Eσ 2

[
1

σ 2

]

=(aσ 2 + 1)
(
�(νa

σ2
) − ln(νb

σ2
)
)

− bσ 2

νa
σ2

νb
σ2

5 Eγ j

[
ln q(γ j )

]

= Eγ j

[
ln

(
(2π)−

d j
2 det(� j )

− 1
2 exp

(
−1

2
(γ j − μ j )

′�−1
j (γ j − μ j )

))]

∝ Eγ j

[
− 1

2
ln
(
det(� j )

) − 1

2
(γ j − μ j )

′�−1
j (γ j − μ j )

]

= −1

2
ln
(
det(� j )

) − 1

2
Eγ j

[
(γ j − μ j )

′�−1
j (γ j − μ j )

]

= −1

2
ln
(
det(� j )

) − 1

2

(
Eγ j

[
γ ′

j�
−1
j γ j

]
− 2Eγ j

[
γ ′

j

]
�−1

j + μ′
j�

−1
j μ j

)
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= −1

2
ln
(
det(� j )

)− 1

2

(
tr
(
� j�

−1
j

)
+μ′

j�
−1
j μ j −2μ′

j�
−1
j μ j +μ′

j�
−1
j μ j

)

= −1

2
ln
(
det(� j )

) − 1

2
tr
(
I j

)

︸ ︷︷ ︸
const

∝ −1

2
ln
(
det(� j )

)

For full covariance:

Eγ j

[
ln q(γ )

]
∝ − 1

2
ln
(
det(�)

)

6 Eτ 2j

[
ln q(τ 2j )

]

= Eτ 2j

[
ln

νb j
νa j

�(νa j )

(
1

τ 2j

)νa j +1

exp

(
−νb j

τ 2j

)]

= Eτ 2j

[
νa j ln(νb j ) − ln(�(νa j )) + (νa j + 1) ln

(
1

τ 2j

)
− νb j

τ 2j

]

= νa j ln(νb j ) − ln(�(νa j )) + (νa j + 1)Eτ 2j

[
ln

(
1

τ 2j

)]
− νb j Eτ 2j

[
1

τ 2j

]

= νa j ln(νb j ) − ln(�(νa j )) + (νa j + 1)
(
�(νa j ) − ln(νb j )

) − νb j

νa j

νb j

= νa j ln(νb j ) − ln(�(νa j )) + (νa j + 1)�(νa j ) − νa j ln(νb j ) − ln(νb j ) − νa j +
= (νa j + 1)�(νa j ) − ln(νb j ) − νa j − ln(�(νa j ))

7 Eσ 2

[
ln q(σ 2)

]

= Eσ 2

[
ln

νb
σ2

νa
σ2

�(νa
σ2

)

(
1

σ 2

)νa
σ2

+1

exp

(
−νb

σ2

σ 2

)]

= Eσ 2

[
νa

σ2
ln(νb

σ2
) − ln(�(νa

σ2
)) + (νa

σ2
+ 1)ln

(
1

σ 2

)
− νb

σ2

σ 2

]

= νa
σ2

ln(νb
σ2

) − ln(�(νa
σ2

)) + (νa
σ2

+ 1)Eσ 2

[
ln

(
1

σ 2

)]
− νb

σ2
Eσ 2

[
1

σ 2

]

= νa
σ2

ln(νb
σ2

) − ln(�(νa
σ2

)) + (νa
σ2

+ 1)
(
�(νa

σ2
) − ln(νb

σ2
)
)

− νb
σ2

νa
σ2

νb
σ2

= νa
σ2

ln(νb
σ2

)−ln(�(νa
σ2

)) + (νa
σ2

+ 1)�(νa
σ2

)−νa
σ2

ln(νb
σ2

)−ln(νb
σ2

)−νa
σ2

= (νa
σ2

+ 1)�(νa
σ2

) − ln(νb
σ2

) − νa
σ2

− ln(�(νa
σ2

))

123



308 J. Lichter et al.

7.6 Derivation of ELBO for SIVI

L̃(φ, ξ , ν) ≈
p∑

j=1

Eτ 2j ∼qψ
τ2j

[
ln p(τ 2j )

]

︸ ︷︷ ︸
1

+ Eσ 2∼qψ
σ2

[
ln p(σ 2)

]

︸ ︷︷ ︸
2

−
p∑

j=1

Eτ 2j ∼qψ
τ2j

[
ln q(τ 2j )

]

︸ ︷︷ ︸
3

− Eσ 2∼qψ
σ2

[
ln q(σ 2)

]

︸ ︷︷ ︸
4

+ 1

S

S∑

s=1

{
Eσ 2∼qψ

σ2

[
ln p( y|γ s, σ

2)

]

︸ ︷︷ ︸
5

+
p∑

j=1

Eτ 2j ∼qψ
τ2j

[
ln p(γ j,s |τ 2j )

]

︸ ︷︷ ︸
6

−
p∑

j=1

(
ln

(
q(γ j,s |μ j,s) +

K∑

k=1

q(γ j |μ(k)
j )

)

︸ ︷︷ ︸
7

− ln (K + 1)

)}

1 Eτ 2j ∼qψ
τ2j

[
ln p(τ 2j )

]

∝(a j + 1)
(
�(νa j ) − ln(νb j )

) − b j
νa j

νb j

2 Eσ 2∼qψ
σ2

[
ln p(σ 2

s )

]

∝(aσ 2 + 1)
(
�(νa

σ2
) − ln(νb

σ2
)
)

− bσ 2

νa
σ2

νb
σ2

3 Eτ 2j ∼qψ
τ2j

[
ln q(τ 2j )

]

∝(νa j + 1)�(νa j ) − ln(νb j ) − νa j − ln(�(νa j ))

4 Eσ 2∼qψ
σ2

[
ln q(σ 2)

]

∝(νa
σ2

+ 1)�(νa
σ2

) − ln(νb
σ2

) − νa
σ2

− ln(�(νa
σ2

))
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5 Eσ 2∼qψ
σ2

[
ln p( y|γ s, σ

2)

]

∝n

2

(
�(a∗) − ln(b∗)

) − 1

2

a∗

b∗
(
( y − Zγ s)

′( y − Zγ s) + tr
(
Z′Z�

) )

6 Eτ 2j ∼qψ
τ2j

[
ln p(γ j,s |τ 2j )

]

∝ rank(K j )

2

(
�(νa j ) − ln(νb j )

) − 1

2

νa j

νb j

(
tr
(
K j� j

) + γ ′
j,sK jγ j,s

)

7 ln
[
q(γ j,s |μ j,s) + ∑K

k=1 q(γ j |μ(k)
j )

]

∝ ln

[ K∑

k=1

det(� j )
− 1

2 exp

(
−1

2
(γ j,s |μ(k)

j − μ
(k)
j )′(� j )

−1(γ j,s |μ(k)
j − μ

(k)
j )

)

+ det(� j )
− 1

2 exp

(
−1

2
(γ j,s |μ j,s − μ j,s)

′(� j )
−1(γ j,s |μ j,s − μ j,s)

)]

= −1

2
ln det(� j )

+ ln

[ T∑

t=1

exp

(
−1

2
(γ j,s |μ(t)

j − μ
(t)
j )′(� j )

−1(γ j,s |μ(t)
j − μ

(t)
j )

)

+ exp

(
−1

2
(γ j,s |μ j,s − μ j,s)

′(� j )
−1(γ j,s |μ j,s − μ j,s)

)]

7.7 Model specifications

Settings for simulation

We use P-Splines with 25 knots, third degree polynomials and 2nd order penalty.
For the Gibbs sampler, we choose a burnin of 100 and a thinning of 2. The length of

the chain is then between 5000 and 12,500 depending on the scenario. Due to the very
high auto-correlation in the chains for some scenarios and in particular for the scenario
with 50 observations and high correlation between the covariates, we increased the
the sample size.

For MFVI we use a tolerance level of 0.0001 and a maximum of iterations of 5000
to define convergence.

For SIVI and SIMFVI we employ a fully connected multilayer perceptron for Tφ

and set the default input dimension to 30 as in Yin and Zhou (2018). As activation
function, we use the ReLu activation function. We employ 3 hidden layers with 50,
100 and 50 neurons, respectively. The learning rates for φ are 0.01, for ξ are 0.01,
0.005 and 0.0025 with increasing observations and for ν are 0.01 with 50 and 250
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observations and 0.005 with 500 observations. We initialize the neural net according
to the method described in He et al. (2015). We initialize ξ with 0.4 and νσ 2 with
( N2 , N

2 ) and ντ j
2 = (e, e) (Euler’s number). As decay rate we choose 0.9 (and decay

starts after 300 iterations). The Adam optimizer takes 2 more hyper-parameters, that
the coefficients to control for the exponential decay rate that we set to β = (0.9, 0.999)
and a term to improve numerical stability that we set to ε = 1e − 08. For the early
stopping criterion, we take the the average slope of the lower bound ELBO over the
last 200 to 250 iterations (based on OLS) and stop optimizing after the slope is less
then the tolerance level of 0.001 for SIVI and 0.00001 for SIMFVI. For comparison,
we check the results after 5,000 iteration (without any early stopping). The presented
results are the one based on early stopping.

Settings for application

The prior and spline settings are as follows:We use non-informative priors on the linear
coefficients. For all nonlinear effects, we use Bayesian P-splines with 25 interior knots
and a second-order random walk prior. For the spatial effect, we vary the number of
knots in each direction. As Germany has a north–south distance of about 830km and a
west-east distance of about 650km, usingmore knots in the latitude direction results in
a distance-wise equal spread of knots in each direction. We, therefore, chose to place
22 knots in the longitude direction and 28 knots in the latitude direction. This results
in a knot placement of about every 30km in each direction. Choosing an equal number
of knots in both directions leads to strong biases for location-specific covariates. For
the random walk order, we chose the order 2 in each direction.

The settings for the algorithms that change compared to the simulation are the
following: As the SIVI algorithm was very unstable, we initialize the parameters ν

and �1, . . . � p with the results obtained in MFVI (block). Additionally, we reduce
the learning rates for ν and for ξ to 1× 10−9 and 1× 10−6, respectively, such that no
large changes for the optimized parameters occur in the optimization. For SIMFVI,
we change the neural net structure. Instead of three hidden layers, we choose only two
with 100 and 1000 neurons, respectively. Choosing a less deeper neural net structure
for SIMFVI accelerates learning and improves the result. ForMFVI, we keep the same
settings except for the tolerance level3 that we reduce by one decimal point. Hence,
the optimization runs longer.

We also vary the length of the posterior sample size. For the Gibbs sampler, we
run a chain of length 62,000. The first 2000 samples are considered burn-in and the
chains are thinned to every 10th sample. One of the coefficient chains of the spline
for the altitude has an effective sample size of 319.9 that is the minimum across all
chains. The 1% quantile of effective sample sizes across all chains is 385.5 and the
5% quantile is 688.3. We deem this sufficient to evaluate 95% CIs of the marginal
posterior distributions.

For all VImethods, we draw 3000 samples from the estimated posterior distribution
for each parameter.

3 The tolerance level is the minimum difference between the ELBO’s of 2 consecutive iterations. If this
minimum is reached the algorithm stops.
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Using this setup, the SIVI and SIMFVI algorithm had problems fitting some of the
coefficients due to occurrences of extreme covariate values. Therefore, we classified
values as outliers based on the boundaries considering quartiles and the interquartile
range for each covariate. Classified outliers are 2.5 to 3 times the interquartile range
below or above the 25% or 75% quartile, respectively. In total, we exclude about 1.2%
of the data from the analysis.

7.8 Tree and climate data sets

We use data from the national forestry inventory (NFI) of Germany. The inventory is
a large-scale survey conducted in 2012. To determine the locations of the observation
points for the survey, a grid is spanned all over Germany. The grid has nodes every 2,
2.83 or 4km, depending on the region. Around each node, four measurement points
are determined. The distance of the four measurement points is based on a square with
a side length of 150m, whereby each measurement point is located at the corner of the
square and the node is at the center of the square. A square with measurement points
is also called a tract. From each measurement point, an inventory of the surrounding
trees is taken if the point is within a forest. Trees must have a minimum diameter at
breast height4 (DBH) of 7cm and must belong to the circular inclusion zone around
the measurement point. As the sampling method is based on angle count sampling, the
inclusion zone is proportional to the basal area of the tree, whereby the basal area is
the cross-sectional area at breast height (for more details see Gregoire and Valentine
2007, Ch. 8). In simplified words, the idea is to draw a virtual circle around a tree
that is proportional to its DBH. If the measurement point is within the virtual circle
of a surrounding tree, the tree is included in the sample. Otherwise, the tree is not
part of the sample. Hence, a greater variety of tree sizes are included in the sampling
without increasing the sampling effort. But also trees with larger DBH are more likely
included in the sampling procedure. The study design is further illustrated in Fig. 5.

Douglas firs are observed all over Germany, but particularly frequently in north-
east and west to south-west of Germany. In some cases, Douglas firs are observed in
neighboring tracts, and in other cases, as shown in the middle picture of Fig. 5, tracts
with Douglas fir observations are randomly dispersed over the area.

The rightmost picture in Fig. 5 exemplarily shows one tract with Douglas firs.
Three of the four measurement points have Douglas fir observed (red points). For the
picture, however, we use simulated data, because the exact coordinates of each tree are
not provided due to data confidentiality. Publicly available are only the approximated
coordinates of each tract. The data can be found at thewebsite of the Thünen-Institute.5

We only consider Douglas firs that belong to the primary stand of the observed stand
around themeasurement point, that is trees with similar light availability. Hence, small
trees covered by larger trees and therefore, with limited light availability are excluded.

We additionally use a climate data set provided by the Nordwestdeutsche Forstliche
Versuchsanstalt. The data set contains the accumulated temperature and precipitation

4 The diameter is always taken at a height of about 1.30 m.
5 Thuenen-Institut, Dritte Bundeswaldinventur—Basisdaten (Stand 20.03.2015)—https://bwi.info/
Download/de/BWI-Basisdaten/.
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Fig. 5 Study design: A grid is placed all over Germany with 2km, 2.83 km, and 4km distance (dark to light
regions (left picture)) between each node (the shape file is online available: https://bwi.info/Download/de/
BWI-Basisdaten/ACCESS2003/). All red squares mark occurrences of at least one Douglas fir in a tract.
The picture in the middle illustrates the change of the grid density in an extract from north Germany with
2km density on the upper half and 4km density on the lower half (crosses mark a tract without Douglas
fir). The third picture on the right is a simulated example of how a tract might look like with Douglas firs in
red and other species in black (exact coordinates of each tree are not provided due to confidentiality). The
map data are obtained from the osmdata package in R (Padgham et al. 2017)

measurements in the vegetation period over the lifespan of each Douglas fir6. The
measurements are taken in various German weather stations from year 1900 until the
considered NFI. As no measurements are taken between weather stations, the data is
interpolated up to a 50m scale for temperature and up to a 100m scale for precipitation.
For the interpolation, the elevation of each location and a spatial effect are considered.
The model is an additive model,

yi = β0 + f1(alti ) + fgeo(longi , lati ) + εi ,

with Gaussian distributed error εi . The response yi is either the summed temperature
or the summed precipitation over the vegetation period. The covariate alt , the altitude,
is modeled nonlinearly and the other effect type is a spatial effect on the coordinates.

The elevation data come from the Copernicus GLO-90 Digital Elevation Model.7

6 The vegetation periods are determinedwith theR-packagevegperiod—https://cran.r-project.org/web/
packages/vegperiod/index.html.
7 Link to Copernicus Space Component Data Access Portal: https://spacedata.copernicus.eu/web/cscda/
dataset-details?articleId=394198.
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8 Algorithms

Algorithm 1: SIVI/SIMFVI algorithm

Input : Observations X and y, joint distribution p(y|X, γ , ξ , τ2, σ 2), explicit variational
distributions γ ∼ N (μ, �) and variational distributions σ 2 ∼ IG(νa

σ2
, νb

σ2
) and

τ2 ∼ IG(νa , νb), neural network structure T (.)

Output : Variational parameters φ, ξ and ν

Initialize ϕ, ξ and ν

Set iteration i = 1 and initial learning rates ρ1,0, ρ2,0 and ρ3,0
while not converged or not maximum number of iterations do

L̃i = ∑p
j=1 E

τ2j ∼qνa j ,νb j

[
log p(τ2j )

]
+ Eσ2∼qνaσ 2 ,νbσ 2

[
log p(σ 2)

]

−∑p
j=1 E

τ2j ∼qνa j ,νb j

[
log qνa j ,νb j

(τ2j )

]
− Eσ2∼qψ

σ2

[
log qνaσ 2 ,νbσ 2

(σ 2)

]

sample ε(μ)(k) ∼ N (0, I) for k = 1, ..., K
for s=1 to S do

Sample μs = gϕ(ε
(μ)
s ), ε

(μ)
s ∼ N (0, I)

Sample γ j,s = μ j ,s + ξ j ε
(γ )
j ,s , ε

(γ )
j ,s ∼ N (0, I) for j = 1, ..., p

L̃i = L̃i + 1
S
∑S

s=1

{
Eσ2∼qνaσ 2 ,νbσ 2

[
log p(y|γ .,s , σ

2)

]

+∑p
j=1 E

τ2j ∼qνa j ,νb j

[
log p(γ j,s |τ2j )

]

−log

(∏p
j=1

1
K+1

(
qTφ (εs ) j ,ξ j

(γ j,s |Tφ(εs ) j )

+∑K
k=1 qTφ (εs ) j ,ξ j

(γ j |Tφ(ε(k)) j )
))}

.

end

Compute ρ1,i = fρ1 (ρ1,i−1), ρ2,i = fρ2 (ρ2,i−1) and ρ3,i = fρ3 (ρ3,i−1)

φ = φ + ρ1,i �φ L̃i

ξ = ξ + ρ2,i �ξ L̃i (for SIMFVI take MFVI updates)

ν = ν + ρ3,i �ν L̃i (for SIMFVI take MFVI updates)

i = i + 1

end
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Algorithm 2: General Simultaneous Credible Intervals.
Input : Samples of posterior splines S with N observations and M samples
Output : Lower and upper bound band of size N → bl , bu

1. Compute expected number of splines within CI:
k = (1 − α) M

2. Compute mean and quantiles:
m = (m1, ...,mN ), ql = (lq1, ..., lqN ), qu = (uq1, ..., uqN )

where mi = 1
M

∑M
j=1 Si j , lqi = Qα/2(Si ·) and uqi = Q(1−α)/2(Si ·)

3. Compute bl and bu and number of splines within bounds with init c = 1:
bl = m − c (ql − m), bu = m − c (qu − m)

k̃ = ∑M
j=1

(
bl ≤ S· j ≤ bu

)

4. Set cl = 0, cu = 0, dl = 0, du = 0 and run loop:

while k̃ − k �= 0 do
if cl = 0 or cu = 0 then

ρ = (1 + |k − k̃|/n))

if k̃ < k then
c = c ρ

else
c = c/ρ

else
w1 = 1/dl , w2 = 1/du , w12 = w1 + w2
c = (cl w1 + cu w2)/w12

repeat Step 3. with updated c to get new bounds and new k̃

if k̃ < k then
Set cl = c and dl = k − k̃

else
Set cu = c and du = k̃ − k

end

9 Additional tables and figures

9.1 SIVI for additive models

See Fig. 6.
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Fig. 6 Illustration of SIVI design for additive models. The neural network takes as input random noise
variables ε1, . . . , εm , with each e.g. ε1 = (ε11, . . . , ε1K ), that are transformed through one or more
hidden layers with specified activation functions and parameters φ to parameters μ1, . . . , μm , with each
μ j = (μ j1, . . . , μ j K ).Weobtain samples of the coefficientsγ j fromqμ j ,ξ j

(γ j ) forwhichwemarginalize

out μ j using Monte Carlo integration with K samples. Apart from the neural network parameters φ,
parameters ξ = (ξ1, . . . , ξ p) and ν = ((νa1 , νb1 ), . . . , (νap , νb1 p), (νaσ2

, νb
σ2

)) are optimized utilizing
the Mean-Field assumption

9.2 Simulation results

See Table 2, 3 and Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17.
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Table 2 M2 results for 1000 simulations each 50 observations and strong correlation between covariates

Gibbs MFVI MFVI SIMFVI SIMFVI SIVI SIVI
(block) (full) early early

K = 100 K = 100 K = 100 K = 100

Intercept

∅ of lb 95% CI’s 1.604 1.608 1.610 1.594 1.595 1.615 1.613

∅ of means 1.800 1.800 1.800 1.800 1.800 1.800 1.800

∅ of ub 95% CI’s 1.997 1.993 1.990 2.010 2.009 1.994 1.992

∅ of variances 0.010 0.010 0.010 0.011 0.011 0.009 0.009

Within CI 0.951 0.946 0.945 0.960 0.962 0.932 0.940

Spline 1

95% CI coverage

∅ local 0.965 0.822 0.955 0.964 0.97 0.957 0.96

∅ simultaneous 0.977 0.637 0.954 0.955 0.97 0.946 0.954

∅ of MSE’s 0.142 0.138 0.142 0.148 0.149 0.154 0.154

Spline 2

95% CI coverage

∅ local 0.955 0.805 0.944 0.953 0.961 0.947 0.95

∅ simultaneous 0.96 0.58 0.935 0.942 0.955 0.927 0.932

∅ of MSE’s 0.157 0.154 0.158 0.164 0.165 0.168 0.168

Variance σ 2

∅ of lb 95% CI’s 0.310 0.342 0.335 0.356 0.364 0.336 0.337

∅ of means 0.504 0.509 0.498 0.529 0.541 0.499 0.500

∅ of ub 95% CI’s 0.804 0.754 0.738 0.784 0.802 0.738 0.741

Within CI 0.958 0.917 0.907 0.917 0.911 0.901 0.906

∅ of MSE’s 0.118 0.116 0.117 0.118 0.118 0.123 0.121

nef f

0 342.0

0.01 849.1

0.5 3807.7

For SIVI and SIMFVI K is set to 100 and S to 50 with results after early stopping was triggered and after
5000 iterations. Shown are the average values over all 1000 simulations, e.g. the lower bound (lb), the upper
bound (ub), percentage coverage of local and simultaneous CI’s in case of splines, otherwise depicted in
row “Within CI”, the MSE per spline and overall and also different percentiles for the effective sample size
of Gibbs sampler. The columns of SIMFVI and SIVI that do not include the phrase “early” are the results
after 5,000 iterations without early stopping. The algorithm for early stopping usually stops around 2000
iterations
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Table 3 M2 results for 1000 simulations each 50 observations and strong correlation between covariates

Gibbs MFVI MFVI SIMFVI SIMFVI SIVI SIVI
(block) (full) early early

K = 100 K = 100 K = 100 K = 100

Spline 1

95% CI’s

∅ 0–2 0.963 0.792 0.952 0.961 0.969 0.955 0.957

∅ 2–4 0.969 0.89 0.96 0.968 0.971 0.962 0.965

∅ 4–6 0.961 0.749 0.953 0.962 0.971 0.951 0.957

Spline 2

95.0 % CI’s

∅ −1.5–0.5 0.944 0.705 0.926 0.939 0.951 0.93 0.934

∅ 0.5–2.5 0.951 0.848 0.939 0.944 0.952 0.944 0.946

∅ 2.5–4.5 0.963 0.883 0.955 0.96 0.965 0.957 0.959

∅ 4.5–6.5 0.961 0.753 0.953 0.964 0.972 0.953 0.958

For SIVI/SIMFVI K is set to 100 and S to 50 with results after early stopping was triggered and after 5000
iterations. Depicted are the local CI coverage per predefined interval (e.g. 0–2 shows the average coverage
within the interval [0, 2])

Fig. 7 The true nonlinear marginal effects of the DGP
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Fig. 8 Coverage percentage among different methods for scenario with 50, 250 and 500 observation (from
top to bottom row) and low to high correlation (left to right) between covariates
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Fig. 9 Average log densities of VI methods given Gibbs samples for scenario with 50 observations and no
correlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed into its
model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance σ 2)
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Fig. 10 Average log densities of VI methods given Gibbs samples for scenario with 50 observation and
medium correlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed
into its model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance
σ 2)
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Fig. 11 Average log densities of VI methods given Gibbs samples for scenario 50 observations and high
corrlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed into its
model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance σ 2)

123



322 J. Lichter et al.

Fig. 12 Average log densities of VI methods given Gibbs samples for scenario 250 observations and no
correlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed into its
model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance σ 2)
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Fig. 13 Average log densities of VI methods given Gibbs samples for scenario with 250 observations and
medium correlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed
into its model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance
σ 2)
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Fig. 14 Average log densities of VI methods given Gibbs samples for scenario with 250 observations and
high correlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed into
its model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance σ 2)
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Fig. 15 Average log densities of VI methods given Gibbs samples for scenario with 500 observations and
no correlation based on 1000 simulations. The total ALDG (with parameter vector θ ) is decomposed into
its model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance σ 2)
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Fig. 16 Average log densities of VI methods given Gibbs samples for scenario with 500 observations and
medium correlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed
into its model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance
σ 2)
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Fig. 17 Average log densities of VI methods given Gibbs samples for scenario with 500 observations and
high correlation based on 1000 simulations. The total ALDG (with parameter vector θ) is decomposed into
its model parameter components (plots for coefficients γ , smoothing parameters τ2 and error variance σ 2)
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Fig. 18 Sensitivity analysis for SIMFVI (left column) and SIVI (right column) for different neural net
specifications. Results for simulation 613 in scenario with 50 observations and high correlation between
the covariates
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9.3 Tree height model

See Tables 4, 5 and Figs. 19, 20.

Table 4 Results for linear coefficients and error variance for douglas fir height model

Gibbs MFVI MFVI SIMF SIVI
(block) (full) K=100 K = 100

Intercept

2.5% CI 10.2429 10.3604 10.2297 10.218 10.1865

Mean 10.7051 10.6942 10.6985 10.6906 10.6608

97.5% CI 11.1771 11.0279 11.1673 11.1561 11.1875

Coefficient bhd

2.5% CI 5.3089 5.3688 5.3114 5.3119 5.3561

Mean 5.5239 5.5274 5.5263 5.5238 5.5516

97.5% CI 5.7379 5.686 5.7412 5.7396 5.7718

Coefficient bhd2

2.5% CI −0.2869 −0.2817 −0.2874 −0.2889 −0.3102

Mean −0.2641 −0.2643 −0.2643 −0.2644 −0.2674

97.5% CI −0.241 −0.2469 −0.2412 −0.2395 −0.2303

Error Variance σ 2

2.5% CI 7.3251 7.3675 7.3457 7.3602 7.7121

Mean 7.5866 7.6143 7.5918 7.6068 7.9735

97.5% CI 7.8505 7.8692 7.8459 7.8614 8.2436

Table 5 Results for predictions for douglas fir height model on 30% test data set

Gibbs MFVI MFVI SIMF SIVI
(block) (full) K=100 K = 100

MSE

Known locations 6.8203 6.8426 6.8271 6.8300 6.8500

Unknown locations 11.5759 11.5575 11.5668 11.5496 11.5591

Prediction Interval Coverage

Known locations 0.9584 0.9591 0.9577 0.9598 0.9635

Unknown locations 0.9318 0.9356 0.9394 0.9356 0.9432
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Fig. 19 Descriptive plot on height-DBH relation

Fig. 20 Width of 95% simultaneous CI of 2-dimensional spline as share to the CI width of Gibbs sampler
for SIMFVI with K = 300 (left) and K = 100 (right). 100% (darkblue) stands for same width as Gibbs
sampler
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