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Abstract

We discover sentiment-driven equilibria in popular models of imperfect risk sharing.
In these equilibria, sentiment dynamics behave like uncertainty shocks, in the sense
that self-fulfilled beliefs about volatility drive aggregate fluctuations. Because such
fluctuations can decouple from the wealth distribution, rational sentiment helps re-
solve two puzzles plaguing models emphasizing balance sheets: (i) financial crises
emerge suddenly, featuring large volatility spikes and asset-price declines; (ii) asset-
price booms, with below-average risk premia, predict busts and financial crises.
Methodologically, our contribution is using stochastic stability theory to establish
existence of sunspot equilibria.
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It has by now become commonplace, especially after the 2008 global financial crisis,
for macroeconomic models to prominently feature banks, limited participation, imper-
fect risk-sharing, and other such “financial frictions.” Incorporating these features allows
macroeconomists to speak meaningfully about financial crises and desirable policy re-
sponses. Despite the dramatic growth in this literature, there remain two major sources
of disconnect between these models and actual data. For one, standard models have dif-
ficulty reproducing the observed severity and suddenness of economic downturns and
asset-price dislocations. Secondly, standard models struggle to generate booms that are
inherently fragile and prone to bust. To address these shortcomings, some recent contri-
butions add large and sudden bank runs1 while others deviate from rational expectations
to model booms as episodes of over-optimism.2

We embrace rational sentiment as a complementary approach. This paper makes two
main contributions. First, we uncover a wide variety of novel sentiment-driven sunspot
equilibria supported by standard financial friction models. The fluctuations in these
equilibria can be self-fulfilling: they only occur because agents coordinate on them.
Second, we demonstrate how sentiment fluctuations alleviate some of the shortcomings
for this class of models. Rational sentiment can generate both (i) large and sudden
fluctuations, similar to bank runs (footnote 1), and (ii) booms that breed fragility, similar
to the “behavioral sentiment” adopted by some recent papers (footnote 2).

Model and mechanism. We study a simple stripped-down model with financial fric-
tions, similar to Kiyotaki and Moore (1997), Brunnermeier and Sannikov (2014), and
many others.3 There are two types of agents (“experts” and “households”) with identical
preferences but different levels of productivity when managing capital. Heterogeneous
productivity means the identity of capital holders matters for aggregate output. Ideally,
in a world with complete financial markets, experts would manage all capital and issue
sufficient equity to perfectly share with households any risks associated to capital. But in
our model, incomplete markets prevent agents from sharing those risks, so optimal capi-
tal holdings depend to some degree on risk and not only on productivities. There are no

1For example, Gertler and Kiyotaki (2015) and Gertler et al. (2020) attempt to integrate bank runs
into a conventional financial accelerator model, in order to capture additional amplification and non-
linearity. Without runs or panic-like behavior, financial accelerator models have a difficult time inducing
the financial intermediary leverage needed to generate large amounts of amplification.

2For example, Krishnamurthy and Li (2020) and Maxted (2023) build an extrapolative sentiment process
on top of a relatively standard financial accelerator model. Agents’ excessive optimism in booms lowers
risk premia, erodes bank balance sheets, and creates fragility.

3We work in continuous time, contributing to a burgeoning literature (He and Krishnamurthy, 2012,
2013, 2019; Moreira and Savov, 2017; Di Tella, 2017, 2019; Klimenko et al., 2017; Silva, 2017; Drechsler et al.,
2018; Caballero and Simsek, 2020).
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other features: no ad-hoc collateral constraints, no default externalities, and no irrational
beliefs. And yet, this basic model can feature a tremendous amount of multiplicity that
has been overlooked in the literature.

Indeterminacy in this model comes from the combination of incomplete financial
markets and heterogeneous productivities. With these features, asset prices today are not
pinned down by “fundamentals”— namely the minimal set of state variables—and can
also depend on agents’ beliefs about the distribution of asset prices tomorrow. Different
beliefs deliver different equilibria. Of particular importance in our specific model is the
perceived dispersion in future asset prices, or price volatility.

The following story clarifies the mechanics. Suppose agents are fearful, anticipating
high asset-price volatility. Despite their productivity advantage, experts will only man-
age a fraction of aggregate capital, as capital price risk cannot be fully shared through
markets. Perceived volatility thus causes an inefficient capital allocation, hence low asset
prices. On the other hand, if low asset-price volatility is anticipated, experts will hold
a large share of capital, and asset prices will be high. Are both of these coordinated
volatility perceptions justified? In many models, only one perception of volatility could
be consistent with equilibrium, because future paths would otherwise be explosive.

But in our paper, many coordinated beliefs about volatility can satisfy equilibrium
conditions and remain non-explosive, mirroring the conventional idea that dynamic sta-
bility of equilibrium supports indeterminacy. Here, stability means that asset prices
eventually mean-revert, or “bounce back” from extreme values. Supposing the future
distribution of asset prices q is characterized by a first and second moment (µq, σ2

q ), then
a rise in σq (fear)—which depresses q—must be accompanied by an eventual rise in µq

(bounce-back beliefs). In our continuous-time setup, bounce-back beliefs are just bound-
ary conditions on µq at extreme states. Such boundary restrictions are both analytically-
convenient and mild; rich dynamics are admissible away from extreme states.

If volatility is dynamically stable, we can use sunspot shocks to govern agents’ beliefs
about volatility and create sentiment dynamics. In other words, our model can feature
a surprise increase in fear leading to a fire sale, which temporarily depresses asset prices
and output. Conversely, sunspot bravery (decline in fear) raises asset prices, through
coordinated purchases. These fear-driven dynamics are sustainable so long as they are
expected to eventually subside. A distinctive feature is that sentiment dynamics are
always characterized by time-varying endogenous uncertainty.

Overview of paper. While explaining our model above, we abstracted from the wealth
distribution between experts and households. Typically in the financial frictions liter-
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ature, this wealth distribution is the key state variable modulating the dynamics. In
our analysis, the wealth distribution remains a state variable, but additional “sentiment”
state variables naturally arise as potential drivers of equilibrium. Mathematically, we
dispense with the assumption that equilibria be Markovian in the wealth distribution,
which removes an ad-hoc restriction on agents’ beliefs.4

Our main results provide an explicit construction and characterization of a broad
class of such sentiment-driven equilibria (Section 2). As one might expect from deter-
ministic models, the existence of sunspot equilibria is tied directly to the stability prop-
erties of the equilibrium dynamical system. For many models, such stability questions
are settled via linearized spectral analysis near steady state. What is the analog in our
stochastic nonlinear environment with multiple state variables? To tackle this problem,
we leverage tools from the “stochastic stability” literature (the stochastic analog of Lya-
punov stability for ODE systems). Conveniently, all of our stability analysis boils down
to boundary conditions on our dynamical system.

Our sentiment-driven equilibria engender several new insights, related to the short-
comings in existing models (Section 3). First, fundamentals-based recessions are primar-
ily about expert balance sheet impairment in our model, so they feature small volatility
increases and very slow recoveries; sentiment-driven crises can feature far larger volatil-
ity spikes and fast recoveries. In fact, we prove that arbitrary capital price volatility and
recovery speeds can be justified by sunspot equilibria. Second, whereas fundamentals-
based booms always reduce the prospect of crisis, sentiment-driven booms can actu-
ally increase crisis probabilities. Relatedly, in the years before large busts, an economy
with sentiment tends to feature asset-price and output booms, low volatility, and below-
average risk premia. We argue all of these properties of sentiment-driven fluctuations
better resemble real-world financial cycles.

Related literature. The theoretical focus on financial frictions and sunspots is not new
to this paper. Several studies show how multiplicity emerges through the interaction
between asset valuations and borrowing constraints.5 Relative to these papers, we study
different and more primitive financial frictions (equity-issuance constraints) that do not

4In a companion paper (Khorrami and Mendo, 2024), we study the possibility of multiple equilibria
which are Markovian in the wealth distribution. While interesting, we show in that paper how the result-
ing dynamics of these self-fulfilling wealth-driven equilibria are approximately identical to the conven-
tional dynamics studied by Brunnermeier and Sannikov (2014) and others. Thus, resolving the literature’s
puzzles requires us to go beyond wealth-driven equilibria and explore sentiment-driven equilibria.

5For instance, bubbles can relax credit constraints, allowing greater investment and thus justifying the
existence of the bubble (Scheinkman and Weiss, 1986; Kocherlakota, 1992; Farhi and Tirole, 2012; Miao
and Wang, 2018; Liu and Wang, 2014). Self-fulfilling credit dynamics can also arise with unsecured lending
as opposed to collateralized (Gu et al., 2013; Azariadis et al., 2016).
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feature any mechanical link between prices and constraints. (We say “more primitive”
because equity constraints are present—either explicitly or implicitly—even in models
with borrowing constraints. With unlimited outside equity, perfect risk-sharing could
always be achieved and the effects of borrowing constraints circumvented.)

Bank runs, financial panics, and sudden stops are related to, but distinct from, our
self-fulfilled fluctuations.6 All of these phenomena similarly rely on financial frictions,
are outcomes of coordination, and produce large fluctuations relative to fundamentals.
However, whereas bank runs and its cousins are liability-side phenomena, self-fulfilled
fire sales are pure asset-side phenomena. Furthermore, unlike runs, our mechanism
does not require asset-market illiquidity or maturity mismatch. Finally, whereas runs are
almost exclusively about large downside risk, our sentiment fluctuations also generate
interesting boom-bust cycles.

Given our results hold even without ad-hoc borrowing constraints or runs, our paper
illustrates that a much broader class of financial crisis models are subject to sunspots.
We also do not rely on the more traditional multiplicity-inducing assumptions, such
as overlapping generations,7 non-convexities or externalities in technology,8 asymmet-
ric/imperfect information,9 or multiple assets.10

Our focus on fear and volatility as drivers of self-fulfilling fluctuations closely relates
to the “self-fulfilling risk panics” of Bacchetta et al. (2012). Benhabib et al. (2020) obtain
a similar type of fluctuation by examining economies with either collateral or liquidity
constraints, rather than the OLG setup of Bacchetta et al. (2012). Although we do not
rely on common multiplicity-inducing features like OLG or collateral constraints, we
expound on the deeper connection to these papers in Section 1.4.

6Mendo (2020) studies self-fulfilled panics that induce collapse of the financial sector. Gertler and
Kiyotaki (2015) and Gertler et al. (2020) study bank runs in a similar class of models.

7The classic studies on OLG and multiplicity are Azariadis (1981) and Cass and Shell (1983). A more
recent investigation, focusing on wealth redistribution across generations, is Farmer (2018).

8For example, see Azariadis and Drazen (1990) for multiplicity under threshold investment behavior.
See Farmer and Benhabib (1994) for a multiplicity under increasing returns to scale.

9In a macro context, Piketty (1997) and Azariadis and Smith (1998) for self-fulfilling dynamics in the
presence of screened/rationed credit. In a finance context, Benhabib and Wang (2015) and Benhabib
et al. (2016, 2019) generate sunspot fluctuations in dispersed information models. Like us, Benhabib et al.
(2015) pins down volatility by certain fundamentals of the economy. However, whereas their mechanism is
static in nature, ours is intrinsically dynamic—this is why the “fundamentals” that determine our volatility
include asset prices themselves, whereas their volatility is fully determined by deep structural parameters.
For this reason, our self-fulfilling volatility is naturally time-varying.

10Hugonnier (2012), Gârleanu and Panageas (2021), and Khorrami and Zentefis (2023) all build “redis-
tributive” sunspots that shift valuations among multiple positive-net-supply assets.
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1 Model

Information structure. Time t ≥ 0 is continuous. (We also study a discrete-time version
of the model in Online Appendix F.) There are two types of uncertainty in the economy,
modeled as two independent Brownian motions Z := (Z(1), Z(2)). All random processes
will be adapted to Z.11 As will be clear below, the first shock Z(1) represents a fundamen-
tal shock in the sense that it directly impacts production possibilities, whereas the second
shock Z(2) is a sunspot shock that is extrinsic to any economic primitives but nevertheless
may impact endogenous objects. At the end of the paper, we will also consider extrinsic
Poisson jumps as part of the information structure.

Technology and markets. There are two goods, a non-durable good (the numéraire,
“consumption”) and a durable good (“capital”) that produces the consumption good.
The aggregate supply of capital grows exogenously as

dKt = Kt[gdt + σdZ(1)
t ], (1)

where g and σ > 0 are exogenous constants. The capital-quality shock σdZ(1) is a stan-
dard way to introduce fundamental randomness in technology. Individual capital hold-
ings evolve identically, except that capital may be traded frictionlessly between agents in
the market.12 The relative capital price is qt and determined in equilibrium.

There are two types of agents, experts and households, who differ in their production
technologies. Experts produce ae units of the consumption good per unit of capital,
whereas households’ productivity is ah ∈ (0, ae).

Financial markets consist solely of an instantaneously-maturing, risk-free bond that
pays interest rate rt is in zero net supply. The key financial friction: agents cannot issue
equity when managing capital. It is inconsequential that the constraint be this extreme.
Partial equity issuance, as long as there is some limit, will generate similar results on
sunspot volatility (we discuss this further in Section 1.4).

Preferences and optimization. Given the stated assumptions, we can write the dynamic
11In the background, the Brownian motion Z exists on a filtered probability space (Ω,F , (Ft)t≥0, P),

equipped with all the “usual conditions.” All equalities and inequalities involving random variables are
understood to hold almost-everywhere and/or almost-surely.

12Individual capital is thus a choice variable: if an agent holds capital kt, its law of motion is

dkt = gktdt + σktdZ(1)
t + dΩt,

where the term dΩt corresponds to net purchases. To be clear, both g and σdZ(1)
t affect agents’ return-on-

capital, whereas the net purchases term dΩt does not.
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budget constraint of an agent of type ` (expert or household) as

dn`,t =
[
(n`,t − qtk`,t)rt − c`,t + a`k`,t

]
dt + qtk`,tdRt, (2)

where n` is the agent’s net worth, c` is consumption, and k` is capital holdings. The last
term dRt := d(qtKt)

qtKt
is the capital and price appreciation while holding capital.

Experts and households have time-separable logarithmic utility, with discount rates
ρe and ρh ≤ ρe, respectively. All agents have rational expectations and solve

sup
c`≥0, k`≥0, n`≥0

E
[ ∫ ∞

0
e−ρ`t log(c`,t)dt

]
(3)

subject to (2). Everything in optimization problem (3) is homogeneous in (c, k, n), so we
can think of the expert and household as representative agents within their class.

Let us briefly discuss the solvency constraint n`,t ≥ 0 in (3). This constraint says
that agents cannot borrow more than the market value of their capital, and since there
are no other assets besides capital, one can think of n`,t ≥ 0 as the “natural borrowing
limit.” Intuitively, a sequence of negative shocks can completely destroy an agent’s
capital stock leaving them without any assets to repay their debts; hence, a net worth
buffer must be maintained to assure debt repayments in the worst-case scenario. While
assuming such a solvency constraint is relatively standard in infinite-horizon dynamic
trading models, we analyze some microfoundations for this assumption in Appendix A,
to provide more comfort that the solvency constraint is natural and minimal. In these
microfoundations, we assume a No-Ponzi condition (eventual debt repayment) and a net
worth lower bound which can be arbitrarily negative but finite.

Finally, to guarantee a stationary wealth distribution, we also allow a type-switching
structure: experts retire and become households at rate δe, while households retire and
become experts at rate δh. Technically, the presence of type-switching alters the objective
function from (3), but this is irrelevant under the assumption of log utility, as optimal
behavior will be as if solving (3)—we show this in Appendix B.1. To acknowledge the
fact that type-switching shifts wealth across agent groups, which does not affect agents’
individual net worth evolution, let Ne and Nh denote aggregate expert and household
net worth. The dynamics of Ne and Nh include the effects of type-switching: dNe =

Ne
dne
ne
− δeNedt + δhNhdt and dNh = Nh

dnh
nh
− δhNhdt + δeNedt. We reiterate that type-

switching is unnecessary for our sunspot results and only serves to obtain stationarity
in case we set ρe = ρh (if ρe > ρh + σ2, the wealth distribution will automatically be
stationary even without type-switching). For example, the reader may wish to shut
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down type-switching (δe = δh = 0) and instead consider asymmetric discount rates
(ρe > ρh + σ2), and this is completely fine.

1.1 Equilibrium definition

The definition of competitive equilibrium is standard, following Brunnermeier and San-
nikov (2014). To write a formal definition, denote the set of experts by the interval
I = [0, ν], for some ν ∈ (0, 1) and index individual experts by i ∈ I. Similarly, denote
the set of households by J = (ν, 1] with index j. If a type-switching structure exists,
we necessarily have ν = δh

δe+δh
(i.e., the population size of experts is pinned down by

switching rates) and the indexes of retiring experts/households are implicitly swapped
with newly entering experts/households.

Definition 1. For any initial capital endowments {ki
e,0, kj

h,0 : i ∈ I, j ∈ J} such that
∫

I
ki

e,0di +
∫

J
kj

h,0dj = K0, an equilibrium consists of stochastic processes—adapted to the
filtered probability space generated by {Zt : t ≥ 0}—for capital price qt, interest rate rt,
capital holdings (ki

e,t, kj
h,t), consumptions (ci

e,t, cj
h,t), and net worths (ni

e,t, nj
h,t), such that:

(i) initial net worths satisfy ni
e,0 = q0ki

e,0 and nj
h,0 = q0kj

h,0 for i ∈ I and j ∈ J;

(ii) taking processes for q and r as given, each expert i ∈ I and household j ∈ J solves
(3) subject to (2) and their solvency constraint;

(iii) consumption and capital markets clear at all dates, i.e.,

∫

I
ci

e,tdi +
∫

J
cj

h,tdj = ae

∫

I
ki

e,tdi + ah

∫

J
kj

h,tdj (4)
∫

I
ki

e,tdi +
∫

J
kj

h,tdj = Kt, (5)

where Kt follows (1).

Note that the riskless bond market clears automatically by Walras’ Law, which is why
this condition is not included above.

1.2 Equilibrium characterization

We present a useful equilibrium characterization that aids all future analysis. First,
conjecture the following form for capital price dynamics:

dqt = qt[µq,tdt + σq,t · dZt]. (6)
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There are two potential avenues for random fluctuations. The standard term σq ·
(

1
0
)

represents amplification (or dampening) of fundamental shocks, as in Brunnermeier and
Sannikov (2014) and others. By contrast, the second element σq ·

(
0
1

)
measures sunspot

volatility that only exists because agents believe in it.
Given log utility and the scale-invariance of agents’ budget sets, individual optimiza-

tion problems are readily solvable. Optimal consumption satisfies the standard formula
c` = ρ`n`. Optimality conditions for capital holding by experts and households are

ae

q
+ g + µq + σσq ·

(
1
0
)
− r =

qke

ne
|σR|2 (7)

ah
q
+ g + µq + σσq ·

(
1
0
)
− r ≤ qkh

nh
|σR|2 (with equality if kh > 0), (8)

where

σR,t := σ
(

1
0
)
+ σq,t (9)

denotes the shock exposure of capital returns. (Note that experts’ optimality condition
(7) assumes the solution is interior, i.e., ke > 0. But this is clearly required in any
equilibrium given experts earn a strictly higher expected return than households.) From
these optimality conditions, notice that agents’ capital holdings decisions are uniquely
determined given the price process for q. The only additional optimality conditions are
the transversality conditions

lim
T→∞

E[e−ρ`T 1
c`,T

n`,T] = 0. (10)

However, using c` = ρ`n`, we see that (10) automatically holds. As a consequence of
(10), our equilibria will always be bubble-free.13

Next, we aggregate. Due to financial frictions and productivity heterogeneity, both
the distribution of wealth and capital holdings will matter in equilibrium. However, be-
cause all experts (and households) make the same scaled consumption c`/n` and port-
folio choices k`/n`, the wealth and capital distributions may be summarized by experts’
wealth share

η :=
Ne

Ne + Nh
=

Ne

qK

13Using transversality (10) and the consumption FOC M`,t = e−ρ`t(c`,t)
−1, one can show that qtKt =

Et[
∫ ∞

t
Ms
Mt

Ysds], where M is a consumption-weighted-average of expert and household SDFs Me and Mh.
Thus, capital is valued according to a present-value equation, and no bubbles exist.
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and experts’ capital share

κ :=

∫
I

ki
edi

K
.

Given agents’ solvency and capital short-sales constraints, we must have η ∈ [0, 1] and
κ ∈ [0, 1] in equilibrium. Substitute optimal consumption into goods market clearing (4),
divide by aggregate capital K, and use the definitions of η and κ, to obtain

qρ̄ = κae + (1− κ)ah, (PO)

where ρ̄(η) := ηρe + (1− η)ρh is the wealth-weighted average discount rate. Equation
(PO) connects asset price q to output efficiency κ, which we call a price-output relation
for short.

Using the definitions of η and κ, experts’ and households’ portfolio shares can be
written qke

ne
= κ

η and qkh
nh

= 1−κ
1−η . Then, differencing the optimal portfolio conditions

(7)-(8), we obtain the risk-balance condition

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
. (RB)

Either experts manage the entire capital stock (κ = 1) or the excess return experts obtain
over households, (ae− ah)/q, represents fair compensation for differential risk exposure,

κ−η
η(1−η)

|σR|2. On the other hand, summing portfolio conditions (7)-(8), weighted by κ and
1− κ, yields an equation for the riskless rate:

r =
κae + (1− κ)ah

q
+ g + µq + σσq ·

(
1
0
)
−
(κ2

η
+

(1− κ)2

1− η

)
|σR|2. (11)

Finally, by applying Itô’s formula to experts’ wealth share η = Ne/(Ne + Nh), and
using agents’ net worth dynamics (2) along with contributions from type-switching,
wealth share dynamics are given by

dηt = µη,tdt + ση,t · dZt, given η0, (12)

where

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
|σR|2 + δh − (δe + δh)η (13)

ση = (κ − η)σR. (14)

9



The initial wealth distribution η0 =
∫

I
ni

e,0di
q0K0

=
∫

I
ki

e,0di
K0

is given due being solely a function
of the initial endowments of capital.

Lemma 1. Given η0 ∈ (0, 1), consider a process (ηt, qt, κt, rt)t≥0 with dynamics for qt and ηt

described by (6) and (12), respectively. If ηt ∈ [0, 1], κt ∈ [0, 1], and equations (PO), (RB), (11),
(13) and (14) hold for all t ≥ 0, then (ηt, qt, κt, rt)t≥0 corresponds to an equilibrium of Definition
1. Moreover, any distinct pair of such processes corresponds to distinct equilibria.

Lemma 1 summarizes the full set of conditions characterizing equilibrium and is
proved in Appendix B.2. In the rest of the paper, we use this lemma as a tool to simplify
our search for equilibria.

Lastly, we make some mild parameter restrictions that will be applicable in the re-
mainder of the paper.

Assumption 1. Parameters satisfy (i) 0 < ah
ρh

< ae
ρe

< +∞; (ii) σ2 < ρe(1− ah/ae); and (iii)
either σ2 < ρe − ρh, or δe, δh > 0.

Assumption 1 part (i) makes the modest assumption that the capital price is higher
if experts control 100% of wealth than if households control 100% of wealth. Part (ii),
meant to make the problem interesting, ensures experts sometimes hold all capital, i.e.,
κ = 1. If fundamental risk is σ2 ≥ ρe(1− ah/ae), experts can never hold the entire capital
stock, and the economy will always be in the region of inefficiency. Part (iii) ensures
household survival: if experts consume at a rate sufficiently higher than households, or
some type-switching exists, then experts do not asymptotically hold all wealth.

1.3 Types of equilibria

We categorize our equilibria into two types: fundamental and sunspot. Fundamental
equilibria have two properties: (i) the sunspot shock Z(2) plays no role; and (ii) only
the minimal set of state variables affects observables. Because of financial frictions and
productivity heterogeneity, the expert wealth share η is a necessary state variable to
summarize economic conditions. Other objects (e.g., q, r, κ) are either prices or control
variables, so there is a sense in which η is the minimal state variable needed in this
class of models. In other words, a fundamental equilibrium should only depend on η.
Sunspot equilibria constitute all other equilibria, which we further categorize into two
types depending on whether or not they are Markov in η.

Definition 2. A Fundamental Equilibrium (FE) is an equilibrium that is Markov in η and
in which σq ·

(
0
1

)
≡ 0. Any other equilibrium is a Brownian Sunspot Equilibrium (BSE). A
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BSE that is Markov in η is called a Wealth-driven BSE (W-BSE). A BSE that is non-Markov
in η is called a Sentiment-driven BSE (S-BSE).14

Mark
ov

in
⌘
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Figure 1: Types of equilibria.

Figure 1 displays the equilibrium taxonomy. The literature universally focuses on
the FE of this model, e.g., Brunnermeier and Sannikov (2014). We discuss and analyze
these fundamental equilibria in Online Appendix E.15 The present paper is devoted
to the S-BSEs, while a companion paper studies the W-BSEs (Khorrami and Mendo,
2024). We move directly to the S-BSEs for two reasons, based on the results in Khorrami
and Mendo (2024). First, W-BSEs can only arise if σ = 0, or if fundamental risks are
separately hedgeable in financial markets. Second, W-BSEs are well-approximated by a
FE in the sense that the FE converges to the W-BSE as σ → 0. These two results imply
Markov equilibria in experts’ wealth share η are either (a) pure FE or (b) look very much
like pure FE. Consequently, the remainder of the paper studies S-BSEs in the hopes of
uncovering new insights relative to the literature.

1.4 Benchmarks and discussion

Before proceeding to the main analysis, we analyze three benchmarks—frictionless eq-
uity issuance, homogeneous productivities, and zero fundamental uncertainty—that
clarify the underpinnings of sentiment-driven equilibria.

14It will turn out that in some S-BSEs, the sunspot shock plays no role, i.e., σq ·
(

0
1
)
≡ 0. However,

we choose not to further sub-divide the S-BSEs into cases where the sunspot shock matters and where it
doesn’t, because that distinction turns out to be less relevant to the analysis. We therefore hope our use of
the term “sunspot” in defining the types of equilibria is not confusing here.

15Online Appendix E provides some new results to this literature, including a multiplicity of funda-
mental equilibria when σ > 0. In particular, following the spirit of footnote 16 in Kiyotaki and Moore
(1997), we show that there are two types of equilibria: a normal equilibrium in which negative shocks
reduce asset prices (this is the one studied by the literature) and a “hedging equilibrium” in which, due
to coordinated capital purchases/sales, asset prices and output respond oppositely to shocks.
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Frictionless equity issuance. Suppose any agent, when managing capital, could issue
unlimited equity to the market. In exchange for taking some exposure to the risk σR in
capital returns, these outside equity contracts promise an expected excess return σR · π
(here, π is the equilibrium risk price vector associated to the two shocks in Z). All
agents can participate as buyers in this market. Since equity-issuance is unconstrained,
it is straightforward to see that any capital owner must equate her expected excess re-
turns on capital to σR ·π. (If σR ·π were below an agent’s expected excess capital returns,
unlimited capital purchases financed by unlimited equity issuances would be an arbi-
trage; if σR ·π were above, the agent would prefer to sell all their capital and invest solely
in equity securities.) Experts always manage some capital, so

ae

q
+ g + µq + σσq ·

(
1
0
)
− r = σR · π.

However, the analogous equation cannot hold for households, since their productivity is
lower, ah < ae. Households will never manage capital in this economy, so κt = 1 at all
times, hence qt = ae/ρ̄(ηt) by equation (PO). That q is solely a function of η rules out
S-BSEs.16 Thus, it is critical that capital is traded, i.e., κ varies.

For our main results, the friction in equity markets need not be as stark as the baseline
model. Indeed, Online Appendix D.1 extends the baseline model to allow “partial equity
issuance,” subject to a constraint parameterized by χ ∈ [0, 1]. In particular, suppose any
agent can issue some equity up to a limit: he/she can offload up to 1− χ fraction of
the risk associated to their capital stock as equity to a competitive financial market. The
baseline model corresponds to χ = 1 (i.e., zero issuance), while the frictionless model
outlined above corresponds to χ = 0 (i.e., unlimited issuance). We show that self-
fulfilling volatility is possible for any χ > 0, but the range of possible equilibrium asset
prices shrinks as χ shrinks, and this range collapses to a singleton as χ→ 0.

Homogeneous productivities. Consider our economy with ae = ah = a. Based on
equation (PO), equal productivities immediately implies qt = a/ρ̄(ηt). Again, q is solely
a function of η, which rules out S-BSEs. Critically, sentiment-driven equilibria require
real outcomes to depend on κ.

In fact, with equal productivities, equilibrium cannot support any endogenous de-
pendence on shocks, i.e., one can show σq ≡ 0 when ae = ah.17 This unveils a more

16In fact, q cannot be stochastic at all. Indeed, experts and households share identical risk preferences,
so households will purchase the outside equity of experts in an amount that is consistent with perfect
risk-sharing, meaning ση ≡ 0. Since qt = ae/ρ̄(ηt) is solely a function of η, which is deterministic, we have
σq ≡ 0 as well. Shocks can play no amplifying role with frictionless equity markets.

17Plugging ae = ah into equation (RB) implies either κ = η or |σR| = 0. Either way, ση = (κ − η)σR = 0.
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general point about the endogeneity of market incompleteness: one cannot necessarily
add unspanned extrinsic shocks to an economy and declare markets incomplete. Even
though this equal-productivity economy lacks insurance markets against Z(2) shocks, fi-
nancial markets are effectively complete, in the sense that the economic structure imposes
that Z(2) can have no impact on outcomes. What is required is a set of assumptions such
that Z(2) has “real effects” in which case financial market incompleteness will have some
bite. In our economy, all we require is ae > ah.

Discussion: imperfect risk-sharing and productivity heterogeneity. Based on the
benchmarks above, let us explain the deep reasons why our model admits sentiment-
driven equilibria. The fact that we require financial frictions and productivity hetero-
geneity is not surprising—these features are required even in the “financial accelerator”
equilibria of Kiyotaki and Moore (1997) and Brunnermeier and Sannikov (2014). More
interestingly, sentiment-driven equilibria require nothing more.

First, with limited equity issuance and lack of markets for insurance against sunspot
shocks, capital is traded partly for risk-sharing purposes. In other words, risk can affect
the capital ownership distribution (i.e., σR can affect κ). Second, productive heterogene-
ity permits “misallocation”: the capital distribution can affect aggregate output, which
translates into capital prices (i.e., κ can affect q).

Of course, all these endogenous variables are determined simultaneously, but it may
be helpful to visualize, with the symbols of our model, the logic of multiplicity through
the following chain of causality:

σR =⇒ κ =⇒ q. (15)

Financial frictions modulate the first link (σR ⇒ κ), while productive heterogeneity mod-
ulates the second (κ ⇒ q). The current asset price q then depends on the distribution of
future asset prices through σR. But what determines σR? Nothing, as long as we have
both financial frictions and productive heterogeneity. S-BSEs, by removing the ad-hoc
restriction that equilibria be Markov in η, remove an artificial anchor for σR and allow
volatility to be coordination-driven.

Chain (15) also suggests a connection to the “self-fulfilling risk panics” of Bacchetta
et al. (2012), further analyzed by Benhabib et al. (2020). Bacchetta et al. (2012) empha-
size a negative relationship between asset prices and volatility, effectively collapsing the
causal chain in equation (15) to σR ⇒ q. But digging deeper, Benhabib et al. (2020)

Then, applying Itô’s formula to qt = a/ρ̄(ηt), we obtain qσq = − ρe−ρh
ρ̄(η)

qση , which equals zero.
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explain that the key to risk panic equilibria is a causal dependence of the stochastic dis-
count factor (SDF) on asset prices. Bacchetta et al. (2012) obtain a price-SDF link via
OLG (see also Farmer, 2018, and Gârleanu and Panageas, 2021); Benhabib et al. (2020)
show how a price-SDF link can also arise due to collateral or liquidity constraints. Our
results are deeply connected—our price-output link (PO) necessarily implies a price-SDF
link—but distinguished by the fact we do not rely on the common multiplicity-inducing
features of OLG or ad-hoc borrowing constraints.

Discussion: zero fundamental uncertainty. One of the most striking results we will
present is that non-fundamental equilibria can emerge even if σ = 0. While one could
regard this as a simple limiting case as σ→ 0, some readers may expect a discontinuity in
the results when σ literally equals 0. According to this logic, the riskless bond market—
with no borrowing frictions—is enough to make financial markets complete when σ = 0,
and so the First Welfare Theorem holds. Under the First Welfare Theorem, we would
have generic equilibrium uniqueness.

For our economy without fundamental uncertainty, whether or not the financial mar-
ket is complete or incomplete is actually endogenous and depends on whether asset prices
qt are volatile. Imagine an individual expert operating in a world where σq 6= 0. For him,
equity-issuance constraints matter because outside equity is the only way to hedge cap-
ital price shocks. As stated by Chiappori and Guesnerie (1991), “the existence of a com-
plete set of initial markets is not enough for having sun-complete markets. Insurance
markets against sunspot should also be introduced to allow full insurance.”

But is this statement vacuous? Why can’t a researcher take any economic model and
make its financial markets incomplete by simply conjecturing its asset price dynamics
depend on some extrinsic shocks? The answer, suggested above by our benchmarks, is
that the structure of most economies rules out any dependence of asset prices on extrinsic
shocks. For example, we showed above that q cannot be stochastic with ae = ah. In such
cases, even if extrinsic shocks are strictly speaking uninsurable, markets are effectively
complete because equilibrium cannot support extrinsic shocks to asset prices.

An alternative line of thinking suggests agents should ignore shocks to q when σ =

0. Whereas fundamental shocks directly impact capital, extrinsic shocks to prices only
affect net worth on paper. For example, consider the following buy-and-hold strategy:
borrow using the riskless bond market; use the proceeds to purchase capital; use the cash
flows from capital to repay debts over time; ignore any capital price fluctuations and
never sell the capital; and consume after all debts are repaid. Assuming no exogenous
growth (g = 0) for simplicity, this trading strategy has cash flows {ae − rtbt}t≥0, where
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the debt balance bt satisfies dbt = −(ae − rtbt − ct)dt with b0 = q0. The consumption
associated with this strategy is ct = 1t>τae, where τ := inf{t : bt ≥ 0} is the time when
all debts are repaid. Since this consumption is non-negative, and zero initial investment
was made, such a strategy constitutes an arbitrage if it is feasible. Furthermore, if all
experts behaved in this way, capital prices would not be volatile or ever fall below their
efficient value.

The general problem with such strategies that “ignore market prices” is that debts
can become arbitrarily large. When the interest rate rises, the example strategy above
produces negative cash flows. Agents must increase their borrowing to continue holding
capital. With positive probability, this happens so often and for so long that either debts
approach infinity, or default occurs eventually. If markets impose the requirements that
net worth remains lower bounded and all debts are eventually repaid, such a strategy is
ruled out. This is the content of Appendix A, where we show more generally that a net
worth lower bound and a No-Ponzi constraint are equivalent to a solvency constraint
nt ≥ 0 that rules out all arbitrage trades. In other words, the “ignore market prices”
trade is not feasible, which is why sentiment-driven equilibria are not ruled out even
when σ = 0.

2 Sentiment-driven equilibria

We endeavor here to analyze a rich class of equilibria that are not Markov in η, the
S-BSEs. Below, we construct and provide detailed characterization of such equilibria.

Because the capital price q is the critical endogenous object (one may think of q as the
“co-state” variable), equilibria which are not Markov in η share the defining characteris-
tic that a variety of different asset prices can prevail for a given wealth distribution. Since
η captures all fundamental information in this economy, one can think of “sentiment” as
responsible for generating the multiplicity of asset prices corresponding to the same η.
This is why Definition 2 refers to this class of equilibria as Sentiment-driven BSEs.

The usual approach to constructing sunspot equilibria is to first analyze the non-
stochastic equilibria of a model, identify a fundamental indeterminacy, and then add
sunspot shocks that essentially randomize over the multiplicity of fundamental equilib-
ria. Before diving into the details, we remark on how and why our construction must
differ from this usual approach.

Remark 1 (Stability and multiplicity: connection to literature). Stability is the critical prop-
erty enabling sunspots in deterministic dynamical systems. For example, recall the neoclassical
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growth model, in which capital and consumption are the state and co-state variables, respectively,
and only one value of initial consumption is consistent with a non-explosive equilibrium. By
contrast, OLG versions of the growth model can feature a stable steady state, to which many al-
ternative values of initial consumption would converge (Azariadis, 1981; Cass and Shell, 1983).
This literature generates stochastic sunspot equilibria by basically randomizing over the multi-
plicity of transition paths.

S-BSEs will also feature a type of stability, whereby for a fixed initial wealth distribution
η0, many initial values of the co-state q0 can be consistent with non-explosive behavior. But
the analogy to deterministic models breaks down in an important sense: Online Appendix D.2
shows that the deterministic steady state of our class of models is only saddle-path stable. In
other words, in the deterministic equilibrium of our model, q is pinned down to be a function
of η. Given η0, there is a single transition path to steady state, so we cannot obtain volatility
by randomizing over a multiplicity of deterministic transition paths. For the same reason, we
cannot hard-wire arbitrary amounts of volatility for any combination (η, q). Rather, as will soon
be clear, our model uniquely determines return volatility |σR| for each (η, q), reminiscent of the
endogenously-determined sentiment distribution in Benhabib et al. (2015).

2.1 Construction of S-BSEs

Now, we provide a sketch of an explicit construction of an S-BSE. Remember the goal
from Lemma 1: given ηt, we want to find (µη,t, ση,t, µq,t, σq,t, qt, κt, rt) satisfying equations
(PO), (RB), (11), and (13)-(14) for all t ≥ 0 and such that ηt, κt ∈ [0, 1].

First, let us count the number of equations and unknowns. The equations are (PO),
(RB), (11), (13), and (14)—these are 6 equations (recall that (14) involves two equations)
that hold at each time t. Given ηt at a particular point in time, the unknowns are the
wealth share dynamics (µη, ση), the level and dynamics of capital prices (q, µq, σq), the
capital share κ, and the interest rate r—these are 9 unknowns (recall ση and σq are 2-
by-1 vectors). Thus, we seem to have 3 degrees of freedom in constructing equilibrium.
A Fundamental Equilibrium, universally studied by the literature, additionally imposes
that equilibria be Markov in η. Such a Markovian restriction eliminates the 3 degrees of
freedom: applying Itô’s formula to q(η) delivers 3 additional conditions for σq and µq.
But in an S-BSE, qt is not simply a function of ηt, so the 3 Itô conditions are dropped.
Instead, (σq, µq) are determined by coordination.

The specific construction we outline below has the property that all equilibrium ob-
jects are functions of (ηt, qt). We are using one degree of freedom in making q a “state
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variable” in the equilibrium. It will turn out that the relevant domain for (η, q) is

D := {(η, q) : 0 < η < 1, qL(η) < q ≤ qH(η)}, (16)

where qH(η) := ae/ρ̄(η)

qL(η) := [ηae + (1− η)ah]/ρ̄(η).

From the price-output relation (PO), notice that qH corresponds to the capital price when
κ = 1, whereas qL corresponds to the capital price when κ = η. Equilibrium must have
κ ≤ 1 (Lemma 1) and κ > η, the latter because a solution to equation (RB) will not exist
otherwise. These restrictions are captured by ensuring (η, q) remains in D. Figure 2
illustrates this set.

The first step in the construction is to reduce the system. Imagine we know the
values of (η, q, σq, µq). Price-output relation (PO) determines κ as a function of (η, q) and
nothing else, given by

κ(η, q) :=
qρ̄(η)− ah

ae − ah
. (17)

Substituting this result for κ, equation (11) then fully determines r. Equations (13)-(14),
after plugging in the result for κ, fully determine (ση, µη). At this point, given (η, q), the
remaining unknowns are (σq, µq) and the remaining equation is (RB).

When capital is efficiently allocated (i.e., κ = 1), we have q = qH(η) as an explicit
function of η. Hence, both σq and µq are determined by Itô’s formula. But when q <

qH(η) (i.e., κ < 1), we have much more flexibility. Equation (RB) requires

|σR| =
√

η(1− η)

κ(η, q)− η

ae − ah
q

, if q < qH(η). (18)

In other words, given (η, q), the level of return volatility is pinned down. But notice that
this only restricts the norm of σq = σR − σ

(
1
0
)
, not each of its components separately.

We will revisit this indeterminacy in the components of σq below.
Similarly, there is as yet no restriction on µq despite using all 6 equilibrium equations.

All that remains is to show that (ηt, qt)t≥0 remains in D almost-surely, and this will
provide some mild restrictions on µq. The importance of proving that (ηt, qt)t≥0 remains
in D is to ensure that no optimality or market clearing conditions are violated along the
proposed equilibrium path. For example, equation (18) is only well-defined for κt > ηt,
or equivalently qt > qL(ηt). Also, Lemma 1 requires κt ≤ 1 and ηt ∈ [0, 1], which only
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hold on D.
To ensure that (ηt, qt) remains in D, all we need to impose are boundary conditions on

µq. The idea is that (ηt, qt) can only escape D through its boundaries, and so µq is only
restricted near these boundaries. In particular, we only need some force strong enough
to push (ηt, qt) back toward the interior of D. For example, when q < qH(η), we can set
µq to any C1 function with a boundary condition like the following:

inf
η∈(0,1)

lim
q↘qL(η)

[
q− qL(η)

]
µq(η, q) = +∞. (19)

Condition (19) says that the drift of q diverges fast enough in order to prevent q from
hitting qL(η). This lower boundary, in particular, has the technical issue that σq in (18)
explodes near it, so the formal proof in Appendix B.3 actually imposes a slightly stronger
condition whereby µq diverges slightly above qL(η). The conditions at the upper bound-
ary qH(η) are slightly more complicated because the economy is actually allowed to visit
this upper boundary—these technical details are all addressed in Appendix B.3. The im-
portant takeaway is that equilibrium only imposes boundary conditions on µq and leaves
it indeterminate in the interior of D.

Methodologically, our formal proof employs stochastic stability theory to show that
this construction yields a non-degenerate stationary distribution for (ηt, qt)t≥0. Ap-
pendix B.4 states and proves the appropriate version of a stochastic stability lemma
that we use. In particular, the key object is the infinitesimal generator L of the joint
process (ηt, qt)t≥0 induced by equilibrium. And the key task is to find a positive (Lya-
punov) function v, which diverges at the boundaries of D, such that L v → −∞ at the
boundaries of D. This mathematical condition exactly captures the intuition that bound-
ary conditions on the dynamics are sufficient for stationarity. (The ability to leverage
stochastic stability theory to analyze boundary conditions is precisely the simplification
offered by our continuous-time setup. That said, Online Appendix F also constructs an
example sentiment-driven equilibrium in a discrete-time version of our model.)

Theorem 1 (Existence). Let Assumption 1 hold. Then, there exists an S-BSE in which (ηt, qt)t≥0

remains in D almost-surely and possesses a non-degenerate stationary distribution.

Theorem 1 is formally proved in Appendix B.3 with an explicit S-BSE construction
that addresses several of the minor technical issues raised in the preceding discussion.

Figure 2 plots the admissible set of η and q, along with return volatility |σR| (indicated
by shading) at each point in the space D. For reference, we also place two Fundamental
Equilibria (FE): the W-BSE (which is the limiting FE as σ → 0) and an FE with σ = 0.1.
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Figure 2: Colormap of volatility |σR| as a function of (η, q), in the region D := {(η, q) : η ∈ (0, 1) and ηae +
(1− η)ah < qρ̄(η) ≤ ae}. Volatility is truncated for aesthetic purposes (because |σR| → ∞ as κ → η). For
reference, also included are the W-BSE with σ = 0 and the Fundamental Equilibrium (FE) with σ = 0.1.
Parameters: ρe = 0.07, ρh = 0.05, ae = 0.11, ah = 0.03.

These equilibria attain only 10-20% volatility, a tiny amount relative to what S-BSEs can
do. In fact, we have the following formal result.

Corollary 1 (Volatility indeterminacy). Given wealth share η ∈ (0, 1), let Q(η) denote the
set of possible S-BSE values of q, and let V(η) denote the associated set of possible S-BSE values
of return variance |σR(η, q)|2. Then, Q(η) is an interval with

infQ(η) = qL(η)

supQ(η) = qH(η)

and V(η) consists of at most two intervals, with

infV(η) = min
[
ηρ̄(η)

ae − ah
ae

, σ2(ρ̄(η)/ρe)
2]

supV(η) = +∞.

In an S-BSE, return variance |σR|2 is pinned down once we know both η and q to-
gether; see equation (18). But q can take any value in the interval Q(η) for each η, which
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implicitly defines a set V(η) of values for |σR|2. Corollary 1 shows that the range of
possible return volatilities is large, in fact unbounded above.

2.2 Economic intuition behind S-BSEs

Next, we explain our S-BSEs more intuitively. We first offer an interpretation of our equi-
librium as driven by uncertainty shocks. Then, we take a dynamical-system perspective to
understand why self-fulfilling volatility is possible.

Uncertainty shocks. Given a wealth distribution η and a level of return volatility |σR|,
the capital market is equilibrated at each time via the risk-balance condition (RB) and
the price-output relation (PO), restated here for convenience:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
(RB)

qρ̄ = κae + (1− κ)ah. (PO)

The left panel of Figure 3 shows how the intersection of these two curves determines
the capital allocation κ and the capital price q. The downward-sloping risk-balance (RB)
can be thought of as experts’ relative capital demand: for a fixed level of wealth η and
return volatility |σR|, experts will only hold more capital if it is cheaper, thereby offering
a higher expected return. (Of course, households also want to buy capital when it is
cheaper, but this force is relatively stronger for experts because of their productivity
advantage.) The upward-sloping price-output (PO) is a capital supply curve: experts’
capital provision raises allocative efficiency and capital valuations.

But whereas η is a state variable that can be rightly treated as fixed in this static sense,
return volatility |σR| is not. The right panel of Figure 3 shows what changes if there is
a sudden rise in fear, manifested as higher perceived volatility |σR|. Experts, being risk-
averse, are less willing to hold capital when volatility is high. This is illustrated as a
leftward shift in the risk-balance curve from the solid to the dashed line. After this “fire
sale,” capital is allocated less efficiently, and asset prices are lower.

So far, nothing rules out this arbitrary rise in fear, and |σR| appears indeterminate.
Mathematically, fixing η, equations (RB) and (PO) constitute two equations in the three
unknowns (κ, q, |σR|). The indeterminacy in |σR| translates into an indeterminacy in q,
which can be seen by combining (RB) and (PO) to eliminate κ and obtain the negative
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Figure 3: An uncertainty shock. Both panels plot the risk-balance condition (RB) and price-output relation
(PO) for a fixed level of η = 0.2. The horizontal lines labeled q̄ and q refer to maximal and minimal
possible values of the capital price, respectively, corresponding to an efficient capital allocation (κ = 1) and
an infinite-volatility allocation (κ = η). Left panel: equilibrium with |σR| = 0.13. Right panel: equilibrium
after a shift to |σR| = 0.20. Other parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, and σ = 0.10.

price-variance association:

|σR|2 =
η(1− η)(ae − ah)

2

qρ̄(η)− ηae − (1− η)ah

1
q

when κ < 1. (20)

In our construction leading up to Theorem 1, we treated (η, q) as state variables and
determined all other equilibrium objects as functions of (η, q). The preceding story
about fear suggests that one can also think of S-BSEs as being driven by uncertainty
shocks—time-varying beliefs about volatility |σR|—an interpretation which is supported
by the one-to-one mapping between q and |σR| in equation (20).

Bounce-back beliefs and dynamic stability. Based on the short-run conditions (RB) and
(PO), equilibrium seems to support a multiplicity of prices q for a fixed η. To understand
the long-run beliefs that sustain this multiplicity, it will be helpful to take a dynamical-
systems perspective, as suggested in Remark 1.

Let us think of (ηt, qt)t≥0 as a stochastic dynamical system. As in deterministic dy-
namical systems, a pair (ηt, qt) will only be an equilibrium if it does not lead to explosive
paths. Thus, beliefs must be such that (ηt, qt) will mean-revert, or bounce back, from ex-
treme states. What does this entail?

To fix ideas, consider the following explosive path. Suppose a fear shock raises
volatility |σq| and lowers asset prices q. Under higher volatility, any subsequent fear
shocks would have a larger direct impact on q, further raise volatility |σq|, and so on, ad
infinitum. Thus, with enough such fear shocks, we will have q ↘ qL(η) and |σq| ↗ +∞
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(see equation (RB) and take κ → η).
For this fear-driven path to be an equilibrium, agents must believe that, at least even-

tually, q will recover and |σq| will fall. In other words, agents must believe µq will
increase enough to buoy q if prices ever fall too low. This is an example of what we label
bounce-back beliefs.

Bounce-back beliefs can be justified, because µq is not pinned down by any other
equilibrium considerations. Importantly, optimal capital holdings are a function of the
risk premium. This is clearly visible in the optimal portfolio FOCs (7)-(8), where only the
spread µq − r appears. Consequently, even given a price q and diffusion σq, only the
spread µq − r is pinned down in equilibrium, as equation (11) shows; µq and r are not
separately determined.

Translating agents’ bounce-back beliefs into specific mathematical conditions on µq is
straightforward. Because (ηt, qt)t≥0 evolves in a diffusive fashion, stability criteria conve-
niently boil down to boundary behavior of the dynamical system. Imposing conditions
on µq at the boundaries of the domain D (i.e., the triangle in Figure 2) is sufficient to
ensure a stochastically stable system. For example, we can impose that µq → +∞ if q
falls too low, and µq → −∞ if q rises too high.

In a sense, the mean-reversion embedded in bounce-back beliefs is precisely the
mechanism of self-fulfillment in our model. Fear can push asset prices very low pre-
cisely because a recovery is expected. Prices can rise in a sentiment-driven boom pre-
cisely because agents know the boom will eventually subside.

2.3 The three indeterminacies

Recall that there are three indeterminacies in S-BSEs:

(i) The level of volatility |σR| is only pinned down by (η, q) but not by η alone;

(ii) The two components of σq are indeterminate given (η, q);

(iii) The drift µq is indeterminate given (η, q), except at the boundaries of D.

The first indeterminacy was covered by Corollary 1. These second and third indeter-
minacies are formalized and explained in the next two corollaries.

Corollary 2 (Decoupling). The economy can be arbitrarily coupled or decoupled from funda-
mentals in the following sense. Let φ(η, q) ∈ [0, 1] be any C1 function. An equilibrium exists
such that when κ < 1, a fraction φ(η, q) of return variance |σR|2 is due to the fundamental shock.
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S-BSEs do not pin down the fraction of volatility stemming from the fundamental
and sunspot shocks, Z(1) and Z(2), respectively. The reason: when trading, agents only
care about total return variance, not its source. Mathematically, the return volatility |σR|
is pinned down in (18), but σR itself has two components that can make indeterminate
contributions to equilibrium. Asset prices and economic activity can be either closely
linked to fundamentals, or completely decoupled from them, and this decoupling can
be time-varying in arbitrary ways. Nevertheless, Section 3 presents perhaps the most
natural example of an S-BSE, in which volatility and fundamentals must decouple as
total volatility rises.

The theoretical possibility that φ = 1 in Corollary 2 helps illustrate that our multi-
plicity does not require any extrinsic force. Even with Z(2) playing no role, it is possible
for agents to coordinate purely on endogenous objects in a self-fulfilling way.

Corollary 3 (Drift indeterminacy). The economy can feature any degree of persistence or tran-
sience in the following sense. Let m(η, q) be any C1 function. An equilibrium exists with
P[µq,t = m(ηt, qt) | κt < 1] arbitrarily close to one. Furthermore, the inefficiency probability
P[κt < 1] can take any value between zero and one.

As suggested earlier, the proof of Theorem 1 only imposes boundary conditions on
µq, allowing almost any behavior in the interior of the state space. For example, asset
prices could almost always behave like a random walk (corresponding to µq ≈ 0 in the
interior), with just enough mean-reversion in extreme states to keep things stationary;
in such a design, extreme states become arbitrarily close to reflecting boundaries. Alter-
natively, fluctuations could be much more transitory in nature. In Section 3, we harness
the indeterminacy in µq to address predictability of busts and speed of recovery.

Remark 2 (Dynamics and indeterminacies). Indeterminacies arise because beliefs about capi-
tal price dynamics influence real outcomes such as capital allocation. In this model we have two
prices—capital price q and interest rate r—and two (non-redundant) market clearing conditions.
However, we need to solve not only for current prices but also for future capital price behavior,
which is summarized by the diffusion σq ∈ R2 and drift µq ∈ R terms.18 Optimality imposes a
tight (negative) link between q and |σq|, while long-run stability imposes some mild conditions
on µq in extreme states. Besides those restrictions, (σq, µq) are indeterminate.

18The logic in a discrete time model is analogous: the indeterminacies will be associated to the dis-
tribution of capital price tomorrow. This distribution is an infinite dimensional object, which makes it
challenging to prove the existence of our sentiment-driven equilibria in discrete time models. Online Ap-
pendix F provides a discrete-time example of a sentiment-driven equilibrium by specializing to a binomial
tree for capital prices. We purposely design this binomial example with a trading interval ∆ such that our
Brownian model is recovered as ∆→ 0.
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2.4 Manipulating beliefs with policy

At this point, it should be clear that beliefs about the future behavior of asset prices
are not determined by equilibrium conditions alone but also by coordination. Here, we
ask: assuming policymakers can manipulate these beliefs, in what way could outcomes
improve? Future research might investigate how policies affect beliefs, which policies
are most effective in doing so, and which types of commitment devices are required.

For simplicity, we consider a policymaker that pledges to support asset prices at some
lower level q(η). One could think about policy pledges to make future asset purchases,
because of the intuitive idea that asset purchases introduce demand pressure that pushes
up prices. But we do not explicitly model any intervention, and instead assume that the
policymaker can convince agents that asset prices will be supported. One can interpret
this as sufficient credibility attached to the policymaker’s ability to affect asset prices.

To be concrete, suppose agents perceive q(η) as a reflecting boundary for asset prices,
i.e., beliefs are such that qt ≥ q(ηt). By rational expectations, prices will in fact always
obey this lower bound, but no intervention need occur. Instead, the policy promise
induces self-fulfilling dynamics: agents believe prices will be reflected at q(η) and trade
capital to make it so. In this sense, the reflecting boundary is an extreme case of the
bounce-back beliefs described earlier.

Reflection introduces a new term to price dynamics:

dqt = qt[µq,tdt + σq,t · dZt + dPt],

where P is the barrier process that increases only to keep qt ≥ q(ηt). Absence of arbitrage
requires the riskless bond return to be rtdt + dPt, such that the excess return on capital is
unaffected by dPt (c.f., Appendix B of Karatzas and Shreve, 1998). Consequently, agents’
FOCs on capital holding remain unaffected, and both the risk-balance condition (RB)
and equation (11) for rt still hold.

Finally, the policy has no impact on the dynamics of ηt, which still take the diffusive
form (12). Indeed, excess capital returns feature no dPt component, so expert and house-
hold return-on-wealth contain identical contributions from dPt, implying dηt contains no
dPt term. This is a clear indication that our policy has no “fundamental impact.” He and
Krishnamurthy (2013), by contrast, analyze policies with only fundamental effects and
no belief effects (they study borrowing subsidies, asset purchases, and equity injections).
For them, policy effects on wealth distribution dynamics are critical.

We have thus constructed an equilibrium with qt ≥ q(ηt) at all times, for an arbitrarily
designed lower boundary q. For example, q(η) could be designed to keep volatility
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below some threshold, e.g., |σR| ≤ Σ∗, and volatility would sometimes approach but
never exceed that threshold. Away from the boundary q(η), equilibrium is identical to
the one constructed in Theorem 1; this property is an artifact of log utility, for which
only the local dynamics of asset prices matter. Policies that truncate the lower tail of
asset prices are clearly helpful (and in fact, policy ideally wants to keep κ as close to 1
as possible), but with log utility the truncation is the entirety of their impact. With more
general utility functions, how much can promises to remove tomorrow’s tail risk affect
today’s asset price dynamics by “calming the market?” We leave this question for future
research.

3 Resolving puzzles with sentiment

We have just demonstrated that sunspot equilibria, which are endemic to this class of
models, in principle can support rich dynamics. Now, we solve some concrete examples
to illustrate several substantive results along these lines.

3.1 Explicit construction with a sentiment state variable

In contrast to the previous section, where (η, q) was the state variable, here we imple-
ment our sentiment-driven equilibria with an auxiliary state variable s and with q as a
function of η and s. Being explicit about a sentiment state variable is useful for several
reasons. First, this equilibrium construction will be pedagogically more familiar to the
literature on sunspots. Second, the sentiment state dynamics can be modeled as locally
uncorrelated with fundamental shocks, which brings some clarity. Third, this setting
happens to facilitate building sunspot equilibria in which experts fully de-lever as their
wealth shrinks, i.e., κ → 0 as η → 0, for which there are natural justifications.

Let s be a pure sunspot that is irrelevant to economic fundamentals and loads on
only the second shock (recall Z(1) affects capital and Z(2) does not):

dst = µs,tdt + σs,t
(

0
1

)
· dZt, st ∈ S . (21)

(Online Appendix D.4 solves additional examples with sentiment correlated to funda-
mentals, i.e., with ds = µsdt + σ

(1)
s dZ(1) + σ

(2)
s dZ(2).) We will also find some use in

introducing auxiliary state variables that can affect the drift µs,t. This is possible to do in
a very flexible way, due to the drift indeterminacy result of Corollary 3. Let xt ∈ X be
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an arbitrary bounded diffusion,

dxt = µx(xt)dt + σx(xt) · dZt,

which (only) affects the sentiment drift, through µs,t = µs(ηt, st, xt).

Definition 3. A Markov S-BSE in states (η, s, x) ∈ (0, 1) × S × X consists of functions
(q, κ, r, ση, µη, σs) : (0, 1)×S 7→ R, and µs : (0, 1)×S ×X 7→ R, all C2 almost-everywhere,
such that the process (ηt, q(ηt, st), κ(ηt, st), r(ηt, st))t≥0 is an S-BSE.

Remark 3 (Endogenous sentiment dynamics). Note that the statement of Definition 3 allows
(σs, µs) to be endogenous, in the sense that they could depend on the wealth distribution η. Our
examples in this section purposefully entertain this endogeneity, partly because we think of this
as the more interesting and realistic situation. Why? As shown in Section 2, dynamics depend
explicitly on q in an S-BSE. Thus, it is completely sensible for agents in our S-BSEs to use asset
prices directly in forecasting; in particular, sentiment dynamics (σs, µs)—which are nothing but
belief dynamics—themselves should condition on q. But q will depend on both s and η, implying
sentiment dynamics (σs, µs) depend on η too, through q. That said, Online Appendix D.5 verifies
that similar types of sunspot equilibria can be constructed with exogenous sentiment dynamics,
i.e., (σs, µs) are only functions of s, not η.

The Markov assumption in Definition 3 allows us to specialize equilibrium condi-
tions. By applying Itô’s formula to q(η, s), we obtain the capital price volatility σq in
terms of ση, namely

qσq = ση∂ηq + σs∂sq.

From equation (14), we also have ση in terms of σq. Solving this two-way feedback, we
obtain

σq =
( 1

0 )(κ − η)σ∂η log q + ( 0
1 )σs∂s log q

1− (κ − η)∂η log q
. (22)

Using (22) in (RB), we obtain the following equation linking capital prices, the capital
distribution, and sentiment volatility:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

( σ2 + (σs∂s log q)2

(1− (κ − η)∂η log q)2

)]
. (23)

Our strategy to find a Markov S-BSE is to guess a capital price function q(η, s) and
then use equation (23) to “back out” the sunspot volatility σs that justifies it. We will
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perform a construction such that sunspots only increase volatility relative to the funda-
mental equilibrium, to highlight their potential for resolving puzzles. For this reason,
we sometimes refer to s as rational pessimism.

More specifically, suppose a fundamental equilibrium, where sunspots do not mat-
ter, exists with equilibrium capital price qFE (see Online Appendix E for details on the
fundamental equilibria). We will think of qFE as the “best-case” capital price, because
despite featuring amplification, qFE inherits no sunspot volatility. Conversely, think of
the capital price q∞ associated to an infinite-volatility equilibrium as the “worst-case”
capital price (substitute |σR| → ∞ into (20) to find q∞ := ηae+(1−η)ah

ρ̄ ).
Our strategy is essentially to treat the sentiment variable s as a device to shift contin-

uously between the best-case qFE and the worst-case q∞. Mathematically, we conjecture
a capital price that is approximately a weighted average of qFE and q∞, with weights
1− s and s. The novelty of our approach here is to then use equation (23) to solve for
sunspot volatility σs, which will generically depend on experts’ wealth share η. In terms
of Figure 2, the economy will live in the sub-region bounded by the solid FE line and the
κ = η border (and notice this implies the full-deleveraging condition κ → 0 as η → 0).
In the proposition below, we verify that such a construction is indeed an equilibrium.

Proposition 1. Let Assumption 1 hold, and assume a fundamental equilibrium exists for each
σ ≥ 0 small enough. Then, for all σ ≥ 0 small enough, there exists a Markov S-BSE with capital
prices arbitrarily close to (1− s)qFE(η)+ sq∞(η). In this equilibrium, µs is indeterminate except
near the boundaries of (0, 1)×X × S .

We construct a numerical example closely following Proposition 1, which we will use
in subsequent sections. The left panel of Figure 4 shows the capital price function. A
rise in rational pessimism s reduces the capital price q, independently of wealth share η

(although η will also endogenously respond to s-shocks).
The middle panel of Figure 4 displays capital return volatility, which can be substan-

tially greater than in the fundamental equilibrium. Implied by capital return volatility is
an underlying sunspot shock size σs, which is displayed in the right panel of Figure 4.
Sunspot dynamics become more volatile both as experts become poor (η shrinks) and as
the economy approaches the worst-case equilibrium (s rises). The dependence of σs on
η is the notion of endogenous beliefs that can occur in S-BSEs.

3.2 Non-fundamental crises and large amplification

We now show how our model with sentiment shocks can help resolve some empirical
issues related to financial crises and recoveries.
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Figure 4: Capital price q, volatility of capital returns |σR|, and sunspot shock volatility σs. Parameters:
ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025.

First, Figure 5 compares impulse responses to a large negative balance-sheet shock
(i.e., decline in η) versus a wave of pessimism (i.e., increase in s). The shock sizes are cho-
sen so that the initial drop in capital price q0 − q0− is roughly the same. “Balance-sheet
recessions” (decline in η) feature a modest increase in volatility followed by relatively
slow recoveries, as experts can only rebuild their balance sheets by earning profits over
time. By contrast, “pessimism crises” (increase in s) feature large temporary volatility
spikes and can have accelerated recoveries (depending on the choice of µs). The dynam-
ics after a pessimism shock—both the rise in volatility and speed of recovery—are closer
to empirical evidence.19 Our results on recovery speeds are related to Maxted (2023),
who shows how extrapolative beliefs can help this class of models match such evidence,
but with our rational sentiment in place of his behavioral sentiment.

To establish some more confidence in these results, we present the following two
propositions which together show that amplification can be arbitrarily high (Proposition
2) as long as sentiment shocks are the source (Proposition 3). Given the literature’s strug-
gle to identify a “smoking gun” (e.g., TFP shocks, capital efficiency shocks) for financial
crises, we view this set of results as a helpful insight. The importance of sentiment s,
relative to experts’ wealth share η, also echoes the empirical results suggesting financial
crises are not associated with pre-crisis levels of bank capital (Jordà et al., 2021).

Proposition 2 (Arbitrary volatility). Given a target variance Σ∗ > 0 and any parameters

19During the 2008 financial crisis and 2020 COVID-19 episode in the US, implied volatility from option
markets spiked by magnitudes on the order of 60%. For a rough idea of what the data says about crisis
recoveries, see Jordà et al. (2013) and Reinhart and Rogoff (2014) for output, and see Muir (2017) and
Krishnamurthy and Muir (2017) for credit spreads and stock prices. Across these many measures, and
using broad-based international panels, crisis recovery times tend to range from 4-6 years on average.

Of course, note that η responds to s-shocks, i.e., ση has a non-zero second component. Thus, a true
sentiment-driven crisis features dynamics that are a blend of the two IRFs in Figure 5. Figure 5 shows a
pure shock to s, without the endogenous co-movement in η, for theoretical clarity.
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Figure 5: Bust IRFs of capital price q and return volatility |σR|. The IRFs labeled “η shock” are responses
to a decrease in η from η0− = 0.5 to η0 = 0.25, holding s0 fixed at 0.1. The IRFs labeled “s shock” are
responses to an increase in s from s0− = 0.1 to s0 = 0.8, holding η0 fixed at 0.5. These shock sizes are
chosen such that the initial response of q are approximately equal. Note that η0 would respond to an “s
shock,” since ση has a non-zero second element, but we keep it fixed here. IRFs are computed as averages
across 500 simulations at daily frequency, with the outcomes above then averaged to the monthly level.
Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. Type-switching parameters: δh = 0.004
and δe = 0.036. In this example, we set the sunspot drift µs = 0.0002s−1.5 − 0.0002(smax − s)−1.5, where
smax = 0.95. This choice ensures st ∈ (0, smax) with probability 1.

satisfying the assumptions of Proposition 1, there exists a Markov S-BSE with stationary average
return variance exceeding the target, i.e., E[|σR|2] > Σ∗.

Proposition 3 (Decoupling). In the Markov S-BSEs of Proposition 1, both the fraction of return
volatility due to sentiments |( 0

1 ) · σR|/|σR| and total return volatility |σR| increase with s.

3.3 Booms predict crises

We now use the same framework to cast light on empirical findings suggesting that
financial crises are predictable, in particular by large credit and asset price booms (Rein-
hart and Rogoff, 2009; Jordà et al., 2011, 2013, 2015a,b; Mian et al., 2017) that feature
below-average credit spreads (Krishnamurthy and Muir, 2017; López-Salido et al., 2017;
Baron and Xiong, 2017).

To do this, we make use of the auxiliary variable x that can affect the sentiment drift.
Following some models of extrapolative beliefs (Barberis et al., 2015; Maxted, 2023),
define an exponentially-declining weighted average of sentiment shocks:

xt := x0 + σx

∫ t

0
e−βx(t−u)dZ(2)

u . (24)

The variable x measures the stock of past pessimism. Assume the drift of s depends on
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x via
µs,t = bxxt + µ̂s(st) with bx ≤ 0.

Similar to Section 3.2, the term µ̂s will be designed to induce stationarity in st. The
new term bxx induces the following dynamics: after a wave of optimism (dZ(2)

t < 0),
st and xt will be low, but this raises µs,t and shifts up the conditional distributions
of future pessimism st+h. If the constant bx is large enough, the shift can generate
dynamics reminiscent of “overshooting,” in which an optimism-driven boom raises bust
probabilities. Differently from the extrapolative belief literature, the beliefs implied by
these sentiment dynamics are completely rational.

Figure 6: Boom IRFs of capital price q and return volatility |σR|. The IRFs labeled “η shock” are responses
to an increase in η from η0− = 0.5 to η0 = 0.7, holding s0 fixed at 0.4. The IRFs labeled “s shock” are
responses to a decrease in s from s0− = 0.4 to s0 = 0.1, holding η0 fixed at 0.5. These shock sizes are
chosen such that the initial response of q are approximately equal. Note that η0 would respond to an “s
shock,” since ση has a non-zero second element, but we keep it fixed here. IRFs are computed as averages
across 2000 simulations at daily frequency, with the outcomes above then averaged to the monthly level.
Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. Type-switching parameters: δh = 0.004 and
δe = 0.036. In this example, we set the sunspot drift µs = bxx + 0.0001s−1.5 − 0.0001(smax − s)−1.5, where
smax = 0.95, bx = −25, βx = 0.1, and σx = 0.025. The parameters (βx, σx) are approximately the values
used for the mean-reversion and volatility of the diagnostic belief process in Maxted (2023).

Figure 6 displays IRFs consistent with this overshooting logic. Sentiment-driven
booms predict future busts: an optimism shock raises asset prices and lowers volatil-
ity for 1-2 years, but predicts lower prices and higher volatility afterward. (This number
of years depends on bx.) By contrast, a boom driven by expert wealth counterfactually
predicts high prices, lower volatility, and lower fragility at all horizons.

To connect to the empirical literature, we conduct an event study in Figure 7. We sim-
ulate our model (which thus features contributions from both fundamental and sunspot
shocks), identify crises in the simulated data, and plot average outcomes in the years
before and after crisis. Crises are identified as the worst 3rd percentile of yearly output
drops; other tail outcomes will produce similar graphs. We see that conditions are im-
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proving up to 1 year before the crisis, with risk premia below average and declining. The
crisis emerges suddenly and features spikes in all variables. Although we do not report
it here, such dynamics cannot be produced in the non-sunspot equilibria of the model.

Figure 7: Event studies around financial crises. Crises are defined as the bottom 3rd percentile of year-to-
year log output declines. Data is generated via a 10,000 year simulation at the daily frequency, with the
outcomes above then averaged to the monthly level. The solid blue line is the mean path, and the dotted
blue lines represent the 25th and 75th percentiles. The thin horizontal line represents the unconditional
average. Parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. Type-switching parameters: δh =
0.004 and δe = 0.036. In this example, we set the sunspot drift µs = bxx+ 0.0002s−1.5− 0.0002(smax− s)−1.5,
where smax = 0.95, bx = −25, βx = 0.1, and σx = 0.025. The parameters (βx, σx) are approximately the
values used for the mean-reversion and volatility of the diagnostic belief process in Maxted (2023).

3.4 Sentiment-based jumps

In our final exercise, we show how similar substantive results—large and sudden crises
that are preceded by booms featuring low volatility and risk premia—also hold in alter-
native equilibria with sentiment-based jumps. There are three reasons why jump-type
fluctuations are an interesting avenue to explore vis á vis the puzzles in this literature.
First, jumps are large and sudden by definition, helping resolve the trouble with lim-
ited amplification. Second, the larger jumps that characterize a financial crisis can only
happen from a moderate or good state that characterizes a boom. Third, introducing
jumps reveals an additional indeterminacy that can be useful in exacerbating the pre-
vious point, namely the jump probability can be coordinated on in a way that makes
jumps more likely in good times.

Consider a broader class of solutions for the baseline model where capital price can
also respond to an extrinsic jump shock, i.e.,

dqt

qt−
= µq,t−dt + σq,t− · dZt − `q,t−dJt,
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where J is a Poisson process with intensity λ. For simplicity, we restrict attention to
equilibria where the jump size `q is pre-determined, in particular a function of (η, q),
and we focus on adverse jumps with `q ≥ 0.

We sketch the solution of a jumpy equilibrium (with more details in Online Appendix
C.3). The risk-balance condition (RB) is modified to read

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

(
|σR|2 +

λ`2
q(

1− κ
η `q
)(

1− 1−κ
1−η `q

)
)]

. (RBJ)

The additional terms involving `q arise because there is a jump risk premium. The
price-output relation remains (PO).

By adding a new source of risk, we have an additional degree of freedom. The risk-
balance condition disciplines overall risk—the term in parentheses of (RBJ) is pinned
down given (η, q)—but the split between the Brownian and Poisson shocks is indetermi-
nate. We have tremendous flexibility in our choice of `q.

It is easy to avoid stability concerns: just set `q = 0 near the boundaries of the equi-
librium region (i.e., the triangle in Figure 2). Doing this, the stability analysis remains
unchanged from Theorem 1, since near the boundaries the economy behaves as if it is
only hit by Brownian shocks.

Figure 8: Event studies around financial crises in the jump-diffusion model. Crises are defined as the
bottom 3rd percentile of year-to-year log output declines. Data is generated via a 100,000 year simulation
at monthly frequency. The solid blue line is the mean, and dotted blue lines represent 25th and 75th
percentiles. The horizontal black line is the unconditional mean. Parameters: ρe = ρh = 0.05, ae = 0.11,
ah = 0.03, σ = 0.025. Type-switching parameters: δh = 0.004 and δe = 0.036. We reflect (η, q) near
boundaries of D := {(η, q) : 0 < η < 1 and ηae + (1− η)ah < qρ̄(η) ≤ ae}. Away from the boundaries, we
set µq = 0.1(qmid(η)− q), where qmid corresponds to κ(qmid, η) = 0.8.

Figure 8 shows a financial crisis event study from simulated data of the jump model.
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We make the following choice for jump sizes

`q =





0.95`max
q , if κ > 0.9 and 0.95`max

q > 0.2

0, otherwise,

where `max
q is the maximum allowable jump consistent with equilibrium (derived in the

appendix). Thus, we focus attention on an economy with large jumps (greater than 20%)
that are additionally only realized from high-κ states.20

Because we focus on large jumps and only allow them in high-κ states, crises tend
to arrive after a sequence of positive fundamental Brownian shocks. Accordingly, in
the years before the crisis, asset prices are high, and both volatility and risk premia are
below their usual level. Similar to Figure 7, volatility and risk premia tend to decline
in the years prior to crisis. Crises arrive suddenly and generate large movements in
observables, because simulated crises often coincide with realizations of a jump.

4 Conclusion

We have shown that macroeconomic models with financial frictions may inherently per-
mit sunspot volatility. The types of models we study are extremely common in macroe-
conomics, so this phenomenon cannot be ignored.

On the bright side, our paper demonstrates how a fully-rational notion of “senti-
ments” can be a powerful input into macro-finance dynamics. Time-varying uncertainty
drives all dynamics in our sentiment-driven fluctuations. Sharp volatility spikes and
belief-driven boom-bust cycles are among the many interesting possibilities raised by
our framework. While ours is not a full-blown quantitative analysis, we aim to show
that rational sentiment can help on these dimensions.

On the hazier side, our results suggest a modicum of caution. Many researchers em-
ploy numerical techniques to solve and analyze DSGE models that are built upon the
core assumptions in our paper—these procedures implicitly select an equilibrium, with-
out any explicit justification. In Online Appendix D, we have considered some simple
refinements, based on small amounts of idiosyncratic risk and limited commitment, but
these refinements only stipulate the full-deleveraging boundary condition limη→0 κ = 0,

20In unreported results, we also solved an example without the κ > 0.9 restriction, i.e., where we set
`q = 0.95`max

q 1{0.95`max
q >0.2}. The results are similar to Figure 8—because large jumps still tend to happen

from good states—but slightly muted.
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which barely trims indeterminacies. A deeper analysis of refinements, perhaps leverag-
ing global-games approaches or adaptive learning, still remains to be done.

What about policy?21 Caveated by the need for further study on refinements, we can
offer some initial thoughts. Some traditional policies become less effective in sunspot
equilibria. For example, deposit insurance has less bite because run-like behavior can
occur solely due to fire-sale coordination, i.e., on the asset side rather than the liabil-
ity side. Sunspot equilibria also decouple financial crises from bank balance sheets and
wealth, which defangs capital requirements, bailouts, and the like. On the other hand,
policies that manipulate beliefs can be effective (Section 2.4 briefly investigates this pos-
sibility). Future research might better explain which policy designs have the power to
manipulate beliefs in this way. Given the framework we study relies on fire sales, asset
purchases (or future commitments to them) are one interesting candidate.
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Online Appendix:
Rational Sentiments and Financial Frictions

Paymon Khorrami and Fernando Mendo
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A Solvency constraint as the natural borrowing limit

Here, we discuss the solvency constraint nt ≥ 0, which serves as the natural borrowing
limit in our framework. The idea of a natural borrowing limit is that agents can borrow
at most the present-value of their future income if they want to consume non-negative
amounts and also not run a Ponzi scheme (see, e.g., Aiyagari, 1994). In our context, the
only asset is capital, and the stream of its future dividends represents future income.
Thus, if the income stream is valued at qtkt for kt units of capital holdings, it is sensible
that an agent should be able to borrow at most this amount: bt ≤ qtkt. Since net worth
is defined as assets minus liabilities, nt = qtkt − bt, this implies nt ≥ 0.

Below, we explore three microfoundations for the solvency constraint nt ≥ 0, all of
which hopefully clarify that this constraint is “natural” in some sense. In these deriva-
tions, we allow the possibility of zero fundamental volatility, σ = 0, for generality.

A.1 Finite-horizon approximation

The first microfoundation is the easiest and most obvious, but also the most ad-hoc.
We suppose there is a strictly increasing sequence of deterministic times {Tj}∞

j=1, with
possibly arbitrarily large gaps Tj+1 − Tj, such that net worth must be non-negative at
those times:

nTj ≥ 0 almost-surely for each Tj. (NPC-1)

This says that unsecured debts—debt in excess of the present value of capital holdings—
must be fully repaid at some future date. Such a constraint rules out finite-horizon Ponzi
schemes.

Furthermore, we assume that agents must satisfy

e−
∫ t

0 rsdsnt ≥ −n, (NLB-1)
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where n can be arbitrarily large but finite. Constraint (NLB-1) is an example of the
requirement that portfolios be “tame” (see Karatzas and Shreve, 1998, Chapter 1, Defini-
tion 2.4). In dynamic trading models, the point of tame portfolios is to rule out certain
trivial arbitrage opportunities like “doubling strategies” (c.f., Karatzas and Shreve, 1998,
Chapter 1, Example 2.3). Thus, no equilibrium could exist without a requirement like
(NLB-1), which is why we view these constraints as a minimal requirement.22 Further-
more, the lower bound n can be arbitrarily large, which permits any trading strategy
that doesn’t leave the agent infinitely indebted.

In this environment, we have the following result which is standard in the literature
(e.g., Theorem 1 of Dybvig and Huang, 1988).

Lemma A.1. Let (NPC-1) hold for some sequence {Tj}∞
j=1. Assume (NLB-1) holds for all t.

Then, every agent must obey nt ≥ 0.

Proof of Lemma A.1. See the proof of Lemma A.3 below. In that proof, we simply use
the inequality nT ≥ 0 in equation (A.10), where T ∈ {Tj}∞

j=1.

A.2 Infinite-horizon borrowing limits

The other three microfoundations, instead, assume only that unsecured debts must be
repaid eventually. That is, there will be an asymptotic No-Ponzi condition.

To set up the environment and the constraints, consider an agent with net worth nt

who may choose any consumption and trading strategy {ct, kt}t≥0 that satisfies appro-
priate mild integrability conditions. The dynamic budget constraint of this agent takes
the form

dnt =
[
rtnt − ct + qtkt(µR,t − rt)

]
dt + qtktσR,t · dZt, n0 given, (A.1)

where µR,t is that agent’s expected return on capital (which differs between experts and
households). Given these trading opportunities, let Mt be the state-price density faced

22An alternative constraint that achieves the same result as (NLB-1) is to impose an integrability condi-
tion on the trading strategies agents can do:

Ẽ
[ ∫ ∞

0
e−2

∫ t
0 rsds(qtkt)

2|σR,t|2dt
]
< ∞,

where Ẽ represents the risk-neutral expectation in the model. Dybvig and Huang (1988), Theorems 4 and
5, prove that the lower bound (NLB-1) and the integrability condition above are essentially equivalent in
this environment: they both rule out arbitrage and permit essentially the same trading strategies. We work
with the uniform net worth lower bound because it will translate better into our infinite-horizon proofs in
Section A.2.
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by this agent:

Mt = exp
[
−
∫ t

0

(
rs +

1
2
|πs|2

)
ds−

∫ t

0
πs · dZs

]
, (A.2)

where σR,t · πt = µR,t − rt. (A.3)

Note that equation (A.3) defines πt as the agent’s market price of risk process, which
again is agent-specific in our model. Because we will refer to it very often, define the
exponential local martingale

M̃t := exp
[
− 1

2

∫ t

0
|πs|2ds−

∫ t

0
πs · dZs

]
. (A.4)

The process M̃t, provided it is a true martingale, will be used to define the risk-neutral
probability measure P̃. (In an infinite-horizon model, there is some additional subtlety
to the construction of the risk-neutral measure, which we will explain in the proof of
Lemma A.3 below.)

Given this environment, we consider two different formulations of the asymptotic
No-Ponzi condition. In the first formulation, we assume that agents must obey

lim inf
T→∞

MTnT ≥ 0 P-almost-surely. (NPC-2)

(this is weaker than the condition lim infT→∞ nT ≥ 0 because of the fact that MT > 0). In
the second formulation, we assume that agents obey

lim inf
T→∞

e−
∫ T

0 rtdtnT ≥ 0 P̃-almost-surely, (NPC-3)

where P̃ denotes the risk-neutral probability measure. The intuitive idea behind con-
straints (NPC-2) and (NPC-3) is as follows. By taking expectations of (NPC-2) and
(NPC-3), we have that Et[M∞n∞] ≥ 0 and Ẽt[e−

∫ ∞
0 rtdtn∞] ≥ 0, respectively. Therefore,

these constraints imply that the present-value of unsecured debts must vanish eventu-
ally, ruling out arbitrarily large debts asymptotically. However, by themselves, neither
(NPC-2) nor (NPC-3) is sufficient to induce the solvency constraint nt ≥ 0.

We impose, in addition, a uniform lower bound on net worth, but with two different
functional forms. In the first formulation, we impose a lower bound on the present-value
of net worth,

Mtnt ≥ −n, (NLB-2)
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where n can be arbitrarily large but finite. In the second microfoundation, we impose a
lower bound on net worth directly,

e−
∫ t

0 rsdsnt ≥ −n, (NLB-3)

where again n can be arbitrarily large but finite. Constraints (NLB-2) and (NLB-3) are
again “tame” portfolio requirements that rule out certain trivial arbitrages like doubling
strategies.

Now, we provide two proofs that the solvency constraint holds.

Lemma A.2. Let (NPC-2) and (NLB-2) hold. Then, every agent must obey nt ≥ 0.

Lemma A.3. Let (NPC-3) and (NLB-3) hold. Suppose M̃t is a martingale. Then, every agent
must obey nt ≥ 0.

Remark 4. We make a brief remark about the assumption that M̃t be a martingale in the latter
lemma. This assumption should be regarded as relatively minor. Indeed, a sufficient condition
for M̃t to be a martingale is that supt |πt| < ∞, i.e., risk prices be uniformly bounded. It is
straightforward to verify that equilibrium risk prices only diverge at the boundary where η → 0
and κ/η → +∞, so what we need is for state dynamics prevent the economy from approaching
this boundary.23 This can be done: an example of such an equilibrium construction is presented
in Proposition 1, in which risk prices are indeed uniformly bounded.

Proof of Lemma A.2. The general strategy of the proof is to derive a static budget con-
straint, and then use this budget constraint to prove that nt ≥ 0.

Apply Itô’s formula to the process

Ht := Mtnt +
∫ t

0
Mscsds,

then use the dynamic budget constraint (A.1) and equation (A.3) for πt, to obtain

HT − Ht = MTnT −Mtnt +
∫ T

t
Mscsds =

∫ T

t
Ms

(
qsksσR,s − nsπs

)
· dZs. (A.5)

23Indeed, (squared) expert risk prices are given by |π|2 = ( κ
η )

2|σR|2, which after using the equilibrium

value of |σR|2 when κ < 1 gives us |π|2 = ( κ
η )

2 η(1−η)
κ−η

ae−ah
q . This is bounded except at the boundary η → 0

and κ → κ̄ > 0. At this boundary, the risk price behaves like |π|2 ∼ η−1C̄, where C̄ := κ̄(ae−ah)
ah+κ̄(ae−ah)

ρh.
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This shows that Ht is a local martingale. Furthermore, the lower bound (NLB-2) and the
non-negativity of consumption imply Ht ≥ −n and so Ht is a super-martingale. Taking
time-t expectations of (A.5), we thus have

Et

[
MTnT

]
+ Et

[ ∫ T

t
Mscsds

]
≤ Mtnt. (A.6)

Because consumption is non-negative, the monotone convergence theorem implies

lim
T→∞

Et

[ ∫ T

t
Mscsds

]
= Et

[ ∫ ∞

t
Mscsds

]
.

For the terminal wealth term, the lower bound (NLB-2) implies (MTnT)T≥∞ is a uni-
formly lower-bounded family of random variables, so by Fatou’s lemma we have

lim inf
T→∞

Et

[
MTnT

]
≥ Et

[
lim inf

T→∞
MTnT

]
.

Using asymptotic No-Ponzi condition (NPC-2), the right-hand-side term is non-negative.
Using these limiting results in (A.6), we have

Et

[ ∫ ∞

t
Mscsds

]
≤ Mtnt. (A.7)

Equation (A.7) is the usual “static” budget constraint. From (A.7), the fact that con-
sumption is non-negative, and the fact that the state-price density is strictly positive, we
immediately obtain nt ≥ 0. Since time t was arbitrary, this must hold for all times.

Proof of Lemma A.3. This proof proceeds slightly differently than Lemma A.2. Indeed,
since there is no obvious lower bound that can be applied to MTnT in equation (A.6),
the proof becomes more technical and complex. The general strategy is to examine the
dynamics of e−

∫ t
0 rsdsnt, which is lower-bounded, rather than Mtnt.

There are two complications. First, to continue to use martingale methods, we must
examine the dynamics of e−

∫ t
0 rsdsnt under the risk-neutral measure P̃ rather than the

true probability P. This is where the assumption that M̃t is a martingale, hence a valid
change-of-measure, comes into play. Second, because our model is infinite-horizon, P̃

and P may be mutually singular asymptotically on the limiting sigma-algebra F∞, even
though P̃ and P are equivalent on every finite horizon. For this reason, the No-Ponzi
condition (NPC-3) is written purposefully under P̃.
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First, we define a probability measure P̃ following the recipe of Chapter 1.7 in
Karatzas and Shreve (1998). Using M̃t as a change-of-measure, we set

P̃(A) := E[M̃T1A]; A ∈ FT, 0 ≤ T < ∞. (A.8)

As proven in Chapter 1.7, Proposition 7.4 of Karatzas and Shreve (1998), the probability
P̃ is equivalent to P on FT for each T ≥ 0 (i.e., a set in FT is a P̃-null set if and only if it
is a P-null set). Furthermore, the process

Z̃t := Zt +
∫ t

0
πsds

is a Brownian motion on under P̃.
Consider now the process

Ht := e−
∫ t

0 rsdsnt +
∫ t

0
e−
∫ s

0 ruducsds,

which follows

dHt = e−
∫ t

0 rsds
(

qtktσR,t

)
· dZ̃t. (A.9)

By the non-negativity of consumption and the lower bound (NLB-3), we have that Ht ≥
−n, so Ht is a P̃-super-martingale. Taking time-t risk-neutral expectations of HT − Ht,
we thus have

Ẽt

[
e−
∫ T

0 rsdsnT

]
+ Ẽt

[ ∫ T

t
e−
∫ s

0 ruducsds
]
≤ e−

∫ t
0 rsdsnt. (A.10)

Because consumption is non-negative, the monotone convergence theorem implies

lim
T→∞

Ẽt

[ ∫ T

t
e−
∫ s

0 ruducsds
]
= Ẽt

[ ∫ ∞

t
e−
∫ s

0 ruducsds
]
.

For the terminal wealth term, the lower bound (NLB-3) implies (e−
∫ T

0 rsdsnT)T≥∞ is a
uniformly lower-bounded family of random variables. Because P̃ and P are equivalent
on all finite horizons, the almost-sure lower-bound holds both under P̃ and P, so by
Fatou’s lemma we have

lim inf
T→∞

Ẽt

[
e−
∫ T

0 rsdsnT

]
≥ Ẽt

[
lim inf

T→∞
e−
∫ T

0 rsdsnT

]
.
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Using asymptotic No-Ponzi condition (NPC-3), the right-hand-side term is non-negative.
Using these limiting results in (A.10), we have

Ẽt

[ ∫ ∞

t
e−
∫ s

0 ruducsds
]
≤ e−

∫ t
0 rsdsnt. (A.11)

Equation (A.11) is the usual “static” budget constraint. From (A.11), and the fact that
consumption is non-negative, we immediately obtain nt ≥ 0.

B Proofs for Sections 1-2

B.1 Irrelevance of type-switching for optimal behavior

The objective function with type-switching technically differs from (3), because agents
understand that at a future exponentially-distributed time, they will switch occupations.
Mathematically, the objective functions and indirect utilities satisfy the recursions, for
each type-j (expert or household) agent

Vj,t = sup
cj≥0,kj≥0,nj≥0

E
[ ∫ Tj

0
e−ρjs log(cj,t+s)ds + e−ρjTV−j,t+Tj

]
, Tj ∼ exp(δj)

Standard homogeneity arguments imply that indirect utilities take the additively-separable
form Vj,t = ρ−1

j log(nj,t) + ξ j,t, for processes ξ j,t that only depend on aggregates (i.e., not
on individual net worth). Write dξ j,t = µξ,j,tdt + σξ,j,t · dZt. Then, the HJB equations
associated with these equations are

ρjVj = max
c,k≥0

log(c) + (∂nVj)[rn− c + qk(µR,j − r)] +
1
2
(∂nnVj)(qk)2|σR|2 + µξ,j + δe[V−j −Vj]

where µR,j is the expected returns on capital for type j. Using the form of Vj, the HJB
equations become

log(n) + ρjξ j = max
c,k≥0

log(c) + ρ−1
j [r− c

n
+

qk
n
(µR,j − r)]− 1

2
(

qk
n
)2|σR|2 + µξ,j + δe[ξ−j − ξ j]

Optimal choices take the familiar log-utility forms: consumptions are cj = ρjnj; portfo-

lios are
qkj
nj

= [
µR,j−r
|σR|2 ]+. Most importantly, these choices are independent of the switching

parameters δj. To fully verify that this is correct, we must substitute the optimality con-
ditions back into the HJB equations and check that we recover equations for ξe and ξh

that only depend on aggregate variables (e.g., capital price q, interest rate r, etc.). Doing
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this, we obtain

ρjξ j = log(ρj) + ρ−1
j [r− ρj +

1
2
(
[µR,j − r]+

|σR|
)2] + µξ,j + δj[ξ−j − ξ j],

which verifies the conjecture, as all terms either pertain to the ξ processes or aggregate
variables. �

B.2 Proof of Lemma 1

We are given η0 and conditions (PO), (RB), (11), and (13)-(14). We need to check condi-
tions (i)-(iii) of Definition 1. Condition (i) holds by the definition of η0.

For condition (ii), note that standard martingale techniques can be applied to verify
that individual optimality, subject to the dynamic budget constraint (2), is equivalent
to the following conditions holding: c` = ρ`n`; the portfolio conditions (7)-(8); and the
transversality conditions in (10). We must verify that these conditions hold. Given qt, ηt,
κt, and individual net worths ni

e,t and nj
h,t, let us set

ci
e,t = ρeni

e,t and ki
e,t =

κt

qtηt
ni

e,t, for i ∈ I (B.1)

cj
h,t = ρhnj

h,t and kj
h,t =

1− κt

qt(1− ηt)
nj

h,t, for j ∈ J. (B.2)

If we do this, then clearly the optimal consumption-wealth ratio holds. Similarly, after
substituting the suggested capital holdings from (B.1)-(B.2), the optimal portfolio con-
ditions (7)-(8) become a linear transformation of equations (RB) and (11)—i.e., equation
(RB) is the difference between (7) and (8), while (11) is the sum of κ times (7) plus 1− κ

times (8). Thus, given (RB) and (11), equations (7)-(8) hold as well. Finally, after substi-
tuting the proposals in (B.1)-(B.2) into the transversality conditions in (10), we see that
these hold automatically.

For condition (iii), note that κ ∈ [0, 1] automatically implies capital market clearing
(5). Similarly, substituting c` = ρ`n` and the definitions of κ and η into (PO), we obtain
goods market clearing (4).

Thus, we have constructed an equilibrium of Definition 1. Note that (13)-(14) have
not been used in this construction, but they are direct consequences (via Itô’s formula)
of the definition of η.

The final statement of the lemma is clearly true. Indeed, the prices (qt, rt) are directly
involved in Definition 1, while the objects (ηt, κt) constitute two summary statistics of the
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distribution of net worth and capital {ni
e,t, nj

h,t, ki
e,t, kj

h,t : i ∈ I, j ∈ J}. Thus, two distinct
values of (ηt, qt, κt, rt)t≥0 cannot correspond to the same equilibrium of Definition 1. �

B.3 Proof of Theorem 1

Step 0: Reduce the system. We will start by eliminating (r, κ, ση, µη) from the system of
endogenous objects, given (η, q, σq, µq). First, price-output relation (PO) determines κ as
a function of (η, q) and nothing else, given by

κ(η, q) :=
qρ̄(η)− ah

ae − ah
. (B.3)

Second, substituting this result for κ, equation (11) fully determines r, given knowledge
of (η, q, σq, µq). Third, equations (13)-(14), after plugging in the result for κ, fully de-
termine (ση, µη), given knowledge of (η, q, σq). Thus, given (η, q), the choice of (σq, µq)

needs to ensure that (RB) holds and that the dynamics of (ηt, qt) remain inside D as
defined by (16) in text.

The remainder of the proof is entirely devoted to addressing the boundaries of D.
Indeed, given (ηt, qt) ∈ D◦ (the interior of D), we can set σq according to (B.6) below
and set µq to any real number. This is not to suggest that the boundary points are
inconsequential; on the contrary, without ensuring that the system (ηt, qt)t≥0 remains
in D, the solution constructed in the interior D◦ would not be part of an equilibrium.
Unfortunately, the choice of (σq, µq) is more delicate at the boundary ∂D. Furthermore,
verifying that (ηt, qt)t≥0 remains in D is non-trivial and requires a detailed analysis.

Step 1: Define perturbed domain. To facilitate analysis, it will be convenient to analyze
a slightly modified system instead of (η, q), and on a perturbed domain. The purpose
of this perturbation will be threefold. First, as q approaches the lower boundary of
D, volatility σq necessarily grows without bound; by perturbing this boundary slightly
upward, we prevent unbounded volatilities, allowing us to use standard diffusion theory.
Second, as q approaches the upper boundary of D, there will exist a wealth level η∗ such
that κ = 1 cannot possibly occur on {η ≤ η∗} but can occur on {η > η∗}; by rotating
this upper boundary around any wealth share above η∗, we streamline our arguments.
Third, our perturbed domain will be an open set, which is easier to work with. See
Figure B.1 below for a visual of the domain perturbation. By the end of this step, it will
become clear that if our modified system (η, x) remains in perturbed domain X , then the
original system (η, q) remains in the original domain D. Furthermore, after constructing
an equilibrium in this perturbed domain, it will be clear that we are able to consider the

47



limit of a sequence of such equilibria as the perturbations vanish, and so we can also
construct an equilibrium on the full domain D (although this is not what Theorem 1
requires us to prove).

First, define the following auxiliary functions. Fix ε ∈ (0, ae−ah
ρh

). Let β(·) be a
strictly increasing, continuously differentiable function such that β(1) = −β(0) = ε,
and β(η∗β) = 0, where η∗β ∈ (η∗, 1) and

η∗ :=
ρh
ρe

(1− ah/ae

σ2 ρe − 1 +
ρh
ρe

)−1
. (B.4)

Note that η∗ < 1 by Assumption 1, part (ii). Let α(·) be an increasing, continuously
differentiable function such that α(0) = 0, α′(0) ∈ (0, ∞), and α(1) = ε/2.

Next, define the following functions,

qH(η) := ae/ρ̄(η)

qL(η) := ā(η)/ρ̄(η),

where ā(η) := ηρe +(1− η)ρh. Using (B.3), one notices that qH corresponds to the capital
price when κ = 1, whereas qL corresponds to the capital price when κ = η. Put

qH
β (η) := qH(η) + β(η)

qL
α(η) := qL(η) + α(η).

Using these functions, define the perturbed domain (which is an open set)

X :=
{
(η, x) : η ∈ (0, 1) and qL

α(η) < x < qH
β (η)

}
.

Note that, boundaries aside, X will coincide with D as ε → 0. For reference, the per-
turbed domain X is displayed in Figure B.1.

We will define a stochastic process xt such that the capital price q coincides with x
when it lies below qH, i.e.,

qt = min
[

xt, qH(ηt)
]
. (B.5)

By (B.5), we may analyze the dynamical system (ηt, xt)t≥0 rather than (ηt, qt)t≥0. Fur-
thermore, to prove the claim that (ηt, qt)t≥0 remains in D almost-surely, it suffices to
prove (ηt, xt)t≥0 remains in X almost-surely (Step 4 below).
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Figure B.1: The perturbed domain X
is shown as the region surrounded by
solid black lines. The original do-
main D is the region defined by the
dashed lines. The perturbation func-
tions α and β are chosen to be lin-
ear functions, with ε = 0.2. Parame-
ters: ρe = 0.07, ρh = 0.05, ae = 0.11,
ah = 0.03, σ = 0.1.

Step 2: Construct σq so that (RB) is satisfied. First consider {x < qH(η)} so that q = x. Note
that this case corresponds to κ < 1. Let γ(η, x) : X 7→ (0, 1) be any C1 function. Put

σq =




√
γ

η(1−η)
κ−η

ae−ah
q − σ

√
(1− γ) η(1−η)

κ−η
ae−ah

q


 , if x < qH(η). (B.6)

Substituting (B.6), one can verify that the second term of condition (RB) is zero. Im-
portantly, the definitions of qL

α and qH
β imply that σq is bounded on X ∩ {x < qH(η)}.

Indeed, because of α′(0) > 0, the slowest possible rate that κ → 0 as η → 0 is lower-
bounded away from 1, i.e., lim infη→0,(η,x)∈X κ/η > 1. And because α(1) > 0, we have
κ = 1 for all η near enough to 1; thus η is bounded away from 1 on {x < qH(η)}.

Next consider {x ≥ qH(η)} so that q = qH(η). Note that this case corresponds to
κ = 1. Since q is an explicit function of η, we use Itô’s formula to compute ( 1

0 ) · σq =

−ση ρ̄′/ρ̄, which after substituting equation (14) for ση delivers

σq =



− (1−η)(ρe−ρh)/ρ̄

1+(1−η)(ρe−ρh)/ρ̄
σ

0


 , if x ≥ qH(η). (B.7)

Note that (B.7) will be consistent with (RB) as long as (ηt, xt)t≥0 remains in X almost-
surely, which will be verified in Step 4.24

Note finally that σq defined in (B.6)-(B.7) is solely a function of (η, x), so sometimes
we will write σq(η, x). Similarly, with σq in hand, we now have µη and ση as functions of

24Plugging q = ae/ρ̄ into the second term of equation (RB), we require |σR|2 ≤ ηρ̄(η)(1 − ah/ae).
Substituting (B.7), we obtain |σR|2 = σ2(ρ̄/ρe)2. Combining these, we require. η ≥ η∗ when x ≥ qH(η),
where η∗ is defined in (B.4). Therefore, for all η < η∗, we insist x < qH(η). As long as (η, x) ∈ X , this will
hold, because qH

β (η) < qH(η) for all η < η∗, and x < qH
β (η) for all η.
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(η, x) alone.

Step 3: Construct µq. Similar to σq, separately consider {x < qH(η)} and {x ≥ qH(η)}.
On {x ≥ qH(η)}, since q = qH(η) is an explicit function of η, we set µq via Itô’s formula.
On {x < qH(η)}, we have no equilibrium considerations restricting µq. Thus, we will put
µq = mq, where mq is a function in classM, defined as follows. A function m : X 7→ R

is a member ofM if m is C1 and possesses the following boundary conditions:

inf
η∈(0,1)

lim
x↘qL

α (η)

(
x− qL

α(η)
)

m(η, x) = +∞ (B.8)

sup
η∈(0,1)

lim
x↗qH

β (η)

(
qH

β (η)− x
)

m(η, x) = −∞ (B.9)

for any x ∈ (qL
α(0), qH

β (0)), lim
η↘0
|m(η, x)| < +∞ (B.10)

for any x ∈ (qL
α(1), qH

β (1)), lim
η↗1
|m(η, x)| < +∞. (B.11)

Collecting these results

µq(η, x) =





mq(η, x), if x < qH(η);
ρe−ρh
ρ̄(η)2 [−ρ̄(η)µη(η, x) + |ση(η, x)|2], if x ≥ qH(η).

(B.12)

Step 4: Verify stationarity. We demonstrate the time-paths (ηt, xt)t≥0 remain in X almost-
surely and admit a stationary distribution.

The dynamics of xt are specified as follows. Denote its diffusion and drift coefficients
by (xσx, xµx), where σx and µx are functions of (η, x) to be specified shortly. By (B.5),
when qL

α(η) < x < qH(η), we must put σx = σq and µx = µq. Outside of this region, σx

and µx are unrestricted and we set them to preserve stationarity.
To this end, let σ̃x : X 7→ R+ be any positive, bounded, C1 function.25 Put

σx(η, x) =





σq(η, x), if x < qH(η);

σ̃x(η, x), if x ≥ qH(η).

Note that σx is bounded (recall σq is bounded, and σ̃x is assumed bounded).
Similarly, for the drift, let mx : X 7→ R be any function in class M defined above

25Note that σ̃x need not vanish at the boundary of X , but if it does some of the boundary conditions on
mx, to follow, can be relaxed.

50



(note: mx need not coincide with mq above). Put

µx(η, x) =





µq(η, x), if x < qH(η);

mx(η, x), if x ≥ qH(η).

Thus, µx satisfies boundary conditions (B.8)-(B.11) on all boundaries of X .
Corresponding to the SDEs induced by (ση, σx, µη, µx), define the infinitesimal gener-

ator L , where for any C2 function f ,

L f = µη∂η f + (xµx)∂x f +
1
2
|ση|2∂ηη f +

1
2
|xσx|2∂xx f + xσx · ση∂ηx f .

Let {Xn}n≥1 be an increasing sequence of open sets, whose closures are contained in
X , such that ∪n≥1Xn = X . Note that (ση, σx, µη, µx) are bounded on Xn for each n. Con-
sequently, despite the (potential) discontinuity in (ση, σx, µη, µx) at the one-dimensional
subset {x = qH(η)}, there exists a unique weak solution (η̃n

t , x̃n
t )0≤t≤τn , up to first exit

time τn := inf{t : (ηt, xt) 6∈ Xn}, to the SDEs defined by the infinitesimal generator L .
See Krylov (1969, 2004) for weak existence and uniqueness in the presence of drift and
diffusion discontinuities.

Letting τ := limn→∞ τn, we thus define (ηt, xt)0≤t≤τ by piecing (η̃n
t , x̃n

t )0≤t≤τn together
for successive n. In other words, (ηt, xt) = (η̃n

t , x̃n
t ) for 0 ≤ t ≤ τn, each n. Our goal is

to show (a) τ = +∞ a.s.; and (b) the resulting stochastic process (ηt, xt)t≥0 possesses a
non-degenerate stationary distribution on X . These will be proved if we can obtain a
function v satisfying Lemma B.1 below.

Define the positive function v by

v(η, x) :=
1

η1/2 +
1

1− η
+

1
x− qL

α(η)
+

1
qH

β,λ(η)− x
.

Note that v diverges to +∞ at the boundaries of X , so assumption (i) of Lemma B.1 is
proved. Next, if assumption (iii) of Lemma B.1 holds (which we will prove below), then
there exists N such that L v < 0 on X\Xn for all n > N. Furthermore, for each given n,
L v is bounded on Xn. Consequently, we can find a constant c large enough such that
L v ≤ cv on all of X , which verifies part (ii) of Lemma B.1.

It remains to prove assumption (iii) of Lemma B.1, namely that L v→ −∞ as (η, x)→
∂X . We will examine the boundaries of X one-by-one. In the following, we use the
notation g(x) = o( f (x)) if g(x)/ f (x) → 0 as x → 0, and the notation g(x) = O( f (x)) if
g(x)/ f (x)→ C as x → 0, where C is a finite constant.
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As η → 0 (and x bounded away from qL
α(0) and qH

β (0), such that κ is bounded away
from 0 and 1, the latter due to the definition of qH

β ), we have

µη = δh +
ae − ah

x
κ + η[ρh − ρe − δe − δh] + o(η) and |ση|2 = η(κ − η)

ae − ah
x

+ o(η)

µx = O(1) and |σx|2 = O(1).

We used condition (B.10) to obtain µx bounded. Thus,

L v = − 1
2η3/2 [δh +

1
4

ae − ah
x

κ] + o(η−3/2)→ −∞,

irrespective of δh > 0 or δh = 0.
As η → 1 (and x bounded away from qL

α(1) and qH
β (1); note that κ = 1 at this

boundary), we have

µη = −δe − (ρe − ρh)(1− η) + o(1− η) and |ση|2 = (1− η)2σ2

µx = O(1) and |σx|2 = O(1).

We used condition (B.11) to obtain µx bounded. Thus,

L v = −(1− η)−2δe − (1− η)−1[ρe − ρh − σ2] + o((1− η)−1)→ −∞,

irrespective of δe, due to Assumption 1 part (iii).
We separately calculate the limit x → qL

α(η) (with η bounded away from 0) in the
two cases {x < qH(η)} and {x ≥ qH(η)}, since κ < 1 in the first case, and κ = 1 in the
second case. Still, we find that in both cases,

µη = O(1) and |ση|2 = O(1)

µx = o((x− qL
α)
−1) and |σx|2 = O(1).

We used condition (B.8) to obtain the order of µx. Thus,

L v = −(x− qL
α)
−2xµx + O((x− qL

α)
−3)→ −∞.

Similarly, we separately calculate the limit x → qH
β (η) (with η bounded away from 0)
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in the two cases {x < qH(η)} and {x ≥ qH(η)}. Again, we find that in both cases,

µη = O(1) and |ση|2 = O(1)

µx = (−1)× o((qH
β − x)−1) and |σx|2 = O(1).

We used condition (B.9) to obtain the order of µx. Thus,

L v = (qH
β − x)−2xµx + O((qH

β − x)−3)→ −∞.

Finally, all the corners of X can be analyzed in a straightforward way by combining
the cases above, with the exception of (η, x) = (0, qL

α(0)) = (0, ah/ρh). Approaching
this corner, we must take a particular path of x → ah/ρh as η → 0. Denote this path
by x̂(η) and denote the asymptotic slope by x̂′(0) ∈ ( d

dη qL
α(0),+∞), where d

dη qL
α(0) =

[ ae
ah
− ρe

ρh
] ah

ρh
+ α′(0) > 0, by Assumption 1, part (i), and the fact that α′(0) > 0. Denote

the associated path of κ by κ̂(η) and the corresponding asymptotic slope by κ̂′(0) =
1

ae−ah
[x̂′(0)ρh + (ρe − ρh)ah/ρh]. Substituting in, we find κ̂′(0) ∈ (1 + α′(0)

ae−ah
,+∞). When

computing L v, we will take the supremum over all possible paths, meaning over x̂′(0)
and κ̂′(0). Using similar calculations from the initial η → 0 case, but using these paths,
we obtain

µη = δh + η[
ae − ah

x̂
κ̂′ + ρh − ρe − δe − δh] + o(η) and |ση|2 = η2[κ̂′ − 1]

ae − ah
x̂

+ o(η)

µx = o((x̂− qL
α)
−1) and |σx|2 = O(1)

and σx · ση = η[
ae − ah

x̂
− σ(γ(κ̂′ − 1)

ae − ah
x̂

)1/2] + o(η).

Since x̂ ≥ O(η) and κ̂ ≥ O(η) (in the sense that both could be +∞), we may treat
terms like (x̂ − qL

α)
−1 as smaller than η−1. This identifies the dominant terms as those

associated to µη, |ση|2, and µx. Thus,

L v = − 1
2η3/2 δh +

1
2η1/2 [ρe − ρh + δe + δh −

ae − ah
x̂
− ae − ah

x̂
(κ̂′ − 1)/4] + o(η−3/2)

− (x̂− qL
α)
−2xµx + O((x̂− qL

α)
−3)→ −∞,

irrespective of δh, because ρe− ρh− ae−ah
ah/ρh

= ρh[ρe/ρh− ae/ah] < 0 by Assumption 1, part
(i), and because inf{κ̂′(0)} > 1.

This completes the verification that L v→ −∞ as (η, x)→ ∂X , which proves station-
arity by Lemma B.1 below. This completes the proof. �
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B.4 Stochastic stability: a useful lemma

To prove the stationarity claims of Theorem 1 and Proposition 1, we need the following
lemma, which is a slight generalization of Theorems 3.5 and 3.7 of Khasminskii (2011),
in the sense that weaker conditions are imposed on the coefficients α and β. Indeed, any
coefficients (α, β) are permissible as long as they admit existence of a weak solution to
the SDE system. The other generalization is that we allow the domain to be any open
domain D rather than Rl (see also Remark 3.5 and Corollary 3.1 in Khasminskii (2011)).

Lemma B.1. Suppose (Xt)0≤t≤τ is a weak solution to the SDE dXt = β(Xt)dt + α(Xt)dZt

in an open connected domain D ⊂ Rl, where Z is a d-dimensional Brownian motion and τ :=
inf{t : Xt 6∈ D} is the first exit time from D. Define the infinitesimal generator L by (for any
C2 function f )

L f =
n

∑
i=1

βi
∂ f
∂xi

f +
1
2

n

∑
i,j=1

(αi · αj)
∂2 f

∂xi∂xj
.

Suppose there is a non-negative C2 function v : D 7→ R+ such that (i) lim infx→∂D v(x) = +∞;
(ii) L v ≤ cv for some constant c ≥ 0; and (iii) lim supx→∂DL v(x) = −∞. Then,

(a) τ = +∞ almost-surely;

(b) the distribution of X0 can be chosen such that (Xt)t≥0 is stationary.

Proof of Lemma B.1. Let {Dn}n≥1 be an increasing sequence of open sets, whose clo-
sures are contained in D, such that ∪n≥1Dn = D. Let τn := inf{t : Xt 6∈ Dn}, and
note that τ = limn→∞ τn is the monotone limit of these exit times. Define w(t, x) :=
v(x) exp(−ct), which satisfies L w ≤ 0 by assumption (ii). Using Itô’s formula, we have

E[v(Xτn∧t)e−c(τn∧t) − v(X0)] = E

∫ τn∧t

0
L w(u, Xu)du ≤ 0.

Since (τn ∧ t) ≤ t and v ≥ 0, we obtain

E[v(Xτn∧t)] ≤ ectE[v(X0)].

Because E[v(Xτn∧t)] ≥ P[τn ≤ t] infx∈D\Dn v(x), we thus have

P[τn ≤ t] ≤ ectE[v(X0)]

infx∈D\Dn v(x)
.
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Taking the limit n→ ∞, we obtain

P[τ ≤ t] ≤ ectE[v(X0)]

lim infx→∂D v(x)
= 0.

Thus, taking t→ ∞, we prove (a).
Next, since τ = +∞ a.s., we may consider (Xt)t≥0 that is now defined for all time.

Using Itô’s formula,

E[v(Xτn∧t)− v(X0)] = E

∫ τn∧t

0
L v(Xu)du.

Note that min(inft E[v(Xt)− v(X0)], infn E[v(Xτn)− v(X0)]) ≥ b1 for some constant b1,
given assumption (i) and v ≥ 0. Also note that supx∈DL v(x) ≤ b2 for some constant b2,
given assumptions (i)-(iii) and the fact that v is C2. (b1 and b2 are both independent of t
and n.) Using these bounds, plus the following obvious inequality

L v(Xu) ≤ 1{Xu∈D\Dk} sup
x∈D\Dk

L v(x) + sup
x∈D

L v(x),

we get

− sup
x∈D\Dk

L v(x)E
∫ τn∧t

0
1{Xu∈D\Dk}du ≤ tb2 − b1.

Given the proof of (a), we may take the limit n → ∞ (so that τn → +∞), then apply
Fubini’s theorem, and then rearrange to obtain

lim
t→∞

1
t

∫ t

0
P[Xu ∈ D\Dk]du ≤ b2

− supx∈D\Dk
L v(x)

.

Taking k→ ∞ and using assumption (iii), we obtain

lim
k→∞

lim
t→∞

1
t

∫ t

0
P[Xu ∈ D\Dk]du ≤ 0.

Applying Theorem 3.1 of Khasminskii (2011), there exists a stationary initial distribution
for X0. The process (Xt)t≥0 augmented with this initial distribution is clearly stationary
by definition.
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B.5 Proofs of Corollaries 1-3

Proof of Corollary 1. Start from the construction of S-BSE in Theorem 1, and note
that we can make ε arbitrarily small such that the boundaries qL

α → ā/ρ̄ and qH
β → ae/ρ̄.

In addition, we may take η∗β → η∗, its minimal possible level. Hence, an S-BSE can be
constructed such that the set of prices q matches Q(η) arbitrarily closely. The result on
return variance comes from using (B.6) when κ < 1 (i.e., when η < η∗) and using (B.7)
when κ = 1 (i.e., when η ≥ η∗ and q is at its upper bound). Using the definition of η∗

provides the form of V with the minimum as the lower bound.

Proof of Corollaries 2-3. These follow from the proof of Theorem 1.

C Proofs and analysis for Section 3

C.1 Proof of Proposition 1

We provide a sketch the proof. Essentially, we want to construct an upper bound for the
price based on the fundamental equilibrium, and the lower bound for the price based on
a small perturbation of the worst-case price (we want to include this perturbation since
volatility explodes when the price approaches its worst-case value). For notation, recall
that ρ̄ := ηρe + (1− η)ρh. By analogy, define ā := ηae + (1− η)ah.

Upper and lower bounds for price. Let (q̂0, κ̂0) be the solution to the fundamental equilib-
rium (which exists by assumption), and let η0 := inf{η : κ̂0 ≥ 1}. By Lemma E.1 part
(v), if σ is small enough then η0 < 1, which we assume to be the case. Then, define

q0(η) :=





q̂0(η), if η < η0;

q̂0(η) + ϕ(η), if η ≥ η0,
(C.1)

where ϕ is a C2 function with the properties ϕ(η0) = 0 and ϕ′ > (ā/ρ̄)′ − (ae/ρ̄)′ for all
η. In words, q0 is equal to the fundamental equilibrium price q̂0 whenever κ̂0 ≤ 1 and
above it when κ̂0 = 1. For the other extremal function, use the “worst-case” price

q1(η) := ā(η)/ρ̄(η). (C.2)

Importantly, we have q0 > q1 for all η.
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Candidate price. We proceed to combine these two extremal functions according to the
following convex combination, where α ∈ (0, 1) is fixed:

q̃(η, s) := (1− αs)q0(η) + αsq1(η), (η, s) ∈ D = (0, 1)× S . (C.3)

where S = (0, 1) is the domain for the sunspot state s. For each s ∈ S , define η∗(s) :=
inf{η : q̃(η, s) ≥ ae/ρ̄}, which can be shown is strictly increasing.26 Put

q(η, s) :=





q̃(η, s), if η < η∗(s)

ae/ρ̄(η), if η ≥ η∗(s)
and κ :=

ρ̄q− ah
ae − ah

.

By construction, the pair (q, κ) satisfy equation (PO).

Volatility. Gven the fact that α < 1 in (C.3), the resulting capital price is always bounded
away from the worst-case price, except as η → 0. Thus, the resulting equilibrium volatil-
ity will remain bounded for the exact same reasons as in the construction of Theorem
1 (which used a small perturbation of the state space to keep capital prices away from
their worst-case value). We omit the construction of this return volatility |σR|, since it is
identical to Theorem 1. Given the value of |σR| and the identity |σR|2 =

σ2+(σs∂s log q)2

[1−(κ−η)∂η log q]2 ,
we obtain σs by inverting this identity. Some technical checks are required to ensure that
the resulting σs is real, but this can be done. (If σ = 0, this is guaranteed.)

Sunspot drift and stationarity. Having determined q, κ, and σs, we define µη and ση by
(13)-(14). It remains to determine µs. We will pick µs(η, s) = m(η, s), where m is a
C2 function with the following properties: ∂sm < 0, and for some 0 ≤ s0 < s1 ≤ 1

26Indeed, note that q̃ is C2 on (η0, η1)× S , which implies η∗ is C1. Then, use the fact that η∗ is C1 to
differentiate q̃(η∗(s), s) = ae/ρ̄(η∗(s)) with respect to s, and use the fact that ∂s q̃ = q1 − q0, and finally
rearrange to obtain

(η∗)′(s)
[
∂η q̃(η∗(s), s) +

ae

ρ̄(η∗(s))
ρe − ρh

ρ̄(η∗(s))

]
= q0(η∗(s))− q1(η∗(s)).

If at any point s, we had (η∗)′(s) = 0, we would necessarily have q0(η∗(s)) = q1(η∗(s)). But this con-
tradicts the that q0 > q1. Thus, (η∗)′(s) 6= 0 for all s. We can also rule out (η∗)′(s) < 0 by the fact that
η∗(0+) = η0 and η∗(s) ≥ η0 for all s. Thus, (η∗)′(s) > 0 for all s.
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thresholds,

(if s0 > 0) inf
η∈(0,1)

lim
s↘s0

(s− s0)m(η, s) = +∞ (C.4)

(if s0 = 0) inf
η∈(0,1)

lim
s↘s0

m(η, s) > 0 (C.5)

sup
η∈(0,1)

lim
s↗s1

(s1 − s)m(η, s) = −∞. (C.6)

Given this choice, we need to demonstrate the time-paths (ηt, st)t≥0 remain in D almost-
surely and admit a stationary distribution. This step is very similar to the stochastic
stability step in Theorem 1 and is therefore omitted. We simply note that the Lyapunov
function to use in this step is v(η, s) := 1

η1/2 +
1

1−η + 1
1−s +

1
s . �

C.2 Proofs of Propositions 2-3

Proof of Proposition 2. Fix any Σ∗ > 0. The proof is a simple consequence of the fact
that σq must be unbounded as κ approaches η, which is as q approaches the worst-case
price q1. We fill in the technical details below.

We construct a sequence of equilibria—indexed by (α, ζ)—as follows. Recall the
capital price construction in Proposition 1:

q = (1− αs)q0 + αsq1, when κ < 1,

where α < 1 is a parameter, q0 is the fundamental equilibrium price, and q1 = ā/ρ̄ is
the worst-case price. Based on the discussion in the text, we may choose µs such that
equilibrium concentrates on any particular value of s. Thus, pick µs such that st ≥ ζ

almost-surely. Clearly, the choice of µs depends on α, but such a choice can always be
made for any parameters.

Let plow > 0, phigh > 0 be given with plow + phigh < 1. First, note that there exist
α∗, ζ∗, ε∗ such that P[ηt ≤ ε ∩ κt < 1] < plow and P[ηt ≥ 1 − ε ∩ κt < 1] < phigh

for all α > α∗, ζ > ζ∗, and ε < ε∗. This is a consequence of the fact that in any
stationary distribution, we have limx→0 P[ηt < x] = limx→1 P[ηt > x] = 0 and the fact
that limα→1 lims→1 κ(η, s) < 1 for all η.

At this point, fix such an ε < ε∗. Let a constant M > 0 be given satisfying

M ≤ (1− plow − phigh)
(ae − ah)

2

ρeae/ρh

ε(1− ε)

Σ∗
. (C.7)
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Note that
lim
α→1

lim
s→1

sup
η∈(ε,1−ε)

∣∣∣q(η, s)− ā(η)/ρ̄(η)
∣∣∣ = 0.

Consequently, we may pick α > α∗ close enough to 1 and ζ > ζ∗ close enough to 1 such
that

sup
s∈(ζ,1)

sup
η∈(ε,1−ε)

∣∣∣q(η, s)− ā(η)/ρ̄(η)
∣∣∣ ≤ M.

Finally, using equation (23) and substituting κ < 1 from (PO), we have |σ( 1
0 ) + σq|2 =

(ae−ah)
2

q
η(1−η)

ρ̄q−ā . Note also that q ≤ ae/ρh and ρ̄ ≤ ρe are upper bounds. Then,

E[|σ( 1
0 ) + σq,t|2] > (1− plow − phigh)

(ae − ah)
2

ρeae/ρh

ε(1− ε)

M
.

Using (C.7), we obtain E[|σ( 1
0 ) + σq,t|2] > Σ∗.

Proof of Proposition 3. First, we prove that |σR| is increasing in s. From (23), we
obtain |σR|2 = (ae−ah)

2

q
η(1−η)

ρ̄q−ā on {κ < 1}. Differentiating with respect to s, and using
∂sq = α(q1 − q0) < 0, we obtain

∂s|σR|2 = −η(1− η)
(ae − ah)

2

q(ρ̄q− ā)

[1
q
+

ρ̄

ρ̄q− ā

]
∂sq > 0.

Next, revisiting the proof of Proposition 1, we compute on {κ < 1},

∂s[(κ − η)∂η log q] = α
[
(κ − η)

(q1)′ − (q0)′

q
+

ā(q1 − q0)

(ae − ah)q2 ∂ηq
]
< 0.

The inequality uses the properties of the ϕ function in (C.1) to say (q1)′ − (q0)′ < 0,
along with the obvious facts q1 − q0 < 0 and ∂ηq > 0. Using |( 1

0 ) · σR| = σ
1−(κ−η)∂η log q ,

we obtain ∂s|( 1
0 ) · σR| < 0.

Using the two claims just proved, and the identity |σR|2 = |( 0
1 ) · σR|2 + |( 1

0 ) · σR|2, we
see that |( 0

1 ) · σR| is increasing in s on {κ < 1}. For the same reason, namely |( 0
1 ) · σR|2

is both smaller and increasing faster than |σR|, we have that |( 0
1 ) · σR|/|σR| increasing in

s on {κ < 1}.
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C.3 Model with jumps in Section 3.4

Recall that our jumps `q are assumed to occur randomly but have a known size, given
observables. Therefore, optimal portfolio conditions are

ae

q
+ g + µq + σ

(
1
0
)
· σq − r =

κ

η
|σR|2 +

λ`q

1− κ
η `q

ah
q
+ g + µq + σ

(
1
0
)
· σq − r ≤ 1− κ

1− η
|σR|2 +

λ`q

1− 1−κ
1−η `q

.

Combining these two equations, we obtain (RBJ).
We can determine the other equilibrium objects similarly to before. The riskless rate

is given by

r =
κae + (1− κ)ah

q
+ g + µq + σ

(
1
0

)
· σq −

(κ2

η
+

(1− κ)2

1− η

)
|σR|2 − λ`q

( κ

1− κ
η `q

+
1− κ

1− 1−κ
1−η `q

)
.

The dynamics of η are now given by dηt = µη,t−dt + ση,t− · dZt − `η,t−dJt, where

µη = η(1− η)(ρh − ρe) + (κ − 2ηκ + η2)
κ − η

η(1− η)
|σR|2 + δh − (δe + δh)η +

(κ − η)λ`q(
1− κ

η `q
)(

1− 1−κ
1−η `q

)

ση = (κ − η)σR.

The wealth share jump `η is derived by using knowledge of the jump size in q and noting
that agents’ portfolios (capital and bonds) are predetermined:27

`η = (κ − η)
`q

1− `q
.

For a valid equilibrium, jumps cannot be so large as to send experts into bankruptcy, nor
can they induce households’ leverage to exceed experts’ (as this would contradict (RBJ)).
It turns out the no-bankruptcy condition, which says `q < κ/η, is automatically satisfied
given (RBJ) holds; intuitively, experts would never take so much risk that their wealth
is wiped out. The other requirement, that jumps not send the economy into a region in

27The derivation is as follows. Let variables with hats, e.g., “x̂”, denote post-jump variables. Note
N̂e = q̂K̂κ − B and N̂h = q̂K̂(1− κ) + B, where B is expert borrowing (and household lending, by bond
market clearing). Then, η̂ = N̂e/(q̂K̂) = κ − B/(q̂K̂) and by similar logic the pre-jump wealth share is
η = κ− B/qK. Thus, `η = η− η̂ = B[1/(q̂K̂)− 1/(qK)] = qK(κ− η)[1/(q̂K̂)− 1/(qK)]. Using the fact that
K̂ = K and the definition `q := 1− q̂/q, we arrive at `η = (κ− η)[(1− `q)−1 − 1]. This derivation assumes
the presumably risk-free bond price does not jump when capital prices jump. Conceptually, there is no
reason why this needs to be true, but it preserves its risk-free conjecture.
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which η ≤ κ, can be stated as

ρ̄(η̂)(1− `q)q > (ae − ah)η̂ + ah, (C.8)

where η̂ := η− (κ− η)
`q

1−`q
is the post-jump expert wealth share. Although it is obvious,

(RBJ) implies another bound on `q that arises because of |σR| ≥ 0, which is

ae − ah
q

≥ κ − η

η(1− η)

[ λ`2
q(

1− κ
η `q
)(

1− 1−κ
1−η `q

)
]
. (C.9)

Condition (C.9) evaluated at equality implies that all risk is jump risk. With these equa-
tions in hand, we describe our simulation procedure.

Step 0. Given (η, q) solve for κ(η, q) from (PO).

Step 1. Solve for the upper bound of `q(η, q) using (C.8)-(C.9).
Note that, fixing (η, q), the RHS of (C.9) is strictly increasing in `q when `q ∈

(
0, η

κ

)

while the LHS is constant. Moreover, the inequality is satisfied for `q = 0 and violated
as `q → η

κ . Hence, this condition defines an upper bound `A
q (η, q), which can be solved

by a bisection procedure.
Next, after some algebra, we can write condition (C.8) as

(1− `q)
2 − (1− `q) +

(ae − ah)(κ − η)

ρ̄(η)q + q(ρe − ρh)(κ − η)︸ ︷︷ ︸
:=ϕ(η,q)

> 0.

It is straightforward to notice that the condition holds for any `q ∈ (0, 1) if ϕ(η, q) ≥ 1/4.
When ϕ(η, q) < 1/4, then the condition holds for `q ∈ (0, `B,low

q ) ∪ (`
B,high
q , 1), where

1− `
B,high
q =

1
2

(
1−

√
1− 4ϕ

)
and 1− `B,low

q =
1
2

(
1 +

√
1− 4ϕ

)
.

Define

`B
q := 1{ϕ≥1/4} + `B,low

q 1{ϕ<1/4}.

Then, an upper bound that ensures all required inequalities are satisfied is

`max
q (η, q) := min{`A

q (η, q), `B
q (η, q)}.
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Step 2. Choose a sub-region within the domain D := {(η, q) : 0 < η < 1 and ηae + (1−
η)ah < qρ̄(η) ≤ ae} that is away from the upper and lower boundaries. For example,
in our numerical exercise, we choose the sub-region D◦ := {(η, q) : κ < 0.98 and κ >

η + 0.02}. On D\D◦, we will set `q = 0 and choose µq to ensure the economy never
escapes D. In fact, we can choose µq in a way that the boundary of D◦ acts arbitrarily
close to a reflecting boundary, which is what we have done for Figure 8. Pick an arbitrary
function `q(η, q) ∈ [0, `max

q (η, q)) and an arbitrary µq for the set D◦.
Step 3. Use risk-balance condition (RBJ) to solve for |σR|2. For each (η, q), assign
γ(η, q) fraction of the variance to the fundamental Brownian shock, and 1− γ(η, q) to
the sunspot Brownian shock. In constructing Figure 8, we set γ ≡ 1. Then, solve for
other equilibrium objects from the equations above.
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D Model extensions and further analyses

D.1 Partial equity issuance

We extend the model to allow some equity issuance by capital holders, subject to a
constraint. In particular, at any point of time, agents managing capital can issue some
equity to the market, but the issuer must keep at least χ ∈ [0, 1] fraction of their capital
risk—this is a so-called “skin-in-the-game” constraint. In other words, if experts and
households retain χe and χh of their capital risk, respectively, it must be the case that

χ`,t ≥ χ, ` ∈ {e, h}. (D.1)

Thus, the frictionless model corresponds to χ = 0, while our baseline model corresponds
to χ = 1. Outside equity contracts are risky, having risk exposure σR (the endoge-
nous capital return volatility), so they must promise an excess return σR · π, where π is
the equilibrium risk price vector that applies to securities tradable by both experts and
households.

Agents’ dynamic budget constraints are now given by

dn`,t =
[
(n`,t − qtk`,t)rt − c`,t + a`k`,t

]
dt + d(qtk`,t)

+ [θ`,tn`,t − (1− χ`,t)qtk`,t]σR,t · (πtdt + dZt). (D.2)

The second line of (D.2) contains the new terms pertaining to equity-issuance: θ`,t ≥ 0
denotes purchases of equity contracts in the market, per unit of wealth, while χ`,t denotes
the fraction of capital risk. Notice that it will be without loss of generality to assume
χ`,t = χ at all times and for all agents, because the purchase variable θ`,t is available
as a control. For example, an agent with a slack equity-issuance constraint (χ` > χ)
could issue equity to the constraint (D.1) and then buy back such equity by increasing
their θ` control. Going forward, we simply assume χe,t = χh,t = χ. The presence
of a public equity market implies an additional market clearing condition for equity
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securities, namely

θe,tNe,t + θh,tNh,t = (1− χ)qtKt. (D.3)

At this point, we may solve for equilibrium.

Model solution. The introduction of equity issuance changes nothing about optimal
consumption choices, so the price-output relation (PO) still holds.

Optimal portfolio choice now implies the following four FOCs:

µR,e − (1− χ)σR · π − r = χ
(χqke

ne
+ θe

)
|σR|2 (D.4)

µR,h − (1− χ)σR · π − r ≤ χ
(χqkh

nh
+ θh

)
|σR|2, with equality if kh > 0 (D.5)

(χqke

ne
+ θe

)
|σR|2 ≥ σR · π, with equality if θe > 0 (D.6)

(χqkh
nh

+ θh

)
|σR|2 ≥ σR · π, with equality if θh > 0 (D.7)

where µR,` := a`
q + g + µq + σσq ·

(
1
0
)

is the expected return on capital for agent `. Equa-
tions (D.4)-(D.5) are the FOCs for capital holdings, and (D.6)-(D.7) are the FOCs for
equity purchases. Note that the equality in (D.4) assumes ke > 0, which is easy to verify
must always be the case in equilibrium, exactly as in the baseline model.

We can derive a new “risk-balance” condition, analogously to the baseline model. If
in addition to ke > 0 we have kh > 0, then we cannot simultaneously have θe > 0, as this
would contradict µR,e > µR,h. Thus, θe = 0 whenever kh > 0, and so we may difference
(D.4)-(D.5) and use the market clearing condition (D.3) to substitute θh = 1−χ

1−η , which
leads to

0 = min
[
1− κ,

ae − ah
q
− χ

χκ − η

η(1− η)
|σR|2

]
. (RBE)

In addition to (RBE), equation (D.7) must hold with equality and (D.6) with inequality
when κ < 1. By (D.7) and the derived expression θh = 1−χ

1−η , we have σR · π = 1−χκ
1−η |σR|2,

for which a viable solution is

π =
1− χκ

1− η
σR, if κ < 1. (D.8)

Using this expression for π, (D.6) requires χκ ≥ η, which holds by equation (RBE).
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By contrast, when kh = 0 (so κ = 1), equations (D.6)-(D.7) imply

π = min
(

1,
1− χ

1− η

)
σR, if κ = 1. (D.9)

To prove this, combine the two possible cases:

(i) Suppose θe > 0. Note that θh = 0 cannot occur, as θe > 0 implies σR · π > 0
while kh = θh = 0 implies the opposite. Thus, we may combine (D.6)-(D.7), both
evaluated under equality, to obtain θh = θe +

χ
η . Plugging this result into market

clearing (D.3) yields θe = 1−χ/η and θh = 1. Using θh = 1 back in (D.7), we obtain
σR · π = |σR|2, for which a viable solution is π = σR. Note that θe = 1− χ/η > 0 if
and only if η > χ.

(ii) Suppose θe = 0. Note that market clearing (D.3) implies θh = 1−χ
1−η > 0 in this case.

By (D.7), we have σR · π = 1−χ
1−η |σR|2, for which a viable solution is π = 1−χ

1−η σR.
Using the expression for π, (D.6) requires η ≤ χ.

Putting the results of (D.8)-(D.9) together, we have that

π = min
(

1,
1− χκ

1− η

)
σR. (D.10)

Finally, the riskless interest rate can be derived as always, by summing a (κ, 1− κ)-
weighted-average of equations (D.4)-(D.5) to get

r =
κae + (1− κ)ah

q
+ g + µq + σσq ·

(
1
0
)
− (1− χ)σR · π (D.11)

− χ
[
κ
(χκ

η
+ θe

)
+ (1− κ)

(χ(1− κ)

1− η
+ θh

)]
|σR|2.

We can simplify this equation using the following facts. First, from the discussion above,
θh > 0 always holds, so that (D.7) holds with equality, hence θh = σR·π

|σR|2 −
χ(1−κ)

1−η . Next,

we may use the market clearing condition (D.3) to obtain θe =
1−χ

η −
1−η

η θh. We use these
two facts to eliminate θe and θh from (D.11), then we substitute the solution for π from
(D.10), and finally we simplify the result to obtain

r =
κae + (1− κ)ah

q
+ g + µq + σσq ·

(
1
0
)
− |σR|2 −

(χκ

η
− 1
)

max
(

0,
χκ − η

1− η

)
. (D.12)

This completes the derivation of equilibrium.
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Properties of equilibrium. For any χ > 0, we can construct S-BSEs using a similar
procedure as the baseline model, i.e., by solving equation (PO) for κ as a function of
(η, q), and then substituting this into (RBE) to also solve for |σR| as a function of (η, q).
Importantly, any solution to equation (RBE) requires χκ ≥ η, and so the effect of lower
equity issuance frictions (lower χ) is to reduce the range of possible fluctuations of κ,
hence q, for any given η. This effect is depicted in Figure D.1, which shows that the
range of possible fluctuations for price q is unambiguously shrinking as χ falls.

Figure D.1: Colormap of volatility |σR| as a function of (η, q), in the region D := {(η, q) : η ∈
(0, 1) and (η/χ)ae + (1− η/χ)ah < qρ̄(η) ≤ ae}. Volatility is truncated for aesthetic purposes (because
|σR| → ∞ as κ → η/χ). Parameters: ρe = 0.07, ρh = 0.05, ae = 0.11, ah = 0.03.

In particular, as χ → 0, no sunspot equilibrium can exist. This is very easy to see—a
solution κ < 1 to (RBE) requires χκ ≥ η, but as χ → 0 this becomes impossible for
any η > 0. Thus, as χ → 0, capital misallocation converges to zero, and capital prices
converge to their maximum ae/ρ̄(η). Relatedly, taking χ → 0 in equation (D.10), we see
that π → σR for each η > 0. This is the complete-markets risk price with log utility
agents. Thus, as χ → 0, risk allocations converge to the frictionless solution. As both
capital and risk are allocated frictionlessly in the limit, the First Welfare Theorem obtains.

Proposition D.1. As χ → 0, the set of equilibria converges to a singleton, namely the non-
stochastic Fundamental Equilibrium with κt = 1 and qt = ae/ρ̄(ηt).
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D.2 Idiosyncratic uncertainty

Here, we add idiosyncratic risk to capital. Doing so raises two substantive points: (i)
small idiosyncratic uncertainty can provide some equilibrium refinement, by selecting
equilibria with the property limη→0 κ = 0; (ii) the addition of idiosyncratic uncertainty
allows us to study, in a non-trivial way, the stability properties of the “deterministic
steady state” of our model.

Setting. In addition to the model assumptions listed in Section 1, individual capital now
evolves as

dki,t = ki,t[gdt + σ̃dB̃i,t], (D.13)

where (B̃i)i∈[0,1] is a continuum of independent Brownian motions. Agents with indexes
i ∈ [0, ν] are experts, and those with i ∈ [ν, 1] are households. As in Section 1, the aggre-
gate stock of capital Kt :=

∫ 1
0 ki,tdi grows as dKt = Kt[gdt + σdZ(1)

t ]. Also as before, the
second shock Z(2) is the sunspot shock, independent of Z(1). The idiosyncratic Brownian
motions are independent of Z. Besides this addition of idiosyncratic uncertainty, the def-
inition of equilibrium is the same as Definition 1. Conjecture dqt = qt[µq,tdt + σq,t · dZt].

Small uncertainty as equilibrium refinement. The first result in this environment is that
any equilibrium must feature full deleveraging by experts, as they become poor, simply
as a consequence of portfolio optimality. To see this, note that risk-balance condition
(RB), the combination of expert and household capital FOCs, is now modified to read

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(σ̃2 + |σR|2)

]
, (D.14)

where σR := σ( 1
0 ) + σq is the aggregate diffusion in capital returns, as before. Note that

ae − ah > 0 and σ̃2 + |σR|2 > 0. Thus, as η → 0, we must have κ → 0, a property that
holds for any arbitrarily small σ̃.

Lemma D.1. Any equilibrium with σ̃ > 0 has the property limη→0 κ = 0.

Intuitively, idiosyncratic risk gives experts an additional motive to sell capital. This
motive is magnified as experts become relatively poorer, because the risk is embedded
in the capital stock, which is then amplified by leverage in affecting experts’ net worth.
In fact, the selling motive is magnified infinitely, because experts that do not sell capital
will see their leverage grow unboundedly as their wealth shrinks. Thus, even a small
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amount idiosyncratic risk is enough to force coordination on maximal selling in response
to negative shocks.

Steady state instability. In an attempt to differentiate ourselves from the literature, here
we examine the traditional stability properties of this model. The addition of idiosyn-
cratic risk provides a convenient environment for stability analysis, for the following
reason. Stability properties are typically studied around the “steady state” of a deter-
ministic equilibrium. In our model with σ̃ = 0, studying a deterministic equilibrium
instead puts us in the FE, which trivially has κ = 1 always. With idiosyncratic risk, we
can study a fundamental equilibrium in which capital prices evolve deterministically,
even though κ < 1 in steady state. To do this, we set aggregate fundamental risk to zero,
σ = 0, and study the properties of the non-stochastic equilibrium having σq = 0.

The crucial feature this model, as we show below, is that capital prices are determined
by a function q such that qt = q(ηt). Supposing that to be true, a steady state is fully
characterized by the value η = ηss such that all non-growing variables are constant over
time. This steady state is thus determined by the equation η̇ = 0, where

η̇ = η(1− η)
[
ρh − ρe + σ̃2

(
(

κ

η
)2 − (

1− κ

1− η
)2
)]

+ δh − (δe + δh)η.

It is straightforward to show that equilibrium features stable state variable dynamics, in
the sense that ∂η̇

∂η |η=ηss < 0. However, because the “co-state” q is determined explicitly
as a function of η, the steady state is not “stable” in the usual sense required by the
multiplicity literature. Technically, there is only one stable eigenvalue of the dynamical
system (ηt, qt) near steady state (ηss, qss).

Lemma D.2. The steady state of the model with idiosyncratic risk is saddle path stable.

Proof of Lemma D.2. First, we show that q is a function of η, i.e., qt = q(ηt). Goods
market clearing is still characterized by the price-output relation (PO). With idiosyncratic
risk, the risk-balance condition (RB) is now (D.14). The solution to the system (PO) and
(D.14) can be computed explicitly. Indeed, define

η∗ := sup{η : (ae − ah)ηρ̄(η) = aeσ̃
2}.

Then, κ = 1 for all η ∈ (η∗, 1). For η ∈ (0, η∗), we compute κ < 1 as the positive root κ̃

from
0 = (ae − ah)κ̃

2 + [ah − η(ae − ah)]κ̃ − ηah −
η(1− η)(ae − ah)ρ̄(η)

σ̃2 .
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After determining κ for all values of η, capital price q can be computed from (PO), as an
explicit function of η.

Given qt = q(ηt), the dynamics of qt are given by q̇t = q′(ηt)η̇t, which only depends
on η and not q (notice that η̇t also only depends on η and not q). Consequently, the
linearized system near steady state takes the form

[
η̇

q̇

]
=

[
m1 0
m2 0

] [
η

q

]

for m1, m2 6= 0. The eigenvalues of this system are m1 < 0 and 0.

As a result of Lemma D.2, there is a unique transition path (ηt, qt)t≥0 to steady state,
given an initial condition η0. In other words, q0 is pinned down uniquely. Our sunspot
equilibria are not constructed by randomizing over a multiplicity of transition paths that
arise due to steady state stability, which is the usual approach (Azariadis, 1981; Cass and
Shell, 1983).

D.3 Limited commitment as equilibrium refinement

Here, we add a small limited commitment friction, in the spirit of Gertler and Kiyotaki
(2010). The result: only equilibria with the property limη→0 κ = 0 survive, similarly to
equilibria with a small amount of idiosyncratic risk (Appendix D.2).

Suppose capital holders can abscond with a fraction λ−1 ∈ (0, 1) of their assets and
renege on repayment of their short-term bonds. After doing this diversion, the capital
holder would have net worth ñj,t := λ−1qtk j,t.

To prevent diversion, bondholders will impose some limitation on borrowing. To see
this, note that diversion delivers utility log(ñj,t) + ξt, where ξt is an aggregate process
(independent of the identity j of the diverter). This is the form of indirect utility for a
log utility investor in our model, as discussed in Appendix B.1. For diversion to be sub-
optimal, it must be the case that log(ñj,t) + ξt ≤ log(nj,t) + ξt. As a result, bondholders
impose the following leverage constraint to ensure non-diversion is incentive compatible:

qtk j,t

nj,t
≤ λ. (D.15)

We will study the equilibrium with constraint (D.15) additionally imposed, and then we
will take λ→ ∞ so that the limited commitment friction is vanishingly small.
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Risk-balance condition (RB) is now replaced by

0 = min
[
1− κ, λη − qκ,

ae − ah
q
− κ − η

η(1− η)
|σR|2

]
. (D.16)

The most important feature of equation (D.16) is that leverage constrained experts (λη =

qκ) must hold less than the full capital stock (κ < 1).
Condition (D.16) implies that there exists a threshold ηλ := inf{η : λη > qκ} below

which experts’ leverage constraints bind. By combining λη = qκ with condition (PO) for
κ, we obtain an explicit formula for the capital price in this region:

q =
1
2

[ ah
ρ̄
+
√
(ah/ρ̄)2 + 4λη(ae − ah)/ρ̄

]
, if η ≤ ηλ. (D.17)

Taking the limit η → 0 in equation (D.17) shows that q → ah/ρh and thus κ → 0. This
proves that there is no flexibility for coordination on a worst-case capital price, unlike the
leverage-unconstrained economy. The equilibrium worst-case capital price must coincide
with κ0 = 0.

As the limited commitment problem vanishes (λ → ∞), the leverage constraint be-
comes non-binding at all times (formally ηλ → 0).28 But along the sequence, κ0 = 0 is
uniformly required. We collect these results.

Lemma D.3. Among all equilibria, only those with the property limη→0 κ = 0 survive a
vanishingly-small limited commitment friction.

Intuitively, the leverage constraint gives experts an additional motive to sell capital,
which forces coordination on maximal selling in response to negative shocks. Said dif-
ferently: due to the prospect of violating the leverage constraint, losses incurred from
retaining capital when others are selling is larger than losses incurred from selling capital
when others are retaining it. This property is reminiscent of “risk dominant” equilibria
being selected by strategic uncertainty (Harsanyi and Selten, 1988; Frankel et al., 2003),
but the exact modeling is different here.

D.4 Correlation between sentiment and fundamentals

What happens if sentiment shocks are correlated with fundamental shocks? To model
this, we allow

dst = µs,tdt + σ
(1)
s,t dZ(1)

t + σ
(2)
s,t dZ(2)

t .

28This intuitive property can be shown easily by taking λ→ ∞ in (D.17). For any fixed η ∈ (0, 1), taking
this limit implies q→ ∞, which is ruled out by price-output relation (PO).
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In Section 3.1, we restricted attention to σ
(1)
s,t = 0. Without this assumption, equations

(23) and (22) are modified to read:

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)

( (σ + σ
(1)
s ∂s log q)2 + (σ

(2)
s ∂s log q)2

(1− (κ − η)∂η log q)2

)]

σq =
( 1

0 )(κ − η)σ∂η log q + σs∂s log q
1− (κ − η)∂η log q

.

The rest of the equilibrium restrictions are identical.
For the present illustration, we additionally assume that σ

(2)
s,t = 0, i.e., sentiment

shocks only load on fundamental shocks. What emerges is the possibility that sentiment
shocks “hedge” fundamental shocks: we can have σ

(1)
s ∂s log q < 0, which lowers return

volatility and raises asset prices. In one extreme, if σ
(1)
s ∂s log q → −σ, the price function

converges to that of a Fundamental Equilibrium with vanishing fundamental risk σ →
0; call this FE(0). At the other end, if σ

(1)
s ∂s log q → 0, the economy resembles the

Fundamental Equilibrium with positive fundamental shocks; call this FE(σ). Thus, by
constructing our conjectured capital price function as a convex combination of FE(0) and
FE(σ), with weights 1− s and s, we can ensure that σ

(1)
s ∂s log q endogenously emerges

negative. Figure D.2 displays the equilibrium constructed this way.

Figure D.2: Capital price q, volatility of capital returns |σR|, and sunspot shock volatility |σs|. Parameters:
ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.10.

D.5 Exogenous sunspot dynamics

In Section 3.1, we solved for a Markov S-BSE that featured endogenous sunspot dynam-
ics, i.e., (σs, µs) could potentially depend on η. Here, we show that sunspot equilibria
can be built on top of exogenous sunspot dynamics as well. As we will show, this con-
struction can be naturally viewed as the limit of equilibria in which the variable s has
a vanishing contribution to fundamentals. With that in mind, we actually start from a
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more general setting in which s can impact fundamental volatility, and then we take the
limit as this impact becomes vanishingly small.

Consider the following stochastic volatility model:

dKt

Kt
= gdt + σ

√
1 + ωstdZt

dst = µs(st)dt + ϑ
√

1 + ωstdZt

where ϑ > 0 is an exogenous parameter and ω ∈ R measures the impact of st on capital
growth volatility. Thus, the diffusion of st, namely σs(s) := ϑ

√
1 + ωs, is specified

exogenously. Also, µs(s) is an exogenous function that is specified to ensure that st ∈
(smin, smax), for some pre-specified interval satisfying smin ≥ 0 and ωsmax > −1. Such a
choice can always be made, e.g., by putting µs(s) = −(smax− s)−(1+β)+ (s− smin)

−(1+β).
Note that st becomes a sunspot when ω = 0. When ω < 0, the state st is an inverse
measure of capital’s volatility.

For simplicity, we assume there is a single aggregate shock, i.e., Z is a one-dimensional
Brownian motion; this can easily be generalized to multiple shocks. Also for simplicity
of expressions, we assume here that ρe = ρh = ρ. Then, an equilibrium capital price
function q(η, s) must satisfy the PDE defined by the following system

ρq = κae + (1− κ)ah

0 = min
[
1− κ,

ae − ah
q
− (κ − η)(1 + ωs)

η(1− η)

( σ + ϑ∂s log q
1− (κ − η)∂η log q

)2]
.

Technically, the multiplicity arises from the selection of the boundary conditions on
q(η, smin) and q(η, smax), which are not pinned down by any equilibrium restriction.

We perform two exercises. First, we show that there are multiple equilibria for a given
set of parameters. We use ω < 0 here, along with smin = 0 and smax = 2. In this case, the
“natural” and intuitive solution is for q to increase with s, because volatility decreases.
In Figure D.3, we pick a “low” boundary condition for q(η, 0) and the solution follows
this intuition.29

However, agents could equally well coordinate on a “high” boundary condition,
which results in the solution of Figure D.4.30 Notice the capital price and return volatil-

29This “low” boundary condition is a weighted average between the solution with infinite volatility and
the fundamental equilibrium solution. The fundamental equilibrium, which is the capital price solution
that keeps s = 0 fixed forever, is discussed in Online Appendix E. The infinite-volatility solution has κ = η,
hence q = (ηae + (1− η)ah)/ρ̄(η).

30This “high” boundary condition is a weighted average between limv→0 FE(v) and FE(σ), where FE(σ)
denotes the Fundamental Equilibrium solution with exogenous risk σ.
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Figure D.3: Equilibrium with ω = −0.25, and the “low” boundary condition for q(η, 0), which is a 50%
weighted-average of the fundamental equilibrium and the infinite-volatility equilibrium. Other parame-
ters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The boundary condition at η = 0 is set so that
κ(0, s) = 0.01 for all s.

ity exhibit a non-monotonicity in s. At low values of s, q is decreasing in s, while return
volatility increases. The very different behavior in Figures D.3 and D.4 is made possible
by coordination on the different boundary conditions.
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Figure D.4: Equilibrium with ω = −0.25, and the “high” boundary condition for q(η, 0), which is a 50%
weighted-average of FE(σ) and limv→0 FE(v), where FE(σ) denotes the fundamental equilibrium solution
with fundamental risk σ. Other parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The
boundary condition at η = 0 is set so that κ(0, s) = 0.01 for all s.

Our second exercise considers the limit ω → 0. Figure D.5 shows the solution for
ω = −10−6, again equipped with the “low” boundary condition for q(η, 0). There re-
mains a tremendous amount of variation in the equilibrium as s varies, illustrating con-
vergence to a sunspot equilibrium. Thus, as promised, we are able to construct sunspot
equilibria even if the dynamics (σs, µs) are specified exogenously. In fact, it appears that
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the amount of price volatility is relatively insensitive to the real effects s has (i.e., the
size of ω), which is reminiscent of the “volatility paradox” of Brunnermeier and San-
nikov (2014) but one level deeper. Their paradox is that total volatility is only modestly
sensitive to exogenous fundamental volatility; our paradox is that total volatility is only
modestly sensitive to the exogenous impact of s on fundamental volatility.
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Figure D.5: Equilibrium with near-sunspot ω = −10−6 and the “low” boundary condition for q(η, 0),
which is a 50% weighted-average of FE(σ) and the infinite-volatility equilibrium (which has κ = η). Other
parameters: ρe = ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.1, ϑ = 0.25. The boundary condition at η = 0 is set
so that κ(0, s) = 0.01 for all s.
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E Fundamental Equilibria

In this section, we investigate properties of equilibria where sunspot shocks Z(2) are
irrelevant and experts’ wealth share η serves as the only state variable, i.e., fundamental
equilibria. We illustrate previously undocumented multiplicity along two dimensions:
the disaster belief κ0 and the sign of the sensitivity of capital returns to fundamental
shocks σ + σq. The key equations describing FEs are:

qρ̄ = κae + (1− κ)ah (E.1)

0 = min
[
1− κ,

ae − ah
q
− κ − η

η(1− η)
(σ + σq)

2
]
. (E.2)

σq =
(κ − η)q′/q

1− (κ − η)q′/q
σ. (E.3)

Equation (E.1) just restates (PO). Equation (E.2) is the risk-balance condition (RB) when
there is only the fundamental shock Z(1). Equation (E.3) comes from resolving the
two-way feedback between wealth share volatility ση = (κ − η)(σ + σq) and asset-price
volatility σq = q′

q ση, which arises from Itô’s formula. Finally, wealth share dynamics are
given in (13)-(14), restated here for convenience:

µη = −η(1− η)(ρe − ρh) + 1{κ<1}(κ − 2κη + η2)
ae − ah

q
+ δh − (δe + δh)η (E.4)

ση = (κ − η)(σ + σq). (E.5)

We define a fundamental equilibrium as follows, analogously to Lemma 1.

Definition 4. Given η0 ∈ (0, 1), a Markov fundamental equilibrium consists of adapted
processes (ηt, qt, κt, rt)t≥0 such that (E.1)-(E.3) and (11) hold, and (E.4)-(E.5) describe dy-
namics of ηt.

Note that the interest rate rt can be simply set from (11), given the other variables,
and it affects no other equilibrium equation. Similarly, the dynamics of ηt are set from
(E.4)-(E.5), and they affect none of (E.1)-(E.3). Hence, below, we will often refer to a
fundamental equilibrium simply by reference to (q, κ).

E.1 Properties

We describe here some properties of fundamental equilibria, where we additionally im-
pose the full-deleveraging condition κ(0) = 0.
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Lemma E.1. Assuming it exists, suppose (q, κ) is a fundamental equilibrium in η in the sense
of Definition 4. Assume κ(0+) = 0. Define η∗ := inf{η : κ = 1}. Then, the following hold:

(i) (ρ̄q− ηae − (1− η)ah)
q′
q = ae − ah − σ

√
q ρ̄q−ηae−(1−η)ah

η(1−η)
, for all η ∈ (0, η∗).

(ii) ηae + (1− η)ah < ρ̄q < ae , for all η ∈ (0, η∗).

(iii) q′(0+)
q(0+)

= ae
ah
− ρe

ρh
+ ρh

( ae−ah
σah

)2.

(iv) If σ is sufficiently small, then q′ > ae−ah
ρ̄ , for η ∈ (0, η∗).

(v) If σ is sufficiently small, then ρh
ρe

(1−ah/ae
σ2 − 1 + ρh

ρe

)−1
< η∗ < 1.

(vi) On η ∈ (0, η∗), the solution q is infinitely-differentiable.

Proof of Lemma E.1. Since a fundamental equilibrium is assumed to exist, we make
use of equations (E.1) and (E.2). Recall that ρ̄ := ηρe + (1− η)ρh. By analogy, let ā :=
ηae + (1− η)ah.

(i) Start from equation (E.2), and rearrange to obtain the result, where we have im-
plicitly selected the solution with 1 > (κ − η) q′

q .

(ii) The first inequality, which is equivalent to κ > η, is a direct implication of equation
(E.2). The second inequality, equivalent to κ < 1, is a restatement of the definition
of η∗.

(iii) Start from equation (E.2). Taking the limit η → 0, and using κ(0+) = 0, delivers
an equation for κ′(0+). Differentiating (E.1), we may then substitute κ′(0+) =
ρhq′(0+)+(ρe−ρh)q(0+)

ae−ah
. Rearranging, we obtain the desired result.

(iv) By part (iii), there exists η◦ > 0 and σ̄ > 0 such that uniformly for all σ < σ̄, we
have q′ > ae−ah

ρ̄ on the set {η < η◦}. On the set {η◦ ≤ η < η∗}, we know that
κ − η is bounded away from zero, uniformly for all σ < σ̄. Using the expression
in part (i), the fact that q is bounded by ae/ρ̄ uniformly for all σ, and the previous
fact about κ − η = ρ̄q− ā, we can write

q′ =
ae − ah
ρ̄q− ā

q− o(σ), η ∈ (η◦, η∗).

Therefore,

q′ + o(σ) =
ae − ah
ρ̄q− ā

q =
ae − ah

ρ̄

q
q− ā/ρ̄

>
ae − ah

ρ̄
, η ∈ (η◦, η∗),
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where the last inequality is due to ρ̄q > ā [part (ii)]. Taking σ is small enough
implies the result on (η◦, η∗), which we combine with the result on (0, η◦) to con-
clude.

(v) Consider the function q̃ := ā/ρ̄, whose derivative is q̃′ = ae−ah
ρ̄ − ā

ρ̄
ρe−ρh

ρ̄ < ae−ah
ρ̄ .

Combining this result with part (iv), we obtain q′ > q̃′. If q̃ was the capital price,
then equation (E.1) implies the associated capital share κ̃ = η. On the other hand,
the fact that q′ > q̃′ implies κ′ > κ̃′ = 1, which implies η∗ < 1.

Next, consider η ∈ (η∗, 1) so that κ = 1. By equation (E.2), with q = ae/ρ̄, we must
have

σ2 ≤ ηρ̄
ae − ah

ae

(
1 + (1− η)

ρe − ρh
ρ̄

)2
, η ≥ η∗.

This is equivalent to

1 ≤ η
ρe

ρh

( ae − ah
aeσ2 ρe − 1 +

ρh
ρe

)
, η ≥ η∗.

Substituting η = η∗, and rearranging, we obtain the first inequality. There is no
contradiction with η∗ < 1, due to the assumption that σ can be made small enough.

(vi) Note that F(η, q) := q[ ae−ah
ρ̄(η)q−ā(η) − σ( η(1−η)(ρ̄(η)q−ā(η))

q )] is infinitely differentiable in
both arguments on {(η, q) : η ∈ (0, 1), ρ̄(η)q > ā(η)}. Thus, the result is a simple
consequence of differentiating part (i), noting that by part (ii) we have ρ̄(η)q(η) >
ā(η), and then using induction.

E.2 “Disaster beliefs” and deleveraging

The existing literature always imposes κ(0+) = 0, i.e., experts fully deleverage as their
wealth vanishes.31 This is actually not a necessary feature of a fundamental equilibrium.
Let κ0 ∈ [0, 1) and suppose κ(0+) = κ0. We will call κ0 the disaster belief about experts’
deleveraging. Existence of an equilibrium with such disaster belief boils down simply to

31Brunnermeier and Sannikov (2014) justify κ0 = 0 in their online appendix: “because in the event that
ηt drops to 0, experts are pushed to the solvency constraint and must liquidate any capital holdings to
households.” This is technically not needed; as shown in Lemma E.2 below, the dynamics of ηt will not
allow it to ever reach 0, so there is no contradiction to equilibrium with both κ0 > 0 and σ > 0. Although
we do not prove an existence result, Appendix E.1 presents several numerical examples. The continuum
of fundamental equilibria, indexed by κ0, may be of independent theoretical interest.

In some sense, the literature has picked the worst possible fundamental equilibrium (minimal-price,
maximal-volatility) by imposing κ0 = 0. This can be partly justified by the refinement results of Sections
D.2 and D.3, i.e., only the belief κ0 = 0 survives vanishingly-small idiosyncratic risk or a vanishingly-small
limited commitment friction.
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existence of a solution to a first-order ODE with a given boundary condition κ(0) = κ0.
If solutions exist for a variety of different choices for κ0, then a variety of fundamental
equilibria could exist, and indeed we provide a numerical example after the following
lemma and proof.

Lemma E.2. A fundamental equilibrium with disaster belief κ0 ∈ [0, 1) exists if the free boundary
problem

(ρ̄q− ηae − (1− η)ah)
q′

q
= ae − ah − σ

√
q

ρ̄q− ηae − (1− η)ah
η(1− η)

, on η ∈ (0, η∗), (E.6)

subject to q(0) =
κ0ae + (1− κ0)ah

ρh
and q(η∗) =

ae

ρ̄(η∗)
, (E.7)

has a solution.

Proof of Lemma E.2. A fundamental equilibrium in state variable η exists if and only if
equations (E.1), (E.2), and (E.3) hold, and if the time-paths (ηt)t≥0 induced by dynamics
(ση, µη) avoid η = 0 almost-surely. We will demonstrate these conditions.

Suppose (E.6)-(E.7) has a solution (q, η∗) corresponding to κ0 ∈ [0, 1). If there are
multiple solutions, we pick the one such that q(η) < ae/ρ̄(η) for all η ∈ (0, η∗), which
is always possible because the boundary conditions (E.7) imply ρ̄(0)q(0) < ρ̄(η∗)q(η∗).
Set q(η) = ae/ρ̄(η) for all η ≥ η∗. Define κ = ρ̄q−ah

ae−ah
. Note that (E.1) is automatically

satisfied. Note that (E.3) is also satisfied automatically, by applying Itô’s formula to the
solution q(η) and using ση = (κ − η)(σ + σq).

We show (E.2) holds separately on (0, η∗) and [η∗, 1). Using (E.1) and (E.3) in the ODE
(E.6) and rearranging, we show that (E.2) holds when κ < 1. The boundary condition
q(η∗) = ae/ρ̄(η∗) is equivalent to κ(η∗) = 1, which shows that κ(η) < 1 for all η < η∗.
Therefore, we have proven that (E.2) holds on (0, η∗).

If η∗ = 1, then we are done verifying (E.2); otherwise, we need to verify (E.2) on
[η∗, 1). On this set, κ = 1, so we need to verify

η
ae − ah

q
≥ (σ + σq)

2 for all η ≥ η∗. (E.8)

First, we show that it suffices to verify this condition exactly at η∗. Indeed, on (η∗, 1),
we have κ = 1 and q = ae/ρ̄. Substituting these and (E.3) into (E.8), we obtain

(E.8) holds ⇔
( ae − ah

aeσ2 ρe −
ρe − ρh

ρe

)
η ≥ ρh

ρe
for all η ≥ η∗.
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But since the left-hand-side is increasing in η, if it holds at η = η∗, it holds for all η > η∗.
Now, writing (E.8) at η∗, using (E.3) to replace σq, and using ODE (E.6) to replace

η∗ ae−ah
q(η∗) = σ[1− (1− η∗)q′(η∗−)/q(η∗)]−1, we need to verify

(E.8) holds ⇔ σ

1− (1− η∗)q′(η∗−)/q(η∗)
≥ σ

1− (1− η)q′(η∗+)/q(η∗)
⇔ q′(η∗−) ≥ q′(η∗+).

We clearly have q′(η∗−) ≥ q′(η∗+) by the simple fact that q < ae/ρ̄ for η < η∗ and
q = ae/ρ̄ for η ≥ η∗.

Finally, it remains to very that ηt almost-surely never reaches the boundary 0. Near
η = 0, the dynamics in (E.4)-(E.5) become

µη(η) = κ0
ae − ah
q(0+)

+ δh + o(η)

σ2
η(η) = κ0

ae − ah
q(0+)

η + o(η).

By the same analysis as in Theorem 1, the boundary 0 is unattainable.

What happens in an equilibrium of Lemma E.2 in which κ0 > 0? Behavior at the
boundary η = 0 is substantially different than the κ0 = 0 case, because equation (E.2)
can only hold there if σq → −σ as η → 0. Capital prices “hedge” fundamental shocks
to capital, in a brief region of the state space (0, ηhedge). Said differently, given the
formula (E.3), the fact that σq(0+) = −σ implies q′(0+) = −∞, so that prices rise as
experts lose wealth in a region of the state space. The hedging region is exactly what
incentivizes experts to take so much leverage (indeed, expert leverage κ/η blows up near
0). For η > ηhedge, this behavior reverses, and the equilibrium behaves very much like
the equilibrium with κ0 = 0. Overall, there is no inconsistency with equilibrium even
though q′ < 0 in the region (0, ηhedge).32

Figure E.1 displays several examples of equilibria with different choices of κ0 > 0.
The solid black lines, which are equilibrium outcomes with κ0 = 0.001, corresponds ap-
proximately to the equilibrium choice made by Brunnermeier and Sannikov (2014). The

32One may think that q′(0+) = −∞, and more generally that q′ < 0 in some region of the state space,
could imply that κ hits η at some point. However, this cannot happen. Indeed, since κ0 > 0, we have
that q(0+) > q̃(0+), where q̃(η) := ((ae − ah)η + ah)/ρ̄ is the price function consistent with κ = η. Now,
assume there is an η̂ ∈ (0, 1) such that κ(η̂) = η̂ (or equivalently, q(η̂) = q̃(η̂)). If there is more than one,
consider the minimum among them, so q(η) > q̃(η) for all η ∈ (0, η̂). From the q̃(η) definition, we have
q̃′(η) = (ae − ah)/ρ̄− ((ae − ah)η̂ + ah)(ρe − ρh)/ρ̄2 < ∞, while from (E.6) it must be that q′(η̂−) → ∞.
But this implies that q crosses q̃ from below, contradicting q(η) > q̃(η) on η ∈ (0, η̂).
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other curves, with higher disaster beliefs κ0, are new to the literature. More optimistic
disaster beliefs raise capital prices and reduce capital price volatility.

Figure E.1: Fundamental equilibria with different disaster beliefs κ0. Parameters: ρe = ρh = 0.05, ae = 0.11,
ah = 0.03, σ = 0.025. Type-switching parameters: δh = 0.004 and δe = 0.036.

E.3 The “hedging” equilibrium

The equilibria described above are “normal” in the sense that a positive exogenous shock
increases asset prices and experts’ wealth share.33 But technically, agents do not care
about the direction prices move when they make their portfolio choices. They only
care about risk which is measured in return variance; this can be seen in the optimality
condition (E.2) where (σ + σq)2 appears. An immediate implication is that two types of
equilibria are possible: the “normal” one has σ + σq > 0; an alternative equilibrium has
σ + σq < 0. For a conjecture of this specific type of indeterminacy, see footnote 16 of
Kiyotaki and Moore (1997).

We term this latter equilibrium the “hedging” equilibrium because asset price move-
ments move oppositely to exogenous shocks. In fact, asset price responses are so strong
in opposition that experts actually gain in wealth share upon a negative fundamental

33Except, as we have discussed above, if full-deleveraging does not hold (κ0 > 0), then there is a (small)
region η ∈ (0, ηhedge) on which q′ < 0, so negative shocks reduce experts’ wealth share but increase asset
prices. But broadly speaking, especially if accounting for the stationary distribution, the equilibria feature
q′ > 0 and thus the “normal” behavior (see Figure E.1).
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shock. This can only happen because of coordination: experts and households sim-
ply believe negative shocks are good news for asset prices, so they rush to purchase
capital, which percolates through equilibrium relationships to justify beliefs about price
increases. Such coordination stands in contrast to the normal equilibrium, in which
negative shocks beget fire sales that push down asset prices.

Mathematically, we need only solve a slightly different capital price ODE. Whereas
ODE (E.6) holds in the normal equilibrium, the hedging equilibrium requires

(ρ̄q− ηae − (1− η)ah)
q′

q
= ae − ah + σ

√
q

ρ̄q− ηae − (1− η)ah
η(1− η)

, on η ∈ (0, η∗). (E.9)

The difference between (E.9) and (E.6) is merely the sign in front of σ, which ensures
different signs for σq. Finally, note that just like the normal equilibria, hedging equi-
libria could exist for κ0 6= 0. Figure E.2 compares a normal equilibrium to a hedging
equilibrium.

Figure E.2: Two equilibria (normal versus hedging) both with disaster belief κ0 = 0.1. Parameters: ρe =
ρh = 0.05, ae = 0.11, ah = 0.03, σ = 0.025. Type-switching parameters: δh = 0.004 and δe = 0.036.

81



F Discrete-time model

The following discrete-time model is exactly analogous to our continuous-time model.
We model each decision on a time-step of ∆ (it will turn out that the decision interval ∆
cannot be arbitrarily large).

Technology. For simplicity, we assume that aggregate capital K is fixed, i.e., there is no
fundamental uncertainty. Note nevertheless that individual positions on capital are not
predetermined since agents can trade capital.

Individual agent problem. An individual can hold two assets, riskless bonds bt and
capital kt, and decides consumption ct. The individual net worth, just before consuming,
is nt = bt + qtkt, where qt is the market price of capital. The one-period return on bonds
is R f

t = 1 + rt∆, and the return-on-capital is Rk
t+∆ := a∆

qt
+ qt+∆

qt
, where a is the agent’s

productivity per unit of time while holding capital. Then, the agent’s dynamic budget
constraint is34

nt+∆ = qtkt(Rk
t+∆ − R f

f ) + (nt − ct)R f
t . (F.1)

Each agent takes qt, R f
t , and Rk

t+∆ as given and chooses (c, k, n) to maximize

E

[
∞

∑
i=0

( 1
1 + ρ∆

)i
log(ci∆)

]
, (F.2)

subject to (F.1), subject to the no-shorting constraint kt ≥ 0, and subject to the solvency
constraint nt ≥ 0.

The first-order optimality conditions are the standard Euler equations

1 =
1

1 + ρ∆
R f

t Et

[
ct

ct+∆

]
(F.3)

0 ≥ 1
1 + ρ∆

Et

[
ct

ct+∆
(Rk

t+∆ − R f
t )

]
, (F.4)

where (F.4) holds with equality when kt > 0 is chosen.

34To derive (F.1), proceed as follows. First, note that the bond market account next period, before
adjusting the portfolio of bonds and capital, will have value b′t+∆ = R f

f (bt − ct) + akt∆—that is, after
consumption expenditures are made, the residual earns the interest rate, and the cash flows from holding
capital are also added at the end of the period. Second, the capital holdings kt will have value qt+∆kt next
period. Adding these two quantities must equal tomorrow’s net worth nt+∆. Hence, nt+∆ = R f

f (bt − ct) +

akt∆ + qt+∆kt. Using the definition nt = bt + qtkt gives the result (F.1).
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In addition, it is straightforward to show that optimal consumption satisfies the stan-
dard log utility formula35

ct =
ρ∆

1 + ρ∆
nt. (F.5)

Using this fact, plus the budget constraint (F.1) in (F.3)-(F.4), we obtain

1 =
1

1 + ρ∆
R f

t Et

[
1

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
(F.6)

0 ≥ 1
1 + ρ∆

Et

[
Rk

t+∆ − R f
t

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]
, with equality if θt > 0 (F.7)

where θt := qtkt
nt

is the share of wealth allocated to capital. At this point, one can prove
that (F.6) holds automatically if (F.7) holds.36 Therefore, we can drop the bond Euler
equation (F.6) from the remainder of the analysis, i.e., (F.5) and (F.7) fully characterize
the agent’s optimal choices.

Aggregation and equilibrium conditions. As in the main text, we assume there are
two types of agents: experts have productivity ae and discount rate ρe, while households
have productivity ah < ae and discount rate ρh ≤ ρe. Clearly, then, experts have a higher
return-on-capital than households: Rk

e,t+∆ > Rk
h,t+∆.

We now aggregate. The market clearing condition for goods, capital, and bonds are
given by, respectively,

ce,t + ch,t = (aeke,t + ahkh,t)∆ (F.8)

ke,t + kh,t = K (F.9)

be,t + bh,t = ce,t + ch,t. (F.10)

Equation (F.10) says that bondholdings just after consuming (which is bt − ct) sum to

35This can be showed by writing out the Bellman equation and guessing-and-verifying that the value
function takes the form vt = (1− β)−1 log(nt) + f (Ωt) for β = (1 + ρ∆)−1 and some function f that only
depends on aggregate states Ωt. Then, the envelope condition says c−1

t = ∂
∂n vt = (1− β)−1n−1

t , which is
the consumption formula.

36Indeed, if θt = 0 it is obvious that (F.6) holds. If θt > 0, then (F.7) holds with equality, so we then have

0 = Et

[ θt(Rk
t+∆ − R f

t )

θt(Rk
t+∆ − R f

t ) + (1 + ρ∆)−1R f
t

]

Adding this expression to equation (F.6), we obtain the identity 1 = 1.
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the zero net supply. By combining (F.10) with the individual net worth definition nt =

bt + qtkt, we obtain an alternative statement of bond market clearing that we will use:

ne,t + nh,t = qtK + ce,t + ch,t. (F.11)

Definition 5. An equilibrium is a collection of stochastic processes for allocations
(k j,t∆, nj,t∆, cj,t∆)

∞
t=0 for j ∈ {e, h} with ke,0 and kh,0 given, and for prices (qt∆, R f

t∆)
∞
t=0 such

that (i) given prices, allocations solve each agent type’s problem, and (ii) markets clear.

F.1 Equilibrium characterization

We have already characterized optimal decisions and market clearing conditions. In
particular, a collection of stochastic processes for allocations and prices constitute an
equilibrium if they satisfy (F.1), (F.5), and (F.7) for each agent type (experts and house-
holds), along with equations (F.8), (F.9), and (F.11) at the aggregate level.

We further tighten this characterization and reduce it to four stochastic processes sat-
isfying a set of conditions, exactly as in our continuous-time model. First, to keep track
of the distribution of wealth and capital, let ηt := (1 + ρe∆)−1ne,t/qtK and κt := ke,t/K
denote expert’s wealth and capital shares.37 Whereas κt is a “jumpy” variable because
it is linked to agent’s capital choices, ηt is a “state” variable because it is determined
via agent’s slow-moving wealths. Using the budget constraint (F.1), we can obtain the
dynamics of ηt as

ηt+∆ =
1

1 + ρe∆


κt(Rk

e,t+∆ − R f
t ) + ηtR

f
t

qt+∆/qt


 . (F.12)

Next, we aggregate the consumption decisions across these two types. To do this, plug
the consumption rules from (F.5) into the goods and bond market clearing conditions
(F.8) and (F.11), and combine the results to obtain

qtρ̄(ηt) = κtae + (1− κt)ah, (F.13)

where ρ̄(η) := ηρe + (1 − η)ρh is a wealth-weighted average discount rate. Identical
to our continuous-time model, equation (F.13) is a price-output relation that links asset
values qt to the efficiency of the capital distribution κt. Finally, we aggregate the Euler

37Note that the wealth share is defined just after consumption choices are made, i.e., ηt = (ne,t −
ce,t)/(ne,t + nh,t − ce,t − ch,t) is the definition we are using.

84



equations (F.7) within the two types using the fact that experts will always be on the
margin (i.e., since Rk

e,t+∆ > Rk
h,t+∆, we have ke,t > 0 at all times). We also use the fact

that θe,t = qtke,t
ne,t

= 1
1+ρe∆

κt
ηt

and θh,t =
qtkh,t
nh,t

= 1
1+ρh∆

1−κt
1−ηt

to write the results in a more
convenient way. The results are

0 = Et


 qt+∆ + ae∆− R f

t qt
κt
ηt

(
qt+∆ + ae∆− R f

t qt

)
+ R f

t qt


 (F.14)

0 ≥ Et


 qt+∆ + ah∆− R f

t qt
1−κt
1−ηt

(
qt+∆ + ah∆− R f

t qt

)
+ R f

t qt


 (F.15)

where the latter holds as an equality when households hold capital, i.e., when κt < 1.
Thus, an equilibrium is fully characterized by the collection of stochastic processes

(ηt∆, κt∆, qt∆, R f
t∆)

∞
t=0, with η0 = ke,0/K given, such that the two optimality conditions

(F.14)-(F.15) hold; the price-output relation (F.13) holds; and the law of motion for ηt is
given by (F.12). To establish the analog to our continuous-time model, we also state this
characterization as a lemma—notice that the verbiage is almost identical to Lemma 1.

Lemma F.1. Given η0 ∈ (0, 1), consider stochastic processes {ηt∆, qt∆, κt∆, R f
t∆}∞

t=0 such that ηt

evolution is described by (F.12). If ηt ∈ [0, 1], κt ∈ [0, 1], and equations (F.13), (F.14), and (F.15)
hold for all t ≥ 0, then {ηt∆, qt∆, κt∆, R f

t∆}∞
t=0 corresponds to an equilibrium.

Notice from Lemma F.1 that we have as many equations as unknown non-state vari-
ables (qt, κt, R f

t ). However, Euler equations (F.14)-(F.15) also depend on the probability
distribution of the future asset price qt+∆, in order to determine the asset price qt and
riskless rate R f

t today. This will be the key reason why the set of equilibrium conditions
above is not enough to pin down qt uniquely. In the continuous-time model, the dis-
tribution of future asset prices was summarized by the drift and the volatility (µq, σq).
Here, the distribution of qt+∆ could be more general, but we present a binomial example
below. We now proceed to analysis of the two types of equilibria: fundamental and
non-fundamental.

F.2 Fundamental equilibrium

A fundamental equilibrium has κt = 1 for all periods. In such an equilibrium, (F.13) says
that the capital price should be

qt =
ae

ρ̄(ηt)
, if κt = 1. (F.16)
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Substituting this result into the state dynamics (F.12), we have

ηt+∆ =
1

1 + ρe∆

[
1 + ρ̄(ηt+∆)−

ρ̄(ηt+∆)

ρ̄(ηt)
(1− ηt)R f

t

]
, if κt = κt+∆ = 1. (F.17)

As the only (t + ∆)-measurable object in (F.17), ηt+∆ evolves deterministically in a fun-
damental equilibrium. Because qt is solely a function of ηt in (F.16), qt+∆ is also known
as of time t. As a result, experts’ return-on-capital must coincide with the riskless rate,
i.e., R f

t = ae∆
qt

+ qt+∆
qt

, or

R f
t = ρ̄(ηt) +

ρ̄(ηt)

ρ̄(ηt+∆)
, if κt = κt+∆ = 1. (F.18)

Combining (F.17) and (F.18), we obtain the solved dynamics

ηt+∆ =
ηt(1 + ρe∆)−1

ηt(1 + ρe∆)−1 + (1− ηt)(1 + ρh∆)−1 , if κt = κt+∆ = 1. (F.19)

Thus, expert’s wealth share asymptotically tends toward zero. Intuitively, they earn zero
excess capital returns and consume at a higher rate than households.

F.3 Non-fundamental equilibrium

A non-fundamental equilibrium has κt < 1 for some t. We proceed with a simple binomial
tree example to show that non-fundamental equilibria exist, although more complicated
information structures are also likely possible. We conjecture an equilibrium with

qt+∆ =





utqt, with probability 1− πt;

dtqt, with probability πt.
(F.20)

The “up” and “down” returns ut and dt ∈ (0, ut) may be state dependent, as may the
probability of a price drop πt. As in our baseline model, we will take the “state space”
to be the set of possible (ηt, qt), or equivalently (ηt, κt). In other words, (ut, dt, πt) will
be functions of (ηt, κt), as will the interest rate rt. The rest of this appendix constructs an
example equilibrium under the binomial scheme (F.20). In particular, we will prove the
following by construction:

Proposition F.1. For all ∆ sufficiently small, a non-fundamental equilibrium exists.

To start, we may solve for the optimal portfolios explicitly in this binomial environ-
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ment. Using (F.12) and (F.20) in the expert Euler equation (F.14), we have

κt

ηt
= −R f

t

(1− πt)ut + πtdt +
ae∆
qt
− R f

t

(ut +
ae∆
qt
− R f

t )(dt +
ae∆
qt
− R f

t )
. (F.21)

Doing the same for the household Euler equation (F.15), we have

1− κt

1− ηt
= −R f

t min
(

0,
(1− πt)ut + πtdt +

ah∆
qt
− R f

t

(ut +
ah∆
qt
− R f

t )(dt +
ah∆
qt
− R f

t )

)
. (F.22)

Next, note that the price-output relation (F.13) and state dynamics (F.12) are un-
changed by the binomial setup, and we repeat them here for convenience:

ρ̄(ηt) =
κtae + (1− κt)ah

qt
(F.23)

ηt+∆ =
1

1 + ρe∆

κt(
ae∆
qt

+ qt+∆
qt
− R f

t ) + ηtR
f
t

qt+∆/qt
. (F.24)

As mentioned in Lemma F.1, to find an equilibrium we only need to check that we
can pick (ut, dt, πt) to satisfy (F.21)-(F.24) at every point in the state space and that the
resulting equilibrium dynamics do not cause the dynamical system to “exit the feasible
region.” To this end, we immediately note that ηt ∈ (0, 1) on any equilibrium path,
which can be verified by checking the state dynamics (F.24).38

To continue, we will specialize below to a particular choice of u and d. Our construc-
tion will correspond to an approximation of Brownian motion in the “interior” of the

38Examine the state dynamics (F.24) in the down state and substitute (F.21) to obtain

dt
ηd

t+∆
ηt

=
1

1 + ρe∆
R f

t

(
1−

(1− πt)ut + πtdt +
ae∆
qt
− R f

t

ut +
ae∆
qt
− R f

t

)
> 0.

Similarly, mirroring (F.24), the symmetric condition for household’s net worth share dynamics is

1− ηt+∆ =
1

1 + ρe∆

(1− κt)(
ah∆
qt

+
qt+∆

qt
− R f

t ) + (1− ηt)R f
t

qt+∆/qt

Examining this condition in the up state and substituting (F.22), we obtain

ut
1− ηu

t+∆
1− ηt

=
1

1 + ρh∆
R f

t

(
1−min

(
0,

(1− πt)ut + πtdt +
ah∆
qt
− R f

t

dt +
ah∆
qt
− R f

t

))
> 0.

Thus, the requirement to keep ηt ∈ (0, 1) is automatically satisfied.
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state space, with special considerations imposed at the “boundaries” of this state space.
More specifically, we define the following regions. First, we have the entire feasible state
space

D :=
{
(η, κ) : η ∈ (0, 1), κ ∈ (η, 1]

}
.

The reason why κ > η is required is because κ ≤ η is inconsistent with the expert and
household Euler equations (F.21)-(F.22), since ae > ah. Next, there will be a region near
the top of D, where κ is close to 1, such that positive shocks will just take the economy
to the border:

Dhigh :=
{
(η, κ) ∈ D : κ < 1, f (κ, η) < 0

}
.

for some function f to be defined endogenously below. At the other ends, let us pick
some ε > 0 and define the lower boundary region:

Dε
low :=

{
(η, κ) ∈ D\Dhigh : κ ≤ (1 + ε)η

}
.

For reasons that will become clear at the end of the construction, we will impose

ε >
ahρe

(ae − ah)ρh
. (F.25)

Finally, we will detail a separate method to deal with the top border region

D1 :=
{
(η, κ) ∈ D : κ = 1

}
.

The “interior” region is defined by subtracting these boundary regions:

D◦ := D\(Dhigh ∪Dε
low ∪D1).

We explain our construction in each of these regions in sequence.

Brownian approximation in the interior. In the interior region D◦, we construct a
non-fundamental equilibrium by explicitly specifying (ut, dt, πt) to take a form that ap-
proximates Brownian motion in the ∆→ 0 limit. In particular, we set

ut = 1 + vt
√

∆ (F.26)

dt = 1− vt
√

∆ (F.27)

πt =
vt −mt

√
∆

2vt
, (F.28)
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for some endogenous variables mt and vt. Note that πt ∈ (0, 1) requires mt
√

∆ ∈
(−vt, vt). Of course, we also require vt ≤ 1/

√
∆. These constraints on mt and vt be-

come arbitrarily loose as ∆→ 0.
One can verify that (F.26)-(F.28) imply that

Et[
qt+∆ − qt

qt
] = mt∆.

Thus, the interpretation of the variable mt introduced is as the drift of percentage price
changes. Also, we may compute

Et[(
qt+∆ − qt

qt
)2] = v2

t ∆,

so that vt corresponds roughly to the instantaneous volatility of percentage price changes.
Notice that any higher moments of price changes are of order o(∆). Similarly, substi-
tuting the specification (F.26)-(F.28) into (F.24), one can verify that the state dynamics
converge as ∆ → 0 to the continuous-time model. Indeed, examine the conditional
mean and second moment of ηt+∆ − ηt:

Et[ηt+∆ − ηt] =
(

κt
ae

qt
− ηtρe + (κt − ηt)(mt − rt − v2

t )
)

∆ + o(∆)

Et[(ηt+∆ − ηt)
2] = (κt − ηt)

2v2
t ∆ + o(∆).

Dividing by ∆ and taking ∆ → 0, it becomes clear that these moments coincide with
those of the continuous-time model.

Now, we determine what mt and vt must be to satisfy agents’ optimality conditions.
In this Brownian approximation, the expert and household Euler equations (F.21)-(F.22)
become

κt

ηt
= (1 + rt∆)

ae
qt
+ mt − rt

v2
t − ( ae

qt
− rt)2∆

(F.29)

1− κt

1− ηt
= (1 + rt∆)max

{
0,

ah
qt
+ mt − rt

v2
t − ( ah

qt
− rt)2∆

}
. (F.30)

As ∆ → 0, these two specialized Euler equations (F.29)-(F.30) coincide with the famil-
iar mean-variance portfolio choice. However, to recover the same equations as in our
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continuous-time model, let us take the difference between (F.29)-(F.30) to get

0 = min

{
1− κt, (1 + rt∆)

[ ae
qt
+ mt − rt

v2
t − ( ae

qt
− rt)2∆

−
ah
qt
+ mt − rt

v2
t − ( ah

qt
− rt)2∆

]
− κt − ηt

ηt(1− ηt)

}
. (F.31)

Equation (F.31) clearly coincides with our baseline risk-balance condition as ∆ → 0.
Then, summing (F.29)-(F.30), weighted by κt and 1− κt respectively, we have

κ2
t

ηt
+

(1− κt)2

1− ηt
= (1 + rt∆)

[
κt

ae
qt
+ mt − rt

v2
t − ( ae

qt
− rt)2∆

+ (1− κt)

ah
qt
+ mt − rt

v2
t − ( ah

qt
− rt)2∆

]
. (F.32)

Again, this coincides with the equation for µq in the continuous-time model as ∆→ 0.
To solve the model, first we use the expert Euler equation to solve for v2

t :

v2
t = (1 + rt∆)

[ ae

qt
+ mt − rt

]ηt

κt
+ (

ae

qt
− rt)

2∆.

Then, we use the household Euler equation, when κt < 1, to also solve for v2
t :

v2
t = (1 + rt∆)

[ ah
qt

+ mt − rt

]1− ηt

1− κt
+ (

ah
qt
− rt)

2∆.

Setting these expressions equal gives an equation for mt, which is

mt = rt +
(1− κt)ηt

κt − ηt

ae

qt
− κt(1− ηt)

κt − ηt

ah
qt

+
κt(1− κt)

[
( ae

qt
− rt)2 − ( ah

qt
− rt)2]

(1 + rt∆)(κt − ηt)
∆. (F.33)

Substituting back into the equations for v2
t , we solve for

v2
t = (1 + rt∆)

ηt(1− ηt)

κt − ηt

ae − ah
qt

+
κt(1− ηt)(

ae
qt
− rt)2 − ηt(1− κt)(

ah
qt
− rt)2

κt − ηt
∆. (F.34)

Given a choice for rt, we can obtain mt and v2
t from equations (F.33)-(F.34), for any

point in the interior of the state space. The only restriction is that we choose rt so that
mt
√

∆ ∈ (−vt, vt) and hence that πt ∈ (0, 1), which leaves a wide range of choices. To
be explicit, we will choose rt such that mt = O(∆), in particular we set

rt =
κt(1− ηt)

κt − ηt

ah
qt
− (1− κt)ηt

κt − ηt

ae

qt
. (F.35)

This choice makes it automatic that mt
√

∆ ∈ (−vt, vt) if ∆ is also chosen small enough.
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As an aside, note that these equations, in the ∆ → 0 limit, are identical to the
continuous-time versions (when there is zero fundamental risk and zero growth). In-
deed, equation (F.34) says

v2
t =

ηt(1− ηt)

κt − ηt

ae − ah
qt

+ O(∆).

Next, by doing some algebra on (F.33), it reads

mt = rt − ρ̄(ηt) +
(κ2

t
ηt

+
(1− κt)2

1− ηt

)
v2

t + O(∆).

Consequently, mt and vt are indeed the discrete-time counterparts to µq,t and σq,t.

Reflection approximation near the lower boundary. In the lower region Dε
low, we pro-

ceed with a different construction that ensures the economy never exits D through its
lower border. Luckily, in everything so far, rt was indeterminate, and this flexibility is
what allows us to construct such an equilibrium. In particular, to ensure we always have
κt ∈ (ηt, 1), we impose some rules similar to our “boundary conditions” in continuous
time.

In Dε
low, we will use the binomial specification

ut = 1 + v2
t /mt (F.36)

dt = 1 (F.37)

πt =
v2

t −m2
t ∆

v2
t

(F.38)

Equations (F.36)-(F.38) preserve the desired moment properties that Et[
qt+∆−qt

qt
] = mt∆

and Et[(
qt+∆−qt

qt
)2] = v2

t ∆. Again, we must have probabilities in between zero and one,

so we always require mt
√

∆ ∈ (−vt, vt).
With this specification, the Euler equations become

κt

ηt
= (1 + rt∆)

ae
qt
+ mt − rt

v2
t

mt
(rt − ae

qt
)− ( ae

qt
− rt)2∆

(F.39)

1− κt

1− ηt
= (1 + rt∆)

ah
qt
+ mt − rt

v2
t

mt
(rt − ah

qt
)− ( ah

qt
− rt)2∆

. (F.40)
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As before, we may use these two equations to solve for mt and v2
t :

mt = rt +
(1 + rt∆)

[ ηt
κt
(rt − ah

qt
) ae

qt
− 1−ηt

1−κt
(rt − ae

qt
) ah

qt

]
− ( ae−ah

qt
)(rt − ae

qt
)(rt − ah

qt
)∆

(1 + rt∆)
[1−ηt

1−κt
(rt − ae

qt
)− ηt

κt
(rt − ah

qt
)
] (F.41)

v2
t = mt

[ (1 + rt∆)
ηt
κt
( ae

qt
+ mt − rt)

rt − ae
qt

+ (rt −
ae

qt
)∆
]

(F.42)

Given that the Euler equations hold for this choice of (mt, v2
t ), we have an equilibrium

as long as mt
√

∆ ∈ (−vt, vt) and κt > ηt in all periods.
The condition that κt > ηt is the more complex and restrictive condition. The key

issue is that (ηt, κt) can jump from Dε
low to a point outside of the feasible region D.39

Resolving this issue requires us to make particular choices for rt such that the dynamics
of (ηt, κt) “point toward the interior” of the state space, i.e., the dynamics starting from
Dε

low are such that (ηt+∆, κt+∆) moves closer to D◦. Sufficient conditions for this are that
ηt+∆ ≤ ηt when (ηt, κt) ∈ Dε

low. Indeed, if ηt+∆ ≤ ηt, then the dynamics of qt are such
that κt+∆ ≥ κt. Since the lower-boundary of D is upward-sloping in (η, κ)-space, the
combination of ηt+∆ ≤ ηt and κt+∆ ≥ κt implies that the new point is further away from
exiting D.

Ensuring that ηt+∆ ≤ ηt translates to the following condition on the risk-free rate:

rt ≥ r̃t, whenever (ηt, κt) ∈ Dε
low, (F.43)

where r̃t := max
[κtae − ρeηtqt

qt(κt − ηt)
,

κtae − ρeηtqt(1 + v2
t /mt)

qt(κt − ηt)
+

v2
t

mt∆

]
.

Now, the equilibrium values of vt and mt in (F.41)-(F.42) depend on rt, so the comparison
between rt and r̃t is not explicit. However, we can show that a valid solution to (F.43)
exists if ∆ is made small enough.

To see this, let us set

rt =
κtae − ρeηtqt

qt(κt − ηt)
+

αt

∆
+ Cr (F.44)

for some αt > 0 small enough and some constant Cr. Using equations (F.44) and (F.41)-
(F.42), one may conjecture and verify that, as ∆ → 0, the variables (rt, mt, v2

t ) obey the

39Another potential issue is that (ηt, κt) can jump from the interior D◦ to a point outside of the feasible
region D This issue is removed by choosing small enough ∆, because the step sizes in the interior are
proportional to

√
∆.
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following asymptotic relationships

rt∆→ αt

mt∆→ αt

v2
t /mt → αt.

In that case, we have that rt − r̃t ∼ ρeηtqtαt
qt(κt−ηt)

+
αt−v2

t /mt
∆ + Cr as ∆ → 0. Thus, if we

pick Cr = − lim∆→0 ∆−1(αt − v2
t /mt), the inequality rt ≥ r̃t holds for all small enough

∆. It is easy to see that ∆−1(v2
t /mt − αt) = O(1) as ∆ → 0 so that Cr will be a finite

constant. Furthermore, given that αt is a free parameter, it may be chosen small enough
so that upward percentage step size v2

t /mt is small enough. Given that the choice (F.44)
is continuous in ∆, and equations (F.41)-(F.42) are continuous in rt, it follows that for all
small enough ∆, a valid rt exists satisfying (F.43).

The final question is whether or not this choice also satisfies mt
√

∆ ∈ (−vt, vt), such
that the probabilities of up- and down-moves are within zero and one. To answer this,
we can study

v2
t

m2
t ∆

= 1 +
ae
qt
+ mt − rt

mt

[ (1 + rt∆)
ηt
κt

rt∆− ae∆
qt

− 1
]
. (F.45)

We can see from equation (F.41) that as ∆→ 0, we have

ae

qt
+ mt − rt →

1
1 + αt

κt(1− κt)

κt − ηt

ae − ah
qt

[
αt − (1 + αt)

1− ηt

1− κt

]
> 0.

In addition, the term in square brackets in equation (F.45) is positive in the ∆ → 0 limit
if and only if κt/ηt < (1+ αt)/αt. Therefore, by picking αt small enough, we ensure that
the expression in (F.45) is strictly larger than 1 for all ∆ small enough. This shows that
mt
√

∆ ∈ (−vt, vt) by choosing αt and ∆ small enough.

Jumps to efficiency. At some points when κt is sufficiently close to 1, the Brownian
approximation above could potentially make κt jump above 1, which is inconsistent
with equilibrium. At these points, we must instead design the shocks so that κt jumps
to 1. Such points will constitute the region earlier denoted by Dhigh, whose border with
D◦ was previously left unspecified and which we will now make explicit.
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First, let us define the binomial scheme by

ut =
ae

qtρ̄(ηmax
t )

(F.46)

dt = free parameter (F.47)

πt =
ut − 1−mt∆

ut − dt
, (F.48)

where

ηmax
t :=

κtae(1 + ρe∆)− (κt − ηt)qtρh(1 + rt∆)
ae[1 + ρe∆− κt(ρe − ρh)∆] + (κt − ηt)qt(1 + rt∆)(ρe − ρh)

(F.49)

is the net worth share that would arise if κ jumps to 1.40 It is straightforward to check
that for ∆ small enough, we have ηmax

t < κt < 1, so that ηmax
t is a valid wealth share.

Note also that the setup in (F.46)-(F.48) by construction preserves specification of mt as
the local mean Et[

qt+∆−qt
qt

] = mt∆.
The Euler equations become

κt

ηt
= −(1 + rt∆)

(mt +
ae
qt
− rt)∆

(ut +
ae∆
qt
− (1 + rt∆))(dt +

ae∆
qt
− (1 + rt∆))

(F.50)

1− κt

1− ηt
= −(1 + rt∆)

(mt +
ah
qt
− rt)∆

(ut +
ah∆
qt
− (1 + rt∆))(dt +

ah∆
qt
− (1 + rt∆))

. (F.51)

We can use the two Euler equations to solve for mt and dt as

mt = rt +
1

1 + rt∆

κt(1− κt)
ae−ah

qt
(ut +

ah∆
qt
− (1 + rt∆))(ut +

ae∆
qt
− (1 + rt∆))

(κt − ηt)(ut − (1 + rt∆)) + κt(1− ηt)
ae∆
qt
− ηt(1− κt)

ah∆
qt

−
(κt − ηt)

aeah∆
q2

t
+ [κt(1− ηt)

ah
qt
− ηt(1− κt)

ae
qt
](ut − (1 + rt∆))

(κt − ηt)(ut − (1 + rt∆)) + κt(1− ηt)
ae∆
qt
− ηt(1− κt)

ah∆
qt

(F.52)

40In particular, if κt jumps to κt+∆ = 1, then from (F.23) qt jumps to qt+∆ = ae/ρ̄(ηt+∆). But the dynamics
of η from (F.24) must also hold, which means that ηt+∆ solves

ηt+∆ =
1

1 + ρe∆

κt
[ ae∆

qt
+ ae

qt ρ̄(ηt+∆)
− (1 + rt∆)

]
+ ηt(1 + rt∆)

ae/(qtρ̄(ηt+∆))
.

We denote the solution by ηmax
t , given in (F.49).
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and

dt = (1 + rt∆)
[
1− ηt

κt

(mt +
ae
qt
− rt)∆

ut +
ae∆
qt
− (1 + rt∆)

]
− ae∆

qt
. (F.53)

To guarantee that this constitutes an equilibrium, we must verify πt ∈ (0, 1) along with
0 < dt < 1 < ut.

To check these conditions explicitly, let us pick rt = 0, and let us consider ∆ small.
As it will turn out (which we will verify below), when ∆ is small the region Dhigh will
be associated with κt = 1−O(

√
∆), so that our choice implies mt = −ah/qt + O(

√
∆)

from equation (F.52). Substituting this result into equation (F.53), we see that 0 < dt < 1
if ∆ is small enough. It is easy to check that ut > 1 holds as long as ρe − ρh is not too
large, which we implicitly assume. Lastly, given these results just discussed, we have
πt ∈ (0, 1) automatically when ∆ is small enough. This shows that, if ∆ is small enough,
then rt = 0 is a valid choice, and the other equilibrium conditions all hold.

Finally, we need to specify the boundary between Dhigh and the interior region D◦.
The procedure will be to compute vt associated to D◦—from equation (F.34)—and then
compare 1 + vt

√
∆ to ae/(qtρ̄(ηmax

t )). If 1 + vt
√

∆ > ae/(qtρ̄(ηmax
t )) at a given point

(ηt, κt) ∈ D, then we allocate that point to set Dhigh. Otherwise, the given point (ηt, κt)

is considered to be part of D◦. This proves the result used above that ut − 1 = O(
√

∆),
and hence 1− κt = O(

√
∆).

Analysis at κ = 1 border. Finally, given that κt = 1 sometimes, we must describe how
the economy exits this region and re-enters the interior D◦. We specify a particularly
simple approach that always works, although it is unnecessarily restrictive in general.

We will consider a binomial scheme that either maintains κt+∆ = 1 with some prob-
ability and otherwise has ηt+∆ ≈ 0 (i.e., expert near-bankruptcy) with the residual prob-
ability. This scheme is

ut = 1 (F.54)

dt = 1− (ηt −ωt)(1 + ρe∆)
1−ωt(1 + ρe∆)

(F.55)

πt = free parameter, (F.56)

along with a particular choice for the riskless rate:

rt = ρh. (F.57)
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Using (F.54), (F.55), and (F.57) in the state dynamics (F.24), one can verify that

ηu
t+∆ = ηt

ηd
t+∆ = ωt.

In other words, a positive shock keeps (ηt, qt) in place, while a negative shock drives η

down to ωt.
For this to be a valid construction, we require that qd

t+∆ = dtqt is larger than the
minimum possible price at the new wealth share, which is qmin(η

d
t+∆) = qmin(ωt) =

(ωtae + (1− ωt)ah)/ρ̄(ωt). Using the fact that qt = ae/ρ̄(ηt), this validity condition is
equivalent to

ρ̄(ωt)
[
1− ηt −

(
ρ̄(ηt)− (1− ηt)ρh

)
∆
]
ae > ρ̄(ηt)

[
1−ωt(1 + ρe∆)

](
ωtae + (1−ωt)ah

)
.

As ∆→ 0, this condition becomes

ρ̄(ωt)(1− ηt)ae > ρ̄(ηt)(1−ωt)
(
ωtae + (1−ωt)ah

)
.

Taking ωt → 0 as well, we have the condition

ρh(1− ηt)ae > ρ̄(ηt)ah ⇔ ηt <
(ae − ah)ρh

(ae − ah)ρh + ahρe
:= ηtop.

Finally, we use the choice of ε in (F.25), which implies that the line κ = (1+ ε)η intersects
the horizontal line κ = 1 at a point η < ηtop. Consequently, if ∆ is chosen small enough,
equilibrium paths with κt = 1 in period t will have ηt < ηtop in the same period. This
implies that if ∆ and ωt are chosen small enough, then we can ensure that qd

t+∆ >

qmin(η
d
t+∆).

Given that κt = 1 at these points, the household Euler inequality (F.22) must hold
with strict inequality. A sufficient condition is that households make negative excess
returns when capital price remains constant, i.e.,

0 >
ah∆ + qt+∆

qt
− R f

t =

[
ah
ae

ρ̄(ηt)− ρh

]
∆

which always holds since ρe > ρ̄(η) and ae/ρe > ah/ρh.
It remains to verify that the expert Euler equation (F.21) holds. However, this is
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guaranteed if the remaining free parameter πt takes the particular value

πt =
(ρ̄(ηt)− ρh)∆

1− dt
+

(ρ̄(ηt)− ρh)(dt − 1 + (ρ̄(ηt)− ρh)∆)∆
ηt(1 + ρh∆)(1− dt)

.

Plugging in dt from (F.55), we have

πt =
1−ωt(1 + ρe∆)

(ηt −ωt)(1 + ρe∆)

[
1 +

(ρ̄(ηt)− ρh)∆− (ηt−ωt)(1+ρe∆)
1−ωt(1+ρe∆)

ηt(1 + ρh∆)

]
(ρ̄(ηt)− ρh)∆.

Note that ηt >
(ηt−ωt)

1−ωt
, so that πt > 0 for all ∆ small enough. In addition, note that πt →

0 as ∆→ 0. Therefore, for all ∆ small enough, we are guaranteed to have πt ∈ (0, 1).
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