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Abstract

We study the global dynamics of the fully stochastic nonlinear version of the New
Keynesian model and analyze the efficacy of various policies as equilibrium selection
tools in this context. First, we unveil a new class of equilibria, characterized by self-
fulfilled beliefs about output volatility in recessions, which no conventional Taylor
rule can eliminate. An enriched monetary rule specifically targeting risk premia
can restore determinacy but becomes infeasible in the presence of a lower bound to
interest rates. Second, and in contrast to monetary policy, the fiscal theory of the
price level (FTPL) kills all such self-fulfilling volatility. Our main result that FTPL
trims volatile equilibria holds in many contexts, including: under an interest rate
peg or active Taylor rule, with any degree of price stickiness (including fully rigid
prices), with various types of fiscal rules, and with long-term debt.
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To address topics of inflation, aggregate demand stimulus, and monetary policy,
macroeconomists often look to the New Keynesian model for advice. Despite its role as
the dominant policy paradigm, this model is plagued by well-known equilibrium multi-
plicities that influence its answers to those standard macro questions. Currently, there is
no consensus on how equilibria are selected and which of the many survive. Among the
many alternatives, two popular selection mechanisms are an aggressive monetary policy
that responds sufficiently to output and inflation (e.g., the “Taylor principle”) versus an
active tax and spending policy (e.g., the “Fiscal Theory of the Price Level” or FTPL).

This paper sheds new light on this old controversy by studying the textbook New
Keynesian model but with a simple twist: unlike standard practice, we refrain from
linearizing the equilibrium around its steady state. Instead, we study the model in its
true nonlinear, stochastic form. The model’s global dynamics reveal several insights
about the nature of the multiplicities and which policies can credibly eliminate them.

As a warm up, and to distinguish our main results that come after, we begin by
reviewing the standard deterministic multiplicities in New Keynesian models (Section
2). In that context, we simply generalize the conventional wisdom: an aggressive Taylor
rule can eliminate all equilibria except the steady state. The generalizations involve
allowing the nonlinear Phillips curve, which does not alter the conclusions at all, and
contrasting linear versus nonlinear Taylor rules.

Our main innovations appear when we study stochastic multiplicities (Section 3).
We prove the existence, by construction, of a new class of volatile equilibria that no
Taylor rule, no matter how aggressive, can completely eliminate. Due to this immunity,
our volatile equilibria contrast sharply with the conventional deterministic multiplicities.
The key feature that arises in a non-linearized stochastic equilibrium is the presence of a
risk premium in agents’ Euler equation (“IS curve”). This risk premium, not volatility per
se, is the source of stochastic equilibrium multiplicities. After examining conventional
Taylor rules targeting the output gap and inflation, we proceed to study unconventional
Taylor rules that directly target this self-fulfilling risk premium. While sufficiently-strong
risk premium targeting can work to restore determinacy, it requires interest rates to
become arbitrarily negative. Indeterminacies thus survive these unconventional rules if
there is any lower bound on policy rates.

Stemming from our volatile equilibria are two additional implications. First, volatility-
based indeterminacy is a recessionary phenomenon: it arises only if output is below po-
tential. In a boom, a higher risk premium induces savings that raises agents’ consump-
tion growth rate in a way that is unsustainable and thus ruled out as an equilibrium; in a
recession, risk premia sustainably push consumption back toward steady state and thus
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help self-justify the volatility. The intuitive notion that high uncertainty should be paired
with below-average demand naturally emerges in our analysis. Second, because the risk
premium is a real object, this indeterminacy is a real rather than nominal phenomenon,
in contrast to several theories of self-fulfilling inflations or deflations. In particular, all of
these results hold even in (but not exclusively in) the rigid-price limit.

We turn next to the FTPL (Section 4), which has been studied mostly in linearized
models. We show that, in a variety of different settings—including arbitrary exogenous
surplus-to-output ratios, long-term or short-term debt, and some forms of fiscal “rules”
that respond to inflation or the output gap—FTPL kills the volatile equilibria we discov-
ered. Why? The basic intuition comes from the basic debt valuation equation:

Nominal debt value
Price level

= Present value of real surpluses (1)

This equation must hold at every point in time. If there is hypothetically any output
fluctuation that causes a shock to the present-value of surpluses, this shock must be
“absorbed” by either the nominal debt valuation or the price level. Sticky prices say that
prices cannot jump arbitrarily, and so the price level cannot absorb such a shock. Can
the nominal debt value absorb the shock? In the baseline case with short-term debt, the
debt price is fixed at 1, and so the quantity of debt is simply determined by the flow
government budget constraint; thus, the nominal value of short-term debt is pinned
down and cannot absorb the shock either. In the extended case with long-term debt,
the debt price is an additional forward-looking variable that could potentially respond
to shocks. But with the additional variable comes an additional constraint, the debt-
pricing equation, which puts severe restrictions on how the debt price can move; we
show that, in a large class of equilibria, these restrictions are so severe that they can
never be consistent with the originally conjectured output shock. Consequently, sunspot
demand volatility cannot be self-justified under the FTPL. We conclude that active fiscal
policies, in contrast to monetary policies, sharply trim the real indeterminacies endemic
to New Keynesian models.

A key takeaway from the discussion above is that FTPL works very differently than
the Taylor rule as a selection device. Equation (1) holds at every point in time, essentially
steering output volatility at a high frequency. By contrast, an active Taylor rule works by
infusing an economy with unstable dynamics, which selects among equilibria by causing
all but a subset to explode in the long run.

We think of FTPL’s high-frequency steering as “aggregate demand management,”
because it works by pinning down real demand volatility in all of the settings we study.
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One way to see the demand management interpretation transparently is to consider the
rigid-price limit; even in this limit without inflation, FTPL succeeds as a selection de-
vice. The rigid-price limit case effectively corresponds to inflation-indexed government
debt, which the FTPL literature typically regards as ineffectual for equilibrium selection.
Nevertheless, demand volatility is pinned down by fiscal considerations. Because FTPL
eliminates real sunspot volatility similarly with and without inflation, we advance an
interpretation of FTPL as a theory of aggregate demand management, rather than just a
theory of the price level.

Related literature. This paper relates to two vast literatures: (i) on New Keynesian
indeterminacies and (ii) on FTPL as equilibrium selection. We discuss these and various
other connections in sequence.

Going back to Sargent and Wallace (1975), it has been widely recognized that exoge-
nous interest rate paths do not pin down the equilibrium. In related work, Benhabib,
Schmitt-Grohé, and Uribe (2001) showed that the zero lower bound (ZLB) can lead to
“deflationary trap” equilibria, in which low inflation expectations are self-fulfilled by
recessionary deflation. More recently, Benigno and Fornaro (2018) showed there can
also be “stagnation trap” equilibria, in which low growth expectations are self-fulfilled
by low R&D investment at the ZLB. Set against this background, the present paper
describes “volatility trap” equilibria. The main distinctive property of volatility trap
equilibria is that risk premia are crucial to the self-fulfilment mechanism.

Volatility trap equilibria are fundamentally nonlinear phenomena. In an important
contribution, Caballero and Simsek (2020) study a nonlinear version of the New Keyne-
sian model and illustrate how risk premia are critical to aggregate demand dynamics,
but restricting attention to the “fundamental equilibrium.” Closely related to our study,
contemporaneous work by Lee and Dordal i Carreras (2024) also studies a nonlinear IS
curve with risk premia driving the multiplicity. Like us, they also argue that standard
“active” Taylor rules do not prune this type of volatility. But the most important differ-
ence is our exploration of active fiscal policies as equilibrium selection mechanisms.1

There are two important differences between our FTPL analysis and the extant liter-
ature.2 First, we emphasize real indeterminacies and consequently sometimes study the
rigid-price limit of the model. This also helps us provide the novel interpretation that

1In heterogeneous-agent versions of the New Keynesian model, Acharya and Dogra (2020) and Ravn
and Sterk (2021) demonstrate additional scope for indeterminacies when income risk is countercyclical.

2Seminal contributions to the FTPL literature include Leeper (1991), Sims (1994), Woodford (1994),
Woodford (1995), Kocherlakota and Phelan (1999), and Cochrane (2001). The recent textbook Cochrane
(2023) synthesizes many results and presents new ones.
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FTPL works via aggregate demand management. Second, we analyze the fully nonlinear,
stochastic, global dynamics of the model; despite some technical difficulties involved, we
provide formal uniqueness results in several environments. See also Bassetto and Cui
(2018), Mehrotra and Sergeyev (2021), Brunnermeier, Merkel, and Sannikov (2023), and
Li and Merkel (2020) for fiscal theory applied to a stochastic nonlinear world.3

Finally, we unveil novel limitations of Taylor rules as equilibrium selection devices.
Following Cochrane (2011)’s results, Neumeyer and Nicolini (2025) have recently shown,
in a precise sense, that destabilizing Taylor rules are not credible. Overall, one core
message conveyed by our results is that fiscal policies are better suited than monetary
policies to trim New Keynesian indeterminacies. As an alternative, future research could
investigate the common knowledge perturbation of Angeletos and Lian (2023), which
they applied to the linearized New Keynesian model, in a nonlinear setting.

1 Model

We present a canonical New Keynesian economy with complete markets and nominal
rigidities. The setup is a continuous-time version of the model exposited in Galí (2015),
which the reader can consult for additional details.

Sunspot shocks. Our baseline model features no fundamental uncertainty in preferences
or technologies. Nevertheless, we want to allow the possibility that economic objects
evolve stochastically due to coordinated behavior. To do this, we introduce a standard
Brownian motion Z that is extrinsic to all economic primitives. All random processes
will be adapted to Z.

Preferences. The representative agent has rational expectations and time-separable util-
ity with discount rate ρ, unitary EIS, and labor disutility parameter φ:

E
[ ∫ ∞

0
e−ρt

(
log(Ct)−

L1+φ
t

1 + φ

)
dt
]
. (2)

Consumption Ct has the nominal price Pt and labor Lt earns the nominal wage Wt.

Technology. The consumption good is produced by a linear technology Yt = Lt. We
abstract from fundamental uncertainty (e.g., productivity shocks) for maximal clarity.

3Other recent papers studying the FTPL in nonlinear, but deterministic, environments with “liquidity
premia” include Berentsen and Waller (2018), Williamson (2018), and Andolfatto and Martin (2018).
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Behind the aggregate production function is a structure common to most of the New
Keynesian literature. In particular, there are a continuum of firms who produce interme-
diate goods using labor in a linear technology. These intermediate goods are aggregated
by a competitive final goods sector. The elasticity of substitution across intermediate
goods is a constant ε. The intermediate-goods firms behave monopolistically competi-
tively and set prices strategically, described next.

Price setting. Intermediate-goods firms set prices strategically, taking into consideration
the impact prices have on their demand. Price setting is not frictionless: firms changing
their prices are subject to quadratic adjustment costs, a la Rotemberg (1982). (For sim-
plicity, we assume these adjustment costs are non-pecuniary, so that resource constraints
are not directly affected by price adjustments.) In the interest of exposition, we relegate
the statement of and solution to this standard problem to Appendix B.

Definition: inflation and output gap. Let Pt denote the aggregate price level and πt :=
Ṗt/Pt its inflation rate. Note also that the flexible-price level of output is given by Y∗ =

( ε−1
ε )

1
1+φ . Following the literature, define the output gap xt := log(Yt/Y∗). Conjecture

that xt and πt have dynamics of the form

dxt = µx,tdt + σx,tdZt (3)

dπt = µπ,tdt + σπ,tdZt (4)

for some µx, σx, µπ, σπ to be determined in equilibrium.

Monetary policy. Let ιt denote the nominal short-term interest rate, which is controlled
by the central bank. Monetary policy follows a Taylor rule that targets the output gap
and inflation with

ιt = ῑ + Φ(xt, πt) (MP)

for some target rate ῑ and some response function that satisfies Φ(0, 0) = 0. A common
linear example that we will use sometimes is

ιt = ῑ + ϕxxt + ϕππt. (linear MP)

In the main paper, we abstract from the zero lower bound (ZLB), which introduces well-
known indeterminacy issues, and analyze it in Appendix F. For now, think of negative
interest rates as a proxy for unconventional monetary policy that can work even when
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the short rate is zero.

Financial markets. Financial markets are complete. Let Mt be the real stochastic dis-
count factor induced by the real interest rate rt := ιt − πt and the equilibrium price
of risk ht associated to the sunspot shock Zt. The risk-free bond market is in zero net
supply—this will be generalized in Section 4 when we introduce fiscal policies. The eq-
uity market is a claim on the profits of the intermediate-goods producers. Alternatively,
we can think of these profits as being rebated to the consumers lump-sum.

Definition 1. An equilibrium is processes (Ct, Yt, Lt, Wt, Pt, Mt, Bt, ιt, rt, πt)t≥0, such that

(i) Taking (Mt, Wt, Pt) as given, consumers choose (Ct, Lt)t≥0 to maximize (2) subject
to their lifetime budget and No-Ponzi constraints

B0

P0
+ Π0 + E

[ ∫ ∞

0
Mt

WtLt

Pt
dt
]
≥ E

[ ∫ ∞

0
MtCtdt

]
(5)

lim
T→∞

MT
BT

PT
≥ 0, (6)

where Π represents the real present-value of producer profits and B represents the
bond-holdings of the consumer.4

(ii) Firms set prices optimally, subject to their quadratic adjustment costs.

(iii) Markets clear, namely Ct = Yt = Lt and Bt = 0.

(iv) The central bank follows the interest rate rule (MP) for some target rate ῑ and some
response function Φ(·).

In what follows, we refer to a deterministic equilibrium as an equilibrium with no real
volatility, σx ≡ 0. A sunspot equilibrium is an equilibrium with real volatility, σx ̸= 0.

Equilibrium characterization. We first provide a summary characterization of all equi-
libria. Labor supply and consumption decisions satisfy the following optimality condi-
tions:

e−ρtLφ
t = λMt

Wt

Pt
(7)

e−ρtC−1
t = λMt, (8)

4In addition, to prevent arbitrages like “doubling strategies” that can arise in continuous time, we must
impose a uniform lower bound on borrowing, e.g., MtBt/Pt ≥ −b, although b can be arbitrarily large.
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where λ is the Lagrange multiplier on the lifetime budget constraint (5).
On the firm side, Appendix B shows that optimal firm price setting gives rise to

aggregate inflation dynamics that satisfy

µπ,t = ρπt − ηε
Wt

Pt
+ η(ε − 1), (9)

where η is each firm’s degree of price flexibility. Notice that as η → 0 (prices changes
become infinitely costly), one possible equilibrium is to have πt → 0 for all times. We
will assume this “rigid-price limit” is the equilibrium that obtains as η → 0.

We use these conditions to obtain an “IS curve” and a “Phillips curve.” Applying
Itô’s formula to (8), we obtain the consumption Euler equation, which may be rewritten
in terms of the output gap as

µx,t = ιt − πt − ρ +
1
2

σ2
x,t. (IS)

Equation (IS) is the IS curve. Next, divide the FOCs (7)-(8), and use goods and labor
market clearing Ct = Yt = Lt to get Y1+φ

t = Wt
Pt

. Substitute this expression into (9) to
obtain

µπ,t = ρπt − κ
( e(1+φ)xt − 1

1 + φ

)
, (PC)

where κ := η(ε − 1)(1 + φ). Equation (PC) is the Phillips curve.
Together with the monetary policy rule (MP), equations (IS) and (PC) form the non-

linear “three equation model” in standard New Keynesian models. An equilibrium is
completely characterized by these three equations, along with conditions that ensure
that any output gap or inflation explosions are consistent with optimization behavior.
For example, since Ct = extY∗ = Lt, the representative agent would obtain minus in-
finite utility if xt = ±∞ in finite time, or even if xt → ±∞ too quickly. Clearly, this
is not compatible with optimizing behavior if the agent has an alternative that delivers
finite utility. Consumers would be individually better off ignoring signals to coordi-
nate, unravelling such a proposed allocation. (A straightforward example is the case
when xt → ∞, since this implies that real wages are diverging towards plus infinity, and
agents may obtain finite utility simply by working a finite amount forever.) Similarly, we
show in Appendix B that firms’ optimization rules out situations when πt → ±∞ too
quickly, because that would induce an infinite amount of price adjustment costs.

In order to emphasize that the multiplicity unveiled later does not rely on the explo-
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sive behavior and to streamline the analysis, we only consider equilibria that satisfy a
simple condition that conforms with the existing literature and rules out both finite-time
and asymptotic explosions:

Condition 1. A non-explosive allocation has E|xt| < ∞ and E|πt| < ∞ for almost all t, and

lim sup
T→∞

E|xT| < ∞ and lim sup
T→∞

E|πT| < ∞. (10)

We summarize our characterization in the following lemma.

Lemma 1. Suppose processes (xt, πt, ιt)t≥0 satisfy (IS), (PC), (MP), and Condition 1. Then,
(xt, πt, ιt)t≥0 corresponds to an equilibrium of Definition 1.

The proof of this lemma is standard except for a careful treatment of potentially
explosive behavior. Condition 1 not only ensures that utility for the representative con-
sumer and firm are finite but also, together with the other equations in Lemma 1, is
sufficient to verify that their transversality conditions hold. See Appendix A.1 for these
arguments. Going forward, we will want to make reference only to equilibria which
satisfy Condition 1. For that reason, we include the following definition.

Definition 2. A non-explosive equilibrium is an equilibrium of Definition 1 in which Con-
dition 1 holds.

Linearized Phillips curve approximation. We will occasionally use a linearized Phillips
curve in place of (PC). Since e(1+φ)xt − 1 ≈ (1 + φ)xt, the Phillips curve to first order is

µπ,t = ρπt − κxt. (linear PC)

We will occasionally work with (linear PC) instead of (PC), because as will become clear
the nonlinearity in (IS) is the critically novel element, and not so much the nonlinearity
in (PC). (We do some analysis with the nonlinear Phillips curve in Appendix C.) In this
approximation, we will sometimes refer to non-explosive equilibrium as (xt, πt, ιt)t≥0

that satisfy (IS), (linear PC), (MP), and Condition 1.

2 Deterministic Equilibria

We start by describing equilibria without volatility, σx ≡ 0. We illustrate the basic in-
determinacy that arises in New Keynesian models and how aggressive monetary policy
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rules can eliminate this indeterminacy. In the appendix, we generalize these existing
results to nonlinear Phillips curves and nonlinear Taylor rules as well.

2.1 Review: conventional indeterminacy and the Taylor principle

There is always an equilibrium with x = π = 0 forever. Using (IS), this equilibrium is
supported by a monetary policy rule with ῑ = ρ.

Can there exist other equilibria? As is well known, the answer to this question hinges
on the stability/instability properties of the equilibrium dynamical system for (xt, πt).
We will review this analysis here. First, we specialize to the policy rule (linear MP) with
the target rate ῑ = ρ. Combining (linear MP) with (IS), the dynamics of xt are given by

ẋt = ϕxxt + (ϕπ − 1)πt. (11)

The IS curve is linear in a deterministic equilibrium with a linear Taylor rule. We also
consider here the linear Philips curve (linear PC) as in most of the existing literature.

The typical determinacy analysis picks an aggressive Taylor rule that renders the
above system unstable. The system (11) and (linear PC) can be written in matrix form as[

ẋt

π̇t

]
= A

[
xt

πt

]
, where A :=

[
ϕx ϕπ − 1
−κ ρ

]
. (12)

The eigenvalues of A are both strictly positive, and the system unstable, if ϕx > −ρ and
ϕπ > 1 − ρϕx/κ. This is the continuous-time version of the eigenvalue conditions in
Blanchard and Kahn (1980).

By contrast, if either parameter condition is violated, then the system has one or
two stable eigenvalues. In such case, there are a continuum of non-explosive equilib-
ria, which one can index by the initial conditions (x0, π0). As the explicit parameter
conditions make clear, instability occurs when monetary policy is sufficiently aggressive
(i.e., “active”) in responding to the output gap and inflation, whereas stability occurs
when the response function is less aggressive (i.e., “passive”). The proof of the fol-
lowing proposition and all subsequent theoretical results in Sections 2-3 is contained in
Appendix A.2.

Proposition 1. Consider the linearized Phillips curve (linear PC) and monetary policy rule
(linear MP) with ῑ = ρ. If ϕx > −ρ, and ϕπ > 1− ρϕx/κ, the only non-explosive equilibrium is
(xt, πt) = (0, 0) forever. If either condition is violated, then a continuum of linear non-explosive
equilibria exist.
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Remark 1 (Nonlinear Phillips curve). We have used the linearized Phillips curve here for
simplicity and exposition. We analyze the nonlinear Phillips curve in Appendix C, and the
conclusion is similar to Proposition 1 but the proof is more complicated.

Remark 2 (Explosive equilibria). A key clause is the requirement that equilibria satisfy Con-
dition 1, ruling out explosions. What if asymptotic explosions were permitted, while finite-time
explosions were ruled out? It turns out that, by adopting an aggressive nonlinear Taylor rule,
monetary policy can force an explosion in finite-time, and hence select a unique equilibrium. We
analyze this situation in Appendix D. In that sense, the spirit of Proposition 1 is preserved even
under broader notions of equilibrium.

3 A New Class of Sunspot Equilibria

Now, we demonstrate several new results pertaining to volatility in New Keynesian
models. The deterministic multiplicity in Proposition 1 already suggests the existence of
stochastic sunspot equilibria, but only if monetary policy is insufficiently aggressive. In
this section, we will show that this logic is wrong, in particular because of the presence
of risk premia. As we will then show, a different type of policy rule, which targets the
risk premium, is required to eliminate stochastic multiplicities. Finally, we argue that
risk premium targeting is fragile because it requires arbitrarily negative interest rates.

3.1 Constructing volatile equilibria

For concreteness, assume that prices are permanently rigid, i.e., κ → 0. This clarifies that
we are focusing on real indeterminacy rather than inflation indeterminacy. An additional
advantage is that we only need to study the dynamics of the output gap, rather than a
two-dimensional stochastic system. Start with an example policy rule with target rate
ῑ = ρ and nonlinear response function

Φ(x, π) = ϕx(ex − e−x), ϕx ≥ 0. (13)

Rule (13) brings theoretical clarity to the discussion. This is a super-aggressive policy
rule, evidently more aggressive than its linear approximation 2ϕxx. It would send the
deterministic economy to a finite-time explosion unless xt = 0 forever (see Appendix D),
thus selecting a unique deterministic equilibrium.
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Nevertheless, stochastic indeterminacy exists. Combining (MP) with (13) and (IS),
the drift of xt is given by

µx = ϕx(ex − e−x) +
1
2

σ2
x .

Building off of the previous analysis, the question is whether the dynamical system
characterized by (µx, σx) keeps xt finite forever. But here, the volatility σx is determined
purely via coordination, and some choices will lead to stability. To see why this is
possible, examine instead the dynamics of the level output gap yt := ext and verify
that 0 < yt < ∞ forever (and furthermore that a non-degenerate stationary distribution
exists). By Itô’s formula, the drift and diffusion of yt are

µy = ϕx(y2 − 1) + yσ2
x and σy = yσx

Right away, we see that stability is possible, if agents coordinate on sufficiently high
volatility. For example, suppose for some constant ν > 0,

σ2
x =


(

ν
y
)2

+ ϕx
1−y2

y , if y < 1;

0, if y ≥ 1.
(14)

Putting these equations together, the dynamics for yt would be

dyt =

 ν2

yt
dt +

√
ν2 + ϕxyt(1 − y2

t )dZt, if yt < 1;

ϕx(y2
t − 1)dt if yt ≥ 1.

(15)

It is relatively intuitive to see that yt > 0 for all t in this example: if y ever approached
0, the drift ν2

y would explode fast enough to push y back up. Formalizing this mathe-
matically, the process in (15) behaves asymptotically (as y → 0) like a Bessel(3) process,
which never hits 0 (more precisely, 0 is an “entrance boundary” for this process). And
consequently, xt = log(yt) does not explode negatively.5 Provided y0 ≤ 1, the process
also does not explode positively. In fact, because there is no volatility for yt ≥ 1, the
process will eventually converge to and stay stuck at the efficient level yt = 1 (i.e., the
sunspot volatility is only temporary in this example). This entire construction works for
any ν > 0, so think of ν as a parameter indexing possible sunspot equilibria. In sum-
mary, despite the super-aggressive response function (13), many equilibria exist with

5A Bessel(3) process corresponds to the solution of dXt = X−1
t dt + dZt where dZt is a one-dimensional

Brownian motion. A Bessel(3) process is also equivalent to the Euclidean norm of a three-dimensional
Brownian motion and therefore satisfies Xt > 0 for all t > 0. Taking the limit of dyt as y → 0, we can see
that ν−1y behaves exactly as a Bessel(3) process.
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different σx.
As mentioned, the particular construction above only features transitory volatility.

That was only to develop an initial understanding and is easily generalized. For exam-
ple, suppose agents coordinate on the following volatility process for some δ ∈ (0, 1):

σ2
x =


(

ν
y
)2

+ ϕx
1−y2

y , if y < 1 − δ;

0, if y ≥ 1 − δ.
(16)

The induced dynamics of yt = ext are

dyt =

 ν2

yt
dt +

√
ν2 + ϕxyt(1 − y2

t )dZt, if yt < 1 − δ

ϕx(y2
t − 1)dt if yt ≥ 1 − δ.

(17)

Provided y0 < 1, this process will eventually exit the deterministic region, enter the
volatile region, and remain inefficiently volatile for an infinite amount of time.6 Figure 1
presents a numerical construction of this example, showing that the economy is perma-
nently inefficient (y < 1), volatility is not transitory, and nevertheless Condition 1 holds
and there exists a stationary distribution for y = ex.

The key reason for equilibrium multiplicity is the risk premium, not volatility per se.
To see this clearly, contrast the linearized version of the Euler equation, which without a
risk premium is

µx = ι − π − ρ.

Repeating the above analysis in this linearized world, (15) would be replaced by

dyt =

ϕx(y2
t − 1)dt +

√
ν2 + ϕxyt(1 − y2

t )dZt, if yt < 1;

ϕx(y2
t − 1)dt, if yt ≥ 1.

(18)

The process in (18) behaves like an arithmetic Brownian motion with negative drift for
yt ≈ 0. Consequently, one would conclude from the linearized model that yt → 0 in
finite time with positive probability—in violation of Condition 1. Thus, the only possible
linearized non-explosive equilibrium can be yt = 1 at all times. A very aggressive Taylor
rule trims equilibria in this linearized stochastic world, exactly as in the deterministic

6To see all these points, note that the process has zero volatility and negative drift when y ∈ (1 − δ, 1);
therefore, the process exits the region (1 − δ, 1) and enters (0, 1 − δ) in finite time almost-surely. Upon
entering the volatile region (0, 1 − δ), the process can move around but will never reach y = 0, by the
same Bessel(3) argument established in the text. Finally, the stationary distribution will additionally have
a mass point at y = 1 − δ, because the dynamics induce yt to visit the point 1 − δ infinitely often.
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Figure 1: Equilibrium with rigid prices (κ → 0) and dynamics given by equations (16)-(17). The stationary
CDF is computed via a discretized Kolmogorov Forward equation. The resulting stationary CDF features
a mass point at y = 1 − δ. Parameters: ρ = 0.02, ν = 0.02, δ = 0.05, ϕx = 0.1.

equilibria. It is easy to verify that a similar analysis applies for arbitrary choices of σx.
The analysis so far is confined to a particular example with a specific monetary policy.

But perhaps monetary policy could act even more aggressively and eliminate the risk
premium effect. Is there some Taylor rule that can kill these equilibria? No. Agents
can always coordinate on a level of volatility that keeps yt > 0 (equivalently, xt > −∞)
for any level of aggression in the Taylor rule satisfying the following mild regularity
condition:7

Condition 2. There exists β > 0 such that Φ(x) satisfies limx→−∞ eβxΦ(x) > −∞.

Proposition 2. Suppose prices are rigid (κ → 0). Consider any Taylor rule (MP) with ῑ = ρ

that is increasing in x and satisfies Condition 2. Then, there exist a continuum of non-explosive
sunspot equilibria indexed by x0 < 0 and the volatility function σx(x). The volatility function
can be any mapping σx : R 7→ R that is finite for all x ∈ (−∞, 0) and satisfies suitable boundary
conditions as x → −∞ and x → 0.

Intuitively, the idea behind Proposition 2 is contained in the example construction
above. For any Taylor rule, agents can coordinate on a level of volatility that “undoes”
the effect of interest rates on output gap dynamics. The central bank tries to destabilize

7Note that any rule that depends on output gap in a exponential or polynomial fashion, which include
all rules considered in this paper, satisfy this condition.
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the economy, and agents coordinate on a risk premium that stabilizes it. We also em-
phasize a technical point regarding the fact that σx(x) can essentially be any function
satisfying suitable “boundary conditions”: when one cares about global stability as we
do, all that matters are boundary conditions on the equilibrium dynamics, rather than a
local analysis around the fundamental equilibrium (x, π) = (0, 0).

The construction above also suggests that self-fulfilling volatility is recessionary. Risk
premia σ2

x always provide a positive force that increases the drift µx and buoys the output
gap. In a recession (i.e., x < 0), this stabilizes the economy, pushing x back toward zero,
and provides the needed dynamic self-justification. But in a boom (i.e., x > 0), risk
premia would send the economy further and further away from steady state, which is
destabilizing. Self-fulfilling volatility is thus generally recessionary.

Proposition 3. Suppose prices are rigid (κ → 0). There exist Taylor rules (MP) such that (i)
volatile non-explosive equilibria exist and (ii) all non-explosive equilibria have xt ≤ 0 forever.

Remark 3. For analytical convenience, Propositions 2-3 are proved in the rigid price limit. How-
ever, the same intuition carries over to a world with partially-flexible prices. Indeed, Proposition
E.1 in Appendix E constructs a similar recessionary sunspot equilibrium in which both inflation
and the output gap are stochastic.

Comparing Proposition 1 to Propositions 2-3, our analysis sharply distinguishes
stochastic sunspot equilibria from their deterministic equilibria. Typically, they are
tightly linked: one often constructs the sunspot equilibria as a “lottery” over determin-
istic equilibria (Azariadis, 1981). Here instead, the presence of risk premia means that
stochastic equilibria can have a markedly different character than their deterministic
counterparts: they work through the risk premium and are necessarily recessionary.

This result that stability properties can flip in the nonlinear stochastic model is in
contrast to the conventional wisdom regarding such models. For example, Cochrane
(2023) writes

this book is really about the broad determinacy and stability properties of
monetary models. In one sense, the conclusions of these simple models are
likely to be robust, because stability and determinacy depend on which eigen-
values are greater or less than 1. As long as a model modification does not
move an eigenvalue across that boundary, the stability and determinacy con-
clusions are not changed. (Chapter 5.8)

While stability properties may be of some theoretical interest, a practical question we
ask next is whether some policies can help trim or eliminate such sunspot equilibria.
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3.2 Risk premium targeting

There is one type of rule that can restore determinacy. Following the suggestion in Lee
and Dordal i Carreras (2024), suppose we replace the plain-vanilla Taylor rule (MP) with
a rule that explicitly targets the risk premium. However, we will provide a much broader
proposition regarding the efficacy of this rule. We use

ιt = ρ + Φ(xt, πt)− (α−1{xt<0} + α+1{xt>0})σ
2
x,t. (MP-vol)

Although conventional wisdom would suggest that targeting an asset price—which
maps one-to-one into the output gap—suffices to target the risk premium, that is not
true here, intuitively because coordination on a fearful equilibrium can raise uncertainty
σx,t independently, i.e., without affecting xt in the short run. Rule (MP-vol) directly
targets the uncertainty that generates risk premia.

To see how risk premium targeting restores determinacy, substitute rule (MP-vol)
into (IS) and rewrite the resulting dynamics in terms of the level output gap yt = ext :

dyt = yt

[
Φ(xt, πt)− πt + (1 − α(xt))σ

2
x,t

]
dt + ytσx,tdZt, (19)

and where α(x) := α−1{x<0} + α+1{x>0} is the state-dependent responsiveness to the
risk premium. If α− = α+ = 1, then the risk premium vanishes from the drift, and we
are back in a situation where an aggressive response function Φ can trim equilibria by
destabilizing the economy. If α+ < 1 < α−, then the risk premium itself becomes desta-
bilizing: higher levels of σ2

x,t make the drift push xt further away from zero. Therefore, a
modified Taylor rule like (MP-vol), with more aggressive risk premium targeting in bad
times, can always eliminate equilibrium multiplicity. Again, for analytical purposes, we
state this result in the rigid price limit, with the proof in Appendix A.

Proposition 4. Suppose prices are rigid (κ → 0). With sufficiently strong risk premium target-
ing (α+ ≤ 1 ≤ α−) and sufficiently aggressive responsiveness to the output gap, the modified
Taylor rules (MP-vol) ensure that, among equilibria where e−xσx(−x) and e−xσx(x) remain
bounded as x → ∞, the unique non-explosive equilibrium is xt = 0.

The deep difference between the multiplicity of sunspot equilibria and the multiplic-
ity of deterministic equilibria was the presence of a stabilizing risk premium. And this
manifests in a qualitatively distinct policy response to restore determinacy: by targeting
the risk premium, with the interest rate moving more than one-for-one in bad times, the
central bank can use it as a destabilizing nuclear threat.
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Remark 4 (Partially-flexible prices). For analytical convenience, Proposition 4 is proved in the
rigid price limit. A similar type of analysis could be done with partially-flexible prices, but it is
much more tedious and technical. Here is a sketch of the idea. Aggressive risk premium targeting
(α− ≥ 1) reduces the drift of xt, so we have that xt ≤ x̃t, where x̃t follows a related process with
α− = 1:

dx̃t =
[
Φ(x̃t, πt)− πt −

1
2

σx(x̃t)
2
]
dt + σx(x̃t)dZt, x̃0 = x0.

As long as x̃t → −∞ in finite time, so does xt. But the analysis of x̃t is already covered
for a relevant class of Taylor rules. For example, imagine the central bank chooses Φ(x, π) =

ϕx(ex − e−x) + π. Then, the dynamics of ỹt = ex̃t are

dỹt = ϕx(ỹ2
t − 1)dt + ỹtσx(log(ỹt))dZt.

Among equilibria in which the function ỹ 7→ ỹσx(log(ỹ)) is well-behaved, one can prove that ỹt

hits zero in finite time with positive probability (because it behaves like an arithmetic Brownian
motion with negative drift as ỹt ≈ 0). This shows that x̃t → −∞ hence xt → −∞ in finite
time with positive probability. Using the technique in Appendix D, this argument can then be
extended to a response function Φ featuring greater than one-to-one response to inflation.

3.3 Feasibility of aggressive Taylor rules

The policy rules suggested by our analysis, while theoretically interesting, are very ag-
gressive. Are such extreme rules credible?

An immediate thought, following Cochrane (2011) and formalized in Neumeyer and
Nicolini (2025), is that “blow up the world” nuclear threats are generically not credible.
If the economy ever followed a path away from x = 0, could policymakers really commit
to sending x → −∞?

Another peculiarity is that all the rules advocated above share the property that ιt →
−∞ as xt → −∞. This was necessary, in fact: any policy where ιt remains bounded from
below by ιt ≥ ι cannot trim equilibria. To see this, consider the rigid-price equilibria and
inspect output gap dynamics when ιt is at its lower bound:

dxt =
[
ι − ρ +

1
2

σ2
x,t

]
dt + σx,tdZt, when xt < 0. (20)

In the stochastic case, a sufficiently high level of uncertainty can raise the drift and
create stable stochastic dynamics. For instance, suppose agents coordinate on a constant
variance σ2

x > 2(ρ − ι) when xt < 0 (and zero when xt ≥ 0). This induces xt to behave
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like an arithmetic Brownian motion with positive drift at the lower bound ι = ι. By the
well-known fact that a positive-drift arithmetic Brownian motion has +∞ as its limit, we
establish that lim inft→∞ E[xt1xt<0] > −∞ almost-surely, so Condition 1 is satisfied. We
have just proved the following.

Proposition 5. Suppose prices are rigid (κ → 0). If interest rates are lower bounded, ιt ≥ ι,
then any x0 ≤ 0 corresponds to at least one valid non-explosive equilibrium.

With a zero lower bound (ZLB), or any lower bound, certain monetary threats are
not credible. The reason is precisely that our sunspot equilibria are recessionary and self-
sustained by high risk premia. In particular, suppose we are in a hypothetical recession
(i.e., low x). An active monetary policy seeking to eliminate this hypothetical recession
would want to set interest rates very low, thereby impounding a very negative drift to
consumption growth. But the lower bound ιt ≥ ¯

ι prevents such a force from being too
strong. In that case, risk premia can be so high as to stabilize the economy, outweighing
the destabilizing effect of monetary policy.

We further analyze the ZLB case in Appendix F. There, we even generalize policy
by allowing for optimal discretionary monetary policy, following the work of Caballero and
Simsek (2020), and yet a tremendous amount of equilibrium multiplicity remains, pre-
cisely because policy is constrained at the ZLB. The mechanics at play are well-described
as a “volatility trap”: volatility rises, pushes the economy to the ZLB, and then keeps it
trapped there, because of the stabilizing effect of risk premia.

In a world with rate constraints such as the ZLB, what restores determinacy? One
possibility we pursue next is the Fiscal Theory of the Price Level (FTPL).

4 Fiscal Theory

Let us now explore a version of “Fiscal Theory of the Price Level” (FTPL). The idea
here is to propose some fiscal policies that can prune equilibria. Our contribution to the
literature is analysis of FTPL in a nonlinear stochastic monetary model.

We formulate fiscal policy in a particularly transparent situation: lump-sum taxation
with government transfers to the representative household. Denote the lump-sum taxes
levied by τt and the transfers by ξt, both in real terms. The real primary surplus of the
government is then

St := τt − ξt.

Since the government can pick both taxes and transfers, it can effectively choose St.
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Taxes and transfers do not necessarily offset, so the government borrows by issuing
short-term nominally riskless bonds Bt. Later we will generalize to long-term debt. The
flow budget constraint of the government is

Ḃt = ιtBt − PtSt. (21)

The nominal interest rate ιt will be controlled by monetary policy.
Because of the lump-sum nature of the taxes and transfers, there is no impact on the

household optimality conditions. Essentially, Ricardian equivalence holds. Indeed, the
present-value formula for government debt is

Bt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
, (GD)

where M denotes the real stochastic discount factor process (this is because the transver-
sality condition limT→∞ Et[MTBT/PT] = 0 holds in our representative agent setup).
While the representative household holds the government bonds Bt, it also owes the
government future taxes and is owed future transfers. Therefore, the lifetime budget
constraint of the representative household is

Et

[ ∫ ∞

t

Mu

Mt

WuLu

Pu
du
]
+

Bt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
+ Et

[ ∫ ∞

t

Mu

Mt
Cudu

]
.

By (GD), the lifetime budget constraint is equivalent to the budget constraint without
any debt at all. And so the household consumption FOC is unchanged.

For reference, let us restate the IS curve (IS) and Phillips curve (PC) as the following
dynamical system in terms of (xt, πt):

dxt =
[
ιt − πt − ρ +

1
2

σ2
x,t

]
dt + σx,tdZt (22)

dπt =
[
ρπt − κ

( e(1+φ)xt − 1
1 + φ

)]
dt + σπ,tdZt. (23)

Together with some nominal interest rate rule for ιt and some surplus rule for St, equi-
librium is fully characterized by the government debt valuation (GD) and the dynamical
system (22)-(23). We continue to require the non-explosion Condition 1.

Our previous results did not have government debt or taxes/transfers. However,
everything we have said until now still holds with fiscal policies, so long as those policies
are “passive” in the language of Leeper (1991). In particular, suppose fiscal policies are
chosen so that equation (GD) always holds. Then, government debt valuation plays
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no role in the analysis, and by the Ricardian equivalence property shown above, the
equilibria must be identical to those in Sections 2-3. Next, we explore what happens
when fiscal policies are “active,” as opposed to passive.

4.1 FTPL as equilibrium selection: the key argument

Consider, as a first example, a fiscal policy with real primary surpluses given by

St = s̄Yt, with s̄ > 0. (24)

This policy is “active” because its real levels are chosen in a way that does not automat-
ically ensure the government debt valuation equation holds (e.g., St is independent of
the price level). Such proportional surpluses are also quite natural, in that they arise in
the real world the case of proportional taxes and transfers—although we abstract from
the distortionary effects of such policies.

With this policy, and using (GD) along with the consumption FOC (8), we have

Bt

Pt
= s̄Et

∫ ∞

t
e−ρ(u−t) Yt

Yu
Yudu = ρ−1s̄extY∗. (25)

Now, apply Itô’s formula to (25), using the fact that dPt/Pt = πtdt, to get[Bt

Pt
ιt − s̄Yt −

Bt

Pt
πt

]
dt = ρ−1s̄extY∗[ιt − πt − ρ + σ2

x,t]dt + ρ−1s̄extY∗σx,tdZt.

Matching the “dZ” terms on both sides, we find σx,t = 0. Then, matching the “dt” terms
on both sides, we find an identity: given σx,t = 0, and using equation (25), the “dt” terms
match for any ιt, πt, and xt. In other words, the FTPL selects σx,t = 0, and that is all it
does after the initial date t = 0. This argument is completely independent of the level of
price stickiness κ and amount of self-fulfilling inflation volatility σπ,t (if any).

It turns out this same logic holds even if the surplus-to-output ratio is not con-
stant but almost any exogenous process. In particular, let Ωt be an exogenous vector
Markov diffusion, driven by a multivariate Brownian motion Z that is independent of
the sunspot shock Z. Ω is the state vector describing fiscal policy. Let st = s(Ωt) for
some function s(·), and suppose

St = s(Ωt)Yt. (26)

Of course, allowing surplus shocks through Ωt does alter the IS curve, which we take
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into account in the appendix. Even in this more general specification, the following
theorem holds. The proof of all results in this section can be found in Appendix A.4,
with some important preliminary characterizations provided in Appendix A.3.

Theorem 1. The economy with fiscal policy following (26) necessarily has σx,t = 0. Conversely,
if σx,t = 0, and if dxt takes a particular loading on the surplus shocks dZt, then the government
debt valuation equation (GD) automatically holds at every date, given it holds at t = 0.

Theorem 1 says that FTPL (i) selects equilibria without real self-fulfilling volatility and (ii)
does nothing else besides pin down real demand shocks. This is surprising because we usually
think of FTPL as selecting inflation or the price level. We elaborate on (i)-(ii) in turn.

Why FTPL eliminates volatility. The mathematical reasoning for why FTPL selects
these equilibria is quite simple in this case: the aggregate real debt balance Bt/Pt evolves
“locally deterministically” (meaning it only has drift and no diffusion over small time
intervals dt), and so its present value Et[

∫ ∞
t

Mu
Mt

Sudu] must also not have any diffusion.
This then implies xt must not have any sunspot volatility. Indeed, in all the surplus
specifications considered so far, St/Yt = st = s(Ωt) is an exogenous process. And so you
can break up the real present value of surpluses into two components:

Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
= Yt × Et

[ ∫ ∞

t
e−ρ(u−t)sudu

]
︸ ︷︷ ︸

exogenous for now

, (27)

where we have used the consumption FOC (8) to replace the SDF with Mu = e−ρuY−1
u .

The second term is exogenous and only driven by the surplus shocks dZ . For the overall
expression to have no diffusion, the first term Yt must offset those surplus shocks (im-
plying a particular loading of dx on dZ) and must not have any sunspot volatility. Hence,
σx,t = 0. This result holds for any degree of price stickiness (any κ) and any inflation
volatility (any σπ,t). We revisit the determination of σπ in Section 4.5.

At first glance, the fact that Bt/Pt evolves locally deterministically seems critical but
potentially fragile. In principle, the price level itself could feature a diffusive compo-
nent, i.e., dPt/Pt = πtdt + σP,tdZt for some σP,t to be determined. However, in typical
continuous-time models of price stickiness, such a diffusion does not arise. For exam-
ple, in our world with Rotemberg price stickiness, we have proved that σP,t = 0 (see
Appendix B). If firms had such fast-moving prices, they would incur too many price ad-
justment costs, and this is not optimal. Similarly, in a world with Calvo price stickiness,
where price-setting opportunities arrive idiosyncratically at some rate χ, a fraction χdt
of firms may change their price over a short time interval dt. This also implies σP,t = 0.
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In other words, the fact that Pt evolves locally deterministically is a standard outcome of
sticky price models. Beyond being an implication of the modeling, σP,t = 0 is also deeply
reasonable: nominal rigidities should mean that there is some high-enough frequency
at which prices don’t adjust; in continuous time, that high frequency is the Brownian
one. (Furthermore, even if σP,t ̸= 0 somehow, it could not be some arbitrary equilibrium
object that allowed the government debt valuation equation to hold; it would need to be
consistent with firms’ pricing strategies.)

Debt prices, surplus rules, and discount rate variation. More broadly, one wishes to
generalize the insights above to avoid the idea that our result is “knife-edge.” In the
baseline case, the unit price of debt is fixed at 1 (given it is short-term debt), surplus-to-
output ratios are exogenous, and the equilibrium SDF is exactly reciprocal to surpluses
(due to log utility). Because of these assumptions, there is no channel that can poten-
tially absorb self-fulfilling demand shocks. The generalizations we pursue in the next
subsections relax each of these assumptions one-by-one.

Just to motivate briefly why these extensions matter, let us consider a general model
with long-term debt, a potentially endogenous surplus-to-output ratio, and CRRA utility
with risk aversion γ. In that case, we show in Appendix A.3 that the present-value
formula for aggregate government debt is

QtBt

Pt
= YtEt

[ ∫ ∞

t
e−ρ(u−t)su

(Yu

Yt

)1−γ
du
]

(28)

Suppose Yt has some self-fulfilling volatility, via σx,t ̸= 0. Equation (28) illustrates three
possible channels that can absorb this volatility, and thus permit it to exist. First, the
long-term debt price Qt can adjust to shocks; in the baseline model, Qt = 1, and so this
was not possible. Second, future surplus-to-output ratios (su)u≥t can be endogenous,
through a rule that responds to output and inflation, which allows the present value of
surplus-to-output ratios to adjust to shocks. Third, the term e−ρ(u−t)(Yu

Yt

)1−γ
= Mu

Mt
Yu
Yt

represents the net variation of discount rates (i.e., marginal utility growth Mu/Mt) and
economic growth (i.e., output growth Yu/Yt); in the baseline model, γ = 1, and this net
variation was zero.

Overall, these three extensions are ways in which terms besides Yt can have diffusive
variation. Nevertheless, we will demonstrate in subsequent sections that the key conclu-
sion of Theorem 1 continues to hold, suggesting the logic of why FTPL selects σx = 0
runs deeper than timing assumptions or mathematical artifacts.

Aggregate demand management. So then why, more deeply, do fiscal policies trim
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equilibria in this manner? One way to obtain an intuition is to consider the rigid price
limit κ → 0, where government debt becomes equivalent to real debt. Nothing about the
analysis above hinges on the value of κ, and so FTPL still selects σx = 0. At first, this
may seem confusing because FTPL is thought to be inoperative in a world with inflation-
indexed debt, as inflation-indexed debt is thought to render the price level indeterminate
(see Chapter 8.1 of Cochrane, 2023). The key is to realize that the government debt val-
uation equation (GD) becomes a “no-default” condition in a rigid-price world. Rather
than determine the price level, or future inflation, it says that surpluses must eventually
be positive enough to justify the current debt value. But given the government’s exoge-
nous taxation and spending regime, and without the flexibility that inflation provides,
the only way a government can fulfill its no-default commitment is if demand takes a
particular path. The government debt valuation equation (GD) thus constrains demand.

Our argument is that, surprisingly, a version of this logic extends to any κ > 0,
because FTPL is not really a theory of the price level per se, but a theory of aggregate
demand management. In fact, “demand management” corresponds to the typical stories
told about FTPL. Cochrane (2023), Chapter 2.3, writes

What force pushes the price level to its equilibrium value? ...If the price
level is too low, money may be left overnight. Consumers try to spend this
money, raising aggregate demand. Alternatively, a too-low price level may
come because the government soaks up too much money from bond sales.
Consumers either consume too little today relative to the future or too little
overall, violating intertemporal optimization or the transversality condition.
Fixing these, consumers again raise aggregate demand, raising the price level.

The key margin of adjustment in these stories is aggregate demand. In a frictionless
model, the equilibrium price reflecting this adjustment is the price level. But in sticky
price models, the price level cannot jump, so equilibrium partly adjusts via output.

Here, there is a sense in which entire adjustment to fiscal policy comes via output. In
particular, Theorem 1 says that FTPL eliminates self-fulfilling demand volatility, pins
down the response of x to surplus shocks, and provides an “initial condition” that we
will ultimately show pins down x0. Nothing about this story relates to inflation. Instead,
as we discuss in Section 4.5, inflation determined by monetary policy.

Generalizing the results: a Markovian class of equilibria. Next, we generalize the
key result that σx = 0. We explore (i) long-term debt; (ii) fiscal “rules” rather than
exogenous surpluses; and (iii) more general CRRA utility. Because these settings can
become substantially more complex, the proofs become unwieldy in the general case.

22



For that reason, we specialize to the following class of Markovian equilibria and prove
our claims within this class.

Definition 3. An x-Markov equilibrium is a non-explosive equilibrium such that inflation
πt and the diffusion vector of dxt are functions of (xt, st, Ωt), where st := St/Yt is the
surplus-output ratio and Ωt are any exogenous states driving st.

We conjecture that the equilibria covered by Definition 3 constitute a sufficiently gen-
eral class for the following reasons. First, it clearly covers the rigid-price limit κ → 0,
since πt = 0 is automatically a function of (x, s, Ω). Because many of our sunspot equi-
librium constructions from Section 3 have been derived in this rigid-price limit, we au-
tomatically address those. Second, Appendix E presents a volatile sunspot equilibrium
with inflation which takes the form πt = π(xt), proving that the x-Markov condition
does not by itself rule out sunspot equilibria when κ > 0. In fact, if FTPL can impose
σx = 0 within the class of x-Markov equilibria, then it will have ruled out all the sunspot
equilibria constructed in this paper. In this sense, we think the x-Markov class is rich
enough to be useful and non-trivial.

4.2 FTPL with long-term debt

One important generalization replaces short-term debt with long-term debt. This is
naturally of interest because short-term debt prices can never respond to shocks. This
may lead one to think that short-term debt mechanically, in a knife-edge sense, rules out
self-fulfilling demand volatility.

To fix ideas and keep things tractable, let us assume that debt is coupon-free and has
a constant exponential maturity structure. Per unit of time dt, a constant fraction βdt of
outstanding debts mature, and their principal must be repaid. Denote the per-unit price
of this debt by Qt. The government’s flow budget constraint is now

QtḂt = βBt − βBtQt − PtSt. (29)

This says that new net debt sales Ḃt + βBt, which garner price Qt, plus primary surpluses
PtSt must be sufficient to pay back maturing debts βBt. By standard no-arbitrage asset-
pricing, the per-unit bond price is given by

Qt = Et

[ ∫ ∞

t

MT

Mt

Pt

PT
βe−β(T−t)dT

]
. (30)
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In the above, debt is nominal, so it is priced using the nominal SDF M/P (intuitively,
dividing by P converts a nominal cash flow into a real cash flow). The total real value of
debt is QtBt/Pt, and so the government debt valuation equation is now

QtBt

Pt
= Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
. (31)

In an equilibrium with long-term debt, all three equations (29), (30), and (31) must hold.
To develop the intuition, we first consider the special example where the interest

rate is pegged ιt = ῑ. Recall the result from (27) that, if the surplus-to-output ratio st

follows an arbitrary exogenous process, then the right-hand-side of (31) equals Yt times
an exogenous variable. Equate this expression to QtBt/Pt and apply Itô’s formula to
both sides, recalling equation (29) for Ḃt and that Ṗt/Pt = πt. By matching the “dZ”
terms, we obtain

σQ,t = σx,t, (32)

where σQ denotes the loading of log(Qt) on dZt. In other words, the self-fulfilling
demand shocks must be absorbed by long-term debt prices. The key question is whether
the pricing of long-term debt in (30) is consistent with this absorption.

Now, to price each bond, note that the nominal SDF in this setting is

Mt

Pt
= exp

[
−
∫ t

0
ιudu − 1

2

∫ t

0
σ2

x,udu −
∫ t

0
σx,udZu

]
.

Using the notation Ẽ for the risk-neutral expectation (which absorbs the martingale
1
2

∫ t
0 σ2

x,udu −
∫ t

0 σx,udZu), the debt price from (30) is then

Qt = Ẽt

[ ∫ ∞

t
βe−

∫ T
t (ιu+β)dudT

]
.

Finally, use the assumption of a pegged interest rate ιt = ῑ, which implies Qt = β
ῑ+β .

Debt prices are constant, so σQ = 0, and therefore equation (32) implies σx = 0. In fact,
the risk-neutral bond pricing formula just above reveals that the only way self-fulfilling
demand can enter Qt is via the interest rate rule. But this suggests that the result is
much more general than the peg example: monetary policy would need to follow a very
particular rule in order to create fluctuations in the bond price that are consistent with
self-fulfilling demand, which generically would not happen.

The conclusions do extend to a more general setting with unpegged interest rates.
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In the generalizations we consider, the debt price is no longer constant and can have
volatility. However, the volatility implied by the bond pricing equation (30) is incon-
sistent with the bond price volatility required to support self-fulfilling demand in (31),
unless all these volatilities are zero. Essentially, the introduction of long-term debt allows
for one extra degree of freedom, namely σQ, to absorb self-fulfilling demand shocks, but
it also introduces an extra constraint, namely the no-arbitrage pricing equation for a
single unit of debt. If σQ were some arbitrary process absorbing demand shocks, that
would violate the pricing equation for debt.

Theorem 2. Consider the economy with long-term debt. Suppose equilibrium is x-Markov and
either (i) st = s̄ or (ii) κ → 0. Then, the economy necessarily has σx,t = 0.

4.3 FTPL with fiscal rules

Our next generalization allows surpluses to respond to endogenous variables in changes,
similarly to the interest rate rule. Suppose again that St = stYt, where

dst =
(
θxxt + θππt + θs(s̄ − st)

)
dt + ςsdZt, s̄ > 0, (33)

where Z is a Brownian motion independent of Z. In (33), surpluses respond to both
output and inflation, receive shocks, but otherwise mean-revert at rate θs back to s̄. In
this environment, we will also specialize to the linear Taylor rule (linear MP) with target
rate ῑ = ρ to keep the analysis tractable.

Repeating the debt valuation computation from (GD), we obtain

Bt

Pt
= YtΨt, (34)

where Ψt := Et

[ ∫ ∞

t
e−ρ(T−t)sTdT

]
(35)

In the class of x-Markov equilibria of Definition 3, we have the major simplification
that Ψt = Ψ(xt, st) for some function Ψ that only depends on xt and st. The basic
reasoning is as follows. While future surpluses sT are determined by the entire path
of (xu, πu, su)u∈[t,T), an x-Markov equilibrium has the simplifying property that σx,t =

σx(xt, st) and πt = π(xt, st) are purely functions of x and s. Together with the surplus
rule form in (33), we have that the joint dynamics of (xt, πt, st) are solely determined by
(xt, st). This Markovian property implies that Ψt is solely determined by (xt, st).

Even without computing the function Ψ, by applying Itô’s formula to (34) and exam-
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ining the loading on the sunspot shock dZt, we can say that

0 = σx,t

(
1 +

∂

∂x
Ψ(xt, st)

)
(36)

One possibility is σx = 0, which the natural case we hope to prove. On the other
hand, if σx,t ̸= 0, then the present-value of future surpluses needs to inherit any output
gap volatility, implying a particular functional form for Ψ. What we show is that this
functional form is generically inconsistent with equilibrium, which means that σx,t = 0
must hold. (“Generically” means the statement holds for almost all parameters.)

Theorem 3. Consider the economy with fiscal rule (33) and monetary rule (linear MP) with
ῑ = ρ. Suppose equilibrium is x-Markov. Suppose either (i) κ → 0 or (ii) ςs → 0 and (xt, st) is
a Feller continuous process.8 Then, generically the economy has σx,t = 0.

4.4 FTPL with general CRRA utility

Finally, we replace log utility with general CRRA u(c, l) = c1−γ

1−γ − l1+φ

1+φ . This extension
is of interest because log utility exhibits the knife-edge property that the present-value
of future surpluses can have no contribution from “discount rate fluctuations”, since the
log utility SDF is related to the inverse of output.

In the CRRA world, two changes arise from the new consumption FOC Mt = e−ρtY−γ
t .

First, the IS curve now takes the slightly different form (A.9), and it depends on γ. Sec-
ond, the present value of surpluses is now different: with a constant surplus-to-output
ratio st = s̄, we have

Et

[ ∫ ∞

t

Mu

Mt
Sudu

]
= s̄YtEt

[ ∫ ∞

t
e−ρ(u−t)

(Yu

Yt

)1−γ
du
]

The important point relative to log utility is that the present value of surpluses can now
admit an additional type of fluctuation, because future discount rates Mt = e−ρtY−γ

t do
not exactly offset surplus growth St = s̄Yt. This potentially permits short-run volatility
σx because it can be absorbed by future discount rates, leaving the present-value of
surpluses unaffected. That said, we prove that our key result carries over to CRRA
preferences in some cases. The key intuition, similar to the extensions in the main text,
is that the absorption of short-run volatility by future discount rates requires a very

8Feller continuity means that the transition laws of these processes are continuous in their initial condi-
tions. This condition should be regarded as relatively minor and potentially even superfluous because the
equilibrium restrictions in our settings will always imply that xt and st are necessarily path-continuous.
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particular specification for the present-value of surpluses, and this specification can be
shown to be inconsistent with the other equilibrium conditions.

Theorem 4. Consider the economy with CRRA utility. Consider equilibria which are x-Markov.
Then, the following hold:

(i) In the rigid-price limit (κ → 0), the economy necessarily has σx,t = 0.

(ii) If monetary policy follows a linear Taylor rule (linear MP) with target rate ῑ = ρ and
ρϕx + κ(ϕπ − 1) < 0, if the surplus-to-output ratio is constant st = s̄, if risk aversion is
γ > 1, and if the substitution elasticity ε is not too large, then the long-run equilibrium of
the economy necessarily has σx,t = 0.

4.5 Determination of inflation

Theorem 1 only provides a “local” result, i.e., that σx = 0, without characterizing the
full dynamic equilibrium. It also shows that inflation is not determined from the debt
valuation equation alone. Here, we show how monetary policy is needed to pin inflation
down. For tractability, we specialize to the following quasi-linear setting. We consider
the linearized Phillips curve (linear PC), replacing (1+ φ)−1[e(1+φ)x − 1] ≈ x in equation
(23). We then specialize the surplus dynamics in (26) to dst = λs(s̄− st)+ ςs,t · dZt, which
is a continuous-time version of an AR(1) but with an arbitrary volatility process ςs,t.
Finally, let us assume the linear Taylor rule (linear MP) with target rate ῑt = ρ − 1

2 |ςx,t|2,
where ςx is the endogenous sensitivity of x to dZ . (Because Theorem 1 pins down ςx,t,
its inclusion in the target rate is conceptually distinct from the “risk premium targeting”
we studied in Section 3.2. The present target rate only serves as a normalization, so that
the economy fluctuates around (x, π) = (0, 0).)

Writing the equilibrium dynamics in vector form, with Ft := (xt, πt)′, we have

dFt = AFtdt + BtdZt + CtdZt,

where A :=

[
ϕx ϕπ − 1
−κ ρ

]
, Bt :=

[
0

σπ,t

]
, and Ct :=

[
ς′x,t

ς′π,t

]

Notice that the first entry of Bt is zero, because of Theorem 1. Theorem 1 also places
some restrictions on the first entry of surplus shock loadings Ct. We follow a rel-
atively standard analysis by doing a spectral decomposition of the transition matrix
A = VΛV−1, and analyzing the rotated system F̃t := V−1Ft. By integrating the system
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dF̃t = ΛF̃tdt + V−1BtdZt + V−1Ct · dZt, we obtain

E0F̃t = exp(Λt)F̃0. (37)

The rest is a familiar stability analysis of (37), in view of the non-explosion Condition
1. There are three cases: both eigenvalues have positive real parts, the eigenvalues have
opposite signs, or both eigenvalues have negative real parts. Pursuing this analysis,
we then obtain the following generalization of some familiar results, with the proof in
Appendix A.5.

Proposition 6. Consider the linearized Phillips curve (linear PC), the linear Taylor rule (linear
MP) with target rate ῑ = ρ + 1

2 |ςx,t|2, and the surplus dynamics dst = λs(s̄ − st) + ςs,t · dZt. A
non-explosive equilibrium takes one of three forms, ignoring knife-edge cases for the parameters:

1. If ρ + ϕx > 0 and ρϕx + κ(ϕπ − 1) > 0, then equilibrium generically fails to exist.

2. If ρϕx + κ(ϕπ − 1) < 0, the unique equilibrium features πt =
1
2

ρ−ϕx−
√

(ρ−ϕx)2−4κ(ϕπ−1)
ϕπ−1 xt

with σx,t = σπ,t = 0.

3. If ρ + ϕx < 0 and ρϕx + κ(ϕπ − 1) > 0, then the equilibrium is not unique.

Proposition 6 is reminiscent of the large literature of FTPL in linearized New Key-
nesian models. Equilibrium cannot exist with both “active fiscal” and “active money”
regimes (case 1). Equilibrium exists and is unique when “passive money” is paired with
“active fiscal” (case 2). These results echo Leeper (1991). A finding which differs slightly
from the literature is our case 3: monetary policy that acts super aggressively against
inflation but acts counterintuitively to output induces non-uniqueness, despite active
fiscal policy. This case can have σπ ̸= 0 because monetary policy induces globally stable
dynamics through its rule. This third case shows clearly that monetary policy remains,
in fact, critical to inflation determination, even when FTPL is operative. Of these three,
the interesting case is the active-fiscal passive-money regime (case 2), which delivers a
unique equilibrium.

The most important takeaway from Proposition 6 is that FTPL eliminates self-fulfilling
fluctuations for a broad range of monetary policy rules. FTPL does not need a single
knife-edge monetary rule to do this. As long as ρϕx + κ(ϕπ − 1) < 0 (monetary policy
is not too aggressive), FTPL guarantees σx = σπ = 0. For instance, an interest rate peg
fits into this case, and delivers a unique equilibrium converging to steady state (absent
surplus shocks) at rate 1

2 [
√

ρ2 + 4κ − ρ]. The absence of self-fulfilling fluctuations con-
trasts sharply with the results of Section 3, where without active fiscal policy, sunspot
volatility could exist for any conventional monetary policy rule.
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Theorem 1 with Proposition 6 provide a clean breakdown of what fiscal and monetary
policies do. Fiscal policy provides aggregate demand management that rules out real
sunspot volatility (i.e., σx = 0) and induces surplus shocks to become demand shocks
(i.e., ςx is pinned down), for any monetary policy rule. The monetary policy rule (i.e.,
ϕx, ϕπ) then connects inflation to output. For example, in the standard case 2, monetary
policy forces πt to be a function of xt, so that sunspot inflation volatility is zero (i.e.,
σπ = 0) and inflation shocks are fiscally determined (i.e., ςπ is pinned down by ςx).9

5 Conclusion

We show that New Keynesian models inherently permit a novel type of sunspot volatility
that appears only in the nonlinear version of the model. The distinguishing features of
our volatility are that it is self-fulfilled by the presence of risk premia and can arise only
in recessionary times. While conventional monetary policy has almost no power to trim
these volatile equilibria, active fiscal policies do so across a wide variety of settings. Our
fiscal theory examples permit: any level of price stickiness, long-term debt, arbitrary
exogenous surpluses, and some types of endogenous surpluses (surplus rules).

What are the implications of our results for current practices in monetary economics?
Importantly, the standard New Keynesian paradigm of using the Taylor principle to se-
lect a unique equilibrium is not necessarily valid when considering risk and risk premia.
By contrast, the FTPL approach has merit, implying monetary and fiscal policies are not
alternatives to each other in selecting a unique equilibrium. Rather, active fiscal policy
provides determinacy in strictly more situations than active money. But here, FTPL oper-
ates differently than conventionally thought. In our nonlinear, stochastic solution, FTPL
works by eliminating the self-fulfilling volatility in real variables (i.e., σx = 0), while the
monetary policy rule is needed to determine inflation. Thus, our analysis provides a
clean distinction between the role of fiscal and monetary policies, a distinction that is
not evident in existing research that restricts attention to linear equilibria.

Finally, while we have considered a stripped-down version of the New Keynesian
model, we expect FTPL to work similarly with more features. Taking our results as
suggestive, how should researchers apply FTPL to more complex environments? As

9The reader may notice that we have paid little attention to the “initial condition” provided by FTPL.
In particular, Theorem 1 says that FTPL selects σx,t = 0 for all t ≥ 0, requires that (GD) hold at t = 0,
and does nothing more. The requirement that (GD) hold at t = 0 disciplines the initial demand level x0,
rather than disciplining anything about future dynamics (xt, πt). Indeed, consider the standard case 2 of
Proposition 6, which says that the monetary policy rule exclusively determines πt, given xt. In that case,
the IS curve, Phillips curve, Taylor rule, and surplus dynamics fully determine the dynamics of (xt, πt),
conditional on x0. The initial condition of (GD) at t = 0 then pins down x0.
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a first step, one ignores any self-fulfilling real shocks (e.g., σx = 0). Then, one pairs
fiscal policy with “passive” monetary policy and solves for a Markov equilibrium where
inflation π and other forward looking variables are functions of the output gap x and
any other state variables Ω. This is the natural outcome in our more special setting,
which we conjecture would carry over to more complex models.
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Online Appendix:
Fear, Indeterminacy, and Policy Responses

Paymon Khorrami and Fernando Mendo
March 14, 2025

A Proofs

A.1 Non-explosion and transversality conditions

For completeness, we briefly document the non-explosion requirements imposed by con-
sumer and firm optimality. We then show that our non-explosion Condition 1 suffices to
ensure these requirements hold. Thus, besides the standard derivations in the text, this
completes the proof of Lemma 1.

For the consumer side, note that the representative agent’s utility can be written

U0 = ρ−1
(

log Y∗ − (Y∗)1+φ

1 + φ

)
+
∫ ∞

0
e−ρtE

[
xt −

e(1+φ)xt

1 + φ

]
dt

We need to ensure the consumer obtains finite utility and that his transversality condition
holds. To ensure U0 > −∞, we require

lim
T→∞

Et[e−ρTxT] = 0 (A.1)

lim
T→∞

Et[e(1+φ)xT−ρT] = 0 (A.2)

Requirement (A.1) rules out ExT diverging to −∞ faster than rate ρ. Requirement (A.2)
rules out Ee(1+φ)xT diverging to +∞ faster than rate ρ. It is clear that if Condition 1
holds, then both (A.1)-(A.2) are satisfied.

The consumer’s transversality condition holds if and only if the lifetime budget con-
straint (5) holds with equality. Now, note that since price adjustment costs are non-
pecuniary, the real present value of aggregate profits are Πt = Et[

∫ ∞
t

Ms
Mt

(Ys − WsLs
Ps

)ds].
Using the resource constraint Ct = Yt and B0 = 0, we therefore have that the consumer
lifetime budget constraint (5) holds with equality, so long as all these integrals converge.
Convergence of the integrals can be evaluated using the FOCs. The consumption FOC
(8) implies E0[

∫ ∞
0 MtCtdt] = (ρλ)−1, so this integral converges. The labor FOC (7) and

market clearing Ct = Lt imply E0[
∫ ∞

0 Mt
WtLt

Pt
dt] = λ−1E0[

∫ ∞
0 e−ρtC1+φ

t dt], so this inte-

gral converges so long as E[C1+φ
t ] grows slower than eρt, which is exactly identical to

requirement (A.2) that has already been verified.
For the firm side, note that Appendix B derives the optimality conditions from the

firm’s price setting problem. There, we show that the firm’s transversality conditions
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are, in a symmetric equilibrium in which firms charge identical prices,

lim
T→∞

Et[e(1+φ)xT−ρT] = 0 (A.3)

lim
T→∞

Et[e−ρTπ2
T] = 0 (A.4)

Notice that requirement (A.3) is identical to (A.2), which we have already verified. Re-
quirement (A.4) avoids nominal explosions that imply an infinite present value of ad-
justment costs. Note that under Condition 1, this automatically holds.

A.2 Proofs for Sections 2-3

Proof of Proposition 1. See the proof of Proposition 6 in Appendix A.5 for the spectral
decomposition of the matrix A. Asymptotic instability of this system is guaranteed if
Re(λ1), Re(λ2) > 0. This holds if and only if det(A) > 0 and tr(A) > 0, which is
equivalent to ϕx > −ρ and ϕπ > 1 − ρϕx/κ.

Proof of Proposition 2. Since inflation is rigid, consider any Taylor rule with target
rate ῑ = ρ and response function Φ(x) that is increasing in x. The dynamics of yt = ext

are given by

dyt = yt

[
Φ(log(yt)) + σ2

x,t

]
dt + ytσx,tdZt.

Let Φ(x) satisfy limx→−∞ eβ̂xΦ(x) > −∞ for some β̂ > 0, as required by Condition 2.
Define β := max(1, β̂). Obviously, we also have limx→−∞ eβxΦ(x) > −∞.

Specify volatility by, for any ν > 0 and ymax < 1,

σ2
x =

 2
1+β

[
y−2βν2 − Φ(log(y))

]
, if y < ymax;

0, if y ≥ ymax.
(A.5)

Since Φ(·) is increasing and continuous, and Φ(0) = 0, we have that y−2βν2 > Φ(log(y))
for all y < ymax, as needed to ensure σ2

x ≥ 0. From here, a similar argument applies as
in the text but for the process yβ

t rather than yt.
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By Itô’s formula, and then using (A.5),

dyβ
t = βyβ

t

(
Φ(log(yt)) +

β + 1
2

σ2
x,t

)
dt + βyβ

t σx,tdZt

= β
[
yβ

t Φ(log(yt))1{yt≥ymax} +
ν2

yβ
t

1{yt<ymax}

]
dt + βyβ

t σx,tdZt

Note that

lim
y→0

y2βσ2
x(y) =

2
1 + β

(
ν2 − lim

y→0
y2βΦ(log(y))

)
=

2ν2

1 + β

the latter equality because yβΦ(log(y)) finite as y → 0, implying y2βΦ(log(y)) → 0.
Therefore, the dynamics of yβ

t coincide with a Bessel(n) process asymptotically as yt → 0,
where n := 2 + β−1.10 Because β ∈ [1, ∞), we have n ∈ (2, 3]. By properties of the
Bessel(n) process, the boundary {y = 0} is an entrance boundary, hence inaccessible, for
any n > 2.

On the other hand, for y ∈ [ymax, 1), we have dyβ
t = βyβ

t Φ(log(yt))dt < 0, by the
fact that Φ(0) = 0 and Φ(x) is increasing. Therefore, yt enters the region (−∞, ymax) in
finite time when starting from any point y0 ≤ 1. Putting together the boundary behavior
at these two endpoints, and noting that yβ

t has non-zero diffusion in the interior, we
have that yβ

t has a non-degenerate stationary distribution. Hence, yt also possesses a
non-degenerate stationary distribution, and its ergodic set is (−∞, ymax].

Finally, we prove the claim that any volatility function is valid if it satisfies suitable
boundary conditions. Instead of the σx function in (A.5), consider any alternative func-
tion σ̃x, which (i) coincides with σx for x ̸∈ (−C,−C−1) for C arbitrarily large; and (ii) is
bounded on x ∈ (−C,−C−1). By inspection, the entire proof above remains valid.

Proof of Proposition 3. Again, inflation is rigid. Consider the standard linear rule
with ῑ = ρ and Φ(x) = ϕxx, with ϕx > 0. This rule satisfies Condition 2, and hence

10Indeed, we have

dyβ ∼ βν2

yβ
dt + βν

√
2

1 + β
dZ as y ∼ 0.

Define ỹ := yβ( 1+β
2 )1/2 1

βν . Then,

dỹ ∼ (
1 + β

2β
)

1
ỹ

dt + dZ, as y ∼ 0.

A Bessel(n) process takes the form dỹ = n−1
2 ỹ−1dt + dZ, which the above process matches by picking

n = 2 + β−1.
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volatile equilibria exist. It remains to prove that xt ≤ 0 in any equilibrium.
To do this, suppose x0 > 0, leading to contradiction. Suppose σx,t is any arbitrary

equilibrium volatility process. Then, the output gap follows

dxt =
(

ϕxxt +
1
2

σ2
x,t

)
dt + σx,tdZt

Consider the auxiliary process

dx̃t = ϕx x̃tdt + σx,tdZt, x̃0 = x0,

which features an identical initial condition and shock exposure as x but without the
risk premium in the drift. By standard comparison theorems for diffusions, we thus
have E0[x̃T] ≤ E0[xT]. We may solve the SDE for x̃ as

x̃T = eϕxT x̃0 +
∫ T

0
eϕx(T−t)σx,tdZt

⇒ lim
T→∞

E0[x̃T] = lim
T→∞

eϕxT x̃0 = +∞.

Thus, E0[xT] → +∞ in violation of non-explosion Condition 1.

Proof of Proposition 4. It suffices to prove the proposition in the case α− = α+ = 1,
because when α− > 1 > α+, the drift of dxt is increased (decreased) when xt is positive
(negative). And hence the dynamics push xt further away from zero than they would in
the case α− = α+ = 1. (Formally, standard diffusion comparison theorems imply that |xt|
will be forever further from zero, almost surely, than it would in the case α− = α+ = 1.)

If α− = α+ = 1, then the dynamics of yt = ext in the rigid-price limit are given by

dyt = ytΦ(log(yt))dt + ytσx(log(yt))dZt

Recall the assumption that the volatility ytσx(log(yt)) remains bounded as yt → 0. Write
σ̄ := limy→0 yσx(log(y)). Choose Φ(x) = ϕx

2 (ex − e−x). Then, asymptotically as y → 0,
the drift of yt is equal to −ϕx

2 and the volatility equal to σ̄. This asymptotic behavior
is exactly identical to an arithmetic Brownian motion. Hence, as long as ϕx > 0, then
yt → 0 in finite time with positive probability, violating Condition 1. And so we must
have σx = 0 when y < 1. By examining the dynamics of ỹt := 1/yt,

dỹt = −ỹt[Φ(− log(ỹt)) + σx(− log(ỹt))
2]dt − ỹtσx(− log(ỹt))dZt,
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and using the assumption that volatility ỹtσx(− log(ỹt)) remains bounded as ỹt → 0,
we can argue analogously that ỹt → 0 in finite time with positive probability. Together,
these arguments imply the unique non-explosive equilibrium is yt = 1, hence xt = 0
forever.

A.3 Characterization of FTPL in a general setting

Before proving the theorems from the text, we derive a useful characterization of the
government debt valuation equation that holds in a general environment nesting all the
cases in the text. The environment below will feature a general surplus process, long-
term debt, and CRRA utility.

We first set up a general surplus dynamic that nests all cases of interest. Let Zt be
a k-dimensional Brownian motion independent of the sunspot shock Zt. Let Ω follow
a Markov diffusion driven by Z . Let the surplus-to-output ratio st := St/Yt follow a
process of the form

dst = µs(Ωt, xt, πt)dt + ςs(Ωt, xt, πt) · dZt (A.6)

dΩt = µΩ(Ωt)dt + ςΩ(Ωt) · dZt (A.7)

For now, we let the drifts and diffusions µs, µΩ, ςs, ςΩ be arbitrary functions. This is more
general than what we need going forward. Note that we obtain exogenous surpluses,
following the description in the text before equation (26), if we impose that µs and ςs

only depend on Ω. Furthermore, we obtain surplus rules if we pick the dependence of
µs on (x, π) appropriately.

Second, we generalize the model to the CRRA utility u(c, l) = c1−γ

1−γ + l1+φ

1+φ as in Section
4.4. In that case, the consumption FOC says

Mt = e−ρtC−γ
t . (A.8)

The labor-consumption margin is unaffected. Applying Itô’s formula to (A.8), and noting
that Ct = Yt = Y∗ext and − 1

dt E[ dMt
Mt

] = rt = ιt − πt, the IS curve generalizes to

dxt =
[ ιt − πt − ρ

γ
+

1
2

γσ2
x,t +

1
2

γ|ςx,t|2
]
dt + σx,tdZt + ςx,t · dZt. (A.9)

The dynamics of Yt = Y∗ext can be derived from (A.9). When γ ̸= 1, the Phillips curve is
also different and requires an additional approximation to obtain a form similar to that
used throughout the paper. Indeed, the derivation of the Phillips curve in Appendix
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B relies on MtYt ∝ e−ρt, which is no longer true with general CRRA utility. We make
this approximation, which is tantamount to approximating around steady-state where
Yt/Y0 ≈ 1. With this approximation, the Phillips curve (PC) is replaced by

µπ,t = ρπt − κ
( e(γ+φ)xt − 1

γ + φ

)
, (A.10)

where Y∗ := ( ε−1
ε )

1
γ+φ is the flexible-price output level and κ := η(ε − 1)(γ + φ) is the

composite price-stickiness parameter.
Third, we generalize to the long-term debt setup described in Section 4.2. Let Qt

denote the per-unit bond price, which has dynamics of the form

dQt = Qt

[
µQ,tdt + σQ,tdZt + ςQ,t · dZt

]
(A.11)

for some µQ, σQ, and ςQ to be determined. With long-term debt, the flow government
budget constraint is (29), the per-unit bond pricing equation is (30), and the government
debt valuation equation is (31). Substituting the consumption FOC (A.8) into (31), we
may rewrite the aggregate debt valuation equation as

QtBt

Pt
= Yγ

t Ψt where Ψt := Et

[ ∫ ∞

t
e−ρ(u−t)suY1−γ

u du
]

(A.12)

The next steps are to derive the dynamics of the two key present values Qt and Ψt.
Starting from the per-unit bond pricing equation (30), we have that the object

e−βt QtMt

Pt
+
∫ t

0

Mu

Pu
βe−βudu

is a local martingale and has zero drift. Note that, from the consumption FOC (A.8), the
nominal SDF Mt/Pt has dynamics

d(Mt/Pt) = −(Mt/Pt)
[
ιtdt + γσx,tdZt + γςx,t · dZt

]
(A.13)

Then, by applying Itô’s formula to the previous expression, and setting the resulting
drift to zero, we have

µQ,t = β − β

Qt
+ ιt + γσx,tσQ,t + γςx,t · ςQ,t (A.14)
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From the definition of Ψt, we have

e−ρtΨt +
∫ t

0
e−ρusuY1−γ

u du = Et

[ ∫ ∞

0
e−ρusuY1−γ

u du
]
,

which is a local martingale. By the martingale representation theorem, we have that

d
(

e−ρtΨt +
∫ t

0
e−ρusuY1−γ

u du
)
= e−ρt

(
σΨ,tdZt + ςΨ,t · dZt

)
for some σΨ,t and some ςΨ,t. On the other hand, we also have by applying Itô’s formula
to the left-hand-side,

d
(

e−ρtΨt +
∫ t

0
e−ρusuY1−γ

u du
)
=
[
− ρe−ρtΨt + e−ρtstY

1−γ
t

]
dt + e−ρtdΨt

Equating these last two results, and rearranging for dΨt, we have

dΨt = (ρΨt − stY
1−γ
t )dt + σΨ,tdZt + ςΨ,t · dZt (A.15)

We now state and prove a useful characterization lemma.

Lemma A.1. In the setting above with general surpluses, long-term debt, and CRRA utility,

Ψtγσx,t = ΨtσQ,t − σΨ,t (A.16)

Ψtγςx,t = ΨtςQ,t − ςΨ,t (A.17)

Conversely, if the asset-pricing equations (A.14)-(A.15) hold, and the diffusion-matching equa-
tions (A.16)-(A.17) hold, then the government debt valuation equation (A.12) holds at every date,
provided it holds at the initial date.

Proof of Lemma A.1. We apply Itô’s formula to both sides of (A.12), using the flow
government budget constraint (29), the price level dynamics dPt/Pt = πtdt, the dynamics
of xt in (A.9), the dynamics of Ψt in (A.15), and the dynamics of Qt in (A.11) and (A.14).
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Matching drift and diffusion coefficients, we obtain

[dt] :
QtBt

Pt

[
ιt − πt + γσx,tσQ,t + γςx,t · ςQ,t

]
− stYt

= Yγ
t (ρΨt − stY

1−γ
t ) + γYγ

t Ψt

[ ιt − πt − ρ

γ
+

1
2
(γ + 1)(σ2

x,t + |ςx,t|2)
]

+
1
2

γ(γ − 1)Yγ
t Ψt(σ

2
x,t + |ςx,t|2) + γYγ

t σx,tσΨ,t + γYγ
t ςx,t · ςΨ,t

[dZ] :
QtBt

Pt
σQ,t = γYγ

t Ψtσx,t + Yγ
t σΨ,t

[dZ ] :
QtBt

Pt
ςQ,t = γYγ

t Ψtςx,t + Yγ
t ςΨ,t

Equations [dZ] and [dZ ], combined with (A.12), imply (A.16)-(A.17).
Conversely, plugging (A.16)-(A.17) into the first equation [dt], using (A.12), and sim-

plifying, we obtain an identity. Therefore, the [dt] equation holds automatically, given
the other equations all hold. This means that, provided (A.12) holds at t = 0, it will hold
at every future date t > 0.

A.4 Proofs of FTPL Theorems 1-4

Proof of Theorem 1. We specialize the result of Lemma A.1 as follows. First, with log
utility (γ = 1), the present value Ψt in (A.12) becomes

Ψt := Et

[ ∫ ∞

t
e−ρ(u−t)sudu

]
Second, with the exogenous Markovian surplus process st = s(Ωt), we have that Ψt

is purely determined by Ωt, i.e., there exists a deterministic function Ψ(·) such that
Ψt = Ψ(Ωt). In that case, we have by Itô’s formula and (A.7) that σΨ,t = 0. Third, we
have instantaneously-maturing debt, which is nested in the above formulas by setting
Qt = 1. This implies σQ,t = 0. Using these results, (A.16) holds if and only if Ψtσx,t = 0.
Thus, σx,t = 0 for almost all t (except at the times when Ψt = 0, which are zero Lebesgue
measure almost-surely). For the statement about (GD) holding for every t > 0, given it
holds at t = 0, see the final statement of Lemma A.1.

Remark A.1 (Non-Markovian surpluses). From the proof of Theorem 1, it is clear that the
same arguments hold even in the more general non-Markovian case where (st)t≥0 is independent
of (Zt)t≥0, because in that case σΨ,t = 0 still holds.
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Proof of Theorem 2. The strategy of the proof is as follows. First, we characterize the
general way in which the bond price Q absorbs demand shocks to x, i.e., how the bond
price function must look for such absorption to occur. Then, we show that the dynamic
pricing equation for Q can only be consistent with the required function if inflation π

takes a particular functional form. Finally, we show that the required inflation function
cannot be consistent with the Phillips curve unless the monetary policy rule is a knife-
edge function. We need to prove the result for the constant surplus-output limit (st → s̄)
and the rigid-price limit (κ → 0). We proceed in a general way that nests both cases and
then specialize at the end of the proof.

We start by specializing the result of Lemma A.1 as follows. As in Theorem 1, the
combination of log utility (γ = 1) and exogenous Markovian surplus process st = s(Ωt),
implies that Ψt = Ψ(Ωt) for some function Ψ(·), and in particular that σΨ,t = 0.

Next, we use the x-Markov assumption (Definition 3) given in the theorem. Recall
the bond pricing equation (30), which after plugging in the nominal SDF from (A.13)
says

Qt = Et

[ ∫ ∞

t
e−
∫ u

t (ιτ+
1
2 σ2

x,τ)dτ−
∫ u

t σx,τdZτ βe−β(u−t)du
]
.

In an x-Markov equilibrium, we have that σx,t = σx(xt, Ωt), ςx,t = ςx(xt, Ωt), and πt =

π(xt, Ωt) for some functions σx, ςx, and π. In that case, the nominal interest rate ιt =

ῑ + Φ(xt, πt) = ῑ + Φ(xt, π(xt, Ωt)) is purely a function of (xt, Ωt). These facts imply
furthermore that (xt, Ωt) is a Markov diffusion (i.e., their dynamics only depend on xt

and Ωt). Consequently, the bond pricing equation above implies that Qt is purely a
function of (xt, Ωt), i.e., Qt = Q(xt, Ωt) for some function Q to be determined.

Apply Itô’s formula to Q to obtain (after dropping t subscripts)

σQ = σx∂x log Q (A.18)

ςQ = ςx∂x log Q + ςΩ∂Ω log Q (A.19)

µQ =
1
Q

[
µx∂xQ + µ′

Ω∂ΩQ +
1
2
(σ2

x + |ςx|2)∂xxQ +
1
2

tr[ς′ΩςΩ∂ΩΩQ] + ς′xςΩ∂ΩxQ
]

(A.20)

Combining these results with equations (A.14) and (A.16)-(A.17) for µQ, σQ, and ςQ (and
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using the facts that σΨ = 0, that Ψ ̸= 0 almost-surely, and that γ = 1), we obtain

σx = σx∂x log Q (A.21)

ςx +
ςΨ

Ψ
= ςx∂x log Q + ςΩ∂Ω log Q (A.22)

β − β

Q
+ ι + σ2

x + |ςx|2 +
ςx · ςΨ

Ψ
=

1
Q

(
µx∂xQ + µΩ · ∂ΩQ

)
(A.23)

1
Q

[1
2
(σ2

x + |ςx|2)∂xxQ +
1
2

tr[ς′ΩςΩ∂ΩΩQ] + ς′xςΩ∂ΩxQ
]

We will use these equations to determine σx.
Let us assume, leading to contradiction, that σx ̸= 0. For (A.21) to hold given the

assumption that σx ̸= 0, it must be that ∂x log Q = 1, and so

Q(x, Ω) = Q̄(Ω)ex

for some function Q̄. (Technically, this equation holds at all values of x, Ω such that
σx ̸= 0.) From (A.22), we then have that ςΨ/Ψ = ςΩ∂Ω log Q̄. Note that this pins down,
up to a constant, the function for Q̄, given that Ψ and ςΩ are exogenous. The constant is
pinned down by the initial condition for the aggregate debt valuation equation (A.12).
Using these results in (A.23), we have

β − β

Q
+ ι + σ2

x + |ςx|2 + ς′xςΩ∂Ω log Q̄ = µx +
1
2
(σ2

x + |ςx|2)

+ µΩ · ∂Ω log Q̄ +
1
2

tr[ς′ΩςΩ∂ΩΩQ̄]

Q̄
+ ς′xςΩ∂Ω log Q̄

Substituting µx from (A.9) with γ = 1, and simplifying, we get

(β + ρ + π)Q̄ − e−xβ = µΩ · ∂ΩQ̄ +
1
2

tr[ς′ΩςΩ∂ΩΩQ̄]

For this last equation to hold, it must be the case that

π =
β

Q̄
e−x + π̄ − β − ρ (A.24)

where π̄ :=
1
Q̄

(
µΩ · ∂ΩQ̄ +

1
2

tr[ς′ΩςΩ∂ΩΩQ̄]
)

(A.25)

i.e., inflation must be a particular function of (x, Ω). Note that π̄ is independent of x.
This proves the result for the rigid-price limit (κ → 0), since π = 0 must prevail there, in
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contradiction to equation (A.24). Hence, σx = 0 must hold for this case.
On the other hand, apply Itô’s formula to π(x, Ω) and equate the drift to (A.10),

denoting f (x) := e(1+φ)x−1
1+φ ,

ρπ − κ f (x) = µx∂xπ + µΩ · ∂Ωπ +
1
2
(σ2

x + |ςx|2)∂xxπ +
1
2

tr[ς′ΩςΩ∂ΩΩπ] + ς′xςΩ∂Ωxπ

(A.26)

Substitute µx from (A.9) and π, ∂xπ, ∂xxπ from (A.24) into equation (A.26) to obtain

e−x β

Q̄

[
ῑ + Φ(x, π)− π − ς′xςΩ∂Ω log Q̄ + µΩ · ∂Ω log Q̄ − 1

Q̄2 tr[ς′ΩςΩ∂ΩΩQ̄]
]
− κ f (x)

= −ρπ̄ + ρ(ρ + β) + µΩ · ∂Ωπ̄ +
1
2

tr[ς′ΩςΩ∂ΩΩπ̄] (A.27)

The remaining case to consider is if st → s̄ constant, in which case all terms involving
derivatives with respect to Ω vanish in (A.27), and so

e−x β

Q̄

[
ῑ + Φ(x, π)− π

]
− κ f (x) = −ρπ̄ + ρ(ρ + β) (A.28)

But equation (A.28) cannot be consistent with the solution for π in (A.24) unless the mon-
etary policy rule Φ takes a knife-edge form, and so generically we reach a contradiction.
Thus, σx = 0 must hold.

Proof of Theorem 3. The strategy of the proof is as follows. First, we characterize the
general way in which the present-value Ψ absorbs demand shocks to x, i.e., how the
function for Ψ must look for such absorption to occur. Then, we show that the dynamic
valuation equation for Ψ can only be consistent with the required function if inflation π

takes a particular functional form. Finally, we show that the required inflation function
cannot be consistent with the Phillips curve. We need to prove the result for the rigid-
price limit (κ → 0) and the no-surplus-shock limit (ςs → 0). We proceed in a general
way that nests both cases and then specialize at the end of the proof.

Use Lemma A.1 and x-Markov condition. We specialize the result of Lemma A.1 as
follows. First, we have instantaneously-maturing debt, which is nested in the formulas
by setting Qt = 1. This implies σQ,t = 0 and ςQ,t = 0. Second, we have log utility, which
implies equation (34) holds, which is the same as equation (A.12) with γ = 1. Hence,
equations (A.16)-(A.17) imply Ψtσx,t = −σΨ,t and Ψtςx,t = −ςΨ,t.

Next, we use the x-Markov assumption (Definition 3) given in the theorem. In that
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case, and using the surplus dynamics in (33), we have that Ψt = Ψ(xt, st) for some
function Ψ, as argued in the text. By Itô’s formula, this implies that (after dropping t
subscripts)

σΨ = σx∂xΨ

ςΨ = ςx∂xΨ + ςs∂sΨ

µΨ = µx∂xΨ + µs∂sΨ +
1
2
(σ2

x + |ςx|2)∂xxΨ +
1
2

ς2
s∂ssΨ + ςxςs∂sxΨ,

where the surplus drift µs is given in (33) by

µs = θxx + θππ + θs(s̄ − s) (A.29)

Combining these three expressions with equations (A.16)-(A.17) and (A.15), we obtain

−Ψσx = σx∂xΨ (A.30)

−Ψςx = ςx∂xΨ + ςs∂sΨ (A.31)

ρΨ − s = µx∂xΨ + µs∂sΨ +
1
2
(σ2

x + ς2
x)∂xxΨ +

1
2

ς2
s∂ssΨ + ςxςs∂sxΨ (A.32)

If σx ̸= 0, then π is a particular function. Let us assume, leading to contradiction, that
σx ̸= 0. For (A.30) to hold given the assumption that σx = 0, it must be that ∂xΨ = −Ψ,
and so

Ψ(x, s) = Ψ̄(s)e−x

for some function Ψ̄(s). Substituting this result into (A.31), it must be that ςs∂sΨ = 0,
which means that Ψ̄(s) = Ψ̄ constant. Substituting these results into equation (A.32),
and also substituting µx from (A.9) with γ = 1, we have

exs =
(
ῑ + Φ(x, π)− π

)
Ψ̄. (A.33)

There are two cases. If Φ(x, π) − π is independent of π, then equation (A.33) cannot
hold for all (x, s), meaning we have a contradiction, and we are done. If Φ(x, π) − π

depends on π, then equation (A.33) can only hold if inflation π is a particular function
of (x, s). Let us denote this implicit solution by π̃(x, s).

Case (i): rigid-price limit. Note that if κ → 0 (rigid price limit), we require π = 0,
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so (A.33) cannot hold for all (x, s), which is a contradiction implying σx = 0 above.
This proves the claim for the κ → 0 case. (Note also that this case does not require the
Feller-continuity assumption, nor any assumption on the Taylor rule.)

Case (ii): no-surplus-shock limit. For the no-surplus-shock limit (ςs → 0 and ςx → 0),
we must continue the line of argument, and we will require the assumed Taylor rule and
the Feller continuity condition. Because this part of the proof is slightly more involved,
we break it up into steps.

Step 0: notation and proof outline. Let V denote the region of the state space with
volatility, and let Vc be its complement. Our equilibrium volatility in this case will take
the form

σx(x, s)2 =

σ̃x(x, s)2, if (x, s) ∈ V ;

0, if (x, s) ∈ Vc
(A.34)

for some function σ̃x(x, s)2 which is strictly positive on V . The proof consists of the
following steps:

1. Identify the unique value of σ̃2
x(x, s) given a point (x, s) ∈ V

2. Using this solution, prove that σ̃2
x(x, s) eventually becomes negative, and so Vc is

non-empty

3. Characterize the equilibrium on the set Vc, in particular the present-value Ψ

4. Conclude by showing Ψ, when pieced together across V and Vc, violates the Feller-
continuity condition, and so Vc must be the entire space R2

Step 1: a unique solution for σ2
x . We continue analyzing the situation σx ̸= 0 from our

general characterization above. With the linear Taylor rule, the solution to (A.33) is

π̃(x, s) =
exsΨ̄−1 − ῑ − ϕxx

ϕπ − 1
(A.35)

Apply Itô’s formula to π(x, s) and equate the drift to (A.10), denoting f (x) := e(1+φ)x−1
1+φ ,

ρπ − κ f (x) = µx∂xπ + µs∂sπ +
1
2

σ2
x ∂xxπ (A.36)
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Into equation (A.36) we plug µx from (A.9), µs from (A.29), and the solution π̃ from
(A.35). This converts (A.36) into an equation for σ2

x . In particular, define

σ̃2
x :=

(
exs − 1

2
Ψ̄ϕx

)−1[
ρ(exs − Ψ̄ῑ − Ψ̄ϕxx)− Ψ̄(ϕπ − 1)κ f (x) (A.37)

−
[
exsΨ̄−1 − ρ

]
(exs − Ψ̄ϕx)−

[
θxx + θπ

exsΨ̄−1 − ῑ − ϕxx
ϕπ − 1

+ θs(s̄ − s)
]
ex
]

Then, σ̃2
x uniquely solves equation (A.36) given π = π̃. This shows that σ2

x must take
a particular functional form, i.e., equal to σ̃2

x , whenever it is non-zero, showing that the
construction (A.34) is maximally general for x-Markov equilibria.

Step 2: σ̃2
x < 0 occurs, and so Vc is non-empty. However, we show next that σ̃2

x neces-
sarily becomes negative for some values of (x, s). Suppose ϕx ̸= 0. Then, if x → −∞, we
have that f (x) → − 1

1+φ and so

lim
x→−∞

σ̃2
x = lim

x→−∞

2
ϕx

[
ρ(ῑ + ϕxx) + κ

1 − ϕπ

1 + φ
+ ρϕx

]
= −∞

On the other hand, if ϕx = 0, then take the limit x → −∞ on the half-plane s > 0 to get

lim
x→−∞

σ̃2
x = lim

x→−∞

1
s

[
ρ(s − e−xΨ̄ῑ)− Ψ̄κ

1 − ϕπ

1 + φ
+ ρs −

[
θxx +

θπ ῑ

1 − ϕπ
+ θx(s̄ − s)

]]
= −∞,

since Ψ̄ > 0 if the government has positive debt. In either case, we have that σ̃2
x in (A.37)

becomes negative at some finite levels of (x, s).
Define the non-empty set V− := {(x, s) : σ̃2

x < 0}. Since σ2
x ≥ 0 is required (variance

must be positive), we have that the non-volatile set Vc must contain V−. Hence, Vc is
non-empty.

Step 3: Characterize equilibrium on the non-volatile set. Next, consider the equilib-
rium on the set Vc, where σx = 0. Since we are operating in the no-surplus-shock limit,
the dynamics of (x, π) are deterministic on this set. Going back to equation (A.36) and
plugging µx from (A.9), µs from (A.29), the assumed Taylor rule, and σx = 0, we have
the following PDE for π:

ρπ − κ f (x) = [ϕxx + (ϕπ − 1)π]∂xπ + [θxx + θππ + θs(s̄ − s)]∂sπ on Vc (A.38)

This is a first-order quasilinear PDE with locally Lipschitz continuous coefficients. Hence,
by the method of characteristics, a unique solution exists up to a boundary condition.
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Let π0 denote any solution to (A.38).
Going back to equation (A.32), and substituting the expressions for µx, µs, as well as

σx = 0, ςx = ςs = 0, the Taylor rule, and π = π0, we obtain a linear differential equation
for Ψ(x, s):

ρΨ − s = [ϕxx + (ϕπ − 1)π0]∂xΨ + [θxx + θππ0 + θs(s̄ − s)]∂sΨ on Vc (A.39)

Let Ψ0 denote the solution to (A.39).
We now prove that Ψ0 must depend on s. Indeed, suppose not, leading to contradic-

tion. Then, from (A.39), after setting ∂sΨ = 0, we have

π0 =
s + ϕxx∂xΨ0 − ρΨ0

1 − ϕπ

∂sπ0 =
1

1 − ϕπ

∂xπ0 =
(ϕx − ρ)∂xΨ0 + ϕxx∂xxΨ0

1 − ϕπ

Plug these back into (A.38) to obtain

0 = −ρ[s + ϕxx∂xΨ0 − ρΨ0] + (1 − ϕπ)κ f (x)

− [s + ϕxx∂xΨ0 − ρΨ0 − ϕxx]((ϕx − ρ)∂xΨ0 + ϕxx∂xxΨ0)

+ θxx +
θπ

1 − ϕπ
(s + ϕxx∂xΨ0 − ρΨ0) + θs(s̄ − s)

For this to hold for all s and x, given Ψ0 does not depend on s, the coefficients multiply-
ing s must sum to zero, and then the remaining terms must also sum to zero, i.e., the
following two equations both need to hold:

0 = −ρ − ((ϕx − ρ)∂xΨ0 + ϕxx∂xxΨ0) +
θπ

1 − ϕπ
− θs (A.40)

0 = −ρ[ϕxx∂xΨ0 − ρΨ0] + (1 − ϕπ)κ f (x)

− [ϕxx∂xΨ0 − ρΨ0 − ϕxx]((ϕx − ρ)∂xΨ0 + ϕxx∂xxΨ0)

+ θxx +
θπ

1 − ϕπ
(ϕxx∂xΨ0 − ρΨ0) + θs s̄ (A.41)

Combine these two equations by eliminating the second derivative, and simplify to ob-

47



tain

0 = (1 − ϕπ)κ f (x) +
[( θπ

1 − ϕπ
− θs − ρ

)
ϕx + θx

]
x + θs(ϕxx∂xΨ0 − ρΨ0) + θs s̄ (A.42)

As linear ODEs, (A.40) and (A.42) each feature a unique solution. But these solutions
need to coincide, which cannot generically be the case. Thus, we have a contradiction,
and Ψ0 cannot be independent of s.

Step 4: Piece together the solution and apply Feller-continuity. Consequently, using
these results in conjunction with our previous results on the volatile set V , we have that

Ψ(x, s) =

Ψ̄e−x, if (x, s) ∈ V ;

Ψ0(x, s), if (x, s) ∈ Vc.
(A.43)

In particular, since Ψ0 must depend on s by the previous step, we have that Ψ cannot be
continuous on the boundary ∂V of the volatile set.

Recall the definition of the present-value Ψ in (A.12), which implies in our current
x-Markov equilibrium that

Ψ(xt, st) = Et

[ ∫ ∞

t
e−ρ(u−t)sudu

]
for some function Ψ. Using Feller-continuity, we have that Ψ must be a continuous
function, which contradicts equation (A.43). This contradiction proves that either V is
empty of Vc is empty. But step 2 has already proven that Vc is non-empty. Hence, V is
empty, implying σx = 0 everywhere.

Proof of Theorem 4. The strategy of the proof is very similar to Theorem 3.
We specialize the result of Lemma A.1 as follows. First, we have instantaneously-

maturing debt, which is nested in the above formulas by setting Qt = 1. This implies
σQ,t = 0 and ςQ,t = 0. Hence, equations (A.16)-(A.17) imply γΨtσx,t = −σΨ,t and
γΨtςx,t = −ςΨ,t.

Next, we use the x-Markov assumption given in the theorem. In an x-Markov equi-
librium, we have that σx,t = σx(xt, Ωt), ςx,t = ςx(xt, Ωt), and πt = π(xt, Ωt) for some
functions σx, ςx, and π. In that case, the nominal interest rate ιt = ῑ + Φ(xt, πt) =

ῑ + Φ(xt, π(xt, Ωt)) is purely a function of (xt, Ωt). These facts imply furthermore that
(xt, Ωt) is a Markov diffusion (i.e., their dynamics only depend on xt and Ωt). Since
st = s(Ωt) and Yt = Y∗ext , equation (A.12) for Ψt implies that there exists some function
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Ψ such that Ψt = Ψ(xt, Ωt).
Apply Itô’s formula to Ψ to obtain (after dropping t subscripts)

σΨ = σx∂xΨ

ςΨ = ςx∂xΨ + ςΩ∂ΩΨ

µΨ = µx∂xΨ + µ′
Ω∂ΩΨ +

1
2
(σ2

x + |ςx|2)∂xxΨ +
1
2

tr[ς′ΩςΩ∂ΩΩΨ] + ς′xςΩ∂ΩxΨ

Combining these three expressions with equations (A.16)-(A.17) and (A.15), we obtain

−Ψγσx = σx∂xΨ (A.44)

−Ψγςx = ςx∂xΨ + ςΩ∂ΩΨ (A.45)

ρΨ − s(Y∗)1−γe(1−γ)x = µx∂xΨ + µ′
Ω∂ΩΨ +

1
2
(σ2

x + |ςx|2)∂xxΨ (A.46)

+
1
2

tr[ς′ΩςΩ∂ΩΩΨ] + ς′xςΩ∂ΩxΨ

Let us assume, leading to contradiction, that σx ̸= 0. For (A.44) to hold given the
assumption that σx = 0, it must be that ∂xΨ = −γΨ, and so

Ψ(x, Ω) = Ψ̄(Ω)e−γx

Substituting this result into (A.45), it must be that ςΩ∂ΩΨ = 0, which means that Ψ̄(Ω) =

Ψ̄ constant. Substituting these results into equation (A.46), and also substituting µx from
(A.9), we have

(Y∗)1−γexs =
(
ῑ + Φ(x, π)− π

)
Ψ̄ (A.47)

which can only hold if inflation π is a particular function of (x, Ω). There are two cases.
If Φ(x, π) − π is independent of π, then equation (A.47) cannot hold for all (x, Ω),
meaning we have a contradiction, and we are done. If Φ(x, π)− π depends on π, then
equation (A.47) can only hold if inflation π is a particular function of (x, Ω). Let us
denote this solution by π̃(x, Ω).

Note that if κ → 0 (rigid price limit), we have π = 0, so (A.47) cannot hold for all
(x, Ω), which is a contradiction implying σx = 0 above. This proves the claim for the
κ → 0 case. (Note also that this case does not require the assumption on the Taylor rule
nor the clause about the “long-run equilibrium”.)

We next need to address the constant surplus-output ratio case st = s̄, which requires
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the assumed Taylor rule. With the linear Taylor rule and s = s̄, the solution to (A.47) is

π̃(x) =
Gex − ῑ − ϕxx

ϕπ − 1
, where G := (Y∗)1−γΨ̄−1s̄ > 0 (A.48)

Apply Itô’s formula to π(x), and equate the drift to (A.10), denoting f (x) := e(γ+φ)x−1
γ+φ ,

ρπ − κ f (x) = µx∂xπ +
1
2

σ2
x ∂xxπ (A.49)

Into equation (A.49) we plug µx from (A.9) and the solution π̃ from (A.48). This converts
(A.49) into an equation for σ2

x . In particular, define

σ̃2
x :=

2
γ

γρ(Gex − ῑ − ϕxx)− γ(ϕπ − 1)κ f (x)− (Gex − ρ)(Gex − ϕx)

(γ + 1)Gex − γϕx
(A.50)

Then, σ̃2
x solves equation (A.49) given π = π̃. This shows that σ2

x must take a particular
functional form, i.e., equal to σ̃2

x , whenever it is non-zero.
However, we show next that σ̃2

x necessarily becomes negative for some values of x.
Suppose ϕx ̸= 0. Then, if x → −∞, we have that f (x) → − 1

γ+φ and so

lim
x→−∞

σ̃2
x = lim

x→−∞

2
γ

γρ(ῑ + ϕxx) + γκ
1−ϕπ

γ+φ + ρϕx

γϕx
= −∞

On the other hand, if ϕx = 0, then

lim
x→−∞

σ̃2
x = lim

x→−∞

2
γ

γρG − γρῑe−x − γκ
1−ϕπ

γ+φ e−x + ρG

(γ + 1)G
= −∞,

since G > 0 if the government has positive debt (i.e., s̄ > 0 and Ψ̄ > 0). In either case,
we have that σ̃2

x in (A.37) becomes negative at some finite level of x. On the other hand,
substituting x = 0 in (A.50), and using the target rate ῑ = ρ, we have

σ̃2
x(0) =

2
γ
(G − ρ)

γρ + ϕx − G
(γ + 1)G − γϕx

Note that G > γρ + ϕx if γ > 1 and ε is not too large. To see this, recall that Y∗ =

( ε−1
ε )

1
γ+φ , so that small enough ε can make Y∗ arbitrarily small. Hence, G = (Y∗)1−γΨ̄−1s̄

becomes arbitrarily large for small ε. Therefore, σ̃2
x(0) necessarily becomes negative for

small enough ε and γ > 1.
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Thus, we have proven that the set V− := {x : σ̃2
x ≤ 0} is non-empty. Let V be any

subset of R\V−. Put

σ2
x =

σ̃2
x , if x ∈ V ;

0, if x ∈ Vc.
(A.51)

Every x-Markov equilibrium that satisfies (A.48)-(A.49) and has σx ̸= 0 must take the
form (A.51) for some V ⊂ R2, because we cannot have σ2

x < 0. However, since our
approach will evaluate the state dynamics on the boundary ∂V , it suffices to assume this
boundary is minimal (i.e., two points). In particular, given σ̃2(−∞) < 0 and σ̃2(0) < 0,
we assume without loss of generality that Vc = (x, x) is an interval in the negative real
line, i.e., x < x < 0.

For xt to have volatility in its long-run distribution, it must be the case that its dynam-
ics keep it in the interval (x, x). Since the function σ̃2

x is continuous, it must be bounded
at x, so it cannot cause the drift µx to diverge. In that case, the only way xt ≥ x can hold
with probability 1 is if

σ2
x(x) = 0 and µx(x) = γ−1[ϕxx + (ϕπ − 1)π̃(x)] ≥ 0

On the other hand, the only way xt ≤ x can hold with probability 1 is if

σ2
x(x) = 0 and µx(x) = γ−1[ϕxx + (ϕπ − 1)π̃(x)] ≤ 0

Substituting π̃ from (A.48), we have ϕxx + (ϕπ − 1)π̃(x) = Gex − ῑ, and so the boundary
requirements are

0 ≤ Gex − ῑ

0 ≥ Gex − ῑ

which cannot both hold since G > 0 and x > x. This contradiction implies that σx,t = 0
in the long-run distribution.
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A.5 Proof of Proposition 6

First, note that the spectral decomposition of A = VΛV−1 is

Λ =

[
λ1 0
0 λ2

]
and V =

[
v(λ1) v(λ2)

]
,

where the eigenvalues λ1, λ2 and the corresponding eigenvectors v(λ1), v(λ2) are

λ1 =
1
2

[
ρ + ϕx +

√
(ρ − ϕx)2 − 4κ(ϕπ − 1)

]
λ2 =

1
2

[
ρ + ϕx −

√
(ρ − ϕx)2 − 4κ(ϕπ − 1)

]
and v(λ) =

(
ϕπ−1
λ−ϕx

1

)
.

Recall equation (37) that

E0[F̃t] = exp(Λt)F̃0, (A.52)

where F̃t = V−1Ft is a rotated version of the state Ft = (xt, πt)′, and where

V−1 =
1

λ2 − λ1

[ (λ1−ϕx)(λ2−ϕx)
ϕπ−1 −(λ1 − ϕx)

− (λ1−ϕx)(λ2−ϕx)
ϕπ−1 λ2 − ϕx

]
.

In equation (A.52), exp(Λt) refers to element-by-element exponentiation of Λ.
Let’s consider the three cases of the proposition, using Condition 1 to kill explosive

solutions to (A.52):

1. Case 1: ρ + ϕx > 0 and ρϕx + κ(ϕπ − 1) > 0.

In this case, Re(λ1), Re(λ2) > 0. Therefore, the only non-explosive solution to
(A.52) is F̃t = 0, which implies Ft = 0, i.e., xt = πt = 0.

2. Case 2: ρϕx + κ(ϕπ − 1) < 0.

In this case, both eigenvalues are real and have opposite signs: λ1 > 0 > λ2.
Therefore, all non-explosive solutions to (A.52) must satisfy F̃(1)

t = 0, which using
the expression for V−1 implies

πt =
λ2 − ϕx

ϕπ − 1
xt.
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Given σx,t = 0 from Theorem 1, this then implies σπ,t = 0 as well.

3. Case 3: ρ + ϕx < 0 and ρϕx + κ(ϕπ − 1) > 0.

In this case, Re(λ1), Re(λ2) < 0, meaning all initial conditions to (A.52) are non-
explosive. Therefore, any F̃0 corresponds to a valid equilibrium.

In all cases, we note that x0 and ςx,t are pinned down by (GD) at t = 0 and at t > 0,
respectively. Indeed, using dst = λs[st − s̄]dt + ςs,t · dZt in equation (A.12), we obtain

Ψt =
s̄
ρ
+

st − s̄
ρ + λs

,

which is exogenous. Using Ψ0 in the t = 0 version of (GD), we obtain

x0 = log(
B0

Ψ0P0Y∗ ). (A.53)

On the other hand, for t > 0, we have ςΨ = 1
ρ+λs

ςs. Apply this in equation (A.17) of
Lemma A.1, with γ = 1 and Q ≡ 1, to obtain

ςx,t = − ρ

λs s̄ + ρst
ςs,t. (A.54)

Thus, x0 and ςx,t are pinned down.
The remaining claims to prove are the existence/uniqueness statements. In Case 1,

the equilibrium fails to exist generically, because xt = 0 cannot be consistent with (A.53)
and (A.54). In Case 2, the equilibrium is unique, because the initial conditions x0 and
π0 = λ2−ϕx

ϕπ−1 x0 are pinned down by (A.53), and because the surplus shock exposures ςx,t

and ςπ,t =
λ2−ϕx
ϕπ−1 ςx,t are pinned down by (A.54). In Case 3, the equilibrium is not unique

because, although x0 is pinned down by (A.53), π0 is not pinned down. Furthermore, πt

can have arbitrary sunspot volatility σπ,t, despite the fact that σx,t = 0.

B Inflation Dynamics under Rotemberg

Here, we generalize the sticky-price model of Rotemberg (1982) to our environment.
Since firms in our economy are ex-ante identical, they will have identical utilization
and price-setting incentives, allowing us to study a representative firm’s problem and a
symmetric equilibrium.

To set up the representative intermediate-goods-producer problem, let lt denote the
firm’s hired labor, at some equilibrium wage Wt. The firm produces yt = lt. The firm
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makes its price choice pt, internalizing its demand yt = (pt/Pt)−εYt, where Pt and Yt

are the aggregate price and output. This demand curve comes from an underlying
Dixit-Stiglitz structure with CES preferences (with substitution elasticity ε > 1) and
monopolistic competition in the intermediate goods sector.

Letting Mt denote the real SDF process, the representative firm solves

sup
p,l

E
[ ∫ ∞

0
Mt

( pt

Pt
yt −

Wtlt
Pt

− 1
2η

( 1
dt

dpt

pt

)2Yt

)
dt
]

(B.1)

subject to yt = (pt/Pt)
−εYt (B.2)

yt = lt (B.3)

The quadratic price adjustment cost in (B.1) has a penalty parameter η. As η → 0 (η →
∞), prices become permanently rigid (flexible). We assume that this price adjustment
cost is purely non-pecuniary for simplicity (this means that adjustment costs do not
affect the resource constraint). Alternatively, we could redistribute these adjustment
costs lump-sum to the representative household.

Before solving the problem, we can immediately note the following property: price
changes are necessarily absolutely continuous (“order dt”). Indeed, the adjustment cost
per unit of time is a function of price changes per unit of time, i.e., 1

dt
dpt
pt

. If prices

were to change faster than dt, say with the Brownian motion dZt, then 1
dt

dpt
pt

would be
unbounded almost-surely (because Brownian motion is nowhere-differentiable), leading
to infinite adjustment costs. Consequently, we know that 1

dt
dpt
pt

= ṗt
pt

for some ṗt.
The firm’s optimal price sequence solves a dynamic optimization problem. Substitut-

ing the demand curve from (B.2) and the production function from (B.3), we may rewrite
problem (B.1) as

sup
ṗ

Et

[ ∫ ∞

t

MsYs

MtYt

(( ps

Ps

)1−ε − Ws

Ps

( ps

Ps

)−ε − 1
2η

( ṗs

ps

)2
)

ds
]
.

Furthermore, note that in the log utility model used in the text, we have MtYt = e−ρt.
Letting J denote this firm’s value function, the HJB equation is

0 = sup
ṗt

{( pt

Pt

)1−ε − Wt

Pt

( pt

Pt

)−ε − 1
2η

( ṗt

pt

)2 − ρJt +
1
dt

Et
[
dJt
]}
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The firm value function follows a process of the form

dJt = [µJ,t + ṗt
∂

∂p
Jt]dt + σJ,tdZt,

where µJ,t and σJ,t are only functions of aggregate states (not the individual price). The
only part that the firm can affect is ṗt

∂
∂p Jt. Plugging these results back into the HJB

equation and taking the FOC, we have

0 = − 1
η

( ṗt

pt

) 1
pt

+
∂

∂p
Jt (B.4)

Differentiating the HJB equation with respect to the state variable pt, we have the enve-
lope condition

(ε − 1)
( pt

Pt

)−ε 1
Pt

− ε
Wt

Pt

( pt

Pt

)−ε−1 1
Pt

=
1
η

( ṗt

pt

)2 1
pt

− ρ
∂

∂p
Jt +

1
dt

Et
[
d
( ∂

∂p
Jt
)]

, (B.5)

where the last term uses the stochastic Fubini theorem. Combining equations (B.4) and
(B.5), we have

η(ε − 1)
( pt

Pt

)−ε 1
Pt

− ηε
Wt

Pt

( pt

Pt

)−ε−1 1
Pt

=
( ṗt

pt

)2 1
pt

− ρ
( ṗt

pt

) 1
pt

+
1
dt

Et
[
d
(( ṗt

pt

) 1
pt

)]
(B.6)

At this point, define the firm-level inflation rate πt := ṗt/pt, note that Et
[
d
(
πt

1
pt

)]
=

1
pt

Et[dπt]− 1
pt

π2
t dt, and use the symmetry assumption pt = Pt in (B.6) to get

η(ε − 1)− ηε
Wt

Pt
= −ρπt +

1
dt

Et[dπt]. (B.7)

Equation (B.7) is the continuous-time stochastic Phillips curve, with πt interpreted also
as the aggregate inflation rate (given a symmetric equilibrium).

Finally, note that the firm’s optimization problem also requires the following transver-
sality condition (see Theorem 9.1 of Fleming and Soner (2006)):

lim
T→∞

Et[MTYT JT] = 0.

In a symmetric equilibrium (p = P), and using the log utility result MtYt = e−ρt, we
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have that

MTYT JT = ET

[ ∫ ∞

T
e−ρt

(
1 − (Y∗)1+φe(1+φ)xt − 1

2η
π2

t

)
dt
]

Take expectations and the limit T → ∞. Sufficient conditions for the result to be zero are

lim
T→∞

Et[e(1+φ)xT−ρT] = 0 (B.8)

lim
T→∞

Et[e−ρTπ2
T] = 0 (B.9)

Equation (B.8) is identical to the one of the requirements for the consumer’s problem
to be well-defined (see Appendix A.1). Equation (B.9) avoids nominal explosions that
imply an infinite present value of adjustment costs. Note that under Condition 1, both
of these equations automatically hold.

C Nonlinear Phillips Curve

This section briefly explores the stability properties of the nonlinear Phillips curve, in
contrast the linearized version used oftentimes in the paper. We will do this only in
the context of deterministic equilibria, for simplicity. For convenience, we repeat this
nonlinear equation here:

π̇t = ρπt − κ
( e(1+φ)xt − 1

1 + φ

)
. (C.1)

We also repeat the IS curve after substituting the linear Taylor rule with target rate ῑ = ρ:

ẋt = ϕxxt + (ϕπ − 1)πt. (C.2)

A deterministic non-explosive equilibrium in this environment is (xt, πt) that satisfy
(C.1)-(C.2) and asymptotic non-explosion Condition 1.

The nonlinearity of the Phillips curve does not change the basic determinacy result
of Proposition 1, as we show next (although our proof requires stronger assumptions on
the Taylor rule to ensure global determinacy).

Proposition C.1. Consider the system (C.1)-(C.2) with ϕx > ρ and ϕπ > 1. Then, the only
initial pair (x0, π0) consistent with a deterministic non-explosive equilibrium is (x0, π0) =

(0, 0). Any other initial pair diverges, but only asymptotically (i.e., not in finite time).
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Proof of Proposition C.1. Define f (x) := e(1+φ)x−1
1+φ . From (C.1)-(C.2), the steady state

solves
−ϕxx = (ϕπ − 1)κρ−1 f (x)

The two sides of this equation have opposite slopes in x, so the unique solution is x = 0,
proving the unique steady state is (x, π) = (0, 0). The steady state is locally unstable,
by the same linearized eigenvalue analysis leading to Proposition 1. By the local stable
manifold theorem, we have that the unique stable solution to the dynamics is in fact this
steady state. We now prove that any non-explosive equilibrium (satisfying Condition 1)
must have (xt, πt) = (0, 0) for all t. Assume not, i.e., assume, leading to contradiction,
that xt ∈ [x, x] for all t > 0, where x < 0 < x.

First, from (C.1),

e−ρtπt − π0 = −κ
∫ t

0
e−ρs f (xs)ds (C.3)

Substituting (C.3) into (C.2), we have

ẋt = ϕxxt + (ϕπ − 1)
[
eϕxtπ0 −

κ

ρ

∫ t

0
ρeρ(t−u) f (xu)du

]
(C.4)

Under the boundedness assumption, we may bound f (x) ≤ f (xt) ≤ f (x), which when
plugging into (C.4) leads to

ϕxxt + (ϕπ − 1)
[
eϕxtπ0 −

κ

ρ
(eρt − 1) f (x)

]
︸ ︷︷ ︸

:=Lt

≤ ẋt ≤ ϕxxt + (ϕπ − 1)
[
eϕxtπ0 −

κ

ρ
(eρt − 1) f (x)

]
︸ ︷︷ ︸

:=Ut

If π0 > 0, then Lt, Ut → +∞ as t → ∞ for every possible value of xt ∈ [x, x]. On the
other hand, if π0 < 0, then Lt, Ut → −∞ as t → ∞ for every possible value of xt ∈ [x, x].
Hence, π0 > 0 implies xT > x for some T > 0, while π0 < 0 implies xT < x for some
T > 0. This contradicts the bounded set xt ∈ [x, x], which implies π0 = 0 is required.

However, since time 0 is arbitrary in this analysis, and the entire argument could be
shifted forward in time, we in fact require πt = 0 for all t ≥ 0. Going back to equation
(C.1), we then have that xt = 0 for all t ≥ 0.
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D Nuclear Taylor Rules and Finite-Time Explosions

Suppose we would like to allow deterministic equilibria that explode asymptotically, in
violation of Condition 1. For instance, Cochrane (2011) considers some types of asymp-
totically exploding equilibria in his argument for non-uniqueness. In that case, is the
spirit of Proposition 1 still true, i.e., do there exist Taylor rules which can eliminate inde-
terminacies? The answer is yes, but a “nuclear Taylor rule” is required to force explosion
in finite time.

In particular, let us dispense with the linear rule (linear MP). Suppose the response
function (MP) takes the nonlinear form

Φ(x, π) =
ϕx

2
(ex − e−x) + π (D.1)

with ϕx > 0 and suppose the target rate is again the natural rate ῑ = ρ. Note that the
log-linearized version of (D.1) renders the linear Taylor rule (linear MP) with ϕπ = 1.

Combining (D.1) with (IS), the dynamics of xt are given by

ẋt =
ϕx

2
(ext − e−xt) (D.2)

This ODE has solution

xt = log
(

1 − Keϕxt

1 + Keϕxt

)
where K = 1−ex0

1+ex0 . This process diverges in finite time for any x0 ̸= 0: it explodes at time
T = −ϕ−1

x log(|K|). Hence, we have proved by construction the following result.

Proposition D.1. Taylor rules exist such that any deterministic equilibrium has xt = 0 forever.

The analysis above abstracts from any feedback effects from inflation to output gap
by setting a monetary policy rule with ϕπ = 1. This serves two purposes. First, it em-
phasizes the focus on self-fulfilling demand and not inflation per se. Equilibrium char-
acterization requires the output gap to remain bounded for any finite horizon. There
is no such requirement for inflation (e.g., hyperinflation might be an equilibrium out-
come). Second, it simplifies the analysis and illustrates the point with examples that
permit closed form solutions. As an additional benefit, Proposition D.1 holds for either
the linearized or non-linear Phillips curves.

Determinacy extends beyond the particular response function (D.1) that has exactly a
one-for-one inflation response. In particular, consider inflation sensitivities of more than
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one-for-one, such as

Φ(x, π) =
ϕx

2
(ex − e−x) + ϕππ, ϕx > 0, ϕπ > 1. (D.3)

While more challenging technically to analyze, this rule also selects the zero output gap
equilibrium xt = 0. We demonstrate this result formally next.

Under rule (D.3), the dynamical system for (xt, πt) is

π̇t = ρπt − κ f (xt) (D.4)

ẋt =
ϕx

2
(ext − e−xt) + (ϕπ − 1)πt (D.5)

where f (x) := (1 + φ)−1[e(1+φ)x − 1].

Proposition D.2. Consider the system (D.4)-(D.5) with ϕx > 0 and ϕπ > 1. Then, (xt, πt) =

(0, 0) is the unique equilibrium that does not explode in finite time.

Proof of Proposition D.2. Suppose the solution (xt(ϕπ), πt(ϕπ))t≥0 associated to some
ϕπ > 1 (which is unique prior to an explosion by the standard ODE uniqueness the-
orem) did not explode in finite time. In that case, because the solution is contin-
uous in ϕπ (again, standard ODE theorems ensure this), it follows that the solution
(xt(ϕ̃π), πt(ϕ̃π))t≥0 associated with ϕ̃π < ϕπ also does not explode in finite time. Con-
tinuity requires this: otherwise, the two solutions would be infinitely far apart at some
finite time T when one of the solutions does explode. But Proposition D.1 has already
shown that (xt(1), πt(1))t≥0 is explosive in finite time, a contradiction.

E Sunspot equilibria with inflation

In the sunspot equilibrium constructions of Propositions 2-3, we work in the rigid price
limit (κ → 0) for analytical tractability. Here, we provide one example construction
where prices are partially flexible, so inflation is present. For this example, we will
assume the linearly approximated Phillips curve (linear PC) and utilize a linear Taylor
rule (linear MP) that is sufficiently aggressive. In particular, we will assume ϕx > 0 and
ϕπ > 1, so the Taylor principle is satisfied and deterministic multiplicities (as well as
linearized stochastic multiplicities) are ruled out. To obtain an analytical solution, we
will also need to assume (ϕx − ρ)2 > 4κ(ϕπ − 1).

To maintain tractability, we assume a type of Markovian equilibrium where inflation
is a function of the output gap. In particular, suppose πt = π(xt) for some function π(·),
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to be determined. Obviously, this must be supported by a volatility process σx which
is solely a function of x. These restrictions imply only one dimension of multiplicity,
but the equilibrium can still be relatively rich. By Proposition 3, we need only consider
sunspot equilibria with x ≤ 0. In fact, let us split the space into (−∞, x̄) and (x̄, ∞), for
x̄ < 0, and put σx = 0 for all x ≥ x̄ and σx ̸= 0 for x < x̄. Below, we provide one example
class of equilibria and prove they are valid. After the statement of the proposition and
its proof, we provide a numerical illustration in this class, where we can even relax some
of the conditions.

Proposition E.1. Suppose ϕx > 0, ϕπ > 1, and (ϕx − ρ)2 > 4κ(ϕπ − 1). Define the following
constants:

x̄max :=
ρ

ϕx − (ϕπ − 1)π̄1

ρ − ῑ

ρ + (ϕπ − 1)π̄1

π̄0 :=
(ρ − ῑ)π̄1

ρ + (ϕπ − 1)π̄1

π̄1 :=
1

2(ϕπ − 1)

[
ϕx − ρ +

√
(ϕx − ρ)2 − 4κ(ϕπ − 1)

]
Let (x̄, π̂0, π̂1) be any constants satisfying

x̄ < min[0, x̄max] (E.1)

π̂1 >


0, if π̂0 < − ϕ2

x
4ρ(ϕπ−1) ;

2ρπ̂0

−ϕx+
√

ϕ2
x+4ρπ̂0(ϕπ−1)

, otherwise.
(E.2)

0 > π̂0 > −π̂1 −
λπ̂1(ῑ − ρ)

ρ + λπ̂1(ϕπ − 1)
(E.3)

For any λ ∈ (1, 2), define the function

π(x) =

π̄0 − π̄1x, if x ≥ x̄;

π̂0 + π̂1e−λx, if x < x̄.
(E.4)

Then, an equilibrium exists in which inflation is given by πt = π(xt), volatility by some σx,t ̸= 0
on {xt < x̄}, and where the ergodic distribution places non-zero weight on the volatile region.

Proof of Proposition E.1. Let us conjecture an equilibrium of the form described in
the proposition, i.e., the economy is stochastic for x < x̄ and deterministic for x ≥ x̄.

By Itô’s formula, we may derive the dynamics of π, which when combined with the
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linear Phillips curve (linear PC) yields the equation

ρπ(x)− κx =
[
ῑ + ϕxx + (ϕπ − 1)π(x)− ρ +

1
2

σ2
x

]
π′(x) +

1
2

σ2
x π′′(x) (E.5)

When x ≥ x̄, we have a deterministic equilibrium. In that case, equation (E.5) is an ODE
for π, which has the solution π̄0 − π̄1x given in (E.4). Note that we pick the larger root
for π̄1, but either choice would suffice here because both eigenvalues of the transition
matrix A are strictly positive (hence unstable) for the parameter assumptions made here
(see Proposition 6). Note also that π̄1 is real and positive by the parameter assumptions
made.

For the stochastic region x < x̄, we set π(x) via (E.4), for some λ ∈ (1, 2], and we
pick σ2

x to ensure equation (E.5) holds exactly, i.e., set

σx(x)2 = 2
ρπ(x)− κx −

[
ῑ + ϕxx + (ϕπ − 1)π(x)− ρ

]
π′(x)

π′(x) + π′′(x)
, if x < x̄. (E.6)

We must verify that σ2
x is non-negative and such that xt follows a dynamically stable

path.
Analogously to Proposition 2, we employ a change-of-variable and examine the dy-

namics of the level output gap y = ex,

dyt = yt

[
ῑ − ρ + ϕx log(yt) + (ϕπ − 1)π(log(yt)) + σx(log(yt))

2
]

︸ ︷︷ ︸
=µy(yt)

dt + ytσx(log(yt))︸ ︷︷ ︸
=σy(yt)

dZt

(E.7)

which is also a univariate diffusion process. The stability properties of yt are determined
by its boundary behavior as y → 0 and y → ex̄ (equivalently, x → −∞ and x → x̄).

First, we examine the boundary y = 0. Note that

σy(y)2 = y2σx(log(y))2

=
2y2[ρπ̂0yλ + ρπ̂1 − κ log(y)yλ + λπ̂1

(
ῑ − ρ + ϕx log(y) + (ϕπ − 1)(π̂0 + π̂1y−λ)

)]
λ(λ − 1)π̂1

y→0−→ lim
y→0

2(ϕπ − 1)π̂1y2−λ

λ − 1

If λ ∈ (1, 2) this limit is zero, and if λ = 2 the limit is a finite positive number, given
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ϕπ > 1. On the other hand, the drift is

µy(y) = y[ῑ − ρ + ϕx log(y) + (ϕπ − 1)π(log(y))] +
σy(y)2

y
y→0−→ lim

y→0
(ϕπ − 1)π̂1y1−λ

(λ + 1
λ − 1

)
This limit is +∞ for any λ > 1. Consequently, we have the following behavior. For
λ ∈ (1, 2), the diffusion σy vanishes as y → 0, while the drift µy explodes, which means
the boundary {y = 0} is inaccessible.

Second, examine the other boundary y = ex̄, where recall x̄ < 0. It is clear from the
expression that σy(ex̄−) is finite, whereas recall that σy(ex̄) = 0 by our construction. At
the same time, the drift at that point is

µy(ex̄) = ex̄[ῑ − ρ + ϕx x̄ + (ϕπ − 1)(π̄0 − π̄1x̄)
]

This is negative if and only if x < x̄max, which is guaranteed to hold by condition (E.1).
Therefore, yt can never exceed ex̄ if it starts below that point, i.e., if y0 ≤ ex̄.

Finally, we verify that σ2
x remains non-negative hence well-defined in the volatile

region x < x̄. Given the expression for σ2
x , and the fact π̂1 > 0, ϕπ > 1, and λ > 1, this

boils down the condition G(y) > 0, where

G(y) := ρπ̂0yλ + ρπ̂1 − κ log(y)yλ + λπ̂1
(
ῑ − ρ + ϕx log(y) + (ϕπ − 1)(π̂0 + π̂1y−λ)

)
Since y < ex̄ < 1, we have log(y) < 0 in this region, and so

G(y) > Ĝ(y) := ρπ̂0yλ + ρπ̂1 + λπ̂1
(
ῑ − ρ + ϕx log(y) + (ϕπ − 1)(π̂0 + π̂1y−λ)

)
Thus, it suffices to show that Ĝ(y) > 0 in this region. We will show, under the conditions
provided, that Ĝ is monotonically decreasing and then that Ĝ > 0 in this region.

Taking the derivative of Ĝ, we have

Ĝ′(y) = λy−(λ+1)
(

ρπ̂0y2λ + π̂1ϕxyλ − λπ̂2
1(ϕπ − 1)

)
The equation Ĝ′(y) = 0 is equivalent to a quadratic equation in yλ and so has two roots.
If π̂0 < − ϕ2

x
4ρ(ϕπ−1) , then the two roots are complex, and so the condition π̂1 > 0 in (E.2)

ensures that Ĝ′(y) < 0 for all y > 0. If π̂0 ≥ − ϕ2
x

4ρ(ϕπ−1) , then the two roots are real and

positive, and the condition π̂1 > 2ρπ̂0

−ϕx+
√

ϕ2
x+4ρπ̂0(ϕπ−1)

in (E.2) ensures that both roots are
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larger than 1, i.e., Ĝ′(y) < 0 for all y ∈ (0, 1). Either way, we have Ĝ′(y) < 0 for all
y ∈ (0, 1).

Given Ĝ is monotonically decreasing for y ∈ (0, 1), proving Ĝ(1) > 0 ensures that
Ĝ > 0 in the entire volatile region (0, ex̄) ⊂ (0, 1). By condition (E.3), we have that
Ĝ(1) > 0, and so Ĝ(y) > 0 for all y ∈ (0, 1). Thus, we have shown that σ2

x > 0 on
{x ≤ x̄} in our construction. This proves that we have a well-defined volatility function
that keeps the dynamics stable in the region {x ≤ x̄}, and so a stationary distribution
for xt exists, meaning that Condition 1 is satisfied and the equilibrium is verified.

The only remaining question is whether (x̄, π̂0, π̂1) can be chosen to jointly satisfy
conditions (E.1)-(E.3). This is straightforward to verify. For instance, by putting π̂1 =

e0.5λx̄ and π̂0 > 0 arbitrary, all three conditions are satisfied if x̄ is made negative enough.
(Alternatively, in the standard monetary case with ῑ = ρ, the conditions will hold with
the combination of any choice for x̄ < 0, any choice for π̂0 > 0 and a sufficiently large
choice for π̂1.)

Figure E.1: Equilibrium with partially-flexible prices (κ > 0), a linear Taylor rule, a linearized Phillips
curve, an inflation function in (E.4), and a volatility function in (E.6). The stationary CDF is computed
via a discretized Kolmogorov Forward equation. The resulting stationary CDF features a mass point at
y = ex̄. Parameters: ρ = 0.02, κ = 0.2, ῑ = ρ, ϕx = 0.8, ϕπ = 1.5. The construction of the inflation function
and volatile region uses x̄ = −0.01, λ = 1.5, π̂0 = −0.2, and π̂1 = 0.4.
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F Zero Lower Bound

Let us address the fact that a zero lower bound (ZLB) constrains monetary policy. To
simplify the exposition, we work exclusively in the rigid-price limit κ → 0, and so
inflation is zero (πt = 0) and the nominal rate is equal to the real rate (ιt = rt). To make
matters interesting, we will assume that monetary policy aims to achieve the flexible-
price allocation whenever possible, but they are subject to the ZLB rt ≥ 0.

In particular, monetary authorities set the nominal rate (hence the real rate) to im-
plement xt = 0 whenever possible, subject to the ZLB. This is the same idea behind the
policy in Caballero and Simsek (2020), who consider a version of the New Keynesian
model with risky capital. Under this policy rule, zero output gap prevails whenever the
real rate is positive, and a negative output gap must arise at the ZLB (because recall
raising the interest rate will lower output):

0 = min[−xt, rt]. (F.1)

In Lemma F.1 below, we show that within the class of equilibria we study, (F.1) is the
outcome of optimal discretionary monetary policy (i.e., monetary policy without com-
mitment to future policies). More deeply, the implementation of xt = 0 “whenever pos-
sible” itself requires some kind of commitment to off-equilibrium threats, for instance
to reduce interest rates if xt ever fell below 0—this is the standard notion of “active”
monetary policy that pervades the New Keynesian literature, but it becomes somewhat
hidden by the outcome (F.1). In that sense, the rule (F.1) actually embeds some amount
of commitment power.

Lemma F.1. Optimal discretionary monetary policy—which maximizes (2) subject to rt ≥ 0,
optimal household and firm decisions, and its own future decisions—implements (F.1).

Proof of Lemma F.1. Since there is no upper bound on interest rates, the central bank
can always threaten rt high enough to ensure that xt ≤ 0. Since positive output gaps
are undesirable, they will implement this. Then, we can restate the problem as: optimal
discretionary monetary policy seeks to pick a rt to maximize (2), subject to (IS), xt ≤ 0,
the ZLB rt ≥ 0, and subject to its own future decisions.

We will discretize the problem to time intervals of length ∆ and later take ∆ → 0.
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Noting that Ct = extY∗, the time-t household utility is proportional to

Et

[ ∫ ∞

0
ρe−ρsxt+sds

]
≈ ρxt∆ + Et

[ ∫ ∞

∆
ρe−ρsxt+sds

]
≈ −ρ∆Et[xt+∆ − xt] + Et

[ ∫ ∞

∆
ρe−ρsxt+sds

]
+ ρ∆Et[xt+∆]︸ ︷︷ ︸

taken as given by discretionary central bank

.

The term with brackets underneath is taken as given by the time-t discretionary central
bank, because it involves expectations of future variables that the future central bank can
influence.

Thus, taking ∆ → 0, the time-t central bank solves

min
rt≥0

Et[dxt]

subject to the constraints

rt = ρ + µx,t −
1
2

σ2
x,t

xt ≤ 0 and if xt = 0 then µx,t = σx,t = 0.

Note that σx,t is independent of policy when xt < 0. There are two cases. If xt = 0,
then the constraints imply that rt = ρ. If xt < 0, we may substitute the dynamics of xt

(replacing µx from the first constraint) to re-write the problem as

min
rt≥0

[rt − ρ +
1
2

σ2
x,t].

Since σx is taken as given, the optimal solution is rt = 0. Thus, the discretionary central
bank optimally sets

rt = ρ1{xt=0}.

In other words, the complementary slackness condition xtrt = 0 holds, which together
with rt ≥ 0 and xt ≤ 0 implies (F.1).

The entire model dynamics are characterized by the IS curve (IS) with volatility when
rt = 0 and xt < 0 and deterministic dynamics otherwise, i.e.,

µx,t = (−ρ +
1
2

σ2
x,t)1{xt<0}. (F.2)

The entire previous analysis from Section 3 goes through with ϕx = 0 and ῑ = 0.
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However, just to see a different construction, let y = ex and suppose

σx =

ν(1 − y), if y < 1;

0, if y ≥ 1.
(F.3)

(If we had set σx = ν/y when y < 1, then the argument would be identical to that in
Section 3.) In this case, the dynamics of yt are

dyt = yt

[
− ρ + ν2(1 − yt)

]
1{yt<1}dt + yt(1 − yt)ν1{yt<1}dZt. (F.4)

This process never reaches y = 0, since it behaves asymptotically as a geometric Brow-
nian motion as yt → 0. Thus, we have constructed a valid equilibrium with volatility at
the ZLB.

If agents expect volatility to be sufficiently countercyclical, then the volatility is for-
ever recurrent. To see this, suppose ν2 > 2ρ so that log(yt) has a positive drift as yt → 0.
By standard arguments, yt will not concentrate mass near y = 0 in the long run. On the
other hand, the drift of log(yt) is negative as yt → 1, and its volatility vanishes, so yt will
not ever reach y = 1 either. There will be a non-degenerate ergodic distribution of yt,
hence volatility σx,t. This economy is persistently demand-driven and stuck at the ZLB.

By adding coordinated jumps in σx, we believe we can make the equilibria even more
realistic. Initially, volatility can be non-existent and the economy sitting at xt = 0. All of
a sudden, fear can rise sufficiently that xt must jump to negative territory. Because of the
ZLB, it is not possible for monetary policy to correct this fear-driven recession. The rise
in volatility essentially forces r to the ZLB, similar to Caballero and Simsek (2020). Once
xt < 0, volatility can vary continuously, and sunspot shocks will be moving demand.
Imagine at some later time T, demand reverts back to the flexible-price outcome xT = 0.
At some still later date, volatility can re-emerge. In this way, we can construct equilibria
that alternate between efficiency and inefficient, self-fulfilling, volatile recessions.
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