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Abstract

In the analysis of multivariate stochastic volatility models, many estimation proce-
dures begin by transforming the data, taking the logarithm of the squared returns
to obtain a linear state space model. A well-known series representation links the
correlations between elements of the observation error in the actual and linearized
forms of the model. This note derives a closed-form expression for the series and
discusses its statistical implications. Additionally, it offers a new interpretation of
the correlations in the linearized model.
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1 Introduction

In the econometrics literature, considerable attention has been devoted to the study of
time-varying volatility in financial assets. The insights from these analyses have had
a substantial impact on practical applications. Notable examples include portfolio al-
location (Aguilar and West 2000; Han 2006) and risk management (McNeil, Frey, &
Embrechts, 2015), where the interplay between volatility components plays a crucial role.

A common approach to modeling these dynamics is through multivariate stochastic
volatility (MSV) models; see the reviews by Asai, McAleer, and Yu (2006) and Chib,
Omori, and Asai (2009). Let yt = (y1,t, . . . , yd,t)

′ denote the log returns of d ∈ N financial
assets observed at time t, and let xt = (x1,t, . . . , xd,t)

′ represent their (unobserved) log
variances. One of the most widely used MSV models, proposed by Harvey, Ruiz, and
Shephard (1994), is given by

yt = exp(0.5xt)� εyt , εyt ∼ N(0, R),

xt+1 = µ+ Φ(xt − µ) + εxt , εxt ∼ N(0,Σ),
(1)

for t = 1, . . . , T , where T ∈ N, εxt , ε
y
t ∈ Rd, and the symbol � denotes elementwise

multiplication. The matrices Φ, Σ, and R are all d × d, with R being a correlation
matrix. The model is initialized as x1 ∼ N(µ1,Σ1) for suitable choices of µ1 and Σ1.

The above specification is standard in multivariate volatility modeling and is com-
monly referred to as the “basic MSV model” (Asai et al., 2006; Chib et al., 2009). The
model belongs to the class of nonlinear state space models (Durbin & Koopman, 2012), for
which parameter and state estimation is typically challenging. A straightforward solution
is to linearize the model by applying the transformation ỹi,t = log(y2i,t) for i = 1, . . . , d, as
proposed independently by Nelson (1988, Ch.1) in the univariate case and by Harvey et
al. (1994) in the multivariate setting. Using ι to denote a d× 1 vector of ones, this yields

ỹt = ωι+ xt + ε̃yt , ε̃yi,t = log |εyi,t|2 − ω,
xt+1 = µ+ Φ(xt − µ) + εxt , ω = E log |εyi,t|2 ≈ −1.27.

(2)

The linearization in (2) forms the basis of numerous estimation procedures for the
basic MSV model and its extensions. It has been employed to estimate the parameters of
(1) using the Kalman filter (Nelson 1988; Harvey et al. 1994; Ruiz 1994), the method of
moments (Ahsan and Dufour 2021; Ahsan and Dufour 2024), and Markov chain Monte
Carlo methods (De Jong and Shephard 1995; Kim, Shephard, and Chib 1998; Kast-
ner and Frühwirth-Schnatter 2014; Phan, Wachter, Solomon, and Kahana 2019), among
others. For extensions of the model, the transformation has been used to estimate specifi-
cations incorporating leverage (Harvey and Shephard 1996; Omori, Chib, Shephard, and
Nakajima 2007; Catania 2022), long-memory (Harvey 1998; Breidt, Crato, and De Lima
1998), realized volatility (Asai, 2023), and factor volatility models (Han 2006; Kastner,
Frühwirth-Schnatter, and Lopes 2017).

Given the widespread use of the linearizing transformation, it is important to obtain
a thorough understanding of its properties and statistical implications. From a practical
perspective, the main complicating factor of the linearized form in (2) is that the observa-
tion errors, ε̃yt , are non-Gaussian. Specifically, they follow the log-chi-squared distribution
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(Harvey et al., 1994), with mean zero and variance matrix

Var [ε̃yt ] =
π2

2
R̃,

where R̃ represents the correlation matrix of ε̃yt . The correlation matrices R̃ and R,
corresponding to the observation errors in the linearized and actual forms of the MSV
model, respectively, are generally not equivalent. Harvey et al. (1994, Eq.10) derived the

following relationship between the (i, j)-th element of the matrix R̃, with i, j ∈ {1, . . . , d},
and its corresponding element in R:

∣∣R̃i,j

∣∣ =
2

π2

∞∑
n=1

(n− 1)!

n(1/2)n
R2n
i,j , (3)

where (x)n = x(x+1) . . . (x+n−1) is the rising factorial. The analysis of this relationship
is the subject of this note.

2 Closed-form expression

The following result provides a closed-form expression for the series representation above.

Theorem 1. Consider the correlations Ri,j and R̃i,j for i, j ∈ {1, . . . , d} as in (3). Then,∣∣R̃i,j

∣∣ =
4

π2
arcsin2(Ri,j), (4)

where arcsin2(x) denotes the square of the inverse sine function.

Proof. From (3) it is seen that (4) is equivalent to

2 arcsin2(x) =
∞∑
n=1

(n− 1)!

n(1/2)n
x2n (5)

for |x| ≤ 1, since Ri,j ∈ [−1, 1]. We start by noting the similarity between the right-hand
side in (5) and the final expression in

arcsin2(x) =
1

2

∞∑
n=1

(2x)2n(
2n
n

)
n2

(6)

=
1

2

∞∑
n=1

22n

2n!
(n!)2

n2
x2n

=
1

2

∞∑
n=1

22n
[
(n− 1)!

]2
2n!

x2n

=
1

2

∞∑
n=1

22n−1[(n− 1)!
]2

n · (2n− 1)!
x2n, (7)
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where the power series representation in (6) for |x| ≤ 1 is well known (e.g., Chen, 2006,
Eq.1). Substituting (7) in (5) and comparing the terms, we note that the desired result
follows if it can be shown that

22n−1(n− 1)!

(2n− 1)!
=

1

(1/2)n
(8)

holds for all n ∈ N. To this end, first write

(1/2)n =
n−1∏
m=0

(m+ 1/2) =
n−1∏
m=0

(
2m+ 1

2

)
= 2−n

n−1∏
m=0

(2m+ 1),

so that (8) is equivalent to the equality in

H`(n) ≡ 2n−1(n− 1)!

(2n− 1)!
=

(
n−1∏
m=0

2m+ 1

)−1
≡ Hr(n).

We will demonstrate that the above holds for all n ∈ N through induction. For n = 1, we
have that H`(1) = 1 = Hr(1). Suppose that H`(n) = Hr(n) holds for some n ∈ N. Then,

H`(n+ 1) =
2nn!

(2n+ 1)!
=

2n

(2n+ 1)2n
H`(n) =

1

2n+ 1
Hr(n) = Hr(n+ 1),

which shows that H`(n) = Hr(n) for all n ∈ N, completing the proof.

�

The power series in (6) is commonly presented in the literature with either a radius
of convergence |x| ≤ 1 (Chen, 2006, p.364) or |x| < 1 (e.g., Lehmer 1985 pp.452-453, Eq.
13; Chen 2006, Eq.5), depending on the proof. Notably, the result in (4) for the special

cases Ri,j = ±1 can also be established by demonstrating that |Ri,j| = 1 =⇒
∣∣R̃i,j

∣∣ =
1 through probabilistic reasoning. For completeness, the details of this argument are
provided in Appendix A.

Figure 1 shows the absolute correlation
∣∣R̃i,j

∣∣ as a function of the corresponding
correlation Ri,j based on (4). For comparison, the figure also presents the partial sum
approximation based on (3) with 105 terms. The large number of terms was needed
to obtain visual convergence for values of |Ri,j| near one, which illustrates some of the
numerical benefits of the closed-form expression.

Theorem 1 also enables the derivation of the following result, which offers a new inter-
pretation of the absolute correlation value

∣∣R̃i,j

∣∣, linking it directly to the corresponding
observation errors εyi,t and εyj,t in the actual MSV model.

Proposition 1. ∣∣R̃i,j

∣∣ =
{
E
[

sgn(εyi,tε
y
j,t)
]}2

,

where sgn(x) = x/|x| if x 6= 0, and sgn(x) = 0 otherwise.
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Figure 1: Absolute correlation
∣∣R̃i,j

∣∣ as a function of Ri,j , computed using the partial sum
approximation based on (3) with 105 terms and analytically using the result in (4).

Proof. Using the result in (4), we have

∣∣R̃i,j

∣∣ =
4

π2

[
arcsin(Ri,j)

]2
=

[
2

π
arcsin(Ri,j)

]2
=
{
E
[

sgn(εyi,tε
y
j,t)
]}2

,

where the final equality follows from Theorem 1 in Pelagatti and Sbrana (2024), which
shows that E [sgn(XY )] = 2

π
arcsin(ρ) if X and Y are jointly normal with zero means and

correlation ρ.

�

3 Inverse and asymptotic impact

Another advantage of the closed-form expression in (4) is that its inverse can be obtained
analytically.

Corollary 1.

|Ri,j| = sin

(
π

2

√∣∣R̃i,j

∣∣) . (9)

The above result allows for transforming estimates of R̃i,j into estimates of Ri,j, where
the sign of Ri,j can be estimated separately, for example, based on the signs of the
products yi,jyj,t as in Harvey et al. (1994). Consequently, we find that the moment-
based estimator of Ahsan and Dufour (2024), which relies on the linearization in (2),
retains its closed-form property as an estimator for the actual MSV model. Furthermore,
the expression in (9) provides insight into the asymptotic impact of estimating |Ri,j|
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using
∣∣R̃i,j

∣∣. The following result applies to estimators based on the linearized form that
are asymptotically normal under suitable regularity conditions (e.g., Harvey et al. 1994;
Ahsan and Dufour 2024).

Lemma 1. Let {yt}Tt=1 be a sample of observations generated by the MSV process in (1)

with |Ri,j| ∈ (0, 1) for i, j ∈ {1, . . . , d}. Suppose r̃i,j is a corresponding estimator of
∣∣R̃i,j

∣∣
such that

√
T (r̃i,j −

∣∣R̃i,j

∣∣) d→N(0, Ṽi,j) as T → ∞. Consider the estimator ri,j = g(r̃i,j),
with g(x) = sin

(
π
2

√
x
)
, defined through (9). Then,

√
T
(
ri,j − |Ri,j|

) d→N(0, Vi,j) as T →∞,

with asymptotic variance

Vi,j =
π2

16
∣∣R̃i,j

∣∣ cos2

π
√∣∣R̃i,j

∣∣
2

 Ṽi,j. (10)

Proof. By the chain rule, we have

g′(x) =
π

4
√
x

cos

(
π
√
x

2

)
,

which shows that g′ is continuous and is defined for x > 0. Since |Ri,j| ∈ (0, 1) was

assumed, (4) implies that
∣∣R̃i,j

∣∣ ∈ (0, 1), ensuring that g(x) is continuously-differentiable

at x =
∣∣R̃i,j

∣∣. Therefore, the delta method (e.g., Van der Vaart, 2000, Theorem 3.1) can
be applied to obtain

√
T
(
ri,j−|Ri,j|

)
=
√
T
[
g(r̃i,j)− g

(∣∣R̃i,j

∣∣)] d→N

(
0,
[
g′
(∣∣R̃i,j

∣∣)]2 Ṽi,j) as T →∞,

which establishes the result.

�

Figure 2 shows the ratio of the asymptotic variances Vi,j/Ṽi,j, defined through (10), for

different values of
∣∣R̃i,j

∣∣. The ratio decreases with the absolute value of the correlation,

the variances being equal at
∣∣R̃i,j

∣∣ ≈ 0.28. Beyond this point, estimators of |Ri,j| defined

via (9) become asymptotically more precise than the corresponding estimators of
∣∣R̃i,j

∣∣.
The continuous mapping theorem ensures that the boundary values |Ri,j| = 0 and

|Ri,j| = 1 can be consistently estimated using (9). However, estimates of |Ri,j| obtained

from small values of
∣∣R̃i,j

∣∣ should be treated with caution, as the ratio of the variances

increases without bound when
∣∣R̃i,j

∣∣ approaches zero, potentially leading to imprecise
estimates of |Ri,j|. In practice, applications involving low correlations between shocks in
the log returns may therefore present challenges for estimators based on the linearized
form of the MSV model.
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Figure 2: Ratio of asymptotic variances Vi,j/Ṽi,j defined through (10).
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Appendix A Alternative proof of Theorem 1 for the

special cases Ri,j = ±1
Proof. Since arcsin2(±1) = π2/4, the result in (4) for Ri,j = ±1 is equivalent to

|Ri,j| = 1 =⇒
∣∣R̃i,j

∣∣ = 1. (11)

To see why the implication in (11) holds, we first note that Ri,j represents the correlation
between the jointly normal random variables εyi,t and εyj,t, such that[

εyi,t
εyj,t

]
∼ N

([
0
0

]
,

[
1 Ri,j

Ri,j 1

])
.
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Now suppose (without loss of generality) that Ri,j = 1, so that εyi,t = εyj,t holds in mean
square. This can be seen, for example, by letting w = (1,−1) and noting that

E(εyi,t − ε
y
j,t)

2 = Var
[
εyi,t − ε

y
j,t

]
= Var

[
w(εyi,t, ε

y
j,t)
′] = w

[
1 1
1 1

]
w′ = 0.

The equality in mean square implies that εyi,t = εyj,t also holds almost surely. Similarly,
we have that ε̃yi,t = log[(εyi,t)

2] = log[(εyj,t)
2] = ε̃yj,t almost surely. Since ε̃yi,t has bounded

moments of any finite order, the correlation between ε̃yi,t and ε̃yj,t exists, hence it must be
equal to one. This establishes the implication in (11) for Ri,j = 1; the case of Ri,j = −1
follows by analogy.

�
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