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Abstract
Motivated by the challenges related to the calibration of financial models, we consider
the problem of numerically solving a singular McKean–Vlasov equation

dXt = σ(t,Xt )Xt

√
vt√

E[vt |Xt ]dWt,

where W is a Brownian motion and v is an adapted diffusion process. This equation
can be considered as a singular local stochastic volatility model. While such models
are quite popular among practitioners, its well-posedness has unfortunately not yet
been fully understood and in general is possibly not guaranteed at all. We develop a
novel regularisation approach based on the reproducing kernel Hilbert space (RKHS)
technique and show that the regularised model is well posed. Furthermore, we prove
propagation of chaos. We demonstrate numerically that a thus regularised model is
able to perfectly replicate option prices coming from typical local volatility models.
Our results are also applicable to more general McKean–Vlasov equations.
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1 Introduction

The present article is motivated by Guyon and Henry-Labordère [13], where the au-
thors proposed a particle method for the calibration of local stochastic volatility mod-
els (e.g. stock price models). For ease of presentation, let us assume zero interest rates
and recall that local volatility models

dXt = σ(t,Xt )XtdWt , (1.1)

where W denotes a one-dimensional Brownian motion under a risk-neutral measure
and X the price of a stock, can replicate any sufficiently regular implied volatility
surface, provided that we choose the local volatility according to Dupire’s formula,
symbolically σ := σDup; see Dupire [8]. (In case of deterministic nonzero interest
rates, the discussion below remains virtually unchanged after passing to forward stock
and option prices). Unfortunately, it is well understood that Dupire’s model exhibits
unrealistic random price behaviour despite perfect fits to market prices of options. On
the other hand, stochastic volatility models

dXt = √
vt XtdWt

for a suitably chosen stochastic variance process (vt ), may lead to realistic (in par-
ticular, time-homogeneous) dynamics, but are typically difficult or impossible to fit
to observed implied volatility surfaces. We refer to Gatheral [11] for an overview of
stochastic and local volatility models. Local stochastic volatility models can combine
the advantages of both local and stochastic volatility models. Indeed, if the stock price
is given by

dXt = √
vt σ (t, Xt )XtdWt ,

then it exactly fits the observed market option prices provided that

σ 2
Dup(t, x) = σ 2(t, x)E[vt |Xt = x].

This is a simple consequence of Gyöngy’s celebrated Markovian projection theorem;
see Gyöngy [14, Theorem 4.6] and also Brunick and Shreve [4, Corollary 3.7]. With
this choice of σ , we have

dXt = σDup(t, Xt )Xt

√
vt√

E [vt |Xt ]
dWt . (1.2)

Note that v in (1.2) can be any integrable and positive adapted stochastic process.
In a sense, (1.2) may be considered as an inversion of the Markovian projection due
to [14], applied to Dupire’s local volatility model, i.e., (1.1) with σ = σDup.

Thus the stochastic local volatility model of McKean–Vlasov type (1.2) solves the
smile calibration problem. However, equation (1.2) is singular in a sense explained
below and very hard to analyse and solve. Even the problem of proving existence or
uniqueness for (1.2) (under various assumptions on v) turned out to be notoriously
difficult and only a few results are available; we refer to Lacker et al. [17] for an
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extensive discussion and literature review. Let us recall that the theory of standard
McKean–Vlasov equations of the form

dZt = ˜H (t, Zt , μt ) dt + ˜F (t, Zt , μt ) dWt

with μt = Law(Zt ) is well understood under appropriate regularity conditions, in
particular, Lipschitz-continuity of ˜H and ˜F with respect to the standard Euclidean
distances in the first two arguments and with respect to the Wasserstein distance
in μt ; see Funaki [10], Carmona and Delarue [6, Chap. 4.2], Mishura and Vereten-
nikov [20]. Denoting Zt := (Xt , Yt ), it is not difficult to see that the conditional
expectation (x, μt ) �→ E [A(Yt ) | Xt = x] is in general not Lipschitz-continuous in
the above sense. Therefore the standard theory does not apply to (1.2).

There are a number of results available in the literature where the Lipschitz con-
dition on drift and diffusion is not imposed. Bossy and Jabir [3] considered singular
McKean–Vlasov (MV) systems of the form:

dXt = E[�(Xt )|Yt ]dt + E[γ (Xt )|Yt ]dWt, (1.3)

dYt = b(Xt , Yt )dt + σ(Yt )dBt , (1.4)

or, alternatively, the seemingly even less regular equation

dXt = σ
(

p(t,Xt )
)

dWt , (1.5)

where p(t, · ) denotes the density of Xt . Bossy and Jabir [3] establish well-posedness
of (1.3)–(1.5) under suitable regularity conditions (in particular, ellipticity) based on
energy estimates of the corresponding nonlinear PDEs. Interestingly, these techniques
break down when the roles of X and Y are reversed in (1.3), (1.4), that is, when
E[γ (Xt )|Yt ] is replaced by E[γ (Yt )|Xt ] in (1.3), and similarly for the drift term.
Hence the results of [3] do not imply well-posedness of (1.2). Lacker et al. [17]
studied the two-dimensional SDE

dXt = b1(Xt )
h(Yt )

E[h(Yt )|Xt ] dt + σ1(Xt )
f (Yt )

√

E[f 2(Yt )|Xt ]
dWt, (1.6)

dYt = b2(Yt ) dt + σ2(Yt ) dBt , (1.7)

where W and B are two independent one-dimensional Brownian motions. Clearly,
this can be seen as a generalisation of (1.2) with a non-zero drift and with the process
v chosen in a special way. The authors proved strong existence and uniqueness of
solutions to (1.6), (1.7) in the stationary case. In particular, this implies strong con-
ditions on b1 and b2, but also requires the initial value (X0, Y0) to be random and to
have the stationary distribution. Existence and uniqueness of solutions to (1.6), (1.7)
in the general case (without the stationarity assumptions) remains open. Finally, let us
mention the result of Jourdain and Zhou [16, Theorem 2.2] which established weak
existence of the solution to (1.2) for the case when v is a jump process taking finitely
many values.

Another question apart from well-posedness of these singular McKean–Vlasov
equations is how to solve them numerically (in a certain sense). Let us recall that
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even for standard SDEs with singular or irregular drift, where existence/uniqueness is
known for quite some time, the convergence of the corresponding Euler scheme with
non-vanishing rate has been established only very recently; see Butkovsky et al. [5],
Jourdain and Menozzi [15]. The situation with the singular McKean–Vlasov equa-
tions presented above is much more complicated and very few results are avail-
able in the literature. In particular, the results of Lacker et al. [17] do not provide
a way to construct a numerical algorithm for solving (1.2) even in the stationary case
considered there.

In this paper, we study the problem of numerically solving singular McKean–
Vlasov (MV) equations of a more general form than (1.2), namely

dXt = H
(

t, Xt , Yt ,E[A1(Yt )|Xt ]
)

dt + F
(

t, Xt , Yt ,E[A2(Yt )|Xt ]
)

dWt , (1.8)

where H , F , A1, A2 are sufficiently regular functions, W is a d-dimensional Brown-
ian motion and Y is a given stochastic process, for example a diffusion process. A key
issue is how to approximate the conditional expectations E[Ai(Yt )|Xt = x], i = 1, 2,
x ∈ R

d .
In their seminal paper, Guyon and Henry-Labordère [13] suggested an approach

to tackle this problem (see also Antonelli and Kohatsu-Higa [1]). They used the
“identity”

E[A(Yt )|Xt = x] “=”
E[A(Yt )δx(Xt )]

E[δx(Xt )] ,

where δx is the Dirac delta function concentrated at x. This suggests the approxima-
tion

E[A(Yt )|Xt = x] ≈
∑N

i=1 A(Y
i,N
t )kε(X

i,N
t − x)

∑N
i=1 kε(X

i,N
t − x)

. (1.9)

Here (Xi,N , Y i,N )i=1,...,N is a particle system, kε( · ) ≈ δ0( · ) is a regularising kernel
and ε > 0 is a small parameter. This technique for solving (1.8) (assuming (1.8)
has a solution for a moment) works very well in practice, especially when coupled
with interpolation on a grid in x-space. Due to the local nature of the performed
regression, the method can be justified under only weak regularity assumptions on
the conditional expectation. Note, however, that the interpolation part might require
higher order regularity.

On the other hand, the method has an important disadvantage shared by all local
regression methods: For any given point x, only points (Xi, Y i) in a neighbourhood
around x of size proportional to ε contribute to the estimate of E[A(Yt )|Xt = x]
as we have kε( · − x) ≈ 0 outside that neighbourhood. Hence local regression
cannot take advantage of “global” information about the structure of the function
x �→ E[A(Yt )|Xt = x]. If for example the conditional expectation can be globally
approximated via a polynomial, it is highly inefficient (from a computational point
of view) to approximate it locally using (1.9). Taken to the extreme, if we assume a
compactly supported kernel k and formally take ε = 0, then the estimator (1.9) col-
lapses to E[A(Yt )|Xt = X

i,N
t ] ≈ A(Y

i,N
t ) since only X

i,N
t is close enough to itself to
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contribute to the estimator. In the context of the stochastic local volatility model (1.2),
this means that the dynamics silently collapses to a pure local volatility dynamics if
ε is chosen too small.

This disadvantage of local regression methods can be avoided by using global
regression techniques. Indeed, taking advantage of global regularity and global struc-
tural features of the unknown target function, global regression methods are often
seen to be more efficient than their local counterparts; see e.g. Bach [2]. On the other
hand, the global regression methods require more regularity (e.g. global smoothness)
than the minimal assumptions needed for local regression methods. In addition, the
choice of basis functions can be crucial for global regression methods.

In fact, the starting point of this work was to replace (1.9) by global regression
based on, say, L basis functions. However, it turns out that the Lipschitz constants
of the resulting approximation to the conditional expectations in terms of the particle
distribution explode as L → ∞, unless the basis functions are carefully chosen.

As an alternative to Guyon and Henry-Labordère [13], we propose in this paper a
novel approach based on ridge regression in the context of reproducing kernel Hilbert
spaces (RKHSs) which in particular does not have either of the above mentioned
disadvantages, even when the number of basis functions is infinite.

Recall that an RKHS H is a Hilbert space of real-valued functions f : X → R

such that the evaluation map H � f �→ f (x) is continuous for every x ∈ X . This
crucial property implies that there exists a positive symmetric kernel k : X ×X → R,
i.e., for any c1, . . . , cn ∈ R, x1, . . . , xn ∈ X , one has

n
∑

i,j=1

cicj k(xi, xj ) ≥ 0,

such that kx := k( · , x) ∈ H for every x ∈ X , and one has 〈f, kx〉H = f (x) for
all f ∈ H. As a main feature, any positive definite kernel k uniquely determines an
RKHS H and the other way around. In our setting, we consider X ⊆ R

d . For a de-
tailed introduction and further properties of RKHSs, we refer to the literature, for ex-
ample Steinwart and Christmann [25, Chap. 4]. We recall that the RKHS framework
is popular in machine learning where it is widely used for computing conditional ex-
pectations. In the learning context, kernel methods are most prominently used in order
to avoid the curse of dimensionality when dealing with high-dimensional features by
the kernel trick. We stress that this issue is not relevant in the application to calibra-
tion of equity models, but it might be interesting for more general, high-dimensional
singular McKean–Vlasov systems.

Consider a pair of random variables (X, Y ) taking values in X ×X with finite sec-
ond moments and denote ν := Law(X, Y ). Suppose that A : X → R is sufficiently
regular and H is large enough so that we have E[A(Y)|X = · ] ∈ H. Then formally,

cν
A( · ) :=

∫

X×X
k( · , x)A(y)ν(dx, dy) =

∫

X
k( · , x)ν(dx,X )

∫

X
A(y)ν(dy|x)

=
∫

X
k( · , x)E[A(Y)|X = x]ν(dx,X )

=: Cν
E[A(Y)|X = · ],
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where

Cνf ( · ) :=
∫

X
k( · , x)f (x)ν(dx,X ), f ∈ H.

Unfortunately, in general, the operator Cν is not invertible. As Cν is positive definite,
it is, however, possible to regularise the inversion by replacing Cν by Cν + λIH for
some λ > 0, where IH is the identity operator on H. Indeed, it turns out that

mλ
A( · ; ν) := (Cν + λIH)−1cν

A (1.10)

is the solution to the minimisation problem

mλ
A( · ; ν) := arg min

f ∈H

(

E
[(

A(Y) − f (X)
)2] + λ‖f ‖2

H
)

; (1.11)

see Proposition 3.3. On the other hand, one also has

E[A(Y)|X = · ] = arg min
f ∈L2(Rd ,Law(X))

E
[(

A(Y) − f (X)
)2]

,

and therefore it is natural to expect that if λ > 0 is small enough and H is large
enough, then mλ

A( · ; ν) ≈ E[A(Y)|X = · ], that is, mλ
A( · ; ν) is close to the true

conditional expectation.
The main result of the article is that the regularised MV system obtained by re-

placing the conditional expectations with their regularised versions (1.10) in (1.8)
is well posed and propagation of chaos holds for the corresponding particle system;
see Theorems 2.2 and 2.3. To establish these results, we study the joint regularity of
mλ

A(x; ν) in the space variable x and the measure ν for fixed λ > 0. Such results are
almost absent in the literature on RKHSs and we here fill this gap. In particular, we
prove that under suitable conditions, mλ

A(x; ν) is Lipschitz in both arguments, that
is, with respect to the standard Euclidean norm in x and the Wasserstein-1-norm in
ν, and can be calculated numerically in an efficient way; see Sect. 2. Additionally,
in Sect. 3, we study the convergence of mλ

A( · ; ν) in (1.10) to the true conditional
expectation for fixed ν as λ ↘ 0.

Let us note that as a further nice feature of the RKHS approach compared
to the kernel method of [13], one may incorporate, at least in principle, global
prior information concerning properties of E[A(Y)|X = · ] into the choice of
the RKHS-generating kernel k. In a nutshell, if one anticipates beforehand that
E[A(Y)|X = x] ≈ f (x) for some known “nice” function f , one may pass to a new
kernel given by setting ˜k(x, y) := k(x, y) + f (x)f (y). This degree of freedom is
similar to, for example, the possibility of choosing basis functions in line with the
problem under consideration in the usual regression methods for American options.
We also note that the Lipschitz constants for mλ

A(x; ν) with respect to both arguments
are expressed in bounds related to A and the kernel k only; see Theorem 2.4. In con-
trast, if we had dealt with standard ridge regression, that is, ridge regression based
on a fixed system of basis functions, we should have to impose restrictions on the
regression coefficients leading to a nonconvex constrained optimisation problem.
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In summary, the contribution of the current work is fourfold. First, we propose an
RKHS-based approach to regularise (1.8) and prove the well-posedness of the reg-
ularised equation. Second, we show convergence of the approximation (1.11) to the
true conditional expectation as λ ↘ 0. Third, we suggest a particle-based approxi-
mation of the regularised equation and analyse its convergence. Finally, we apply our
algorithm to the problem of smile calibration in finance and illustrate its performance
on simulated data. In particular, we validate our results by solving numerically a reg-
ularised version of (1.2) (with mλ

A in place of the conditional expectation). We show
that our system is indeed an approximate solution to (1.2) in the sense that we get
very close fits of the implied volatility surface – the final goal of the smile calibration
problem.

The rest of the paper is organised as follows. Our main theoretical results are given
in Sect. 2. Convergence properties of the regularised conditional expectation mλ

A are
established in Sect. 3. A numerical algorithm for solving (1.8) and an efficient imple-
mentable approximation of mλ

A are discussed in Sect. 4. Section 5 contains numerical
examples. The results of the paper are summarised in Sect. 6. Finally, all the proofs
are placed in Sect. 7.

Convention on constants. Throughout the paper, C denotes a positive con-
stant whose value may change from line to line. The dependence of constants on
parameters, if needed, will be indicated e.g. by C(λ).

2 Main results

We begin by introducing the basic notation. For a ∈ R, we set a+ := max(a, 0).
Let (	,F ,P) be a probability space. For d ∈ N, let X ⊆ R

d be an open subset and
P2(X ) the set of all probability measures on (X ,B(X )) with finite second moment.
If μ, ν ∈ P2(X ), p ∈ [1, 2], we denote the Wasserstein-p (Kantorovich) distance
between them by

Wp(μ, ν) := inf(E[|X − Y |p])1/p,

where the infimum is taken over all random variables X, Y with Law(X) = μ and
Law(Y ) = ν. Let k : X × X → R be a symmetric, positive definite kernel and
H a reproducing kernel Hilbert space of functions f : X → R associated with the
kernel k. That is, for any x ∈ X , f ∈ H, one has

f (x) = 〈f, k(x, · )〉H.

In particular, 〈k(x, · ), k(y, · )〉H = k(x, y) for any x, y ∈ X . We refer to Steinwart
and Christmann [25, Chap. 4] for further properties of RKHSs.

Let A : X → R be a measurable function such that |A(x)| ≤ C(1 + |x|) for some
universal constant C > 0 and all x ∈ X . For ν ∈ P2(X × X ), λ ≥ 0, consider the
optimisation problem (ridge regression)

mλ
A( · ; ν) := arg min

f ∈H

( ∫

X×X
|A(y) − f (x)|2 ν(dx, dy) + λ‖f ‖2

H

)

. (2.1)
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We fix T > 0, d ∈ N and consider the system

dXt = H
(

t, Xt , Yt ,E[A1(Yt )|Xt ]
)

dt+ F
(

t, Xt , Yt ,E[A2(Yt )|Xt ]
)

dWX
t , (2.2)

dYt = b(t, Yt )dt + σ(t, Yt )dWY
t , (2.3)

where H : [0, T ] × R
d × R

d × R → R
d , F : [0, T ] × R

d × R
d × R → R

d × R
d ,

Ai : Rd → R, b : [0, T ] × R
d → R

d , σ : [0, T ] × R
d → R

d × R
d are measurable

functions, WX, WY are two (possibly correlated) d-dimensional Brownian motions
on (	,F ,P), and t ∈ [0, T ]. We note that our choice of Y as a diffusion process in
(2.3) is mostly for convenience, and we expect our results to hold in more generality
when appropriately modified.

Denote μt := Law(Xt , Yt ). As mentioned above, the functional

(x, μt ) �→ E [Ai(Yt )|Xt = x]

is not Lipschitz-continuous even if Ai is smooth. Therefore the classical results on
well-posedness of McKean–Vlasov equations are not applicable to (2.2), (2.3). The
main idea of our approach is to replace the conditional expectation by the corre-
sponding RKHS approximation (2.1) which has “nice” properties (in particular, it is
Lipschitz-continuous). This implies strong existence and uniqueness of the new sys-
tem. Furthermore, we demonstrate numerically that the solution to the new system
is still “close” to the solution of (2.2), (2.3) in a certain sense. Thus we consider
the system

d̂Xt = H
(

t, ̂Xt, Yt ,m
λ
A1

(̂Xt ; μ̂t )
)

dt + F
(

t, ̂Xt, Yt ,m
λ
A2

(̂Xt ; μ̂t )
)

dWX
t , (2.4)

dYt = b(t, Yt )dt + σ(t, Yt ) dWY
t , (2.5)

μ̂t = Law(̂Xt, Yt ), (2.6)

where t ∈ [0, T ]. We need the following assumptions on the kernel k (formulated in
a slightly redundant manner for ease of notation).

Assumption 2.1 The kernel k is twice continuously differentiable in both variables,
k(x, x) > 0 for all x ∈ X , and

D2
k := sup

(x,y)∈X×X
1≤i,j≤d

max{|∂xi
∂yj

k2(x, y)|, |∂xi
∂yj

k(x, y)|, |∂xi
k(x, y)|,

|∂yj
k(x, y)|, |k(x, y)|} < ∞.

Let C1(X ;R) be the space of all functions f : X → R such that

‖f ‖C1 := sup
x∈X

|f (x)| + sup
x∈X

i=1,...,d

|∂xi
f (x)| < ∞.

Now we are ready to state our main results. Their proofs are given in Sect. 7.
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Theorem 2.2 Suppose that Assumption 2.1 is satisfied for the kernel k with X = R
d

and
1) Ai ∈ C1(Rd;R), i = 1, 2;
2) there exists a constant C > 0 such that for any t ∈ [0, T ], x, y, x′, y′ ∈ R

d ,
z, z′ ∈ R, we have

|H(t, x, y, z) − H(t, x′, y′, z′)| + |F(t, x, y, z) − F(t, x′, y′, z′)|
+ |b(t, y) − b(t, y′)| + |σ(t, y) − σ(t, y′)|

≤ C(|x − x′| + |y − y′| + |z − z′|);

3) for any fixed x, y,∈ R
d , z ∈ R, we have

∫ T

0

(|H(t, x, y, z)|2 + |F(t, x, y, z)|2 + |b(t, y)|2 + |σ(t, y)|2) dt < ∞;

4) E[|̂X0|2] + E[|Y0|2] < ∞.
Then for any λ > 0, the system (2.4)–(2.6) with the initial condition (̂X0, Y0) has a
unique strong solution.

To analyse a numerical scheme solving (2.4)–(2.6), we consider the particle
system

dX
N,n
t = H

(

t, X
N,n
t , Y

N,n
t , mλ

A1
(X

N,n
t ; μN

t )
)

dt

+ F
(

t, X
N,n
t , Y

N,n
t , mλ

A2
(X

N,n
t ; μN

t )
)

dW
X,n
t , (2.7)

dY
N,n
t = b(t, Y

N,n
t ) dt + σ(t, Y

N,n
t ) dW

Y,n
t , (2.8)

μN
t = 1

N

N
∑

n=1

δ
(X

N,n
t ,Y

N,n
t )

, (2.9)

where N ∈ N, n = 1, . . . , N , t ∈ [0, T ] and the pairs of d-dimensional Brownian
motions (WX,n,WY,n), n = 1, . . . , N , are independent and have the same law as
(WX,WY ). The following propagation of chaos result holds; it establishes both weak
and strong convergence of XN,n.

Theorem 2.3 Suppose that all the conditions of Theorem 2.2 are satisfied. Suppose
the initial values (X

N,n
0 , Y

N,n
0 ) are independent and have the same law as (̂X0, Y0).

Moreover, suppose that E[|̂X0|q ] + E[|Y0|q ] < ∞ for some q > 4. Then there exists
a constant C = C(λ, T ,E[|̂X0|q ],E[|Y0|q ]) > 0 such that for any n = 1, . . . , N ,
N ∈ N, we have

E

[

sup
0≤t≤T

|XN,n
t − ̂Xn

t |2
]

+ sup
0≤t≤T

E
[(

W2(μ
N
t , μ̂t )

)2] ≤ CεN, (2.10)



1156 C. Bayer et al.

where the process ̂Xn solves (2.4)–(2.6) with WX,n, WY,n in place of WX, WY ,
respectively, and where

εN =

⎧

⎪

⎨

⎪

⎩

N−1/2 if d = 1,

N−1/2 log N if d = 2,

N−1/d if d > 2.

A crucial step which allows us to obtain these results is the Lipschitz-continuity
of mλ. The following holds.

Theorem 2.4 Assume that the kernel k satisfies Assumption 2.1. Let A ∈ C1(X ;R).
Then for any x, y ∈ X , μ, ν ∈ P2(X × X ), we have

|mλ
A(x; μ) − mλ

A(y; ν)| ≤ C1W1(μ, ν) + C2|x − y|,
where

C1 :=
(

Dk

λ2
+ 1

λ

)

dD2
k‖A‖C1 and C2 :=

√
d

λ
D2

k‖A‖C1

may be considered to be (possibly suboptimal) Lipschitz constants with respect to the
Wasserstein metric and Euclidean norm, respectively.

This result is interesting for at least two reasons. First, it shows that mλ
A is

Lipschitz-continuous in both arguments, provided that the kernel k is smooth enough.
That is, the Lipschitz-continuity property depends on H only through the smoothness
of the kernel k. Second, this result gives an explicit dependence of the corresponding
(possibly suboptimal) Lipschitz constants on λ and k.

Remark 2.5 Let us stress that Theorem 2.2 establishes the existence and uniqueness
of a solution to (2.2), (2.3) only for a fixed regularisation parameter λ > 0 and cannot
be used to study the limiting case λ → 0. Indeed, it follows from Theorem 2.4 that
as λ → 0, the Lipschitz constants of mλ

A blow up. However, Theorem 2.3 does not
imply that the optimal Lipschitz constants blow up for λ → 0, or that the solution
to (2.2), (2.3) blows up. We demonstrate numerically in Sect. 5 that for λ → 0, in
the examples there, the solution to (2.2), (2.3) does not blow up. On the contrary, it
weakly converges to a limit; this suggests that (at least) weak existence of a solution
to (2.2), (2.3) may hold. Verifying this theoretically remains however an important
open problem.

Remark 2.6 A natural question is whether (2.2), (2.3) can be formulated for a different
state space, that is, for X, Y taking values in X , Y rather than R

d . Indeed, for equity
models, X = Y = R+ is clearly a more natural choice for both the price process and
the variance process. Heuristically, the theory should hold for more general X and Y ,
provided that those sets are invariant under the dynamics (2.2), (2.3) as well as under
the regularised dynamics. It is, however, difficult to derive meaningful assumptions
guaranteeing this kind of invariance, which prompts us to work with R

d instead.
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3 Approximation of conditional expectations

In this section, we study the approximation mλ
A introduced in (2.1) in more detail.

Throughout this section, we fix an open set X ⊆ R
d and a measure ν ∈ P2(X ×X ),

and impose the following relatively weak assumptions on the function A : X → R

and the positive kernel k : X × X → R.

Assumption 3.1 The function A has sublinear growth, i.e., there exists a constant
C > 0 such that |A(x)| ≤ C(1 + |x|) for all x ∈ X .

Assumption 3.2 The kernel k( · , · ) is continuous on X × X and satisfies

0 < k(x, x) ≤ C(1 + |x|2)
for some C > 0.

It is easy to see that Assumption 3.2 implies for any x ∈ X that

‖k(x, · )‖2
H = 〈k(x, · ), k(x, · )〉H = k(x, x) ≤ C(1 + |x|2). (3.1)

Due to Assumption 3.2 and Steinwart and Christmann [25, Lemma 4.33], H is a
separable RKHS and one has for any f ∈ H, x ∈ X that

|f (x)| = |〈k(x, · ), f 〉H| ≤ ‖k(x, · )‖H‖f ‖H ≤ C(1 + |x|)‖f ‖H, (3.2)

where we also used (3.1). Hence every f ∈ H has sublinear growth and, as a conse-
quence, the objective functional in (2.1) is finite for any fixed ν ∈ P2(X × X ). It is
also easy to see that (3.2) and (3.1) imply that for any x, y ∈ X ,

|k(x, y)| ≤ C(1 + |x|)‖k( · , y)‖H ≤ C(1 + |x|)(1 + |y|). (3.3)

Therefore, the Bochner integrals

cν
A :=

∫

X×X
k( · , x)A(y)ν(dx, dy), Cνf :=

∫

X×X
k( · , x)f (x)ν(dx, dy)

are well-defined functions in H for every f ∈ H. Moreover, it is clear that the
operator Cν : H → H is symmetric and positive semidefinite since

〈g, Cνf 〉H =
∫

X
〈g, k( · , x)〉 f (x)ν(dx,X ) =

∫

X
g(x)f (x)ν(dx,X ).

Thus by the Hellinger–Toeplitz theorem (see e.g. Reed and Simon [21, Sect. III.5]),
Cν is a bounded self-adjoint linear operator on H. As a consequence, for any λ ≥ 0,
the operator Cν + λIH is a bounded self-adjoint operator on H with spectrum con-
tained in the interval [λ, ‖Cν‖ + λ]. Hence if λ > 0, then (Cν + λIH)−1 exists and is
a bounded self-adjoint operator on H with norm

‖(Cν + λIH)−1‖H ≤ λ−1.

We are now ready to state the following useful representation for the solution to (2.1).
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Proposition 3.3 Under Assumptions 3.1, 3.2, for any fixed ν ∈ P2(X×X ) and λ > 0,
the solution to (2.1) can be represented as

mλ
A( · ; ν) = (Cν + λIH)−1cν

A. (3.4)

This representation may be seen as an infinite sample version of the usual so-
lution representation for a ridge regression problem based on finite samples. We
thus consider it as not essentially new, but in order to keep our paper as self-
contained as possible, we present a proof in Sect. 7. Proposition 3.3 allows us to
prove Lipschitz-continuity of mλ

A, that is, Theorem 2.4.
Let us now proceed with investigating when the function mλ

A = mλ
A( · ; ν) is a

“good” approximation to the true conditional expectation

mA = mA(x; ν) := E(X,Y )∼ν[A(Y)|X = x] (3.5)

for small enough λ > 0. Consider the Hilbert space Lν
2 := L2(X , ν(dx,X )) with

ν(U,X ) := ν(U × X ) > 0. For f ∈ Lν
2, put

T νf ( · ) :=
∫

X
k( · , x)f (x)ν(dx,X ). (3.6)

Recalling (3.3), it is easy to see that T ν is a linear operator Lν
2 → Lν

2. Note that
H ⊆ Lν

2 due to (3.2); thus Cν is the restriction of T ν to H. Further, since

|k(x, y)| ≤ √

k(x, x)
√

k(y, y),

the kernel k is Hilbert–Schmidt on L2(X × X , ν(dx,X ) ⊗ ν(dy,X )), i.e.,

∫

k2(x, y)ν(dx,X )ν(dy,X ) < ∞

due to Assumption 3.2. As a consequence of standard results from functional analy-
sis, one then has (see for example [21, Sect. VI]) that

(i) the operator T ν is self-adjoint and compact;
(ii) there exists an orthonormal system (an)n∈N in Lν

2 of eigenfunctions corre-
sponding to nonnegative eigenvalues σn of T ν , and σ1 ≥ σ2 ≥ σ3 ≥ · · · ;

(iii) if J := {n ∈ N : σn > 0}, one has

T νf =
∑

n∈J

σn 〈f, an〉Lν
2
an, f ∈ Lν

2, (3.7)

with limn→∞ σn = 0 if J = N.
A generalisation of Mercer’s theorem to unbounded domains, see Sun [26], im-

plies the following statement.

Proposition 3.4 Let k be a kernel satisfying Assumption 3.2 and assume that ν( · ,X )

is a nondegenerate Borel measure, that is, for every open set U ⊆ X , one has
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ν(U,X ) > 0. Then one may take the eigenfunctions an in (3.7) to be continuous
and k has a series representation

k(x, y) =
∑

n∈J

σnan(x)an(y), x, y ∈ X ,

with uniform convergence on compact sets. Moreover, (̃an)n∈J with ãn := √
σn an is

an orthonormal basis of H, and the scalar product in H takes the form

〈f, g〉H =
∑

n∈J

〈f, an〉Lν
2
〈g, an〉Lν

2

σn

for f, g ∈ H. (3.8)

Now we are ready to present the main result of this section, which quantifies the
convergence properties of mλ

A( · , ν) as λ → 0 for a fixed measure ν. Recall the
notation (3.5). Let PH denote the orthogonal projection in Lν

2 onto H, the closure of
H in Lν

2. Then for any f ∈ Lν
2,

PHf =
∑

n∈J

〈f, an〉Lν
2
an and 〈PHf, am〉Lν

2
= 〈f, am〉Lν

2
, m ∈ J, (3.9)

since (an)n∈J is an orthonormal system in Lν
2.

Theorem 3.5 Assume that the kernel k satisfies Assumption 3.2, ν( · ,X ) is a nonde-
generate Borel measure, and that mA( · ; ν) ∈ Lν

2 (for instance when A is bounded
and measurable). Then for any λ > 0,

‖PHmA( · ; ν) − mλ
A( · ; ν)‖2

Lν
2

=
∑

n∈J

λ2

(σn + λ)2
〈mA( · ; ν), an〉2

Lν
2
. (3.10)

In particular, ‖PHmA( · ; ν) − mλ
A( · ; ν)‖Lν

2
→ 0 as λ ↘ 0. If we have in addition

PHmA( · ; ν) ∈ H, then

‖PHmA( · ; ν) − m( · ; ν)λA( · ; ν)‖2
H =

∑

n∈J

λ2

(σn + λ)2 σn

〈mA( · ; ν), an〉2
Lν

2
, (3.11)

and thus ‖PHmA( · ; ν) − mλ
A( · ; ν)‖H → 0 for λ ↘ 0.

Theorem 3.5 establishes convergence of mλ
A( · ; ν) as λ → 0, but without a rate.

Its proof is placed in Sect. 7. Additional assumptions are needed to guarantee a
convergence rate. This is done in the following corollary.

Corollary 3.6 Suppose that the conditions of Theorem 3.5 are satisfied and that,
moreover, for some θ ∈ (0, 1], we have

∑

n∈J

σ−θ
n 〈mA( · ; ν), an〉2

Lν
2

< ∞. (3.12)
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Then

‖PHmA( · ; ν) − mλ
A( · ; ν)‖2

Lν
2

≤
(

1 − θ

2

)2 (

λθ

2 − θ

)θ
∑

n∈J

σ−θ
n 〈mA( · ; ν), an〉2

Lν
2
. (3.13)

In particular, if θ = 1, then PHmA ∈ H and we get

‖PHmA( · ; ν) − mλ
A( · ; ν)‖Lν

2
≤

√
λ

2
‖PHmA( · ; ν)‖H. (3.14)

Proof Inequality (3.13) follows from (3.10), (3.12) and the fact that the maximum
of the function x �→ λ2xθ/(x + λ)2, x > 0, is equal to (1 − θ/2)2(λθ/(2 − θ))θ .
Inequality (3.14) follows from (3.8), (3.9) and (3.13). �

Remark 3.7 If the operator T ν defined in (3.6) is injective, that is, T νf = 0 for
f ∈ Lν

2 implies f = 0 ν-a.s., then PH = ILν
2
. In this case, J = N and Theorem 3.5

and Corollary 3.6 quantify the convergence to the true conditional expectation. A
sufficient condition for T ν to be injective is that the kernel k is integrally strictly
positive definite (ispd) in the sense that

∫

X×X
k(x, y)μ(dx)μ(dy) > 0

for all non-zero signed Borel measures μ defined on X . Indeed, for any f ∈ Lν
2, we

may define a signed Borel measure μf (A) := ∫

A
f (x)ν(dx,X ), A ∈ B(X ), which

is finite since |μf (A)| ≤ ∫

f 2(x)ν(dx,X ) < ∞. Hence if k is an ispd kernel, then
T νf = 0 implies

0 = 〈T νf, f 〉Lν
2

=
∫

X×X
k(y, x)f (x)f (y)ν(dx,X )ν(dy,X )

=
∫

X×X
k(y, x)μf (dx)μf (dy),

which in turn implies μf = 0, i.e., f = 0 ν-a.s. Furthermore, it should be noted that
any ispd kernel is strictly positive definite in the usual sense, but the converse is not
true. Examples of ispd kernels are Gaussian kernels, Laplace kernels and many more.
For details on ispd kernels, we refer to Sriperumbudur et al. [24].

In summary, we have shown in this section that under certain conditions, mλ
A( · , ν)

may converge at least in the Lν
2-sense to the true conditional expectation mA( · , ν) as

λ → 0. This makes the heuristic discussion around (1.10) and (1.11) in Sect. 1 more
rigorous.

Remark 3.8 Note that the measure μ̂t in the solution of (2.4)–(2.6) depends on λ

so that in fact μ̂t = μ̂λ
t . Therefore, even when mλ

A( · , ν) → mA( · , ν) for fixed
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ν and λ ↓ 0, the question whether mλ
Ai

( · , μ̂λ
t ) converges in some sense is still not

answered. We believe that this question is intimately linked to the problem of ex-
istence of a solution to (2.2), (2.3). As already explained, this is an unsolved open
problem and considered beyond our scope here. However, loosely speaking, assum-
ing that the latter system has indeed a solution (in some sense) with solution measure
μt , say, it is natural to expect that for a suitable “rich enough” RKHS, we obtain
mλ

Ai
( · , μt ) → mAi

( · , μt ) (the true conditional expectation) as λ ↘ 0.

4 Numerical algorithm

Let us now describe in detail our numerical algorithm to construct solutions to (1.8).
We begin by discussing an efficient way of calculating mλ

A.

4.1 Estimation of the conditional expectation

Let us recall that in order to solve the particle system (2.7)–(2.9), we need to compute

mλ
A( · ; μN

t ) = arg min
f ∈H

(

1

N

N
∑

n=1

|A(Y
N,n
t ) − f (X

N,n
t )|2 + λ ‖f ‖2

H

)

(4.1)

for t belonging to a certain partition of [0, T ] and fixed large N ∈ N; here A = A1 or
A = A2. It follows from the representer theorem for RKHSs in Schölkopf et al. [23,
Theorem 1] that mλ

A has the representation

mλ
A( · ; μN

t ) =
N

∑

i=1

αik(X
N,i
t , · ) (4.2)

for some α = (α1, . . . , αN)� ∈ R
N . Note that the optimal α can be calculated

explicitly by plugging the representation (4.2) into the minimisation problem (4.1) in
place of f and minimising over α. However, computing the optimal α directly takes
O(N3) operations, which is prohibitively expensive keeping in mind that the number
of particles N is going to be very large. Furthermore, even evaluating (4.2) at X

N,n
t ,

n = 1, . . . , N , for a given α ∈ R
N is rather expensive; it requires O(N2) operations

and thus is impossible to implement.
To develop an efficient algorithm, let us note that many particles X

N,i
t – and as

a consequence the implied basis functions k(X
N,i
t , · ) – will be close to each other.

Therefore we can considerably reduce the computational cost by only using L � N

rather than N basis functions as suggested in (4.2). More precisely, we choose
Z1, . . . , ZL among X

N,1
t , . . . , X

N,N
t – e.g. by random choice or by taking every N

L
th

point among the ordered sequence X
N,(1)
t , . . . , X

N,(N)
t when X is one-dimensional –

and approximate

N
∑

i=1

αik(X
N,i
t , · ) ≈

L
∑

j=1

βjk(Zj , · ),
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where β = (β1, . . . , βL)� ∈ R
L. It is easy to see that

∥

∥

∥

∥

L
∑

j=1

βjk(Zj , · )
∥

∥

∥

∥

2

H
=

〈 L
∑

j=1

βjk(Zj , · ),
L

∑

j=1

βjk(Zj , · )
〉

H

=
L

∑

j,�=1

βjβ�〈k(Zj , · ), k(Z�, · )〉H

=
L

∑

j,�=1

βjβ�k(Zj , Z�) = β�Rβ,

where R := (k(Zj , Z�))j,�=1,...,L is an L × L matrix. Thus recalling (4.1), we see
that we have to solve

arg min
β∈RL

(

1

N
(G − Kβ)�(G − Kβ) + λβ�Rβ

)

,

where G := (A(Y
N,n
t ))n=1,...,N and K := (k(Zj ,X

N,n
t ))n=1,...,N,j=1,...,L is an

(N × L)-matrix. Differentiating with respect to β, we obtain that the optimal value
̂β = ̂β((XN

t ), (YN
t )) satisfies

(K�K + NλR)̂β = K�G, (4.3)

and we approximate the expectation as

mλ
A(x; μN

t ) ≈
L

∑

j=1

̂βjk(Zj , x) =: m̂λ
A(x; μN

t ). (4.4)

Remark 4.1 The method of choosing basis points Z1, . . . , ZL can be seen as a sys-
tematic and adaptive approach of choosing basis functions k(Zj , · ), j = 1, . . . , L, in
a global regression method. We note that the technique of evaluating the conditional
expectation only in points on a grid Gf,t coupled with spline-type interpolation be-
tween grid points suggested in Guyon and Henry-Labordère [13] is motivated by
similar concerns regarding the explosion of computational costs.

Remark 4.2 Let us see how many operations we need to calculate ̂β, taking into ac-
count that L � N . We need O(NL) to calculate K , O(L2) to calculate R, O(NL2)

to calculate K�K (this is the bottleneck), O(L3) to invert K�K +NλR and O(NL)

to calculate K�G and solve (4.3). Thus in total, we need O(NL2) operations.

4.2 Solving the regularised McKean–Vlasov equation

With the function m̂λ
A in hand, we now consider the Euler scheme for the particle

system (2.7)–(2.9). We fix a time interval [0, T ], the number M of time steps and for
simplicity consider a uniform time increment δ := T/M . Let �W

X,n
i and �W

Y,n
i
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denote independent copies of WX
(i+1)δ − WX

iδ and WY
(i+1)δ − WY

iδ , respectively, for
n = 1, . . . , N , i = 1, . . . ,M . Note that for stochastic volatility models, the Brownian
motions driving the stock price and the variance process are usually correlated. We
now define ˜Xn

0 = Xn
0 , ˜Yn

0 = Yn
0 and for i = 0, . . . , M − 1,

˜Xn
i+1 = ˜Xn

i + H
(

iδ, ˜Xn
i , ˜Yn

i , m̂λ
A1

(˜Xn
i ; μ̃N

i )
)

δ

+ F
(

iδ, ˜Xn
i , ˜Yn

i , m̂λ
A2

(˜Xn
i ; μ̃N

i )
)

�W
X,n
i , (4.5)

˜Yn
i+1 = ˜Yn

i + b(iδ, ˜Yn
i )δ + σ(iδ, ˜Yn

i )�W
Y,n
i , (4.6)

where μ̃N
i = 1

N

∑N
n=1 δ

(˜X
N,n
i ,˜Y

N,n
i )

. Thus at each discretisation time step of

(4.5), (4.6), we need to compute approximations of the conditional expectations
m̂λ

Ar
(˜Xn

i ; μ̃N
i ), r = 1, 2. This is done using the algorithm discussed in Sect. 4.1 and

takes O(NL2) operations; see Remark 4.2. Thus the total number of operations
needed to implement (4.5), (4.6) is O(MNL2).

5 Numerical examples and applications to local stochastic volatility
models

As a main application of the regularisation approach presented above, we consider
the problem of calibration of stochastic volatility models to market data. Fix a time
period T > 0. To simplify the calculations, we suppose that the interest rate is r = 0.
Let C(t,K), t ∈ [0, T ], K ≥ 0, be the price at time 0 of a European call option
with strike K and maturity t on a non-dividend paying stock. We assume that the
market prices (C(t,K))t∈[0,T ],K≥0 are given and satisfy the following conditions:
(i) C is continuous and increasing in t and twice continuously differentiable in x,
(ii) ∂xxC(t, x) > 0, (iii) C(t, x) → 0 as x → ∞ for any t ≥ 0 and C(t, 0) = const.
It is known by Lowther [19, Theorem 1.3 and Sect. 2.1] and Dupire [8] that under
these conditions, there exists a diffusion process (St )t∈[0,T ] which is able to perfectly
replicate the given call option prices, that is, E[(St − K)+] = C(t,K). Furthermore,
S solves the stochastic differential equation

dSt = σDup(t, St )St dWt , t ∈ [0, T ], (5.1)

where W is a Brownian motion and σDup is the Dupire local volatility given by

σ 2
Dup(t, x) := 2∂tC(t, x)

x2∂xxC(t, x)
, x > 0, t ∈ [0, T ]. (5.2)

We study local stochastic volatility (LSV) models. That is, we assume that the stock
price X follows the dynamics

dXt = √

Yt σLV(t, Xt )Xt dWX
t , t ∈ [0, T ], (5.3)
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where WX is a Brownian motion and (Yt )t∈[0,T ] is a strictly positive variance process,
both adapted to some filtration (Ft )t≥0. If the function σLV is given by

σ 2
LV(t, x) := σ 2

Dup(t, x)

E[Yt |Xt = x] , x > 0, t ∈ [0, T ],

and
∫ T

0 E[YtσLV(t, Xt )
2X2

t ] dt < ∞, then the one-dimensional marginal distribu-
tions of X coincide with those of S (see Gyöngy [14, Theorem 4.6], Brunick and
Shreve [4, Corollary 3.7]). Thus

C(T ,K) = E[(XT − K)+], T ,K > 0. (5.4)

In particular, the choice Y ≡ 1 recovers the local volatility model. If Y is a diffusion
process,

dYt = b(t, Yt )dt + σ(t, Yt )dWY
t , (5.5)

where WY is a Brownian motion possibly correlated with WX, we see that the model
(5.3)–(5.5) is a special case of the general McKean–Vlasov equation (2.2), (2.3). To
solve (5.3)–(5.5), we implement the algorithm described in Sect. 4; see (4.5), (4.6) to-
gether with (4.4). We validate our results by doing two different checks. First, we ver-
ify that the one-dimensional distribution of ˜X1

M is close to the correct marginal distri-
bution Law(XT ) = Law(ST ). To do this, we compare the call option prices obtained
by the algorithm (that is, N−1 ∑N

n=1(
˜Xn

M − K)+) with the given prices C(T ,K) for
various T > 0 and K > 0. If the algorithm is correct and if μ̃N

M ≈ Law(XT , YT ),
then according to (5.4), one must have

C(T ,K) ≈ N−1
N

∑

n=1

(˜Xn
M − K)+ =: ˜C(T ,K). (5.6)

On the other hand, if the algorithm is not correct and Law(XT , YT ) is very different
from μ̃N

M , then (5.6) will not hold.
Second, we also control the multivariate distribution of (˜Xi)i=0,...,M . Recall that

for any t ∈ [0, T ], we have Law(Xt ) = Law(St ). We want to make sure that the dy-
namics of the process ˜X is different from the dynamics of the local volatility process
S. As a test case, we compare option values on the quadratic variation of the loga-
rithm of the price. More precisely, for each K > 0, we compare European options on
quadratic variation,

QVS(K) := 1

N

N
∑

n=1

( M
∑

i=0

(log Sn
(i+1)T /M − log Sn

iT /M)2 − K

)+
,

QV
˜X(K) := 1

N

N
∑

n=1

( M
∑

i=0

(log ˜Xn
i+1 − log ˜Xn

i )2 − K

)+
,
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and verify that these two curves are different. Here, (Sn
i )i=1,...,N is an Euler approx-

imation of (5.1). We also check that the prices of European options on quadratic
variation converge as N → ∞.

We consider two different ways to generate market prices C(T ,K). First, we as-
sume that the stock follows the Black–Scholes (BS) model, that is, we assume that
σDup ≡ const = 0.3 and S0 = 1. Second, we consider a stochastic volatility model
for the market, that is, we set C(T ,K) := E[(ST − K)+], where (St )t≥0 follows the
Heston model

dSt = √
vt St dWt , (5.7)

dvt = κ(θ − vt ) dt + ξ
√

vt dBt , (5.8)

with the following parameters: κ = 2.19, θ = 0.17023, ξ = 1.04 and correlation
ρ = −0.83 between the driving Brownian motions W and B, with initial values
S0 = 1, v0 = 0.0045; cf. similar parameter choices in Lemaire et al. [18, Table 1].
We compute option prices based on (5.7), (5.8) with the COS method; see Fang and
Oosterlee [9]. We then calculate σDup from C(T ,K) using (5.2).

As our baseline stochastic volatility model for Y , we choose a capped-from-below
Heston-type model, but with different parameters than the data-generating Heston
model. Specifically, we set b(t, x) = λ(μ − x) and σ(t, x) = η

√
x in (5.5), where

Y0 = 0.0144, λ = 1, μ = 0.0144 and η = 0.5751. We cap the solution of (5.5)
from below at the level εCIR = 10−3 to avoid singularity at 0. Numerical experiments
have shown that such capping is necessary. We assume that the correlation between
WX and WY is very strong and equals −0.9, which makes calibration more difficult.
Since the variance process has different parameters compared to the price-generating
stochastic volatility model, a non-trivial local volatility function is required to match
the implied volatility. Hence even though the generating model is of the same class,
the calibration problem is still non-trivial and involves a singular MKV SDE.

We took H to be the RKHS associated with the Gaussian kernel k with vari-
ance 0.1. We fix the number of time steps as M = 500 and take λ = 10−9, L = 100.
At each time step of the Euler scheme, we choose (Z

j
m)j=1,...,L by the rule that

Z
j
m is the j

100

L + 1
-percentile of the sequence (˜Xn

m)n=1,...,N , (5.9)

an approach comparable to the choice of the evaluation grid Gf,t suggested in Guyon
and Henry-Labordère [13].

Figure 1 compares the theoretical and the calculated prices (in terms of implied
volatilities) in the (a) Black–Scholes and (b)–(d) Heston settings for various strikes
and maturities. That is, we first calculate C(T ,K) using the Black–Scholes model
(“Black–Scholes setting”) or (5.7), (5.8) (“Heston setting”); then we calculate σ 2

Dup

by (5.2); then we calculate ˜Xn
M , n = 1, . . . , N , using the algorithm (4.5), (4.6) with

H ≡ 0, A2(x) = x and

F(t, x, y, z) := xσDup(t, x)

√
y√

z ∨ ε
,
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Fig. 1 Fit of the smile for different number of particles: (a) Black–Scholes setting, T = 1 year; (b) Heston
setting, T = 1 year; (c) Heston setting, T = 4 years; and (d) Heston setting, T = 10 years

where ε = 10−3 (see also Reisinger and Tsianni [22]); then we calculate ˜C(T ,K)

using (5.6); finally, we transform the prices C(T ,K) and ˜C(T ,K) to the implied
volatilities. We should like to note that this additional capping of the function F is
less critical than the capping of the baseline process Y .

We plot in Fig. 1 implied volatilities for a wide range of strikes and maturities.
More precisely, we consider all strikes K such that P[ST < K] ∈ [0.05, 0.95] –
this corresponds to all but very far in-the-money and out-of-the-money options. One
can see from Fig. 1 that already for N = 103 trajectories, the identity (5.6) holds
up to a small error for all the considered strikes and maturities. This error further
diminishes as the number of trajectories increases. At N = 105, the true implied
volatility curve and the one calculated from our approximation model become almost
indistinguishable.

We plot the prices of the options on the logarithms of quadratic variation in Fig. 2.
It is immediate to see that in the Black–Scholes model ((5.1) with σDup ≡ σ ), we
have 〈log S〉T = σ 2T and thus E[(〈log S〉T − K)+] = (σ 2T − K)+. As shown in
Fig. 2(a), the prices of the options on the quadratic variation of X are vastly differ-
ent. This implies that despite the marginal distributions of X and S being identical,
their dynamics are markedly dissimilar. We also see that these curves converge as the
number of particles increases to infinity. This shows that the dynamics of (˜Xn) is sta-
ble with respect to n. Options on the logarithm of quadratic variation for the Heston
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Fig. 2 Prices of options on log of quadratic variation for different number of particles: (a) Black–Scholes
setting, T = 1 year; (b) Heston setting, T = 1 year

Fig. 3 Comparison with Guyon and Henry-Labordère [13]: (a) Black–Scholes setting, T = 1 year; (b)
Heston setting, T = 1 year

setting are presented in Fig. 2(b). We see that in this case, the dynamics of X and S

are different as expected, and the dynamics of (˜Xn) is also stable.
It is interesting to compare our approach with the algorithms of Guyon and Henry-

Labordère [13, 12]. We consider a numerical setup similar to [12, p. 10], taking
N = 106 particles to calculate implied volatilities. However, we calibrate our model
and calculate the approximation of conditional expectation using only N1 = 1000
of these particles. We compare our results in the Black–Scholes (a) and Heston (b)
settings against implied volatilities calculated via the Euler method for the local
volatility model S. Figure 3 shows great agreement between the results of the two
methods.

Remark 5.1 The computational time needed for running our algorithm is comparable
with the algorithm of [12], but highly dependent on implementation details in both
cases.

Figure 4 shows that not only do the marginal distributions of X calculated with our
method and [13] agree with each other, but so do the distributions of the processes. We
also observe that in both settings, the dynamics of X are different from the dynamics
of S.
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Fig. 4 Comparison with Guyon and Henry-Labordère [13]. Options on quadratic variation: (a) Black–
Scholes setting, T = 1 year; (b) Heston setting, T = 1 year

Fig. 5 Mean absolute implied volatility error for different values of λ: (a) Black–Scholes setting; (b)
Heston setting

Now let us discuss the stability of our model as the regularisation parameter
λ → 0. We studied the absolute error in the implied volatility of the 1-year ATM
call option for various λ ∈ [10−9, 1] in the Black–Scholes and Heston settings de-
scribed above. We used N = 106 trajectories and L = 100 at each step according
to (5.9), and performed 100 repetitions at each considered value of λ. The results are
presented in Fig. 5. The vertical lines in Figs. 5–7 denote the standard deviation in the
absolute errors of the implied volatilities. We observe that in both settings, the error
initially drops as λ decreases and then stabilises around λ ≈ 10−9. Therefore, for all
of our calculations, we took λ = 10−9. It is evident that the error does not blow up as
λ becomes very small.

Let us examine how the error in call option prices in (5.6) (and therefore the dis-
tance between the laws of the true and approximated solutions) depends on the num-
ber N of trajectories. Recall that it follows from Theorem 2.3 that this error should
decrease as N−1/4 (note the square in the left-hand side of (2.10)). Figure 6 shows
how the absolute error in the implied volatility of a 1-year ATM call option decreases
as the number of trajectories increases in (a) the Black–Scholes setting and (b) the
Heston setting. We took λ = 10−9, L = 100, N ∈ [250, 28 × 250] and performed
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Fig. 6 Mean absolute implied volatility error versus number of trajectories. The black line is the approxi-
mation: error = CN−1/2; (a) Black–Scholes setting, C = 0.469; (b) Heston setting, C = 0.303

Table 1 Average error in implied volatility of 1-year options with given strike. Heston setting

Strike K 0.6 0.8 1 1.2 1.4 1.6

P[ST < K] 0.0990 0.2258 0.4443 0.7475 0.9558 0.9961

True IV 0.3999 0.3383 0.2795 0.2273 0.1927 0.1803

IV error 0.0011 0.0018 0.0006 0.0032 0.0043 0.0011

Fig. 7 Mean absolute implied volatility error versus number of basis functions: (a) Black–Scholes setting;
(b) Heston setting

100 repetitions at each value of N . We see that the error decreases as O(N−1/2) in
both settings, which is even better than predicted by theory.

We collect average errors in implied volatilities of 1-year European call options
for different strikes in Table 1. We considered the Heston setting and as above, we
used λ = 10−9, L = 100, N = 105.

We also investigate the dependence of the error in the implied volatility on the
number L of basis functions in the representation (4.4). Recall that since the num-
ber of operations depends on L quadratically (it equals O(MNL2)), it is extremely
expensive to set L to be large. In Fig. 7, we plotted the dependence on L of the ab-
solute error in the implied volatility of a 1-year ATM call option. We used N = 106
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Fig. 8 Fit of the smile of 1-year call options for different truncation levels: (a) ε = 10−3, εCIR varies; (b)
εCIR = 10−3, ε varies; and (c) ε = εCIR varies

trajectories, λ = 10−9, L ∈ [1, . . . , 100] and did 100 repetitions at each value of the
number of basis functions. We see that as the number of basis functions increases,
the error first drops significantly, but then stabilises at L ≈ 80.

5.1 On the choice of (ε, εCIR)

We recall that there are two different truncations involved in the model. First, we cap
the CIR process from below at the level of εCIR = 10−3. Second, in the Euler scheme
(4.5), (4.6), we take as a diffusion coefficient

F(t, x, y, z) := xσDup(t, x)

√
y√

z ∨ ε

with ε = 10−3. We claim that both of these truncations are necessary.
Figure 8 shows the fit of the smile for 1-year European call options depending on

ε and εCIR. We use the model of Sect. 5 with M = 500 time steps and N = 106

trajectories. We see from these plots that if ε or εCIR are either too small or too large,
the smile produced by the model may not closely match the true implied volatility
curve. Therefore a certain lower capping of the CIR process is indeed necessary.
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6 Conclusion and outlook

In this paper, we study the problem of calibrating local stochastic volatility models
via the particle approach pioneered in Guyon and Henry-Labordère [13]. We suggest
a novel RKHS-based regularisation method and prove that this regularisation guar-
antees well-posedness of the underlying McKean–Vlasov SDE and the propagation
of chaos property. Our numerical results suggest that the proposed approach is rather
efficient for the calibration of various local stochastic volatility models and can ob-
tain similar efficiency as widely used local regression methods; see [13]. There are
still some questions left open here. First, it remains unclear whether the regularised
McKean–Vlasov SDE remains well posed when the regularisation parameter λ tends
to zero. This limiting case needs a separate study. Another important issue is the
choice of RKHS and the number of basis functions which ideally should be adapted
to the problem at hand. This problem of adaptation is left for future research.

7 Proofs

In this section, we present the proofs of the results from Sects. 2 and 3.

Proof of Proposition 3.3 Since H is separable, let I ⊆ N and let e := (ei)i∈I be a total
orthonormal system in H (note that I is finite if H is finite-dimensional). Define the
vector γ ν ∈ �2(I ) by

γ ν
i := 〈ei, c

ν
A〉H =

∫

X×X
〈ei, k( · , x)〉H A(y)ν(dx, dy)

=
∫

X×X
ei(x)A(y)ν(dx, dy), i ∈ I. (7.1)

Since the operator Cν is bounded, it may be described by the (possibly infinite)
symmetric matrix

Bν := (〈ei, Cνej 〉H)(i,j)∈I×I =
( ∫

X
ei(x)ej (x) ν(dx,X )

)

(i,j)∈I×I

, (7.2)

which acts as a bounded positive semidefinite operator on �2(I ). Denote

βν = (Bν + λI)−1γ ν. (7.3)
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For f ∈ H, write f = ∑

i∈I βiei . Then, recalling (7.1) and (7.2), we derive

arg min
f ∈H

( ∫

X×X
|A(y) − f (x)|2 ν(dx, dy) + λ‖f ‖2

H

)

= arg min
β∈�2(I )

( ∫

X×X
|A(y) −

∑

i∈I

βiei |2 ν(dx, dy) + λ‖β‖2
�2(I )

)

= arg min
β∈�2(I )

( − 2〈β, γ ν〉�2(I ) + 〈β, (Bν + λI)β〉�2(I )

)

= arg min
β∈�2(I )

(〈β − βν, (Bν + λI)(β − βν)〉�2(I )

)

= βν,

where we inserted the definition (7.3) and used the fact that Bν+λI is strictly positive
definite for λ > 0. To complete the proof, it remains to note that

∞
∑

i=1

βν
i ei = (Cν + λIH)−1cν

A,

which shows (3.4). �

Proof of Theorem 2.4 Let us write

|mλ
A(x; μ) − mλ

A(y; ν)| ≤ |mλ
A(x; μ) − mλ

A(x; ν)| + |mλ
A(x; ν) − mλ

A(y; ν)|
=: I1 + I2. (7.4)

Working with respect to the orthonormal basis introduced in the proof of Proposi-
tion 3.3, see (7.3), we derive for the first term in (7.4) that

I1 = |〈k(x, · ),mλ
A( · ; μ) − mλ

A( · ; ν)〉H|
≤ ‖k(x, · )‖H‖mλ

A( · ; μ) − mλ
A( · ; ν)‖H

≤ √

k(x, x)‖βμ − βν‖�2(I )

≤ Dk‖βμ − βν‖�2(I ), (7.5)

where we used (3.1) and Assumption 2.1.
Denote Qν := Bν + λI and Qμ := Bμ + λI . Recalling that these are bounded

operators from �2(I ) to �2(I ) with bounded inverses, it is easy to see that

‖(Qμ)−1 − (Qν)−1‖�2(I ) ≤ ‖(Qμ)−1‖�2(I )‖(Qν)−1‖�2(I )‖Qμ − Qν‖�2(I ).
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Therefore we get

‖βμ − βν‖�2(I ) = ‖(Qμ)−1γ μ − (Qν)−1γ ν‖�2(I )

≤ ∥

∥

(

(Qμ)−1 − (Qν)−1)γ μ
∥

∥

�2(I )
+ ‖(Qν)−1(γ μ − γ ν)‖�2(I )

≤ ‖(Qμ)−1‖�2(I )‖(Qν)−1‖�2(I )‖Qμ − Qν‖�2(I )‖γ μ‖�2(I )

+ ‖(Qν)−1‖�2(I )‖γ μ − γ ν‖�2(I )

≤ 1

λ2
‖Bμ − Bν‖�2(I )‖γ μ‖�2(I ) + 1

λ
‖γ μ − γ ν‖�2(I ). (7.6)

Now observe that for any i, j ∈ I , we have

(B
μ
ij − Bν

ij )
2 =

( ∫

X
ei(x)ej (x)

(

μ(dx,X ) − ν(dx,X )
)

)2

=
∫

X

∫

X
ei(x)ej (x)ei(y)ej (y)

× (

μ(dx,X ) − ν(dx,X )
)(

μ(dy,X ) − ν(dy,X )
)

.

Hence by using the identity

∑

i∈I

ei(x)ei(y) =
∑

i∈I

〈k(x, · ), ei〉H 〈k(y, · ), ei〉H

= 〈k(x, · ), k(y, · )〉H = k(x, y), (7.7)

we get

‖Bμ − Bν‖2
�2(I )

≤ ‖Bμ − Bν‖2
HS

=
∫

X

(

μ(dx,X ) − ν(dx,X )
)

∫

X
k2(x, y)

(

μ(dy,X ) − ν(dy,X )
)

. (7.8)

By the Kantorovich–Rubinstein duality formula (see Villani [27, Chap. 1]), for every
h : X → R with h ∈ C1(X ), one has

∣

∣

∣

∣

∫

X
h(x)

(

μ(dx,X ) − ν(dx,X )
)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

X×X
h(x)

(

μ(dx, dy) − ν(dx, dy)
)

∣

∣

∣

∣

≤ W1(μ, ν) sup
x∈X

|∂xh(x)|,

where ∂x denotes the gradient with respect to x. So we continue (7.8) with

‖Bμ − Bν‖2
�2(I ) ≤ W1(μ, ν) sup

x∈X

∣

∣

∣

∣

∫

X
∂xk

2(x, y)
(

μ(dy,X ) − ν(dy,X )
)

∣

∣

∣

∣

, (7.9)
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and for each particular x ∈ X , we have similarly
∣

∣

∣

∣

∫

X
∂xk

2(x, y)
(

μ(dy,X ) − ν(dy,X )
)

∣

∣

∣

∣

≤
d

∑

i=1

∣

∣

∣

∣

∫

X
∂xi

k2(x, y)
(

μ(dy,X ) − ν(dy,X )
)

∣

∣

∣

∣

≤ W1(μ, ν)

d
∑

i=1

sup
y∈X

|∂y∂xi
k2(x, y)|

≤ d2D2
kW1(μ, ν),

where the last inequality follows from Assumption 2.1. Combining this with (7.9),
we deduce

‖Bμ − Bν‖�2(I ) ≤ DkW1(μ, ν)d. (7.10)

By a similar argument, using (7.7), we derive

‖γ μ − γ ν‖2
�2(I )

≤
∑

i∈I

∫

X×X

∫

X×X
ei(x)ei(x

′)A(y)A(y′)(μ − ν)(dx, dy)(μ − ν)(dx′, dy′)

≤
∫

X×X

∫

X×X
k(x, x′)A(y)A(y′)(μ − ν)(dx, dy)(μ − ν)(dx′, dy′)

≤ d2
W

2
1(μ, ν)‖A‖2

C1D
2
k , (7.11)

where again Assumption 2.1 was used. Next note that

‖γ μ‖2
�2(I ) =

∫

X×X

∫

X×X
k(x, x′)A(y)A(y′)μ(dx, dy)μ(dx′, dy′)

≤
∫

X×X

∫

X×X
|A(y)|√k(x, x) |A(y′)|√k(x′, x′) μ(dx, dy)μ(dx′, dy′)

=
(

∫

X×X
|A(y)|√k(x, x) μ(dx, dy)

)2

≤
∫

X×X
|A(y)|2μ(dx, dy)

∫

X×X
k(x, x)μ(dx, dy)

≤ D2
k‖A‖2

C1 (7.12)

due to Assumption 2.1. Substituting now (7.10)–(7.12) into (7.6) and then into (7.5),
we finally get

I1 ≤ (λ−1Dk + 1)λ−1D2
kW1(μ, ν)d‖A‖C1 . (7.13)
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Now let us bound I2 in (7.4). We clearly have

I2 = |〈k(x, · )−k(y, · ),mλ
A( · ; ν)〉| ≤ ‖k(x, · )−k(y, · )‖H‖mλ

A( · ; ν)‖H. (7.14)

Note that

‖k(x, · ) − k(y, · )‖2
H

= 〈k(x, · ) − k(y, · ), k(x, · ) − k(y, · )〉H
= k(x, x) − k(x, y) − (

k(y, x) − k(y, y)
)

=
( ∫ 1

0
∂2k

(

x, x + ξ(y − x)
)

dξ

)�
(x − y)

−
( ∫ 1

0
∂2k

(

y, x + ξ(y − x)
)

dξ

)�
(x − y)

= (x − y)�
( ∫ 1

0

∫ 1

0
∂1∂2k

(

x + η(y − x), x + ξ(y − x)
)

dξdη

)�
(x − y),

with ∂1, ∂2 denoting the vector of derivatives of k with respect to the first and second
argument, respectively. Recalling Assumption 2.1, we derive

‖k(x, · ) − k(y, · )‖2
H ≤ dD2

k |x − y|2 . (7.15)

Further, using (7.12), we see that

‖mλ
A( · ; ν)‖H = ‖βν‖�2(I ) ≤ ‖(Bν + λI)−1‖�2(I )‖γ ν‖�2(I ) ≤ λ−1Dk‖A‖C1 .

Combining this with (7.15) and substituting into (7.14), we get

I2 ≤ √
d λ−1D2

k‖A‖C1 |x − y|.
This together with (7.13) and (7.4) finally yields

|mλ
A(x; μ) − mλ

A(y; ν)| ≤ C1W1(μ, ν) + C2|x − y|,
where C1 = (λ−1Dk+1)λ−1D2

kd‖A‖C1 and C2 = √
d λ−1D2

k‖A‖C1 . This completes
the proof. �

Now we are ready to prove the main results of Sect. 2. They follow from Theo-
rem 2.4 obtained above.

Proof of Theorem 2.2 It follows from Theorem 2.4, the assumptions of Theorem 2.2
and the fact that the W1-metric can be bounded from above by the W2-metric that the
drift and diffusion of the system (2.4)–(2.6) are Lipschitz and satisfy the conditions of
Carmona and Delarue [6, Theorem 4.21]. Hence it has a unique strong solution. �

Proof of Theorem 2.3 We see that Theorem 2.4 and the conditions of Theorem 2.3
imply that all the assumptions of Carmona and Delarue [7, Theorem 2.12] hold (note
that the total state dimension is 2d in our case). This implies (2.10). �
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Proof of Theorem 3.5 Consider the operator Cν in the orthonormal basis (̃an)n∈J of
H. Put

Dν := (〈̃ai, Cν ãj 〉H)(i,j)∈J×J = (〈̃ai, T
νãj 〉H)(i,j)∈J×J = (σj δij )(i,j)∈J×J ,

since ãj is an eigenvector of T ν with eigenvalue σj . Since Cν is diagonal in this basis,
we see that for λ > 0, one has for i ∈ J that

(Cν + λIH)−1ãi = (σi + λ)−1ãi . (7.16)

Consider also the function cν
A in this basis. We write for i ∈ J similarly to (7.1)

ην
i := 〈cν

A, ãi〉H =
∫

X×X
ãi (x)A(y)ν(dx, dy), i ∈ I,

and we clearly have cν
A = ∑

i∈J ην
i ãi . Then, using Proposition 3.3 and (7.16), we

derive for λ > 0 that

mλ
A( · ; ν) = (Cν + λIH)−1cν

A =
∑

i∈J

ην
i (Cν + λIH)−1ãi

=
∑

i∈J

ην
i (σi + λ)−1ãi . (7.17)

Next, since mA ∈ Lν
2, we have

PHmA =
∑

i∈J

〈E(X,Y )∼ν[A(Y)|X = · ], ai〉Lν
2
ai . (7.18)

Further, for i ∈ J , we deduce that

〈E(X,Y )∼ν[A(Y)|X = · ], ai〉Lν
2

=
∫

X
E(X,Y )∼ν [A(Y)|X = x] ai(x)ν(dx,X )

= E(X,Y )∼ν

[

ai(X)E[A(Y)|X]]

= E(X,Y )∼ν[ai(X)A(Y )]
= σ

−1/2
i ην

i ,

where we used that ãn = √
σn an. Substituting this into (7.18) and combining with

(7.17), we get

PHmA − mλ
A =

∑

i∈J

(

ην
i σ

−1
i − ην

i (σi + λ)−1)ãi =
∑

i∈J

ην
i

λ

σi(σi + λ)
ãi .

Thus the orthonormality of the ãi gives

‖PHmA − mλ
A‖2

Lν
2

=
∑

i∈J

(ην
i )

2 λ2

σi(σi + λ)2 =
∑

i∈J

〈mA, ai〉2
Lν

2

λ2

(σi + λ)2 ,
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which is (3.10). Similarly, recalling (3.8), we get

‖PHmA − mλ
A‖2

H =
∑

i∈J

(ην
i )

2 λ2

σ 2
i (σi + λ)2

=
∑

i∈J

〈mA, ai〉2
Lν

2

λ2

σi(σi + λ)2 ,

which is finite whenever PHmA ∈ H, that is,
∑

i∈J 〈mA, ai〉2
Lν

2
σ−1

i < ∞. This shows

(3.11). It is easily seen by dominated convergence that the left-hand side of (3.10)
goes to zero, and if PHmA ∈ H, the left-hand side of (3.11) goes to zero as well. �
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