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Abstract
Decision trees constitute a simple yet powerful and interpretable machine learn-
ing tool. While tree-based methods are designed only for cross-sectional data, we 
propose an approach that combines decision trees with time series modeling and 
thereby bridges the gap between machine learning and statistics. In particular, we 
combine decision trees with hidden Markov models where, for any time point, an 
underlying (hidden) Markov chain selects the tree that generates the corresponding 
observation. We propose an estimation approach that is based on the expectation-
maximisation algorithm and assess its feasibility in simulation experiments. In our 
real-data application, we use eight seasons of National Football League (NFL) data 
to predict play calls conditional on covariates, such as the current quarter and the 
score, where the model’s states can be linked to the teams’ strategies. R code that 
implements the proposed method is available on GitHub.

Keywords Decision trees · EM algorithm · Hidden Markov models · Time series 
modeling
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1 Introduction

Driven by an ever-increasing amount of data, machine learning has revolutionised 
empirical research in various fields. In many of these fields, machine learning 
tools have been applied to time series, e.g., in ecology (Wang 2019; Wijeyaku-
lasuriya et al. 2020; Nathan et al. 2022), finance (Choudhry and Garg 2008; Das 
and Padhy 2012), and sports (Power et  al. 2017; Decroos et  al. 2019), to name 
but a few examples. However, standard machine learning tools are designed only 
for cross-sectional data, as they assume the observations of the response vari-
able to be independent of each other. Moreover, as machine learning tools lack a 
time series component, they are not able to account for common characteristics 
typically found in time series, such as trends or cyclical fluctuations around these 
trends.

In this paper, we demonstrate how to overcome such limitations by propos-
ing a combination of decision trees and time series modeling. In particular, we 
combine decision trees with a versatile class of time series models, namely hid-
den Markov models (HMMs), where the observations are assumed to be driven 
by underlying (hidden) states. In practical applications, such states can serve as 
proxies for the state of the economy (Goodwin 1993; McCulloch and Tsay 1994; 
Oelschläger and Adam 2021; Adam et al. 2022), the behavioural mode of an ani-
mal (DeRuiter et al. 2017; Leos-Barajas et al. 2017, 2017b; Adam et al. 2019), or, 
in the context of sports, the momentum or tactics of teams (Sandholtz and Bornn 
2020; Sandri et al. 2020; Ötting et al. 2021; Ötting and Karlis 2022). The state 
process is modeled by a Markov chain, which induces serial correlation in the 
observations. Adding such a time series component to machine learning tools, as 
we will demonstrate here for the specific case of decision trees, can improve the 
model’s fit, its prediction accuracy, and its interpretability.

To fit such Markov-switching decision trees to time series, we consider the 
expectation-maximisation (EM) algorithm, which is routinely used for model fit-
ting in HMMs (Zucchini et  al. 2016). The EM algorithm alternates between an 
expectation (E) step, in which the states are guessed based on the current param-
eter estimates, and a maximisation (M) step, in which the model’s likelihood is 
maximised with respect to the parameters using the state guesses obtained in the 
previous E step.

To demonstrate the usefulness of the proposed method, we present a simula-
tion experiment and a case study from sports analytics, namely American foot-
ball, a sport which has seen a steady rise in statistical analyses in recent years 
(see, e.g., Yam and Lopez 2019; Yurko et al. 2019, 2020; Chu et al. 2020; Dutta 
et al. 2020; Lopez 2020; Reyers and Swartz 2021). In particular, we model play 
calls, which can either be a run or a pass. Due to their intuitive interpretation, 
decision trees have previously been used to predict such play calls in American 
football (Joash Fernandes et  al. 2020). In our case study, the hidden states can 
serve as proxies for the level of risky playing style, and covariates, such as the 
current score or the number of yards teams need for a new first down, are consid-
ered to build the state-dependent trees.
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The paper is structured as follows: in Sect.  2, we introduce HMMs as well as 
decision trees and outline the EM algorithm that is used for model fitting. In Sect. 3, 
we simulate data from Markov-switching decision trees and demonstrate the feasi-
bility of our approach by comparing misclassification rates between fitted Markov-
switching decision trees and standard decision trees. In Sect.  4, we present our 
case study of play call predictions, where we compare the predictive power of the 
proposed method to standard decision trees. R code that implements the proposed 
method is available on GitHub.1

2  Methods

In this section, we provide a brief introduction to HMMs and decision trees 
(Sect. 2.1) and introduce the EM algorithm that is used for model fitting (Sect. 2.2).

2.1  Model formulation and dependence structure

HMMs comprise two stochastic processes; the observation process, {Yt}t=1,…,T , and 
the underlying (hidden) state process, {St}t=1,…,T . The latter is modeled by an N-state, 
first-order Markov chain. The N × N transition probability matrix (t.p.m.), � , sum-
marises the state transition probabilities, �ij = Pr(St = j ∣ St−1 = i), i, j = 1,… ,N . 
For the start of the time series, one can assume the Markov chain to be in its station-
ary distribution, such that the initial distribution � is given by the solution to �� = � 
subject to 

∑N

i=1
�i = 1 . If this assumption is not being made, then the N − 1 (free) 

parameters in � need to be estimated.
In basic HMMs, the state that is active at time t, St , selects one of N possible dis-

tributions that generates the corresponding observation, Yt . For instance, for binary 
variables, a standard choice for the state-dependent distributions would be different 
Bernoulli distributions, where the success probabilities vary across the states. In this 
paper, we do not make any such parametric distributional assumption, and instead 
let the Markov chain select one of N possible decision trees that generates the corre-
sponding observation. The dependence structure of Markov-switching decision trees 
is illustrated in Fig. 1.

For fitting the state-dependent trees, we use the CART algorithm proposed 
by Breiman et  al. (1984), where we focus on classification trees. In particular, 
we use the Gini index as impurity measure to select the splitting variables and 
the split points. For each state i, we thus obtain a tree consisting of Mi regions, 
Rmi

, i = 1,… ,N,mi = 1,… ,Mi , which is built using p covariates, xt = (xt1,… , xtp) . 
To select the tree size, we consider standard procedures, such as stopping the 

1 See https:// github. com/ timoa dam/ Marko vSwit ching Decis ionTr ees.

https://github.com/timoadam/MarkovSwitchingDecisionTrees
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splitting only when a minimum node size is reached or using cost-complexity prun-
ing as proposed by Breiman et al. (1984).

2.2  Model fitting using the EM algorithm

2.2.1  The complete‑data log‑likelihood

We start by representing the state sequence {St}t=1,…,T by the indicator variables 
ui(t) = I(St = i) and vi,j(t) = I(St−1 = i, St = j) , i, j = 1,…N , t = 1,… , T . The joint 
log-likelihood of the observations and the states (i.e., the complete-data log-likelihood; 
CDLL) can then be written as

where pi(yt) = Pr(Yt = yt ∣ St = i) and

l(�) = log

(

�s1

T
∏

t=2

�st−1,st

T
∏

t=1

Pr(Yt = yt ∣ St = st)

)

= log(�s1) +

T
∑

t=2

log(�st−1,st ) +

T
∑

t=1

log
(

pst (yt)
)

=

N
∑

i=1

ui(1) log(�i) +

N
∑

i=1

N
∑

j=1

T
∑

t=2

vi,j(t) log(�i,j) +

N
∑

i=1

T
∑

t=1

ui(t) log
(

pi(yt)
)

Fig. 1  Dependence structure of Markov-switching decision trees. The (hidden) state that is active at time 
t, S

t
 , selects one of N (in this illustration, N = 2 ) possible decision trees that generates the corresponding 

observation, Y
t
 (in this illustration, Y

t
∈ {F, S} (i.e., “success” or “failure”) is a binary outcome)
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with m̃i ∈ 1,… ,Mi being the node for which xt ∈ Rm̃i
 and nm̃i

 denoting the number 
of observations in region Rm̃i

 for the tree of state i. In other words, Eq. (1) gives the 
probability that Yt equals k in state i by calculating the proportion of class k observa-
tions for the node m̃i that is uniquely determined by xt . Note that the CDLL consists 
of three separate summands, each of which only depends on (i) the initial state prob-
abilities, (ii) the transition probabilities, and (iii) the probabilities of the observa-
tions under the state-dependent trees, which considerably simplifies the maximisa-
tion within the M-step.

2.2.2  The E‑step

The E-step consists of computing the conditional expectations of the indicator 
variables that represent the state sequence. To compute these, we require the for-
ward and backward probabilities. The forward probabilities, which are denoted 
by �t(i) = Pr(Y1 = y1,… , Yt = yt, St = i) , are summarised in the row vectors 
�t = (�t(1),… , �t(N)) , which can be evaluated via the forward algorithm by apply-
ing the recursion

t = 2,… , T  , with N × N diagonal matrix P(yt) = diag(p1(yt),… , pN(yt)).
The backward probabilities, which are denoted by �t(j) = f (yt+1,… , yT ∣ St = j) , 

are summarised in the row vectors � t = (�t(1),… , �t(N)) , which can be evaluated 
via the backward algorithm by applying the recursion

t = T − 1,… , 1 , with P(yt+1) as defined above. We let �̂�[m]
t (i) and 𝛽[m]t (j) denote the 

forward and backward probabilities obtained in the m-th iteration, which are com-
puted using the estimates obtained in the (m − 1)-th iteration (or initial values in the 
first iteration).

The m-th E-step involves the computation of the conditional expectations of the 
indicator variables given the current parameter estimates and fitted, state-dependent 
trees.

• Since ûi(t) = Pr(St = i ∣ y1,… , yT ) = f (y1,… , yt, St = i)f (yt+1,… , yT ∣ St = i)∕f (y1,… , yT ) 
and f (y1,… , yT ) =

∑N

i=1
f (y1,… , yT , St = i) , it follows from the definition of the 

forward and backward probabilities that 

(1)
Pr(Yt = k ∣ St = i) =

1

nm̃i

∑

j = 1,… , T ∶

xj ∈ Rm̃i

I(yj = k),

�1 = �P(y1);

�t = �t−1�P(yt),

�T = 1;

�⊤

t
= �P(yt+1)�

⊤

t+1
,
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i = 1,… ,N , t = 1,… , T .
• Since v̂i,j(t) = Pr(St−1 = i, St = j ∣ y1,… , yT ) = f (y1,… , yt−1, St−1 = i)

Pr(St = j ∣ St−1 = i)Pr(yt,… , yT ∣ St = j)∕Pr(y1,… , yT ) , it follows from the defi-
nition of the forward, backward, and transition probabilities that 

i, j = 1,… ,N , t = 1,… , T .
Note that, while the indicator variables are deterministic, the above conditional 
expectations are probabilities: Eq. (2) denotes the probability of state i being active 
at time t, while Eq. (3) denotes the probability of switching from state i to state j at 
time t.

2.2.3  The M‑step

The m-th M-step involves the maximisation of the CDLL with the indicator vari-
ables replaced by their current conditional expectations [see Eq. (2)] with respect to 
the model parameters:

• As only the first term in the CDLL depends on �i , using a Lagrange multiplier to 
ensure that 

∑N

i=1
𝛿
[m]

i
= 1 results in 

i = 1,… ,N.
• Similarly, as only the second term in the CDLL depends on �i,j , using a Lagrange 

multiplier to ensure that 
∑N

j=1
�̂�
[m]

i,j
= 1 , i = 1,… ,N , results in 

i, j = 1,… ,N.
• As only the third term in the CDLL depends on Eq. (1), the optimisation problem 

effectively reduces to maximising the joint probability of the observations under 
the state-dependent trees, where the t-th observation is weighted by the û[m]

i
(t)’s. 

Thus, we can exploit existing algorithms, namely the CART algorithm (Breiman 

(2)û
[m]

i
(t) =

�̂�
[m]
t (i)𝛽

[m]
t (i)

∑N

k=1
�̂�
[m]

T
(k)

,

(3)v̂
[m]

i,j
(t) =

�̂�
[m]

t−1
(i)�̂�

[m−1]

i,j
p̂j(yt)𝛽

[m]
t (j)

∑N

j=1
�̂�
[m]

T
(j)

,

𝛿
[m]

i
=

û
[m]

i
(1)

∑N

i=1
û
[m]

i
(1)

= û
[m]

i
(1),

�̂�
[m]

i,j
=

∑T

t=2
v̂
[m]

i,j
(t)

∑N

k=1

∑T

t=2
v̂
[m]

i,k
(t)

,
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et al. 1984), to fit the state-dependent trees, where the observations are weighted 
according to Eq. (2) (i.e., the state-dependent trees are re-fitted in each M-step 
using the weights that were obtained in the previous M-step). Such weighting of 
the observations within the CART algorithm is implemented in the R package 
rpart (Therneau and Atkinson 2019).

The EM algorithm alternates between the E- and the M-step until some convergence 
criterion is satisfied. Here, we consider the absolute difference between the CDLLs 
obtained in two consecutive iterations and stop the algorithm if it falls below 10−3.

3  Simulation experiment

As decision trees are a non-parametric machine learning tool, it is not feasible to 
compare estimated parameters with true parameters, as is typically done in a regres-
sion context. However, we can explore the viability of Markov-switching decision 
trees by simulating data from a Markov-switching decision tree and comparing the 
performance of fitted trees with and without a Markovian structure. Specifically, we 
simulate 100 time series, each consisting of 2000 observations. For each time series, 
we generate binary observations, denoted as Yt , where Yt can take values from the set 
{F, S} (representing “success” or “failure”) based on a Markov-switching decision 
tree with initial state distribution � = (0.5, 0.5) , t.p.m.

a uniformly distributed covariate x1 ∈ [0, 20] , and a categorical covariate 
x2 ∈ {1,… , 4}.

Figure 2 displays the true data-generating trees along with the results obtained 
from fitted standard decision trees and Markov-switching decision trees for a single 
simulation run. In the bottom panel, it is evident that the Markov-switching deci-
sion trees effectively capture the splits of the data-generating trees. Furthermore, the 
success probabilities estimated in the leaf nodes closely align with those of the data-
generating process. The means of the estimated diagonal values of the t.p.m. are cal-
culated as 0.949 and 0.948 for �11 and �22 , respectively. These estimates are remark-
ably close to the corresponding true values of 0.95. In contrast, as depicted in the 
middle panel of Fig. 2, standard decision tree fail to identify the correct thresholds 
for the splits and do not accurately estimate the “success” and “failure” probabilities.

This visual assessment is substantiated by comparing the predictive performance 
of both approaches using out-of-sample observations. For forecasting observations 
in the Markov-switching context, we employ the standard hidden Markov model 
(HMM) framework to generate one-step-ahead forecasts (Zucchini et al. 2016). The 
resulting misclassification rates across 100 simulation runs are presented in Fig. 3. 
It is evident that the predictive performance of the Markov-switching decision trees 
(median misclassification rate: 0.115) surpasses that of the standard decision trees 
(median misclassification rate: 0.275) by a substantial margin. In addition, due to 

� =

(

0.95 0.05

0.05 0.95

)

,
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the lack of flexibility caused by the missing time-series component, the standard 
decision trees are, on average, deeper than the Markov-switching trees. While the 
average tree depth obtained for the former is 2.8, the average tree depth obtained 
for the latter is 2.1. Hence, the average depth of the Markov-switching trees is much 
closer to the true depth (i.e., 2), which is due to the fact that the standard decision 
trees are less flexible and therefore require more splits.

In this simple simulation experiment, we demonstrated potential pitfalls associated 
with the application of decision trees to time series that exhibit serial correlation and 
state-switching over time. Without incorporating this time series structure, standard 
decision trees fail to deliver precise forecasts of future observations. On the contrary, 
Markov-switching decision trees appropriately account for state-switching over time, 

Fig. 2  True data-generating trees (top), example fitted standard decision trees (middle), and example fit-
ted Markov-switching decision tree (bottom). When the state process is in state 1, a “success” outcome is 
generated with a probability of 95% for x1 < 5 if x2 = 1 and for x1 ≥ 5 if x2 = 1 . When the state process 
is in state 2, this pattern is reversed, i.e., the above combination of higher and lower values most likely 
leads to a “failure” outcome
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enabling more accurate predictions. Additionally, standard decision trees can lead to 
misleading interpretations of the relationship between covariates and observations, 
further emphasising the importance of incorporating the time series structure.

4  Application to American football data

In American football, the possession team (i.e., the offense) attempts to reach the 
opposing team’s (i.e., the defense) end zone by either running or passing the ball. 
For the defense, it is thus of interest to accurately predict the opponent’s play. For 
that purpose, and driven by the availability of play-by-play NFL data, the use of 
machine learning approaches for play call predictions has been investigated in multi-
ple studies (see, e.g., Heiny and Blevins 2011; Joash Fernandes et al. 2020; Wu et al. 
2021). In particular, Joash Fernandes et al. (2020) argue that decision trees are most 
likely to be adopted in practice, as they are intuitive to interpret (as opposed to alter-
native, black-box approaches).

In this section, we fit Markov-switching decision trees to NFL play-by-play data, 
where the underlying states serve as a proxy for the current level of a team’s risk-
taking—more risky styles of play are usually aligned with a higher propensity to 
throw a pass (as opposed to performing a run).

4.1  Data

We consider play-by-play data for 8 NFL seasons from 2012–13 until 2018–19 
retrieved from www. kaggle. com,2 covering 2526 regular-season games and 319,369 

Fig. 3  Boxplots of misclassification rates for standard decision trees (left) and Markov-switching deci-
sion trees (right) obtained across 100 simulation runs

2 https:// www. kaggle. com/ datas ets/ maxho rowitz/ nflpl aybyp lay20 09to2 016.

http://www.kaggle.com
https://www.kaggle.com/datasets/maxhorowitz/nflplaybyplay2009to2016
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plays (i.e., run or pass) in total. Our covariates are the quarter (qtr), the difference 
in the current score (score_differential), the current down (e.g., one corresponds to 
the first of four possible attempts to reach the new first down), the yards to go for 
a new first down (ydstogo), whether the quarterback is in shotgun formation (shot-
gun), i.e., the quarterback stands five yards behind the center at the beginning of a 
play, and a dummy indicating whether the match was played at home. These covari-
ates have also been considered in the previous studies on NFL play-call prediction 
briefly introduced above.

One example time series found in our data, corresponding to the 70 play calls 
observed for the New England Patriots in the game against the Pittsburgh Steelers, is 
shown in Fig. 4. The play calls underline that there are periods with a high number 
of passing plays (e.g., at the beginning of the game and around play call 30) as well 
as those where more runs are called (e.g., after the 60-th play), which motivates the 
need for a time series modeling approach to account for the serial correlation present 
in the data.

To evaluate the predictive performance, the season 2018–19 serves as test data, 
and the Markov-switching decision trees are fitted to data from seasons 2012–13 
until 2017–18. We compare the predictive performance of our approach to a stand-
ard decision tree.

4.2  Results

To address heterogeneity across teams, we fitted Markov-switching decision tree 
with N = 2 states to the data for each team separately instead of pooling the data of 
all teams. To avoid local maxima, for all teams we fitted the model 100 times, each 
time considering random starting values for the numerical maximisation. On aver-
age, it took approximately one minute to fit a single model.

Here, we present the fitted state-dependent trees only for one team, namely the 
New England Patriots, which is one of the most successful teams in the period con-
sidered.3 To facilitate interpretation, we fitted a Markov-switching decision tree with 
a tree depth of 3 to analyze the play-calls of the New England Patriots. In Fig. 5, the 
fitted trees for both states are displayed, indicating that a run is less likely in state 1 
compared to state 2. Considering that run plays involve less risk (as evidenced by 
the greater variance in yards gained during passing plays), state 2 can be interpreted 

Fig. 4  Example time series found in the data: play calls of the New England Patriots observed for the 
game against the Pittsburgh Steelers played on November 03, 2013

3 Readers interested in the results for the remaining teams can use the R code provided in the GitHub 
repository: https:// github. com/ timoa dam/ Marko vSwit ching Decis ionTr ees.

https://github.com/timoadam/MarkovSwitchingDecisionTrees
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as representing a less risky style of play, while state 1 is more aligned with riskier 
plays. However, it should be noted that, in general, the underlying states in HMMs 
can only be seen as crude approximations of the actual underlying behavior.

The understanding of the two states can be enhanced through variable importance 
plots, presented in Fig.  6. In both states, the most crucial predictors are being in 
shotgun formation and the down. However, the importance of the remaining pre-
dictors varies between the two states. In state 1, the yards to go emerges as the 

Fig. 5  Markov-switching decision trees fitted to data of the New England Patriots with a tree depth of 3

Fig. 6  Variable importance plots for the simple fitted Markov-switching decision trees shown in Fig. 5, 
i.e., with a tree depth of 3
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third most influential predictor, whereas in state 2, the actual quarter holds greater 
importance.

To further assess the usefulness of our proposed method, we compare the predic-
tive performance of the fitted Markov-switching decision trees to standard decision 

Table 1  The first two columns 
display the misclassification 
rates for each team’s test data 
using the standard decision 
tree and the Markov-switching 
decision tree, and the last two 
columns display the tree depth

For the Markov-switching decision trees, the average tree depth of 
the two states is shown
Lower misclassification rates are indicated in bold

Team Misclassification rates Tree depth

Standard DT MS DT Standard DT MS DT

All 0.288 0.286 6.250 3.172
PIT 0.225 0.223 8 1.5
TEN 0.300 0.286 6 1.5
CLE 0.268 0.276 8 5
MIN 0.253 0.239 8 2.5
NO 0.253 0.255 9 2.5
DET 0.243 0.241 3 2
DAL 0.257 0.255 1 3
TB 0.265 0.262 9 2
HOU 0.305 0.298 7 5
NYJ 0.259 0.254 7 4.5
IND 0.285 0.285 7 3
JAX 0.286 0.292 5 5
DEN 0.249 0.252 7 5
CIN 0.284 0.298 4 1
CAR 0.337 0.324 6 3
PHI 0.323 0.345 6 3.5
KC 0.324 0.327 5 2
BAL 0.391 0.379 6 4.5
ATL 0.288 0.285 8 4
MIA 0.334 0.349 8 4
ARI 0.266 0.270 8 3.5
SF 0.303 0.310 10 5
SEA 0.416 0.374 7 4
LA 0.251 0.265 1 1.5
NYG 0.228 0.227 7 1
WAS 0.272 0.284 7 4.5
GB 0.315 0.303 1 1
CHI 0.363 0.356 7 3
NE 0.209 0.212 6 2
BUF 0.319 0.300 8 3
OAK 0.281 0.288 9 3
LAC 0.273 0.273 1 5.5
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trees which do not account for the time series structure of the data. For the 32 teams, 
we predict all play calls of the 2018–19 season. When fitting the Markov-switching 
decision trees for each team individually, we do not impose a restriction on the tree 
depth, as demonstrated in Fig. 5, i.e., the tree depth can be larger than three. To pre-
dict the play calls, we use the standard HMM machinery to obtain one-step-ahead 
forecasts analogously to the simulation experiment (Zucchini et al. 2016). Table 1 
presents the misclassification rates for all teams, comparing the forecasts obtained 
using the Markov-switching tree approach with those obtained using the standard 
decision tree approach. On average (i.e., across all teams), the misclassification rate 
is slightly lower when using Markov-switching decision trees (0.286 vs. 0.288). Fur-
thermore, for more than half of the teams, the Markov-switching approach yields a 
lower or equal misclassification rate compared to the standard approach. To com-
pare the complexity of the trees, Table 1 displays the tree depth obtained for both 
approaches. For the Markov-switching trees, we report the average tree depth of 
the two states. On average, the tree depth obtained for the standard decision trees 
is almost twice as large as the tree depth obtained for the Markov-switching trees—
as in the simulation experiment, it may be the case that the standard decision trees 
compensate for the missing time series structure by growing more complex trees.

Although the predictive performance here is quite promising, the difference 
between the two approaches is fairly small—it should be noted that the application 
of Markov-switching decision trees to the NFL data serves only as a case study. In 
practice, it may very well be the case that the coaching staff has more insights into 
the next play call. Nevertheless, given that the computational cost of obtaining a 
single prediction is less than a second and the results are easily interpretable, our 
approach can be considered a valuable supplementary tool for the coaching staff.

5  Discussion

We have presented a versatile framework for fitting Markov-switching decision trees 
to time series data. Our proposed methodology has demonstrated superiority over 
standard decision trees when applied to data that displays both serial correlation and 
state-switching dynamics over time. Specifically, the enhanced flexibility of Markov-
switching decision trees, with the inclusion of one tree per state, can significantly 
improve the accuracy of time series forecasts while maintaining interpretability of 
the individual trees. The simplicity and non-parametric nature of Markov-switching 
decision trees is to be regarded advantageous compared to existing parametric state-
switching models for categorical outcomes, such as Markov-switching logistic or 
multinomial regression models and, more generally, Markov-switching generalised 
additive models (Langrock et al. 2017).

A well-known challenge with Hidden Markov Models (HMMs) revolves around 
determining the appropriate number of states. In our simulation experiment and case 
study, we focus solely on N = 2 states. In practical applications, the choice of the 
number of states can be guided by expert knowledge or evaluated using informa-
tion criteria like AIC and BIC. However, applying such criteria to Markov-switching 
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decision trees is not straightforward, as it is necessary to derive the number of 
parameters used to fit the model—while the parameters associated with the state 
process are estimated, the trees that determine the state-dependent process are 
non-parametric.

While our simulation experiment and case study focused on binary outcomes, 
it is important to note that Markov-switching decision trees can be applied to time 
series with categorical outcomes in general. Our approach can also be extended 
to incorporate other machine learning techniques. For example, one could explore 
the possibilities of Markov-switching regression trees or more advanced ensemble 
methods like Markov-switching random forests. Thus, the methodology introduced 
in this paper serves as a foundation for future research, aiming to integrate machine 
learning techniques with time series modeling.

Supplementary information

The R code that was used for the case study presented in Sect.  4 is available at 
https:// github. com/ timoa dam/ Marko vSwit ching Decis ionTr ees.
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