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Abstract
A frequent problem in applied time series analysis is the identification of dominat-
ing periodic components. A particularly difficult task is to distinguish deterministic 
periodic signals from periodic long memory. In this paper, a family of test statistics 
based on Whittle’s Gaussian log-likelihood approximation is proposed. Asymptotic 
critical regions and bounds for the asymptotic power are derived. In cases where a 
deterministic periodic signal and periodic long memory share the same frequency, 
consistency and rates of type II error probabilities depend on the long-memory 
parameter. Simulations and an application to respiratory muscle training data illus-
trate the results.

Keywords  Cyclic long memory · Periodicity · Deterministic periodicity · 
Periodogram · Gegenbauer process

1  Introduction

The issue of identifying periodic components is at the core of time series analysis. A 
particularly strong type of stochastic periodicity is periodic long memory (see Hosk-
ing 1981; Anděl 1986; Gray et al. 1989, 1994; Giraitis and Leipus 1995; Woodward 
et al. 1998). Stationary processes with periodic long memory are characterized by a 
spectral density function
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where 0 < 𝜔0 < 𝜋 , 0 < cf < ∞ and d ∈ (0,
1

2
) . Here, " ∼ " means that the ratio of the 

left and right hand side converges to one. Typical examples are GARMA processes 
introduced in Anděl (1986) and Gray et al. (1989, 1994) (also see Hosking 1981). 
For instance, the simplest GARMA process, also called Gegenbauer process, is 
defined by

where B is the backshift operator and �t are iid zero mean random variables with 
𝜎2
𝜀
= var(𝜀t) < ∞ (Gray et al. 1989). A natural question that arises is, to what extent 

is it possible to distinguish periodic long memory from deterministic periodicity. 
Thus, consider a time series of the form Yt = � + St + Xt where St is a determin-
istic periodic function with period T0,S = 2�∕�0,S for some �0,S ∈ (0,�) , and Xt is 
a zero mean stationary process with spectral density f such that (1) holds for some 
�0 = �0,X ∈ (0,�) . In this paper, a simple class of tests is proposed for H0 ∶ St ≡ 0 
against the alternative that St is not identically equal to zero. Technically, Yt will be 
assumed to be a superposition of a harmonic process St and a purely stochastic pro-
cess Xt . The proposed test statistics are motivated by a discrete Whittle approxima-
tion of a Gaussian log-likelihood function. Asymptotic rejection regions and bounds 
for rates at which the probability of the type II error converges to zero are derived. 
As expected, the most difficult case occurs when �0,S = �0,X , because a jump in the 
spectral distribution FX may have a similar finite sample effect on the periodogram 
as periodic long memory. Asymptotically, this results in a slower decay of the type 
II error probability. Typical data examples are displayed in Figs. 1 and 2. The time 
series in Figs. 1a and 2a represent the breathing effort of the diaphragm during two 
types of respiratory training. For more detailed explanations see Sect.  5.2 below. 
Visually, it seems quite difficult to tell in how far peaks in the two periodograms 
(Figs. 1c and 2c) correspond to deterministic or stochastic periodicity, or to a mix-
ture of both phenomena. The proposed test statistics help to shed some light on this 
issue (see Sect. 5.2).

In view of the fact that distinguishing between a jump of FX and a pole of the 
spectral density is difficult, one may ask the question in how far the distinction 
is relevant in practice. The fundamental difference is predictability. Consider for 
instance the optimal linear forecast X̂t+1 of Xt+1 given Xs ( s ≤ t ), which minimizes 
the mean squared prediction error MSE = E[(X̂t+1 − Xt+1)

2] . Suppose first that 
dFX(�) = 0 ( � ≠ ±�0,S ) and dFX(±𝜔0,S) > 0 for some �0,S ∈ (0,�) . Then the 
process is deterministic and perfect linear prediction possible, i.e. MSE = 0 . On 
the other hand, suppose that the spectral density fX = F�

X
 of Xt exists everywhere, 

is continuous for � ≠ ±�0 , f (𝜆) > 0 everywhere and fY (�) ∼ cf |� − �0|−2d 
( � → ±�0 ) for some d ∈ (0,

1

2
) , 0 < cf < ∞ . Then, in contrast to the first case, Xt 

is purely stochastic and perfect prediction is not possible, i.e. MSE > 0 . Similar 
remarks apply to more general processes, and other questions of statistical 

(1)f (�) ∼ cf
||� − �0

||−2d (� → �0)

(2)
(
1 − 2 cos�0,XB + B2

)d
Xt = �t
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inference, in particular if the main focus is on cyclic features of the data 
generating process.

The introduction of second order stationary processes with poles of the spec-
tral density at non-zero frequencies (Anděl 1986; Gray et al. 1989; Giraitis and 
Leipus 1995; Woodward et al. 1998) lead to an extended literature in the follow-
ing decades. Arteche and Robinson (2000), Hidalgo and Soulier (2004), Hidalgo 
(2005), Hsu and Tsai (2009), Alomari et  al. (2020), Arteche (2020), Ayache 
et  al. (2022) and Beaumont and Smallwood (2022) consider semiparametric 
inference in cyclical long memory processes. Gray et al. (1989), Chung (1996a, 
1996b), Woodward et al. (1998), Giraitis et al. (2001), Palma and Chan (2005), 
Dissanayake et al. (2016) discuss parametric estimation. For model selection see 
e.g. Leschinski and Sibbertsen (2019). For economic time series see e.g. Por-
ter-Hudak (1990), Ray (1993), Ramachandran and Beaumont (2001), Bisaglia 
et al. (2003), Caporale and Gil-Alana (2011, 2014), and Gil-Alana et al. (2015). 
Other areas of application include climatology (Lustig et  al. 2017), hydrology 
(Montanari et al. 2000), traffic modelling (Diongue and Ndongo 2016) and envi-
ronmental research (Reisen et  al. 2014). For further literature see e.g. Hassler 

Fig. 1   Measurements of muscular effort of the diaphragm during a SpiroTiger exercise. a and b show the 
observed series Yt . In b, St and Yt − St are also displayed, shifted vertically for better visibility. The peri-
odogram is shown in c. (The notation "Dia_re" stands for "diaphragm, right electrode")
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(1994), Lapsa (1997), Ferrara and Guégan (2001), Whitcher (2004), Hidalgo 
(2007), Olenko (2013), McElroy and Holan (2012), Espejo et  al. (2015), Hunt 
et al. (2022) and references therein. An excellent review is given in Dissanayake 
et  al. (2018). An overview of the literature on long-memory processes can be 
found for instance in Beran et al. (2013) and Pipiras and Taqqu (2017).

The paper is organized as follows. Basic definitions and assumptions are given 
in Sect. 2. Test statistics are defined in Sect. 3. Asymptotic rejection regions are 
obtained, and the asymptotic behaviour of type II error probabilities is inves-
tigated, under the assumption that model parameters are known. The case of 
unknown model parameters is considered in Sect. 4. The methods are illustrated 
by a simulation study and a data example in Sect.  5. Final remarks in Sect.  6 
conclude the paper. Proofs, tables and figures are given in the “Appendix”.

Fig. 2   Measurements of muscular effort of the diaphragm during a POWERbreathe exercise. a and b 
show the observed series Yt . In b, St and Yt − St are also displayed, shifted vertically for better visibility. 
The periodogram is shown in c 



709

1 3

Testing for periodicity at an unknown frequency under cyclic…

2 � Definitions and preliminary results

Without loss of generality, we may assume � = 0 , i.e. Yt = St + Xt . More specifi-
cally, the following assumptions will be used:

•	 (A1) 

 where Xt and St are two independent zero mean second order stationary pro-
cesses with spectral representations 

 autocovariance functions 

 Moreover, F�
X
= fX exists everywhere and 

 for some �0,S ∈ (0,�) , 0 ≤ 𝜎2
S
< ∞.

•	 (A2) 

 where �t ( t ∈ ℤ ) are iid random variables with E(�t) = 0 and 𝜎2
𝜀
= var(𝜀t) < ∞ , 

and the coefficients bj are such that 

 for some 0 < d <
1

2
 , �0,X ∈ (0,�) , 0 < cb < ∞.

•	 (A3) There is an 𝜂 > 0 such that 

•	 (A4) Let 

 Then, uniformly in � ∈ [0,�] ⧵ {�0,X} , 

(3)Yt = St + Xt (t ∈ ℤ)

(4)Xt = ∫
�

−�

exp (it�)dZX , St = ∫
�

−�

exp (it�)dZS,

(5)�X(k) = ∫
�

−�

exp (ik�)dFX(�), �S(k) = ∫
�

−�

exp (ik�)dFS(�).

(6)dFS(�) = 0 (� ≠ ±�0,S), dFS(�) = �2
S
≥ 0 (� = ±�0,S)

(7)Xt =

∞∑
j=0

bj�t−j

(8)bj = jd−1
(
cb cos

(
j�0,X

)
+ o(1)

)
(j → ∞)

E
(||𝜀t||4+𝜂

)
< ∞.

b̃(𝜆) =

∞∑
j=0

bje
ij𝜆 (𝜆 ∈ [0,𝜋]).
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•	 (A5) Let Θ� be an open subset of ℝp , Θd = (0,
1

2
) , Ψ�2 = ℝ+ , Ψ� = (0,�) , 

Θ = Θd × Θ� and Ψ = Ψ�2 × Ψ� × Θ . For p = 0 , we set Θ� = ∅ . Also, let L be 
an even function of � such that 0 < c < |L(𝜆;𝜏)| < ∞ for some constant c, and all 
first and second partial derivatives of L with respect to (�, �) are continuous. We 
denote by Ff = {f (�;�),� ∈ Ψ} a parametric family of spectral densities 

 where 

 and � = (�2
�
,�, �) = (�2

�
,�, d, �) ∈ Ψ . The process Xt is assumed to have a 

spectral density f
(
�;�0

X

)
∈ Ff  with �0

X
= (�2

0
,�0,X , d0, �0) ∈ Ψ.

•	 (A6) 

•	 (A7) For (�, �) ∈ Ψ� × Θ , denote by Λ0(𝜔, 𝜃) ⊂ [0,𝜋] the set of all frequen-
cies � such that g(�;�, �) ≠ g

(
�;�0,X , �0

)
 . Then (�, �) ≠ (�0,X , �0) implies that 

Λ0(�, �) has positive Lebeque measure.
•	 (A8) Let 

 Then W(�0,X , �0) is positive definite.
Assuming that Xt has cyclic long memory as defined in (A5), we are interested in 
testing

Under H0 , Yt = Xt is a stationary linear processes with cyclic long memory, 
characterized by the parameter vector �0

X
= (�2

0
,�0,X , d0, �0) . Estimation of 

�0 has been studied by various authors (see e.g. Gray et  al. 1989; Chung 1996a, 
b; Woodward et  al. 1998; Giraitis et  al. 2001). For instance, Giraitis et  al. 
(2001) considered Whittle estimation of �0 and �0,X . The Whittle estimator 
(𝜔̂0,X;Whittle, 𝜃̂0;Whittle) is defined by minimizing

||||
d

d𝜆
b̃(𝜆)

|||| = O
(||b̃(𝜆)||||𝜆 − 𝜔0,X

||−1
)
.

f (�;�) = fX
(
�;�2

�
,�, d, �

)
=

�2
�

2�
g(�;�, d, �) (� ∈ [−�,�])

(9)g(�;�, �) =
||||4 sin

(
� + �

2

)
sin

(
� − �

2

)||||
−2d

|L(�;�)|2,

∫
�

−�

log g(�;�, �)d� = 0,

inf
�∈Ψ�,d∈Θd ,�∈Θ� ∫

�

−�

g
(
�;�0,X , d0, �0

)
g(�;�, d, �)

d� = 2�.

W(�, �) =
1

4� ∫
�

−�

�

��
log g(�;�, �)

(
�

��
log g(�;�, �)

)T

d�.

(10)H0 ∶ 𝜎2
S
= 0 versus H1 ∶ 𝜎2

S
> 0.
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with respect to (�, �) . Here, we use the notation m = [n∕2] and �j = 2�j∕n 
( j = 1, ...,m ). Under assumptions (A2) to (A8), Giraitis et  al. (2001) derived 
consistency of the form 𝜃̂Whittle − 𝜃0 = Op(n

−
1

2 ) and 𝜔̂0,X;Whittle − 𝜔0,X = Op(n
−1) , 

as well as asymptotic normality of 
√
n(𝜃̂Whittle − 𝜃0) . They also conjectured that, in 

spite of n−1−consistency, no asymptotic distribution exists for 𝜔̂0,X;Whittle . In view of 
the asymptotic results in Giraitis et al. (2001), a natural statistic for testing (10) is 
given by

Remark 1  Let 0 < 𝜆 < 𝜋 . Then, under H0 , the expected value of I(�) is asymptoti-
cally equal to f (�;�0

X
) . Therefore, E[I(�)∕f (�;�0

X
)] − 1 = 0 . On the other hand, con-

sider the alternative with dFS(𝜆) > 0 ( � = �0,S ∈ (0,�) ). Then, for � in the neigh-
borhood of �0,S , the periodogram of St tends to infinity at the rate n. Therefore, the 
statistic Tn is expected to be large under H1 . It is shown in the next section that Tn 
indeed tends to infinity in probability.

Remark 2  Condition (8) in assumption (A2) is needed to obtain a pole of the spec-
tral density at �0 = �0,S as defined in (1) and (9). Assumptions (A3) to (A8) are 
adopted from Giraitis et  al. (2001). These are technical assumptions needed for 
obtaining asymptotic normality of Tn und H0 . Specifically, the moment assumption 
(A3) is needed because the periodogram is based on sample autocovariances; (A4) 
is needed for approximating the spectral density near its pole; (A5) specifies the par-
ametrization; (A6), (A7) are related to identifiability of parameters; (A8) is needed 
to avoid a degenerate asymptotic distribution.

3 � Testing with known parameters

First we consider the case where �0,S , �0,X and � are known. We will use the nota-
tion " →d " for convergence in distribution, and " →p " for convergence in probability. 
Under H0 , Tn has the following asymptotic distribution.

Theorem 1  Suppose that (A1) to (A8) hold. Denote by �4 the kurtosis of �t . Then, 
under H0,

(11)Qn,X(�, �) =
1

n

m∑
j=1

IX,n
(
�j
)

g
(
�j;�, �

)

(12)
Tn = Tn

(
�0
X

)
= n

−
1

2

m∑
j = 1

�j ≠ �0,X

(
I
(
�j
)

f
(
�j;�

0
X

) − 1

)
.

(13)Tn →
d
�TZ
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where Z is a standard normal random variable, and

Here, �2
0
= var(�t) as in (A5) and �4 = E[(�t∕�0)

2] − 3 is the kurtosis of �t.

The asymptotic behaviour of Tn under H1 is characterized by the following 
Theorems.

Theorem 2  Suppose that H1 holds with �0,S ≠ �0,X . Then, under (A1) to (A8), there 
is a constant 0 < cT < ∞ such that

Theorem 3  Suppose that H1 holds with �0,S = �0,X . Also, assume that (A1) to (A8) 
hold and 0 < d <

1

4
 . Then there are constants 0 < cT ,1, cT ,2 < ∞ such that

Moreover, if d >
1

4
 , then

Given Theorems 1, 2 and 3, critical regions at the level of significance � ∈ (0, 1) 
can be defined by

where z1−� is the (1 − �)− quantile of the standard normal distribution. Theorems 2 
and 3 imply the following results for the power of the test.

Corollary 1  Assume (A1) to (A8), and H1 with �0,S ≠ �0,X . Then there is a constant 
0 < q < ∞ such that

as n → ∞.

Corollary 2  Assume (A1) to (A8), H1 with �0,S = �0,X , and d < 1∕4 . Then there are 
constants 0 < a1, a2, b1, b2 < ∞ such that, as n → ∞,

Moreover, for d > 1∕4 , 1 − P(C�,n) does not converge to zero.

(14)�2
T
=

1

4

(
2 +

�4

�4
0

)
.

(15)n
−

1

2 Tn →
p
cT .

P
(
cT ,1 ≤ n

2d−
1

2 ||Tn|| ≤ cT ,2

)
→ 1.

Tn = Op(1).

(16)C𝛼;n = P
(
Tn > 𝜎−1

T
z1−𝛼

)

(17)1 − P
(
C�,n

)
= O

(
n
−

1

2 exp (−qn)
)
,

(18)a1n
−

1

2
+2d exp

(
−b1n

1−4d
) ≤ 1 − P

(
C�,n

) ≤ a2n
−

1

2
+2d exp

(
−b2n

1−4d
)
.
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Theorem 3 and Corollary 2 illustrate the difficulty of identifying a deterministic 
periodic component St when the spectral density of the noise process Xt has a 
pole at the same frequency. The bound for the rate at which the power converges 
to 1 slows down as periodic long memory, characterized by d, increases. 
Technically, the reason for this behaviour is that for �j close to �0,X , the weights 
1∕f (�j) are proportional to |�j − �0,X|2d . The increasing value of the Fejér kernel 
at �j − �0,S is thus dampened by a constant time |�j − �0,X|2d , if �0,S = �0,X . To 
increase power and to obtain consistency for d ≥ 1

4
 , one may thus try to insert a 

weight function that compensates for the factor 1∕f (�j) , while keeping asymptotic 
normality of the test statistic under the null hypothesis. A natural modification of 
Tn is given by

where

for some 0 ≤ 𝛽 < 1 and m = [n∕2] . The asymptotic distribution of T�;n under H0 is 
given by

Theorem 4  Suppose that (A1) to (A8) hold, 0 ≤ 𝛽 < 1 and

Then, under H0,

where Z is a standard normal variable and

with

and

Under H1 , the following result can be obtained.

(19)T�;n = T�;n
(
�0
X

)
= n

−
1

2

m∑
j=1

w�

(
�;�0,X , �0

)( I
(
�j
)

f
(
�j;�

0
X

) − 1

)

(20)w�

(
�;�0,X , �0

)
= g�

(
�;�0,X , �0

)
1
{
� ≠ �0,X

}

(21)d < min

{
1

2
,
1

4𝛽

}
.

(22)T�;n →
d
�TZ

(23)�2
T
= v2 + v2

1
�−4
0
�4

v1 =
1

2� ∫
�

0

g�
(
�;�0,X , �0

)
d�

v2 =
1

2� ∫
�

0

g2�
(
�;�0,X , �0

)
d�.
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Theorem 5  Assume (A1) to (A8), and H1 with �0,S ≠ �0,X hold. Then there is a con-
stant 0 < cT < ∞ such that

Theorem 6  Assume (A1) to (A8), and H1 with �0,S = �0,X . Also, suppose that

Then there are constants 0 < cT ,1, cT ,2 < ∞ such that

Moreover, if d > dmax , then

Asymptotic rejection regions at the level of significance � ∈ (0, 1) are defined 
by

where �T is given in (23). The asymptotic power of the test is characterized by the 
following Corollaries.

Corollary 3  Assume (A1) to (A8), and H1 with �0,S ≠ �0,X . Then there is a constant 
0 < q < ∞ such that

as n → ∞.

Corollary 4  Assume (A1) to (A8), (25) and H1 with �0,S = �0,X . Then there are con-
stants 0 < a1, a2, b1, b2 < ∞ such that, as n → ∞,

Moreover, if (25) does not hold, then 1 − P(C�,n) does not converge to zero.

Remark 3  If �4 = 0 , then the asymptotic variance of T0;n does not depend on 
unknown parameters. This is not the case for other choices of � . In this sense, � = 0 
is a suitable choice in applications, provided that d <

1

4
 . On the other hand, for 

� ≠ 1

2
 , condition (25) restricts d to the interval 0 < d < dmax with dmax = dmax(�) 

strictly smaller than 1
2
 . The only value of � where dmax(�) =

1

2
 is � =

1

2
 . In view of 

(24)n
−

1

2 T�;n →
p
cT .

(25)d < dmax = min

{
1

2
,
1

4𝛽
,

1

4(1 − 𝛽)

}
.

(26)P
(
cT ,1 ≤ n

2(1−�)d−
1

2
|||T�;n

||| ≤ cT ,2

)
→ 1.

T�;n = Op(1).

C𝛼,n =
{
T𝛽;n > z1−𝛼𝜎T

}

(27)1 − P
(
C�,n

)
= O

(
n
−

1

2 exp (−qn)
)
,

(28)
a1n

−
1

2
+2(1−�)d exp

(
−b1n

1−4(1−�)d
) ≤1 − P

(
C�,n

) ≤ a2n
−

1

2
+2(1−�)d

exp
(
−b2n

1−4(1−�)d
)
.
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the fact that d is unknown in applications, and at the same time the rate improves 
monotonically in � , one may prefer to use � =

1

2
 . Note also that, if �4 = 0 , then the 

asymptotic variance of T 1

2
;n simplifies to

Remark 4  The results can be generalized to the situation where the spectral density 
of fX has several poles at frequencies � ∈ ΩX = {�1,X , ...,�pX ,X

} , and dFS(𝜔) > 0 for 
� ∈ ΩS = {�1,S, ...,�pS ,S

}.

Remark 5  For numerical stability, one may avoid using frequencies that are very 
close to the pole of fX , without changing the asymptotic distribution of T�;n . Given 
a sequence Mn such that Mn → ∞ and Mn∕n → 0 , this can be achieved by omitting 
Fourier frequencies with |�j − �0,X| ≤ 2�Mn∕n from the sum in (19).

4 � Testing with unknown parameters

For the case where � and �0,S are unknown, the following algorithm can be used:

•	 Step 1: Let 1 ≤ j0,n ≤ m = [n∕2] be the smallest integer such that 

 and set 

•	 Step 2: Let Mn ∈ ℕ such that Mn → ∞ , Mn∕n → 0 , 

 and 

�2
T
=

�2
X
�−2
�

4�
.

IY ,n

(
�j0,n

)
= max

j=1,...,m
IY ,n

(
�j
)
,

(29)𝜔̂0,S = 𝜆j0,n .

Jn =Jn
(
𝜔̂0,S

)
=
{
j0,n −Mn, j0,n −Mn + 1, ..., j0,n +Mn

}
,

Λn

(
𝜔̂0,S

)
=

{
𝜆j =

2𝜋j

n
, j ∈ Jn

(
𝜔̂0,S

)}
,

Q∗
n,Y

(𝜔, 𝜃) =
1

n

m∑
j = 1

j ∉ Jn

IY ,n
(
𝜆j
)

g
(
𝜆j;𝜔, 𝜃

)

(30)
(
𝜔̂0,X , 𝜃̂

)
= argmin

(𝜔,𝜃)
Q∗

n,Y
(𝜔, 𝜃).
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Consistency of 𝜔̂0,S under H1 follows from the properties of the Féjer kernel. 
More specifically, 𝜔̂0,S − 𝜔0,S = Op(n

−1) . With respect to 𝜔̂0,X and 𝜃̂ , the following 
holds:

Theorem 7  Suppose that (A1) to (A8) hold. Let 𝜔̂0,X be defined by (30). Then, under 
H0 and under H1,

and

where � is a normal random variable with expected value zero and covariance 
matrix

with

Theorem 7 implies that the unknown parameters in T�;n and �2
T
 can be replaced by 

their estimates without changing the asymptotic distribution of T�;n.

Remark 6  In the definition of (𝜔̂0,X , 𝜃̂) , the set of frequencies Λn(𝜔̂0,S) is omitted. 
Here, the essential condition is Mn∕n → 0 . Applying Theorem 4.2 in Giraitis et al. 
(2001) then leads to the result that Q∗

n,Y
(�, �) and Qn,Y =

∑m

j=1
IY ,n(�j)∕g(�j;�, �) are 

asymptotically equivalent in the sense that 
√
n(Q∗

n,Y
− Qn,Y ) →p 0 . Therefore, the 

asymptotic results in Theorem 7 are not affected.

5 � Simulations and data examples

5.1 � Simulations

We consider simulations of model (3) with St = b sin�0,St . The stationary process 
Xt is generated by a Gegenbauer process process with a pole at �0,X = 1 . Two alter-
natives are considered: a) H1,1 : b = 4 with �0,S = 1 , b) H1,2 : b = 4 with �0,S = 3 . The 
long-memory parameter d and the sample sizes are set to d =0.1, 0.2, 0.3, 0.4, and 
n =200, 400 and 800 respectively. For each combination of parameters and series 
length, N = 1000 simulated series were generated. For each series, T0;n and T 1

2
;n 

were computed and compared to the 95%− quantiles of the corresponding N(0, �2
T
) 

distribution. For the case with unknown parameters, the method defined in the 

(31)𝜔̂0,X = 𝜔0,X + Op

(
n−1

)
,

(32)
√
n
�
𝜃̂ − 𝜃0

�
→

d
𝜁

Σ� = V−1

Vij =
1

4� ∫
�

−�

�

��
log g

(
�;�0,X , �

)[ �

��
log g

(
�;�0,X , �

)]T
d� ∣�=�0 .
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Table 1   Simulated rejection probabilities based on T
0
 and T

1∕2 respectively, when parameters are known

H
0

T
0

T
1∕2

d n =200 400 800 200 400 800

0.1 0.05 0.04 0.04 0.05 0.05 0.04
0.2 0.07 0.07 0.07 0.03 0.04 0.03
0.3 0.07 0.07 0.07 0.09 0.10 0.05
0.4 0.15 0.14 0.08 0.13 0.11 0.09

H
1
 with �

X
= 1 , �

S
= 1

0.1 1 1 1 1 1 1
0.2 1 1 1 1 1 1
0.3 1 1 1 1 1 1
0.4 0.91 0.94 0.85 0.99 0.97 0.99

H
1
 with �

X
= 1 , �

S
= 3

0.1 1 1 1 1 1 1
0.2 1 1 1 1 1 1
0.3 1 1 1 1 1 1
0.4 1 1 1 1 1 1

Table 2   Simulated rejection probabilities based on T
0
 and T

1∕2 respectively, when parameters are esti-
mated. Also given are the simulated means of d̂ , 𝜔̂

X
 and 𝜔̂

S

H
0

T
0

T
1∕2 d̂ , 𝜔̂

X
 , 𝜔̂

S

0.1 0.01 0 0 0 0 0 0.09, 1.07, 1.20 0.07, 1.02, 1.02 0.08, 0.99, 1.11
0.2 0.03 0 0.02 0 0 0 0.18, 1.01, 0.99 0.17, 0.99, 1.00 0.18, 1.01, 0.99
0.3 0.07 0.07 0 0 0 0 0.25, 0.99, 1.00 0.26, 1.00, 1.00 0.28, 1.00, 1.00
0.4 0.19 0.12 0.03 0 0.01 0.01 0.35, 0.99, 1.00 0.37, 0.99, 1.00 0.39, 1.00, 1.00

H
1
 with �

X
= 1 , �

S
= 1

0.1 1 0.94 0.99 0.86 0.84 0.99 0.26, 0.99, 1.01 0.30, 0.99, 1.01 0.21, 1.01, 1.00
0.2 0.97 0.77 0.82 0.72 0.79 0.93 0.30, 0.99, 1.01 0.35, 0.99, 1.01 0.31, 1.01, 1.00
0.3 0.95 0.69 0.59 0.53 0.76 0.85 0.35, 0.99, 1.01 0.39, 0.99, 1.01 0.37, 1.01, 1.00
0.4 0.72 0.48 0.54 0.15 0.46 0.46 0.42, 0.99, 1.01 0.45, 0.99, 1.01 0.44, 1.01, 1.00

H
1
 with �

X
= 1 , �

S
= 3

0.1 1 1 1 1 1 1 0.23, 2.83, 3.02 0.01, 2.67, 3.00 0, 2.84, 3.00
0.2 1 1 1 1 1 1 0.20, 2.83, 3.01 0.02, 2.43, 3.00 0.01, 2.74, 3.00
0.3 1 1 1 1 1 1 0.15, 2.83, 3.02 0.03, 2.17, 3.00 0.02, 2.40, 3.00
0.4 1 1 1 1 1 1 0.09, 2.80, 3.00 0.15, 1.25, 3.00 0.12, 1.59, 3.00
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previous section was applied with Mn = [
1

2
log log n] . The results are summarized in 

Tables 1 and 2. For the case where parameters are estimated, the simulated sampe 
means of d̂ , 𝜔̂0,X and 𝜔̂0,S are also given (Table 2).

In the case where parameters are known (Table 1), the rejection probabilities under 
H0 converge reasonably fast to the nominal level of significance. For very strong long 
memory ( d = 0.4 ) convergence to the nominal level is somewhat slower. With respect 
to power, one obtains almost a perfect rejection rate in the case of known parameters, 
even for d = 0.4 . Also, as expected, generally T1∕2 appears to have higher power against 
H1 , as specified here. In the situation where parameters are estimated (Table 2), the 
test appears to be on the conservative side for small sample sizes, i.e. the level of the 
test is generally lower than the nominal one. With respect to power, the situation is 
more complicated. For very weak long memory, with d = 0.1 , the rejection rate is 
again almost perfect. For d ≥ 0.2 , this remains to be true for the second alternative H1,2 
where �0,S ≠ �0,X . In comparison, simulated rejection frequencies tend to be lower for 
the first alternative H1,1 . This illustrates that distinguishing stochastic from determin-
istic periodicity is more difficult when �0,S = �0,X . Finally note that in the case with 
�0,S ≠ �0,X , there is a relatively large bias in the estimates of �0,X and d. For a small 
minority of the simulated sample paths, the estimated values 𝜔̂0,X indeed turned out 
to be closer to �0,S = 3 rather than �0,X = 1 . This is in particular the case, when d is 
small. This also illustrates the difficulty of distinguishing deterministic from stochastic 
periodicity.

5.2 � Data example

Weakness of respiratory muscles is common in various acute and chronic diseases like 
chronic obstructive pulmonary disease, SarsCoV2 or during and following intensive 
care medicine (Kabitz et al. 2007 and Regmi et al. 2023). Respiratory muscle train-
ing aims at improving respiratory muscle strength and endurance through three distinct 
training methods: inspiratory pressure threshold loading, flow resistive loading and vol-
untary isocapnic hyperpnea (Walterspacher et al. 2018). In the study by Walterspacher 
et al. (2018) those three distinct ways of respiratory muscle training were studied in 
order to understand the different modes of activation of the three major inspiratory 
muscle groups: diaphragm, intercostal muscles and cervical muscles. This data set was 
used for the current statistical analysis. To make time series analysis feasible, only sub-
jects were considered where the observed series were long enough. Compared to the 
original study by Walterspacher et al. (2018), the number of subjects therefore reduced 
from 41 to 28.

Previous analysis of the data has shown that inspiratory pressure threshold loading 
lead to predominant activation of the major respiratory muscle, the diaphragm 
(Walterspacher et  al. 2018). Healthy subjects were asked to perform various 
respiratory exercises. The activity of respiratory muscles was measured by surface 
electromyography (sEMG). For illustrative purposes, we focus on measurements of the 
diaphragm obtained from the right electrode. Denote by z(sj) the sEMG measurement 
at time sj . The original measurements were recorded at a time resolution of 0.01 
seconds, i.e. sj = j ⋅ 0.01 seconds. The quantity of interest is "respiratory effort" of the 
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specific muscle group, which may be approximated by the square of the sEMG-signal. 
To exclude very high frequencies, in particular effects of the heart beat, z2

Dia
(sj) is first 

aggregated to a time resolution of 1 second. Moreover, to symmetrize the series, a 
logarithmic transformation is applied. Thus, we consider

where I(t) = {100(t − 1) + 1 ≤ j ≤ 100t} . Walterspacher et  al. (2018) considered 
seven basic types of respiratory exercises for respiratory muscle EMG assessment 
(denoted according to the devices used): MVV , TLC, Sniff , PImax, as measures 
of maximal muscle innervation tests, and SpiroTiger , RespiFit, POWERbreathe, as 
respiratory muscle training tests.

To simplify the presentation, we compare two trainings that were carried out in a 
similar fashion, namely SpiroTiger and POWERbreathe (PB). A brief description of 
the exercises can be given as follows: 1) SpiroTiger: isocapnic voluntary hyperven-
tilation is a type of respiratory muscle training that requires the subjects to ventilate 
at a high proportion of their maximum voluntary ventilation for a fixed period. In 
this set-up subjects were asked to breathe for 1min with 30 sec break; 2) POWER-
breathe: subjects are asked to inspire against an occluded airway that opened at 80% 
of the individual maximal inspiratory muscle strength. Two bouts of each 5 inspira-
tory efforts with a 30 sec break were used in this training session.

yt = log

(∑
j∈I(t)

z2
Dia

(
sj
))

(t = 1, 2, ...)

Fig. 3   Average breathing effort during a SpiroTiger and a POWERbreathe exercise respectively (a), for 
28 subjects. b Shows a boxplot of the (paired) differences Δȳ(j) = ȳSpiroTiger(j) − ȳPOWERbreathe(j)
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Figure  3a shows boxplots of sample means ȳSpiroTiger(j) and ȳPB(j) for 28 sub-
jects ( j = 1, ..., 28 ). The differences Δȳ(j) = ȳSpiroTiger(j) − ȳPB(j) are displayed in 
Fig. 3b. Denoting by �SpiroTiger and �PB the corresponding expected values, a Wil-
coxon signed-rank test of H0 ∶ �SpiroTiger ≤ �PB against H1 ∶ 𝜇SpiroTiger > 𝜇PB yields 
a p-value smaller than 10−8 . Thus, there is strong evidence for SpiroTiger generally 
leading to a higher average breathing effort of the diaphragm. On the other hand, it 
should be noted that different results are obtained when high quantiles of the effort 
distributions are compared. For instance, Fig.  4a shows boxplots of the maximal 
effort. The within subject differences of the maxima are shown in Fig. 4b. In this 
comparison, POWERbreathe turns out to be clearly more effective than SpiroTiger, 
with a p-value of the paired Wilcoxon signed-rank test below 0.0002. This confirms 
the findings of Walterspacher et al. (2018). The difference between the results for the 
average and the maximal breathing effort can be explained by the design of the exer-
cises: SpiroTiger aims at improving endurance, whereas POWERbreathe is designed 
as a strength training.

In a next step, we take a closer look at the individual time series. Breathing 
exercises intrinsically contain strong periodic features that are however not 
necessarily exactly periodic. We are therefore interested in testing whether the 
observed time series yt ( t = 1, 2, ... ) contain a deterministic periodic component 
or whether stochastic periodicity is prevalent. For each subject, the algorithm 
in Sect.  4 was applied to each series yt(j) ( t = 1, 2, ... ), with Mn = [

1

2
log log n] . A 

typical pair of series is shown in Figs.  1a, (SpiroTiger) and 2a (POWERbreathe). 

Fig. 4   Maximal breathing effort during a SpiroTiger and a POWERbreathe exercise respectively (a), for 
28 subjects. b Shows a boxplot of the (paired) differences Δȳ(j) = ȳSpiroTiger(j) − ȳPOWERbreathe(j)
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The measurements in Fig. 1a were taken during the first 136 s (i.e. n = 136 ) of a 
SpiroTiger-exercise. Figure 2a shows, for the same subject, measurements during the 
first 112 s (i.e. n = 112 ) of a POWERbreathe-exercise. The different sample sizes are 
due to the different duration of the exercises. The corresponding periodograms are 
displayed in Figs. 1c and 2c. The solid and the dotted vertical lines mark the location 
of 𝜔̂S and 𝜔̂X respectively. Figure  1c (SpiroTiger) shows a distinct maximum, 
indicating a strong periodic component. However, 𝜔̂S = 0.65 and 𝜔̂X = 0.79 are 
very close together. This makes it difficult to tell whether a deterministic periodic 
component is present. The parameter estimates and the test statistics are: d̂ = 0.11 
with a 95%−confidence interval of [0.04,  0.18], T0 = 0.92 and T1∕2 = 1.20 . 
The corresponding p-values are 0.18 for T0 and 0.12 for T1∕2 respectively. For 
POWERbreathe, Fig.  2c shows two very distinct peaks around 𝜔̂X = 0.56 and 
𝜔̂S = 1.01 respectively. Here, d̂ = 0.30 with a 95%−confidence interval of 
[0.20, 0.40], T0 = 2.23 and T1∕2 = 2.25 . The p-values for T0 and T1∕2 , are 0.01. Thus, 
in spite of stronger periodic long memory and a smaller sample size, there is much 
stronger evidence for a deterministic periodic component. This confirms the visual 
impression that the maximum around 𝜔̂S in Fig. 2c is quite isolated, thus indicating a 
deterministic component, whereas the peak around 𝜔̂X is more dispersed.

The test statistics T0 and T1∕2 may be interpreted as descriptive measures of the 
relative strength of potential deterministic periodic components. The same analysis 
was carried out for all 28 subjects. Boxplots of p-values based on T0 and T1∕2 are 
shown in Fig.  5a and b respectively. The comparison indicates that, in general, 
for the POWERbreathe training, breathing effort tends to be more regular. A 
corresponding one-sided paired Wilcoxon signed-rank test yields a p-value of 0.04 

Fig. 5   P values for T
0
 (a) and T

1∕2 (b) for the SpiroTiger- and POWERbreathe-exercises
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for T0− and 0.02 for T1∕2−p-values. It is also interesting to compare the periods 
T̂S = 2𝜋∕𝜔̂0,S and T̂X = 2𝜋∕𝜔̂0,X associated with the estimated frequencies 𝜔̂0,S and 
𝜔̂0,X . For POWERbreathe, the expected value of T̂S is significantly higher than the 
expected value of T̂X (Fig. 6a). The p-value of the corresponding one-sided Wilcoxon 
signed-rank test turns out to be 0.001. In contrast, for SpiroTiger, this is not the case. 
Figure 6b also shows estimated density functions of T̂S and T̂X for POWERbreathe .

In summary one may conclude that, in comparison with POWERbreathe, the 
SpiroTiger-exercise generally leads 1) to a higher average breathing effort of the 
diaphragm, and 2) to less regular fluctuations in breathing effort. Moreover, for 
POWERbreathe, the potentially deterministic periodic component tends to oscil-
late at a lower frequency than stochastic periodic long memory.

6 � Final remarks

In this paper we considered simple tests for a jump in the spectral distribution 
function, under the assumption of periodic long memory. As expected, this task 
is more difficult when the location of the jump coincides with the location of the 
pole of the spectral density. The proposed method can be generalized to situa-
tions with more than one jump of the spectral distribution function and/or sev-
eral poles of the spectral density. Though a generalization is straightforward in 
principle, a detailed development of such methods needs some care in order to 
obtain feasible solutions that perform well for finite samples. Note in particular 

Fig. 6   Boxplots of TS = 2𝜋∕𝜔̂S and TX = 2𝜋∕𝜔̂X (a) for POWERbreathe. b Shows kernel density esti-
mates of the distributions of TS (black) and TX (blue) respectively (colour figure online)
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that, in general, a periodic function St has an infinite Fourier series representa-
tion. Combined with the effect of aliasing, the detection of peaks in the spectrum 
that are caused by St is a difficult task in general. These and related questions in 
the context of noise processes that exhibit periodic long memory with multiple 
peaks are formidable tasks to be addressed in future research.

Appendix

Proofs

Proof of Theorem 1  We use the notation mn = [n∕2] for the integer part of n/2. Let 
j0,n be such that

Also, define a triangular array of coefficients

Then Tn can be written as

Lemma 4.1 in Giraitis et al. (2001) implies Tn →d �TZ with

where

and

	�  ◻

Proof of Theorem  2  Under H1 , Yt = St + Xt = �1 cos�0,St + �2 sin�0,St + Xt where 
max{|𝛼1|, |𝛼2|} > 0 . Since we are only interested in the order of magnitude of Tn , 
we may consider without loss of generality St = exp(−it�0,S) instead. Then

|||�j0,n − �0,X
||| = min

{|||�j − �0,X
|||, 1 ≤ j ≤ mn

}
.

bj,n = n
−

1

2 (1 ≤ j ≤ mn, n = 1, 2, ...).

Tn(�, �) =

[n∕2]�
j = 1

j ≠ j0,n

bj,n

�
I
�
�j
�

f
�
�j;�

� − 1

�
+ bj0,n

⎛
⎜⎜⎜⎝

I
�
�j0,n

�

f
�
�j0,n ;�

� − 1

⎞
⎟⎟⎟⎠
.

�2
T
= v2 + v2

1
�−4
0
�4

v1 = lim
n→∞

n
−

1

2

mn∑
j=1

bj,n = lim
n→∞
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n
=

1

2
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mn∑
j=1

b2
j,n

= lim
n→∞

mn

n
=

1

2
.
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where

It is straightforward to see that IX = op(IS) and |ISX| = op(IS) . For IS , we have

where Fn denotes the Fejér kernel. As a result,

where

	�  ◻

Proof of Theorem 3  We use the same notation

as in the proof of Theorem 2. Let j0,n be such that

I(𝜆) =
1

2𝜋n

|||||

n∑
t=1

(
St + Xt

)
eit𝜆

|||||

2

= IS(𝜆) + ISX(𝜆) + ĪSX(𝜆) + IX(𝜆)

IS(�) =
1

2�n

|||||

n∑
t=1

eit(�−�0,S)
|||||

2

, IX(�) =
1

2�n

|||||

n∑
t=1

Xte
it�
|||||

2

,

ISX(�) =
1

2�n

n∑
t1,t2=1

Xt2
ei�(t1−t2)e−it1�0,S .

IS(�) =
1

2�n

|||||
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t=1

exp(i
(
� − �0,S
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|||||

2

=
1

2�n

|||||||

sin
(

n

2

(
� − �0,S

))

sin
(

1

2

(
� − �0,S
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|||||||

2

=
1

2�
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(
� − �0,S

)

Tn = An ⋅

(
1 + op(1)

)

An = n
1

2
1

(2�)2
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j=1

Fn

(
�j − �0,S
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f
(
�j;�

) 2�
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1

2
1
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1
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1
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(
�0,S
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1

2 cT .

I(𝜆) =
1

2𝜋n
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(
St + Xt

)
eit𝜆

|||||

2

= IS(𝜆) + ISX(𝜆) + ĪSX(𝜆) + IX(𝜆)
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As in Theorem 2, it is sufficient to consider St = exp(−it�0,S) and

Due to the properties of the Fejér kernel and �0,S = �0,X , we have

where

and

with |�∗
j
− �j| ≤ 2�∕n . The upper and lower bound for 

√
nrn then follows from

and

where 0 < c, c1, c2 < ∞ . 	�  ◻

|||�j0,n − �0,X
||| = min

{|||�j − �0,X
|||, 1 ≤ j ≤ mn

}
.
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Proof of Corollary 1  The result follows from

(see e.g. Grimmett and Stirzaker 2020), and Theorem 3. 	�  ◻

Proof of Corollary 2  The result follows from Theorem 3, and

	�  ◻

Proof of Theorem 4  Let j0,n be such that

Also, define a triangular array of coefficients

where h(�) = f �(�;�) . Then
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Theorem 4.2 in Giraitis et al. (2001) then implies

with

	�  ◻

Proof of Theorem 5  The proof is analogous to Theorem 2. 	�  ◻

Proof of Theorem 6  The proof is analogous to Theorem 3. 	�  ◻

Proof of Corollary 3  The result follows from Theorem 5, and

	�  ◻

Proof of Corollary 4  The result follows from Theorem 6, and

	�  ◻

Proof of Theorem  7  First assume that H0 holds. Since 𝜔̂0,S = 𝜔0,X + Op(n
−1) and 

Mn → ∞ , we obtain
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Then, for any K > 0 there is a K̃ large enough such that

Now, define

and

Then,

where the coefficients

can be written as

with

Since Mn∕n → 0 , hn converges to the zero function. Theorem 4.2 in Giraitis et al. 
(2001) then implies Rn(�0,X) →p 0 . This implies Rn(𝜔̂0,S) →p 0 (due to (33), and 
(32). Analogous arguments lead to 𝜔̂0,X − 𝜔0,X = Op(n

−1) where 𝜔̂0,X is defined by 
(30). Finally, the consistency result under H1 follows from the properties of the Fejér 
kernel. 	�  ◻
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