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Abstract
Dybvig (1988a, 1988b) solves in a complete market setting the problem of finding a
payoff that is cheapest possible in reaching a given target distribution (“cost-efficient
payoff”). In the presence of ambiguity, the distribution of a payoff is, however, no
longer known with certainty. We study the problem of finding the cheapest possible
payoff whose worst-case distribution stochastically dominates a given target distribu-
tion (“robust cost-efficient payoff”) and determine solutions under certain conditions.
We study the link between “robust cost-efficiency” and the maxmin expected utility
setting of Gilboa and Schmeidler (1989), as well as more generally in a possibly non-
expected robust utility setting. Specifically, we show that solutions to maxmin robust
expected utility are necessarily robust cost-efficient. We illustrate our study with ex-
amples involving uncertainty both on the drift and on the volatility of the risky asset.
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1 Introduction

In a (complete) market without ambiguity, Dybvig [23, 22] characterises optimal pay-
offs for agents having law-invariant increasing preferences (e.g. expected utility max-
imisers). His result is based on the observation that any optimal payoff X must be
cost-efficient in the sense that there cannot exist another payoff with the same prob-
ability distribution that is strictly cheaper than X. He then derives, for a given target
distribution of terminal wealth, the payoff that achieves this target distribution at the
lowest possible cost (cost-efficient payoff). Optimal payoffs are thus driven by dis-
tributional constraints rather than appearing as a solution to some optimal expected
utility problem. In this regard, Brennan and Solanki [11] note that “from a practical
point of view, it may well prove easier for the investor to choose directly his optimal
payoff function than it would be for him to communicate his utility function to a port-
folio manager.” Sharpe et al. [58] and Goldstein et al. [28] introduce a tool called the
distribution builder, which makes it possible for investors to analyse distributions of
terminal wealth and to choose their preferred one among alternatives with equal cost;
see also Sharpe [57, Sect. 7.9] and Monin [44]. Moreover, the authors of [28] argue
that such a tool makes it possible to better elicit investor’s preferences.

Our main objective is to extend Dybvig’s results when there is uncertainty on the
real-world probability measure. Uncertainty has become a prime issue in many aca-
demic domains, from economics to environmental science and psychology. Model
ambiguity refers to random phenomena or outcomes whose probabilities are them-
selves unknown. For instance, the random outcome of a coin toss is subject to model
uncertainty when the probability of the coin showing either a head or a tail is not or
is at most partially known. This notion of model ambiguity goes back to Knight [40,
Chap. VII] and is therefore commonly referred to as Knightian uncertainty.

In the presence of ambiguity, the probability distribution of a payoff is not any-
more determined. Thus looking for a minimum cost payoff with a given probability
distribution is no longer possible. However, investors may still determine a desired
distribution function that they would like to achieve “at least”. In this paper, we look
for a minimum cost payoff that dominates a target distribution for a chosen integral
stochastic order under any plausible real-world probability distribution. Our contri-
butions are three-fold. First, we solve this problem explicitly for a general stochastic
ordering under certain assumptions. Solutions to this problem are called “robust cost-
efficient.” Second, we draw connections between such a minimum cost payoff and the
problem of finding an optimal payoff under ambiguity for general sets of robust pref-
erences. Third, we present a number of examples, including one on the robust payoff
choice in the presence of volatility uncertainty.

Our results generalise the results on cost-efficiency given in Dybvig [23, 22], Cox
and Leland [20] and Bernard et al. [5, 6]. When there is no ambiguity on the real-
world probability, the robust cost efficient payoffs coincide with the cost-efficient
payoffs studied in the literature. To derive our results, we build on the so-called
quantile approach to solve the optimisation of a law-invariant increasing functional;
see e.g. Schied [53], Carlier and Dana [12, 13, 14], Jin and Zhou [38], He and
Zhou [36, 37], Bernard et al. [5], Xu [63] and Rüschendorf and Vanduffel [50].
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Specifically, we consider a static setting and are able to address uncertainty about
volatility. We show that under certain conditions, the solution to a general robust pay-
off maximisation problem is equal to the solution of a classical payoff maximisation
problem under a least favourable measure P

∗ with respect to some stochastic order-
ing. This was already shown by Schied [54] for the case of robust expected utility the-
ory and using first order stochastic dominance. Here, however, we show that these re-
sults extend to the case of more general preferences, focusing on the case of first order
and second order stochastic dominance. To reach this conclusion, we make certain as-
sumptions. Most notably, we assume the existence of a least favourable measure. This
assumption was also made in [54] for the case of first order stochastic dominance, but
in this paper, we deal also with the case of second order stochastic dominance (weaker
assumption). We also assume that the pricing kernel is continuously distributed under
this least favourable measure, as in e.g. [38, 36, 37, 5, 63], among many others. These
assumptions are important to solve the robust cost-efficient problem.

Furthermore, we show that there is a natural correspondence between optimal pay-
offs in the maxmin utility setting of Gilboa and Schmeidler [27] with a concave in-
creasing utility, and robust cost-efficient payoffs: for any robust cost-efficient pay-
off X∗, there is a utility function such that X∗ solves the maxmin expected utility
maximisation problem. We further show that the solution to a robust maximisation
problem with respect to a general family of preferences is cost-efficient. This result
implies that instead of solving a robust maximisation problem with respect to a gen-
eral family of preferences, one could solve an expected utility maximisation problem
under the single measure P

∗ for a suitable concave utility function.
The literature on optimal payoff choice under ambiguity includes the seminal set-

ting of [27], that is, the so-called “maxmin expected utility,” which was later re-
ferred to as robust utility functional by Schied et al. [55]. Specifically, these au-
thors characterise preferences that have a robust utility numerical representation
minP∈P EP[u(X)] for some set of probabilities P . Gundel [34] provides a dual char-
acterisation of the solution for robust utility maximisation in both a complete and an
incomplete market model. Klibanoff et al. [39] distinguish between subjective beliefs,
i.e., the definition of the set of possible or plausible subjective probability measures,
and ambiguity attitude, i.e., a characterisation of the agent’s behaviour toward am-
biguity. Based on [39], Gollier [30] analyses the effect of ambiguity aversion on the
demand for the uncertain asset in a payoff choice problem.

Schied [54] solves the maximisation problem of maxmin expected utility of [27]
in a general complete market model with dynamic trading, provided there is a least
favourable measure with respect to first order stochastic dominance. Specifically, he
finds that the optimum for the maxmin utility setting of [27] can be derived in the stan-
dard expected utility setting under the least favourable measure. Schied [54] works
with a complete market model and mainly in a static setting; dynamics only come
into play when the martingale method is applied to the static solutions. A survey on
robust preferences and robust payoff choice can be found in Schied et al. [55].

The paper is organised as follows. The robust cost-efficiency problem is described
in Sect. 2. In Sect. 3, we solve the robust cost-efficiency problem, and we include two
examples in a lognormal market with uncertainty on the drift and the volatility along
with another example in a Lévy market in which the physical measure is obtained
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by the Esscher transform. In Sect. 4, we develop the correspondence between robust
cost-efficient payoffs and strategies that solve a robust optimal payoff problem, in-
cluding the maxmin utility setting of [27] as a special case. In Sect. 5, we show that
the solution to a general robust optimal payoff problem can also be obtained as the
solution to the maximisation of the maxmin utility setting of [27] for a well-chosen
concave utility function. Section 6 concludes.

2 Problem statement

We assume a static market setting in which trading only takes place today and at the
end of the planning horizon T > 0. There is a bank account earning the continuously
compounded risk-free interest rate r ∈ R. Let R+ = [0,∞). Let ST : � → R+ rep-
resent the random value of a risky asset at maturity. We denote by S0 > 0 its current
value and by F the σ -algebra generated by ST . Let P be a set of equivalent real-
world probability measures on (�,F). The set P can be thought of as a collection
of probability measures that the investor deems plausible for the market. We define
the set of payoffs X = {g(ST ) : g : R+ → R+ measurable, EQ[g(ST )] < ∞},
where Q is a fixed pricing measure equivalent to all P ∈ P . A payoff X is also called
a contingent claim. Furthermore, for any X ∈ X , its price is given by e−rT EQ[X].
By F P

X , we denote the cumulative distribution function of X ∈ X under P ∈ P .

Remark 2.1 As in Dybvig [22], we could use the discount factor (1 + r)−T for some
r ∈ (−1,∞), based on compounded interest rates. However, working with expo-
nential stock price models, it is more convenient and consistent with more recent
literature to use the discount factor e−rT for r ∈ R.

Remark 2.2 Under the assumption that all call options (ST −K)+, K ≥ 0, are traded,
the market can be completed. This is shown by Ross [48] for discrete � and by
Nachman [46, Corollary 6] for general static markets. Market completion by spanning
call options as in [46] has been further developed by Madan and Milne [41], Bakshi
and Madan [2], Carr and Wu [16] and many others. Rogge [47, Theorem 2] shows
that n-period models are complete if a call-completeness condition is satisfied. Carr
and Madan [15, Eq. (1)] provide an explicit replication strategy of a payoff g(ST )

if g is twice continuously differentiable. See also Breeden and Litzenberger [10] for
earlier results.

Consider an investor with a finite budget and planning horizon T > 0 who wishes
to invest in the market while having ambiguous views on the real-world probability
measure. How can she find her optimal investment strategy? As in Schied [54], she
could maximise some robust expected utility à la Gilboa and Schmeidler [27]. The
basic idea is then to look for a payoff that maximises the worst case expected utility,
reflecting the idea that the investor aims to protect against the worst while hoping
for the best. However, it seems easier for investors to specify the desired probability
distribution of the terminal wealth rather than a utility function (see Brennan and
Solanki [11], Sharpe et al. [58] and Goldstein et al. [28]).
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As in [23, 58], Vrecko and Langer [61], Bernard et al. [5], we thus assume in this
paper that the investor specifies a desired (cumulative) distribution function F0 of
future terminal wealth. Once the investor understands which distribution function F0

is acceptable to her, the natural question arises as to how to find under ambiguity
the cheapest payoff with a distribution function at maturity that is “at least as good”
as F0. This is the robust cost-efficiency problem formalised hereafter. In this regard,
we need to recall the concept of integral stochastic ordering; see e.g. Denuit et al. [21,
Sect. 3]. In this paper, we denote by F a set of measurable functions from R+ to R.

Definition 2.3 Let G and F be two distribution functions with support on R+. Then G

dominates F in integral stochastic ordering with respect to F, written as F �F G, if

∫
R+

f (x)dF ≤
∫
R+

f (x)dG for all f ∈ F such that the expectations are finite.

Let FFSD denote the set of all nondecreasing functions from R+ to R. The cor-
responding integral stochastic ordering is called first order stochastic dominance
(FSD). Furthermore, let FSSD denote the set of all nondecreasing and concave func-
tions from R+ to R. The corresponding integral stochastic ordering is called sec-
ond order stochastic dominance (SSD). It is well known that FSD reflects the
common agreement of all investors with law-invariant increasing preferences, see
Bernard et al. [6, Theorem 1], whereas SSD reflects the common agreement of those
who have law-invariant increasing and diversification-loving preferences (risk-averse
investors); see Bernard and Sturm [7, Corollary 2.6].

Problem 2.4 The F-robust cost-efficiency problem for a distribution function F0 is
defined as

inf
X∈BF

F0

e−rT EQ[X], (2.1)

where BF

F0
denotes the class of admissible payoffs defined as

BF

F0
= {X ∈ X : F0 �F F P

X,∀P ∈ P}.

A solution to (2.1) is called an F-robust cost-efficient payoff.

As discussed above, the target distribution function of the investor is F0. That
is, we are interested in all payoffs that have a distribution function at maturity that
is at least as good as F0 under all plausible scenarios P ∈ P . For example, when
F = FFSD, we care about payoffs having distribution functions FP

X , P ∈ P , that
dominate F0 in FSD. In order not to “throw away investors’ money”, see Dybvig
[23], we then aim to determine the cheapest among the payoffs in the admissible set
BF

F0
. In Theorem 3.1, we provide solutions to the F-robust cost-efficiency problem

(2.1) under regularity conditions on the set F and F0.
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Dybvig [23, 22] introduced the standard cost-efficiency problem without ambigu-
ity on the set of physical measures, that is, when P = {P}. Specifically, for some
fixed P ∈ P , the problem he considered reads as

inf
X∈AP

F0

e−rT EQ[X], (2.2)

where

AP

F0
= {X ∈ X : F0 = F P

X}.
We refer to this problem as the standard cost-efficiency problem. Furthermore, we
say that a payoff X that is distributed with FP

X is P-cost-efficient if X solves the
standard cost-efficiency problem (2.2) under P with respect to F0 = F P

X . By Bernard
et al. [5], a payoff X is P-cost-efficient if and only if X is nonincreasing in the state
price ξP = e−rT dQ

dP
P-a.s.; see also Schied [53, Proposition 2.5].

The standard cost-efficiency problem (2.2) has been solved in [23, 22]; see also
Lemma B.1 in the Appendix. In Corollary 3.5, we show that if P is a singleton,
the solution to the F-robust cost-efficiency problem is unique and coincides with the
solution to the standard cost-efficiency problem.

Remark 2.5 For a fixed X ∈ X , in general, F P

X cannot be equal to F0 for all P ∈ P .
Therefore, we replace the condition F0 = F P

X in the standard cost-efficiency problem
with F0 �F F P

X in the robust setting.

The next example anticipates Sects. 3.2.1 and 3.2.2 and is designed to help distin-
guish between the standard and the robust cost-efficiency problems. As in Embrechts
and Hofert [24], we define for a nondecreasing function T : R → R the generalised
inverse T −1 by

T −1(y) = inf{x ∈ R : T (x) ≥ y}, y ∈ R.

Example 2.6 Assume the real-world distribution of ST is lognormal. There are three
investors: one investor assumes that the drift of ST under the physical measure, de-
noted by P

μ1 , is equal to μ1 > r . Another investor assumes that the drift is given by
μ2 > μ1 under the physical measure, denoted by P

μ2 . A third investor has ambigu-
ity and assumes that the drift lies in the interval [μ1, μ2], and thus considers the set
P = {Pμ : μ ∈ [μ1, μ2]} as the set of all plausible probability measures on (�,F).
The cheapest payoffs to obtain a fixed target distribution function F0 are well known
for investors one and two and are given by

X∗
1 := F−1

0

(
F P

μ1
ST

(ST )
)
, X∗

2 := F−1
0

(
F P

μ2
ST

(ST )
)
,

respectively; see Bernard et al. [5, Proposition 3]. Within the set P , Pμ1 corresponds
to a pessimistic view of the stock price behaviour, and we shall see in Sect. 3.2.1
that X∗

1 is a solution to the cost-efficiency problem of the third investor if F = FFSD.
In the case in which F = FSSD, X∗

1 also solves the cost-efficiency problem of the



Cost-efficient payoffs under model ambiguity 971

third investor if additionally F−1
0 ◦ F P

μ1
ST

is concave; see Sect. 3.2.2. This example
illustrates that the solution to the standard cost-efficiency problem for arbitrary P ∈ P
and the solution to the robust cost-efficiency problem do not coincide in general. Note
that the case μ1 < μ2 < r is economically less relevant. However, it can be shown
that in this case, X∗

1 := F−1
0 (1−F P

μ1
ST

(ST )), X∗
2 := F−1

0 (1−F P
μ2

ST
(ST )) and that the

latter payoff solves the cost-efficiency problem of the third investor if F = FFSD; see
also Remark 3.6.

Remark 2.7 As in Rüschendorf and Wolf [51], we could also consider uncertainty
on the target distribution function F0. Specifically, it is assumed in [51] that the in-
vestor specifies finitely many acceptable distribution functions F 1

0 , . . . , FN
0 . As all

N distribution functions are acceptable to the investor, she could solve the robust
cost-efficiency problem N times and buy the cheapest among the N solutions.

2.1 Assumptions

In order to solve the robust cost efficiency problem (2.1), we need some regularity
conditions on the set F and on the target distribution F0. In this regard, we define
some concepts.

Recall first the concept of a least favourable measure introduced by Schied [54]
for the case F = FFSD. For P ∈ P , we define the corresponding likelihood ratio by

�P = dP
dQ

. We remark that the random variable e−rT

�P
is also called state price because

the price of a payoff X ∈ X can be expressed by

e−rT EQ[X] = EP

[
e−rT

�P
X

]
, P ∈ P .

Definition 2.8 A measure P
∗ ∈ P with corresponding likelihood ratio �∗ := dP∗

dQ
is

called a least favourable measure with respect to F if FP
∗

�∗ �F F P

�∗ for all P ∈ P .

Definition 2.8 generalises [54, Definition 2.1] which assumed the existence of a
least favourable measure with respect to FFSD to determine payoffs that solve the ro-
bust expected utility problem of Gilboa–Schmeidler [27]. We also need the following
definition.

Definition 2.9 The set F is said to be composition-consistent if for f, g ∈ F, also
f ◦ g ∈ F.

Note that the sets FFSD and FSSD are composition-consistent. This follows from
the fact that the composition of nondecreasing (resp. nondecreasing and concave)
functions is again nondecreasing (resp. nondecreasing and concave).

The following result provides conditions that guarantee the existence of a least
favourable measure and turns out to be very useful for applications.

Proposition 2.10 Assume that F is composition-consistent. If FP
′

ST
�F F P

ST
for some

P
′ ∈ P and all P ∈ P , and if �P

′ = f (ST ) for some f ∈ F, then P
′ is a least
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favourable measure with respect to F. If, additionally, ST is continuously distributed
under P′ and f is strictly increasing, then �P

′
is continuously distributed under P′.

Proof Let P,P′ ∈ P . Let X be a payoff and f ∈ F. Recall that F P
′

X �F F P

X if and
only if EP′ [g(X)] ≤ EP[g(X)] for all g ∈ F such that the expectations are finite.
Because F is composition-consistent, it follows that

F P
′

X �F F P

X =⇒ F P
′

f (X) �F F P

f (X). (2.3)

The result FP
′

�P
′ �F F P

�P
′ then follows by (2.3). Let f be strictly increasing. By [24],

the generalised inverse f −1 of f is continuous on the range of f . Thus we have

P
′[�P′ ≤ x] = P

′[ST ≤ f −1(x)] = F P
′

ST

(
f −1(x)

)
, x ∈ R,

and so �P
′

is continuously distributed under P′ since F P
′

ST
is continuous. �

We also need a definition that is, to the best of our knowledge, new to the literature.

Definition 2.11 The set F is called cost-consistent if for all X, Y ∈ X and all
P ∈ P such that X, Y are P-cost-efficient, F P

X �F F P

Y implies EQ[X] ≤ EQ[Y ]
and additionally, FP

X = F P

Y implies EQ[X] < EQ[Y ].
Proposition 2.12 The set FSSD is cost-consistent. Moreover, if FSSD ⊆ F, then F is
cost-consistent.

Proof The cost-consistency of FSSD can be proved along the lines of Bernard et al. [8,
proof of Lemma 2]. Furthermore, F P

X �F F P

Y implies F P

X �FSSD F P

Y , which finishes
the proof. �

As the set FSSD is contained in FFSD, Proposition 2.12 implies that FFSD and FSSD
are cost-consistent. We provide examples of sets F of functions that are not cost- or
composition-consistent.

Example 2.13 Third order stochastic dominance is the integral stochastic ordering that
arises from the set FTSD consisting of all functions R → f : R+ such that f ′ > 0,
f ′′ ≤ 0 and f ′′′ ≥ 0. The set FTSD is composition-consistent, but in general not
cost-consistent; see Appendix A.

Example 2.14 Müller et al. [45] introduced the (1 + γ )-stochastic dominance or-
der for γ ∈ (0, 1), which lies between FSD and SSD ordering. The set induced
by (1 + γ )-stochastic dominance order is in general not composition-consistent, but
is cost-consistent in light of Proposition 2.12.

Example 2.15 Rothschild and Stiglitz [49] introduced the concave stochastic order
which is defined via the set of all concave (but not necessarily nondecreasing) func-
tions. The concave stochastic order coincides with SSD if we compare two payoffs
with the same mean; see Föllmer and Schied [25, Remark 2.63]. The set of all concave
functions is cost-consistent, but not composition-consistent.
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We now list a series of assumptions that we often use to derive our main results.

Assumption 2.16 The function F−1
0 is square-integrable, i.e.,

∫ 1
0 (F−1

0 (u))2du < ∞,
and we have F0(x) = 0 for x < 0.

Assumption 2.17 The set F is composition-consistent and cost-consistent.

Assumption 2.18 The set P contains a least favourable measure with respect to F.
We denote this least favourable measure by P

∗.

Assumption 2.19 Denote by �∗ the likelihood ratio of the least favourable mea-
sure P

∗. We assume that x �→ F P
∗

�∗ (x) is continuous and that 1
�∗ has finite variance

under P∗.

Assumption 2.16 is technical and ensures that the robust cost-efficiency problem
is well posed, i.e., BF

F0
is not empty; see Theorem 3.1.

Assumption 2.18 can also be found in Schied [54] for the case F = FFSD. Note that
when F becomes larger, Assumption 2.18 becomes stronger. Specifically, requiring a
least favourable measure P

∗ ∈ P with respect to F = FFSD is more stringent than in
the case F = FSSD. In particular, Proposition 2.10 provides sufficient conditions for
the existence of a least favourable measure P ∗ ∈ P with respect to F. The condition
in Assumption 2.19 that x �→ F P

∗
�∗ (x) is continuous is also made in a setting without

ambiguity in e.g. Jin and Zhou [38], He and Zhou [36, 37], Bernard et al. [5], Xu [63]
among many others. It is a strong assumption in the sense that we essentially exclude
discrete settings.

3 Robust cost-efficiency

3.1 Solution of the robust cost-efficiency problem

In the next result, we make the assumption that F−1
0 ◦F P

∗
�∗ ∈ F. Note that this assump-

tion is always true if F = FFSD. The assumption is also true if F = FSSD, provided
that F−1

0 ◦ F P
∗

�∗ is concave.

Theorem 3.1 Suppose that Assumptions 2.16–2.19 hold and that F−1
0 ◦F P

∗
�∗ ∈ F. Then

the F-robust cost-efficiency problem for F0 has a P
∗-a.s. unique solution given by

F−1
0

(
F P

∗
�∗ (�∗)

)
.

Proof Recall that �∗ denotes the likelihood ratio that corresponds to P
∗. Let

X∗ = F−1
0

(
F P

∗
�∗ (�∗)

)
.

As F P
∗

�∗ (�∗) is uniformly distributed under P∗ by Assumption 2.19, it follows from
Lemma B.1 that F P

∗
X∗ = F0, and by Assumption 2.16, we have

EP∗
[(

F−1
0

(
F P

∗
�∗ (�∗)

))2] =
∫ 1

0

(
F−1

0 (u)
)2

du < ∞.
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Assumption 2.19 thus implies that EQ[X∗] < ∞ because

EQ[X∗] = EP∗
[

1

�∗ F−1
0

(
F P

∗
�∗ (�∗)

)]

≤
√

EP∗
[

1

(�∗)2

]
EP∗

[(
F−1

0

(
F P∗

�∗ (�∗)
))2]

< ∞.

Therefore X∗ ∈ X . By Assumptions 2.17 and 2.18 and as F−1
0 ◦ F P

∗
�∗ ∈ F, it follows

from (2.3) that F0 = F P
∗

X∗ �F F P

X∗ for all P ∈ P ; hence X∗ ∈ BF

F0
. Let Y ∈ BF

F0
and define

Y ∗ = (F P
∗

Y )−1(F P
∗

�∗ (�∗)
)
.

Then Y ∗ is P∗-cost-efficient for F P
∗

Y and we have F P
∗

X∗ = F0 �F F P
∗

Y = F P
∗

Y ∗ . By As-
sumption 2.17, F is cost-consistent, which implies that EQ[X∗] ≤ EQ[Y ∗] ≤ EQ[Y ].
Hence every admissible payoff is more expensive than X∗.

We now show uniqueness. If X̂ is another solution to the robust cost-efficiency
problem, then F0 �F F P

∗
X̂

. If F P
∗

X̂
= F0 and EQ[X∗] = EQ[X̂], then X∗ = X̂ P

∗-a.s.
by Lemma B.1, because the solution X∗ corresponds to the solution of the standard
P

∗-cost-efficiency problem for F0, which has a unique solution. If F0 = F P
∗

X̂
, then

EQ[X∗] < EQ[X̂] because F is cost-consistent. Hence X∗ is the unique solution to
the robust cost-efficiency problem. �

Remark 3.2 Instead of requiring that F−1
0 is square-integrable, the proof of Theo-

rem 3.1 shows that it is sufficient to assume that F−1
0 (F P

∗
�∗ (�∗)) has a finite price.

Remark 3.3 Does ambiguity increase costs? Let the assumptions of Theorem 3.1 be
in force. Let us compare two investors. Investor A has ambiguity and considers the
set P as the set of possible real-world measures. Investor B has (e.g. based on a
deep market analysis or insider knowledge) no ambiguity and knows that P ∈ P
is the true real-world measure. Both investors consider F0 as the target distribution
function. Investor A buys X∗ = F−1

0 (F P
∗

�∗ (�∗)) according to Theorem 3.1, whereas
investor B buys X = F−1

0 (F P

�P
(�P)) (see Lemma B.1). As X∗ ∈ BF

F0
, it holds that

F P

X = F0 ≤F F P

X∗ . As the set F is cost-consistent, it follows that EQ[X] ≤ EQ[X∗]. If
we additionally have F P

X = F P

X∗ , then it follows that EQ[X] < EQ[X∗]. In the robust
setting, we end up with a payoff X∗ whose distribution F P

X∗ , P ∈ P , dominates F0 in
stochastic ordering for all P ∈ P . Thus under ambiguity, the preferred payoff has a
(strictly) higher price and the optimal robust choice X∗ typically will not match the
choice X without uncertainty.

Remark 3.4 The condition in Theorem 3.1 that the function F−1
0 ◦ F P

∗
�∗ must be

concave in the case where F = FSSD means that the target distribution function
F0 is required to be lighter-tailed than the distribution function F P

∗
�∗ . Specifically,

F P
∗

�∗ must dominate F0 in the sense of the convex transform order (see Shaked and
Shanthikumar [56, Definition 4.B.1]).
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The next result shows that the standard and the robust cost-efficiency problem
coincide in a setting without uncertainty. Note that we do not require F−1

0 ◦ F P
∗

�∗ ∈ F

as in Theorem 3.1.

Corollary 3.5 Suppose that Assumptions 2.16 and 2.19 hold and that P = {P} is a sin-
gleton. The solutions to the F-robust cost-efficiency problem for F0 and the standard
cost-efficiency problem for F0 are unique and identical.

Proof Note that when P = {P}, then P is a least favourable measure. By Lemma B.1,
X∗ = F−1

0 (F P

�P
(�P)) is the unique solution to the standard cost-efficiency problem.

As in the proof of Theorem 3.1, one can show that X∗ ∈ X . Then X∗ ∈ BF

F0
follows

immediately because F P

X∗ = F0. As in the proof of Theorem 3.1, one can show that
X∗ is the only admissible payoff solving the F-robust cost-efficiency problem. �

In the following section, we illustrate Theorem 3.1 in a lognormal market setting
with uncertainty on the drift and volatility, whereas in Sect. 3.3, we deal with a more
general market setting.

3.2 Robust cost-efficient payoffs in lognormal markets

We assume that under the pricing measure Q, ST has a lognormal distribution with

parameters log S0 + (r − s2

2 )T and s
√

T with stock price S0 > 0 today, interest
rate r ∈ R, time horizon T > 0 and volatility s > 0. Under Q, ST is lognormally
distributed with density f r,s , where for m ∈ R and ς > 0, we define

f m,ς (x) = 1

xς
√

T
√

2π
exp

(
− (ln x − ln S0 − (m − ς2

2 )T )2

2ς2T

)
, x > 0. (3.1)

3.2.1 Drift uncertainty: FFSD-robust cost-efficient payoff

The real-world distribution function of ST is assumed to be lognormal with parame-

ters log S0 + (μ − s2

2 )T and s
√

T , but there is uncertainty about the precise level of
the drift parameter μ. In particular, the agent only expects the true drift parameter μ

to lie in the interval Dμ1 = {μ ∈ R : μ ≥ μ1} for μ1 > r , and thus she considers
P = (Pμ)μ∈Dμ1 as the set of all plausible probability measures on (�,F). Under Pμ,
ST is lognormal with density f μ,s . It follows that F P

∗
ST

�FFSD F P
μ

ST
for all μ ≥ μ1,

where P
∗ := P

μ1 . Let hμ,ς (x) = f μ,ς (x)
f r,s (x)

, x > 0. A straightforward computation
shows that

hμ,s(x) =
(

x

S0

) (μ−r)

s2

exp

(
r2 − μ2 + s2(μ − r)

2s2
T

)
, x > 0. (3.2)

Note that Pμ[A] = ∫
A

hμ,s(ST )dQ, A ∈ F , which implies �P
μ1 = hμ1,s(ST ). As

μ1 > r , �P
μ1 is a strictly increasing function of ST . Furthermore, 1

�P
μ1 has finite
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variance. By Proposition 2.10, P∗ is a least favourable measure with correspond-
ing likelihood ratio �∗ := �P

μ1 , i.e., Assumptions 2.18 and 2.19 are satisfied. The-
orem 3.1 shows that the FFSD-robust cost-efficient payoff for a distribution function
F0 satisfying Assumption 2.16 is given by

X∗ = F−1
0

(
F P

∗
�∗ (�∗)

) = F−1
0

(
F P

μ1
ST

(ST )
)
.

The second equality follows from the increasingness of �P
μ1 in ST . The agent thus

chooses the optimal payoff as if she believes that the worst-case plausible value μ1
for the drift parameter μ will materialise. This finding is consistent with the results
obtained by Schied [54, Sect. 3.1] on the impact of drift uncertainty on optimal payoff
choice in a Black–Scholes setting.

Remark 3.6 Let us consider D̃μ1 = {μ ∈ R : μ ≤ μ1} for μ1 < r instead of Dμ1 .
Then P

∗ = P
μ1 is a least favourable measure. This can be shown directly by observ-

ing that under Pμ for μ ∈ D̃μ1 , the likelihood ratio �P
∗ = hμ1,s(ST ) is decreasing

in ST and lognormally distributed. Further, we use the fact that a lognormal distri-
bution G with parameters μG and σG > 0 dominates a lognormal distribution F

with parameters μF and σF > 0 in FSD if and only if μG ≥ μF and σG = σF .
By Theorem 3.1, the FFSD-robust cost-efficient payoff for a distribution F0 satisfying
Assumption 2.16 is given by

X∗ = F−1
0

(
F P

∗
�∗ (�∗)

) = F−1
0

(
1 − F P

μ1
ST

(ST )
)
.

The second equality follows from the decreasingness of �P
∗

in ST .

Example 3.7 We next consider the exponential distribution for the distribution func-
tion F0, i.e., F0(x) = 1 − e−x , x ≥ 0, which satisfies Assumption 2.16. Panel (A) of
Fig. 1 displays the price of the robust cost-efficient payoff for varying levels of the
parameter μ1, which describes the ambiguity that the agent faces (consistently with
Remark 3.3). The higher μ1, the smaller the set Dμ1 , i.e., the lower the degree of
ambiguity, and the cheaper X∗. In panel (B) of Fig. 1, we display for several values
of μ1 the robust cost-efficient payoff normalised by its initial price as a function of
realisations s of ST , i.e., we display the curve

s �→ F−1
0 (F P

μ1
ST

(s))

πμ1

,

where πμ1 = e−rT EQ[F−1
0 (F P

μ1
ST

(ST ))]. We observe that the curve is flatter when
μ1 is smaller, i.e., more ambiguity gives rise to payoffs that reflect a higher degree of
conservativeness.

3.2.2 Drift and volatility uncertainty: FSSD-robust cost-efficient payoff

The real-world distribution function of ST is again assumed to be lognormal with

parameters log S0 + (μ − σ 2

2 )T and σ
√

T , but now the agent faces uncertainty about
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Fig. 1 We use the parameters S0 = 1, r = 0, T = 1 and s = 0.9. The reference distribution function is the
exponential distribution function F0(x) = 1− e−x : (A) price of the cost-efficient payoff X∗ depending on
the value of the ambiguity parameter μ1; (B) cost-efficient payoff per unit of investment for various values
of μ1

the precise level of both parameters μ and σ . More precisely, the agent only expects
the true parameters to lie within the cube

Dμ1,μ2,σ1,s = {(μ, σ ) ⊆ R
2 : μ1 ≤ μ ≤ μ2, σ1 ≤ σ ≤ s}

for r < μ1 < μ2 and 0 < σ1 ≤ s, where we recall that s is the volatility under the
risk-neutral measure Q, and thus she considers P = (Pμ,σ )(μ,σ )∈Dμ1,μ2,σ1,s as the set
of all plausible probability measures on (�,F). Under Pμ,σ , ST is lognormal with
density f μ,σ defined in (3.1). In this regard, note that while r < μ1 is a natural as-
sumption, there is some empirical evidence for the hypothesis that the volatility under
any physical measure is smaller than the volatility s under the pricing measure Q, i.e.,
σ ≤ s; see Christensen and Prabhala [18, Table 1] and Christensen and Hansen [17,
Table 1].

Remark 3.8 In contrast to the dynamic Black–Scholes model, in which the stock price
ST is also lognormally distributed, we work here in a static market setting. In a dy-
namic Black–Scholes framework where continuous trading is allowed at zero trans-
action cost, the absence of arbitrage opportunities implies that the volatility of the
stock does not change when moving from the real-world measure to the risk-neutral
measure, i.e., there is no uncertainty about the volatility in a dynamic Black–Scholes
model. Here, however, we do not assume dynamic trading. Hence even when call op-
tion prices reflect a risk-neutral distribution for ST that is lognormal, the agent may
have a view on the real-world distribution that is different from a lognormal, and in
particular may be unsure about the exact values for drift and volatility.

In the next result, we assume that

μ1 − r

s2
∈ (0, 1]. (3.3)
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We shall see in the proof of Proposition 3.9 that the condition (3.3) helps to find a
least favourable measure by applying Proposition 2.10: Under (3.3), the likelihood
ratio in question is a concave function of ST .

For example, the parameters s ∈ [0.2,∞) and μ1 −r ∈ (0, 0.04] or s ∈ [0.35,∞)

and μ1 − r ∈ (0, 0.1] imply (3.3). In other words, there are economically reasonable
environments such that (3.3) holds.

Proposition 3.9 If μ1−r

s2 ∈ (0, 1], then F P
μ1,s

ST
�FSSD F P

μ,σ

ST
for (μ, σ ) ∈ Dμ1,μ2,σ1,s ,

and Assumptions 2.18 and 2.19 are satisfied for the set FSSD. The least favourable
measure is P

∗ = P
μ1,s with corresponding likelihood ratio �∗ = �P

μ1,s
. The

FSSD-robust cost-efficient payoff for a distribution function F0 satisfying Assump-
tion 2.16 and such that F−1

0 ◦ F P
∗

�∗ is concave is then given by

X∗ := F−1
0

(
F P

μ1,s

ST
(ST )

)
. (3.4)

Proof For a lognormal distribution function F with parameters M and V , it holds that
∫ q

0
F−1(p)dp = eM+ V 2

2 	
(
	−1(q) − V

)
, q ∈ (0, 1),

where 	 denotes the standard normal distribution function. It follows for q ∈ (0, 1)

and μ1 ≤ μ, σ ≤ s that
∫ q

0
(F P

μ1,s

ST
)−1(p)dp = elog S0+μ1T 	

(
	−1(q) − s

√
T

)

≤ elog S0+μ1T 	
(
	−1(q) − σ

√
T

)
.

Hence F P
μ1,s

ST
�FSSD F P

μ,σ

ST
for (μ, σ ) ∈ Dμ1,μ2,σ1,s . As in Sect. 3.2.1, let

�P
μ1,s = f μ1,s(ST )

f r,s(ST )
= hμ1,s(ST ).

Hence the likelihood ratio �P
μ1,s

is strictly increasing and concave in ST if (3.3) is
satisfied. By Proposition 2.10, Assumptions 2.18 and 2.19 are satisfied for the set
FSSD with least favourable measure P

∗ = P
μ1,s with likelihood ratio �∗ = �P

μ1,s
.

As in Sect. 3.2.1, some simple calculations and Theorem 3.1 show that the robust
cost-efficient payoff for the distribution function F0 is given by (3.4). �

We now provide an example for F0 that makes it possible to apply Proposi-
tion 3.9 to determine FSSD-robust cost-efficient payoffs. In this regard, observe that
F P

∗
�∗ in Proposition 3.9 is the lognormal distribution with parameters 1

2θ2 and θ for
θ := √

T
μ1−r

s
> 0.

Example 3.10 If F0 is the lognormal distribution with parameters M ∈ R and V > 0,
then F−1

0 ◦ F P
∗

�∗ in Proposition 3.9 is concave if V ≤ θ because

(F−1
0 ◦ F P

∗
�∗ )(x) = x

V
θ exp

(
− 1

2
θV + M

)
, x > 0.
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3.3 Robust cost-efficient payoffs in general markets using Esscher transform

Inspired by Corcuera et al. [19], fix S0 > 0 and let s > 0 and Z be a payoff with
mean zero and variance one. Under Q, assume that Z has density f

Q

Z (x) > 0, x ∈ R,
and model the future stock price at date T by

ST = S0e
(r+ω)T +s

√
T Z,

where ω ∈ R is a mean-correcting term, i.e., ω is chosen such that

e−rT EQ[ST ] = S0.

The density of X = log ST under Q is

f
Q

X (x) = 1

s
√

T
f
Q

Z

(
x − log S0 − (r + ω)T

s
√

T

)
, x > 0.

The corresponding density of ST under Q is denoted by f
Q

ST
, and it holds that

f
Q

ST
(x) = 1

x
f
Q

X (log x), x > 0.

Let h∗ > 0 and H ⊆ [h∗,∞) be a set containing h∗ such that EQ[(ST )h] exists for
all h ∈ H. Define a family of probability measures P = (Ph)h∈H as follows: Ph is
a measure such that X has density f P

h

X under Ph, where f P
h

X is obtained from f
Q

X by
applying the Esscher transform. The use of the Esscher transform can be supported by
a utility maximising argument; see Gerber and Shiu [26]. More precisely, we define
P

h such that

f P
h

X (x) = ehxf
Q

X (x)∫
R

ehyf
Q

X (y)dy
= ehxf

Q

X (x)

EQ[(ST )h] , x > 0.

It follows that

f P
h

ST
(x) = xh

x

f
Q

X (log x)

EQ[(ST )h] , x > 0.

The density f P
h∗

ST
crosses f P

h

ST
only once from above for h∗ < h; hence by Denuit

et al. [21, Property 3.3.32], it follows that

F P
h∗

ST
�FFSD F P

h

ST
=⇒ F P

h∗
ST

�FSSD F P
h

ST
, h ∈ H.

For the likelihood ratio, it holds that

�P
h∗ = f P

h∗
ST

(ST )

f
Q

ST
(ST )

= (ST )h
∗

EQ[(ST )h
∗ ] ,
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which is strictly increasing in ST as h∗ > 0, and concave if h∗ ∈ (0, 1]. We can apply
Proposition 2.10 to show that Assumptions 2.18 and 2.19 are satisfied for the sets
FFSD and FSSD with least favourable measure P∗ = P

h∗
and corresponding likelihood

ratio �∗ = �P
h∗

. We can use Theorem 3.1 to compute the cost-efficient payoff of a
distribution function F0.

4 Robust payoff selection

Gilboa and Schmeidler [27] provide axioms that justify a maxmin expected utility
framework to make robust decisions when there is ambiguity on the probability mea-
sure P, i.e., when P contains more than one element. In this framework, Schied [54]
shows that when a least favourable measure P∗ ∈ P with respect to the FSD ordering
(i.e., the integral stochastic ordering induced by the set FFSD defined in Sect. 2) ex-
ists, an optimal payoff can be derived. In this section, we extend the work of [54] in
two different ways. First, we account for preferences beyond expected utility. Specif-
ically, we derive optimal payoffs for robust preferences that are in accord with ex-
pected utility theory, rank-dependent utility theory and Yaari’s dual theory. Second,
assuming the existence of a least favourable measure P

∗ with respect to a general
integral stochastic ordering induced by some set F, not necessarily identical to FFSD,
we derive the optimal payoff. Specifically, we derive optimal payoffs when a least
favourable measure P

∗ ∈ P with respect to the SSD ordering exists (see Propo-
sition 2.10 for a sufficient condition) and the target distribution F0 is sufficiently
light-tailed (see Remark 3.4).

4.1 Family-consistent preferences

A preference � is understood as a binary relation on the set X of payoffs. The inter-
pretation is that Y � X if Y is preferred to X. A functional W : X → R is called
a representation of � if Y � X if and only if W(Y) ≥ W(X). The functional W

is also called a utility functional; see Schied et al. [55], He et al. [35] and Assa and
Zimper [1]. In general, W may depend on the different measures P ∈ P in a com-
plicated way. In what follows, we denote a utility functional that depends solely on
some P ∈ P by WP.

Definition 4.1 Let (WP)P∈P be a family of utility functionals. The utility functional
WP, P ∈ P , is called P-law-invariant if F P

X = F P

Y implies that WP(X) = WP(Y ).
The family (WP)P∈P is called law-invariant if each individual utility functional WP

is P-law-invariant.

Example 4.2 A standard example of a P-law-invariant utility functional is given by
WP(X) = EP[u(X)] for some increasing utility function u. In this case, the functional
W(X) = infP∈PWP(X) amounts to the worst-case expected utility, commonly called
robust expected utility, which was introduced in [27]. It is also referred to as a robust
utility functional in [55].
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To the best of our knowledge, the next definition is new to the literature. It will be
helpful in solving robust payoff choice problems.

Definition 4.3 Let (WP)P∈P be a family of utility functionals. Let Y ⊆ X . The fam-
ily of utility functionals (WP)P∈P is called F-family-consistent on Y with respect to
P

′ ∈ P if for all Y ∈ Y , the inequality

F P
′

Y �F F P

Y , P ∈ P

implies that

WP′(Y ) ≤ WP(Y ), P ∈ P .

F-family-consistency of (WP)P∈P on Y with respect to some P
′ ∈ P has the

following interpretation: If a measure P
′ yields the most pessimistic view of any

payoff Y with respect to the stochastic ordering induced by some set F, then the
preference under that measure is the lowest as well.

Next, we discuss some examples. Let Y ⊆ X be a set of payoffs and let D be the
set of cumulative distribution functions induced by Y , i.e.,

D = {F P

Y : Y ∈ Y,P ∈ P}.
Let us consider an agent taking into account a family of law-invariant utility func-
tionals (WP)P∈P , i.e.,

WP(Y ) = w(F P

Y ), P ∈ P, (4.1)

for some well-defined w : D → R. If w respects the integral stochastic ordering, i.e.,

F �F G =⇒ w(F) ≤ w(G), F,G ∈ D, (4.2)

then (WP)P∈P is F-family-consistent on Y with respect to all P′ ∈ P . We provide
some specific examples in the contexts of expected utility theory, Yaari’s dual theory
of choice and rank-dependent expected utility theory.

Example 4.4 Let u : R+ → R. Let φ : [0, 1] → [0, 1] with φ(0) = 0 and φ(1) = 1.
For a given distribution function F , define

wEUT(F ) =
∫
R+

u(x)dF (x),

wYaari(F ) =
∫
R+

φ
(
1 − F(x)

)
dx,

wRDEU(F ) =
∫
R+

u(x)d
(

1 − φ
(
1 − F(x)

))
,

where we tacitly assume that all integrals exist. It is straightforward to show that
when u and φ are nondecreasing, the family of utility functionals induced by wEUT,
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wYaari or wRDEU as in (4.1) is FFSD-family-consistent on Y with respect to all P′ ∈ P ,
where Y is restricted to contain random variables such that all relevant integrals ex-
ist. Furthermore, if u is strictly increasing and concave and φ is strictly increasing,
continuously differentiable and convex, we obtain that such a family is FSSD-family-
consistent on Y with respect to all P′ ∈ P ; see Yaari [64], Wang and Young [62], He
et al. [35] and Ryan [52].

Remark 4.5 One could allow the function w in (4.1) to depend on P, i.e., define
WP(Y ) = wP(F P

Y ) for some wP : D → R, P ∈ P . The family of utility functionals
(WP)P∈P is then F-family-consistent on Y with respect to some P

′ ∈ P if both

wP′(F ) ≤ wP(F ), F ∈ D,P ∈ P

and (4.2) hold. To see this, let Y ∈ Y with FP
′

Y ≤ F P

Y for all P ∈ P . It follows that

WP′(Y ) = wP′(F P
′

Y ) ≤ wP(F P
′

Y ) ≤ wP(F P

Y ) = WP(Y ).

4.2 Optimal payoffs under robust preferences

Inspired by Gilboa and Schmeidler [27] and Schied [54], we consider the following
problem.

Problem 4.6 Let x0 > 0 be the initial wealth. Let (WP)P∈P be a family of utility
functionals. We consider the robust maximisation problem

max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X), (4.3)

where Yx0
(WP)P∈P = ⋂

P∈P Yx0
WP

and

Yx0
WP

:= {X ∈ X : WP[X] ∈ R, e−rT EQ [X] ≤ x0}, P ∈ P .

It turns out that under certain conditions, a solution to the robust optimisation
problem (4.3) can be found as a solution to a maximisation problem under a single
measure P ∈ P .

Problem 4.7 Let x0 > 0 be the initial wealth. Let WP for some P ∈ P be a utility
functional. We consider the maximisation problem

max
X∈Yx0

WP

WP(X). (4.4)

Under the assumption of the existence of a least favourable measure with respect
to the FSD ordering, [54] showed that in order to solve the robust maximisation prob-
lem (4.3) for utility functionals (WP)P∈P , WP(x) = EP[u(X)], it actually suffices to
solve the single measure maximisation problem (4.4). The following result gener-
alises this beyond the expected utility setting to a general law-invariant family of
utility functionals (WP)P∈P . The result is illustrated in Sect. 4.3, where we consider
a robust rank-dependent expected utility maximisation problem for an investor with
ambiguity on the trend and/or volatility of the risky asset.



Cost-efficient payoffs under model ambiguity 983

Theorem 4.8 Let F = FFSD. Under Assumptions 2.18 and 2.19, suppose (WP)P∈P
is law-invariant and FFSD-family-consistent on Yx0

(WP)P∈P with respect to P
∗ ∈ P .

Assume that the maximisation problem (4.4) under P∗ has a solution X̃ ∈ Yx0
(WP)P∈P .

Then it holds that

max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X) = max
X∈Yx0

W
P∗

WP∗(X).

Proof Let h ∈ FFSD be such that h(�∗) ∈ Yx0
(WP)P∈P . Then by Assumption 2.18 and

(2.3) and since (WP)P∈P is FFSD-family-consistent on Yx0
(WP)P∈P with respect to P

∗,
we have

WP∗
(
h(�∗)

) ≤ inf
P∈P

WP

(
h(�∗)

)
. (4.5)

Let

X∗ = (F P
∗

X̃
)−1(F P

∗
�∗ (�∗)

)
.

Then X∗ solves the standard cost-efficiency problem for F P
∗

X̃
; so EQ[X∗] ≤ EQ[X̃]

and FP
∗

X̃
= F P

∗
X∗ , and thus the law-invariance of (WP)P∈P yields X∗ ∈ Yx0

(WP)P∈P .
Moreover, X∗ is a nondecreasing function of �∗. It follows by (4.5) that

max
X∈Yx0

W
P∗

WP∗(X) = WP∗(X̃)

= WP∗(X∗)

≤ inf
P∈P

WP(X∗)

≤ max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X)

≤ max
X∈Yx0

(WP)P∈P

WP∗(X)

≤ max
X∈Yx0

W
P∗

WP∗(X),

where the last inequality follows because Yx0
(WP)P∈P ⊆ Yx0

WP∗ . �

From Theorem 4.8, it follows immediately that solving robust preference max-
imisation problems may reduce to solving an optimisation problem under a single
probability measure. The following example illustrates this consequence.

Example 4.9 Assume F = FFSD and that Assumptions 2.18 and 2.19 are satisfied. Let
WP(F ) = w(F P

Y ) as in (4.1), where w ∈ {wEUT, wYaari, wRDEU} as in Example 4.4.
Assuming a solution to (4.4) under P∗ ∈ P exists, it follows that

max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X) = max
X∈Yx0

W
P∗

WP∗(X).
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The main assumption in Theorem 4.8 that is needed to solve the robust max-
imisation problem (4.3) in the case of a family of law-invariant utility functionals
(WP)P∈P is the existence of a least favourable measure P

∗ with respect to FFSD. In
the following result, we show that it is possible to weaken this assumption in that
we only require existence of a least favourable measure P

∗ with respect to some
F ⊆ FFSD, e.g. F = FSSD. The theorem is illustrated in Sect. 4.3, where we consider
a robust rank-dependent expected utility maximisation problem for an investor who
faces ambiguity on expected return and volatility of the risky asset.

Theorem 4.10 Consider a given set F. Under Assumptions 2.18 and 2.19, suppose
that the maximisation problem (4.4) under P

∗ has a solution X̃ ∈ Yx0
(WP)P∈P , which

can P
∗-a.s. be expressed as f (�∗) for some f ∈ F. Further, assume that (WP)P∈P is

F-family-consistent on Yx0
(WP)P∈P with respect to P

∗. Then it holds that

max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X) = max
X∈Yx0

W
P∗

WP∗(X).

Proof Let h ∈ F be such that h(�∗) ∈ Yx0
(WP)P∈P . Then (4.5) holds by the F-family-

consistency and (2.3). By assumption, X̃ = f (�∗) P∗-a.s. for some f ∈ F. Hence
we obtain

max
X∈Yx0

W
P∗

WP∗(X) = WP∗(X̃)

≤ inf
P∈P

WP(X̃)

≤ max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X)

≤ max
X∈Yx0

(WP)P∈P

WP∗(X)

≤ max
X∈Yx0

W
P∗

WP∗(X),

where the last inequality follows because Yx0
(WP)P∈P ⊆ Yx0

WP∗ . �

Note that in comparison to the statements in Theorem 4.8, the WP in Theorem 4.10
need not be law-invariant. Moreover, as long as the solution can be expressed as a
certain function of the likelihood ratio �∗, the utility functionals need not be increas-
ing, i.e., X ≤ Y P-a.s. need not imply WP(X) ≤ WP(Y ). As pointed out, Theorem
4.10 is applicable in particular for the case F = FSSD. However, the requirement
that X̃ ∈ Yx0

(WP)P∈P can be P
∗-a.s. expressed as h(�∗) for some h ∈ FSSD is equiv-

alent to h being increasing and concave. This property is difficult to verify ex ante.
Hereafter, we show that if WP is an expected utility, this condition translates into an
easy-to-verify condition on the utility function. We formulate the following result.
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Theorem 4.11 Fix P ∈ P with likelihood ratio �P. Let u : R+ → R be a differen-
tiable, concave and strictly increasing utility function such that u′ is strictly decreas-
ing. If the maximisation problem (4.4) under P has a solution, then the solution is
a nondecreasing and concave function of �P if and only if 1

u′ is convex. If u is three

times differentiable, 1
u′ is convex if and only if

a(x) ≥ p(x)

2
, (4.6)

where a(x) := −u′′(x)
u′(x)

is the absolute risk aversion and p(x) := −u′′′(x)
u′′(x)

the absolute
prudence.

Proof By Bernard et al. [6, Lemma 2], the solution to (4.4) is unique and given by
(u′)−1(

c0
�P

) for some c0 > 0. See also Merton [43] for a proof in a context in which

the Inada conditions are satisfied. Note that u′ > 0 and that 1
u′ is strictly increasing.

Observe that the inverse of 1
u′ is x �→ (u′)−1( 1

x
), which is hence also strictly increas-

ing. The inverse of a convex (concave) and strictly increasing function is concave
(convex). For the second assertion, observe that u′′ < 0 and that a function is con-
vex on an open interval if and only if its second derivative is nonnegative. Then (4.6)
follows immediately. �

Remark 4.12 Maggi et al. [42] have shown that a(x) > p(x) if and only if the util-
ity has increasing absolute risk aversion, which is somewhat unusual (it is typically
assumed that agents have decreasing absolute risk aversion given that they become
less risk averse as their wealth increases). But our condition (4.6) is not incompatible
with decreasing absolute risk aversion due to the factor 1

2 .
Condition (4.6) has appeared several times in the literature. It has been found to

play a role in the context of insurance models in Bourlès [9], but also appeared as a
condition in the opening of a new asset market (see Gollier and Kimball [32]) when
there is uncertainty on the size (see Gollier et al. [31]) or the probability of losses (see
Gollier [29]) and under contingent auditing (see Sinclair-Desgagné and Gabel [59]).
Further interpretation of this condition and in particular of the degree of concavity of
the inverse of the marginal utility can be found in [9]. This condition also appears in
Varian [60] in the context of payoff selection under ambiguity.

Example 4.13 As an illustration of Theorem 4.11, we provide two utility functions
which are differentiable, concave and strictly increasing and such that the reciprocal
of the marginal utility is convex:

• The exponential utility for risk-averse agents: u : R+ → R, x �→ 1 − e−λx for
λ > 0. It holds that 1

u′(x)
= eλx , which is strictly increasing and convex.

• CRRA utility: u : R+ → R, x �→ x1−η

1−η
for η > 1. It holds that 1

u′(x)
= xη,

which is strictly increasing and convex.

4.3 Rank-dependent utility in lognormal markets

We now discuss some examples to illustrate Sect. 4.2 in a lognormal market setting
with uncertainty on the drift and volatility. In particular, we explicitly solve a ro-
bust rank-dependent expected utility problem using Theorems 4.8 and 4.10. As in
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Sect. 3.2.2, we assume that the real-world distribution of ST is lognormal with pa-

rameters log S0 + (μ − σ 2

2 )T and σ
√

T and that the investor has uncertainty on the
trend and potentially also the volatility. She may expect the true parameters to lie
within the cube, for r < μ1 < μ2 and 0 < σ1 ≤ s,

Dμ1,μ2,σ1,s = {(μ, σ ) ⊆ R
2 : μ1 ≤ μ ≤ μ2, σ1 ≤ σ ≤ s},

where s is the volatility under the pricing measure Q. The investor thus considers
P = (Pμ,σ )(μ,σ )∈Dμ1,μ2,σ1,s as the set of all plausible probability measures on (�,F).
Note that if σ1 = s, the investor only faces drift ambiguity; otherwise, she considers
ambiguity on both trend and volatility. Under P

μ,σ , ST is lognormal with density
f μ,σ defined in (3.1). In the next example, 	 is the standard normal distribution
function.

Example 4.14 Let U(x) = x1−η

1−η
, x ≥ 0, for η ∈ (0, 1) be the CRRA utility function.

Let γ ∈ R and let w(u) = 	(	−1(u) + γ ), u ∈ [0, 1], denote the so-called Wang
transform, which is increasing concave if γ > 0 and increasing convex if γ < 0.
Consider the payoff choice problem in which the investor maximises her expected
rank-dependent utility, i.e.,

max
X∈Yx0

W
Pμ,σ

∫ ∞

0
U(x)d

(
1 − w

(
1 − F P

μ,σ

X (x)
))

, (4.7)

where x0 > 0 is the initial wealth and (μ, σ ) ∈ Dμ1,μ2,σ1,s . Let θ := √
T

μ−r
σ

. The
solution to (4.7) is given by

X∗
μ,σ :=

⎧⎨
⎩

λ
− 1

η exp( rT
η

− 1
2

γ
η
(θ + γ ))(�P)

γ
θη

+ 1
η , γ > −θ,

λ
− 1

η , otherwise,
(4.8)

where λ depends on η, γ and θ ; see (4.10)–(4.12) below. The solution to the robust
rank-dependent utility problem

max
X∈Yx0

(WP)P∈P

inf
P∈P

∫ ∞

0
U(x)d

(
1 − w

(
1 − F P

X(x)
))

dx (4.9)

is given by X∗
μ1,s

if there is no ambiguity on the volatility, i.e., when σ1 = s. If there

is ambiguity on the volatility, γ < 0 and μ1−r

s2 ∈ (0, 1], then X∗
μ1,s

still solves (4.9).

Proof We first prove that X∗
μ,σ solves (4.7). Let P = P

μ,σ . The state price ξP := e−rT

�P

is lognormally distributed with parameters −rT − 1
2θ2 and θ > 0; see (3.2). Hence

as μ > r , it holds that

F P

ξP
(x) = P[ξP ≤ x] = 	

(
log x + rT + 1

2θ2

θ

)
, x > 0,
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and

(F P

ξP
)−1(p) = exp

(
	−1(p)θ − rT − 1

2
θ2

)
, p ∈ (0, 1).

Let

H(z) = −
∫ w−1(1−z)

0
(F P

ξP
)−1(t)dt, z ∈ [0, 1].

The solution to the classical rank-utility problem (4.7) is well known (see for instance
Xu [63, Theorem 4.1] or Rüschendorf and Vanduffel [50, Sect. 3.2]) and is given by

X∗
μ,σ = (U ′)−1

(
λĤ ′(1 − w

(
F P

ξP
(ξP)

)))
,

where λ is determined by EP[ξPX∗
μ,σ ] = x0 and Ĥ is the concave envelope of H .

Using w′(u) = 	′(	−1(u)+γ )

	′(	−1(u))
, we obtain after some calculations that

H ′(z) =
(F P

ξP
)−1(w−1(1 − z))

w′(w−1(1 − z))
= exp

(
	−1(1 − z)(γ + θ) − rT − 1

2
(γ + θ)2

)
.

We distinguish two cases to find a more explicit expression for X∗
μ,σ .

Case 1: γ + θ > 0. Then H ′ is nonincreasing and hence H is concave and equal

to Ĥ . As (U ′)−1(y) = y
− 1

η , it is easy to see that

X∗
μ,σ = λ

− 1
η exp

(
− rT γ

θη
− 1

2

γ

η
(θ + γ )

)
(ξP)

− γ
θη

− 1
η

= λ
− 1

η exp

(
rT

η
− 1

2

γ

η
(θ + γ )

)
(�P)

γ
θη

+ 1
η .

If 1 − γ
θη

− 1
η

= 0, then ξPX∗
μ,σ is constant and it holds that

λ = x
−η
0 exp

(
− rT γ

θ
− 1

2
γ (θ + γ )

)
. (4.10)

Otherwise, ξPX∗
μ,σ is lognormally distributed and it follows that

λ = x
−η
0 exp

(
rT (1 − η) + 1

2

(
θ2(1 − η) + γ 2 + (

θη − (γ + θ)
)2

))
. (4.11)

Case 2: γ +θ ≤ 0. Then H is convex. Note that H(0) = −1 and H(1) = 0. As H

is convex, the concave envelope Ĥ of H is given by Ĥ (x) = x −1. Then Ĥ ′ ≡ 1 and

X∗
μ,σ = (U ′)−1 (λ) = λ

− 1
η .
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Therefore ξPX∗
μ,σ = λ

− 1
η ξP, and hence

λ = x
−η
0 e−rT η. (4.12)

Assume that there is no ambiguity on the volatility, i.e., σ1 = s. Section 3.2.1 shows
that the least favourable measure with respect to FFSD is given by P

∗ = P
μ1,s with

corresponding likelihood ratio �∗ = �P
μ1,s

. By Example 4.4, the utility functional
in (4.9) is FFSD-family-consistent on Yx0

(WP)P∈P with respect to P
∗, and Theorem 4.8

shows that X∗
μ,σ solves the robust rank-dependent utility problem (4.9).

Finally, assume that there is ambiguity on the volatility. If μ1−r

s2 ∈ (0, 1], Propo-
sition 3.9 shows that the least favourable measure with respect to FSSD is also P

∗.
If γ < 0, then X∗

μ,σ is a concave and nondecreasing function of �∗. By Exam-
ple 4.4, the utility functional in (4.9) is FSSD-family-consistent on Yx0

(WP)P∈P with
respect to P

∗. Apply Theorem 4.10 to show that also in this case, X∗
μ,σ solves the

robust rank-dependent utility problem (4.9). �

To better understand the solution in Example 4.14, we “rationalise” the solution
as in Bernard et al. [6], i.e., we show that the optimal investment strategy in the
robust rank-dependent setting also solves an expected utility maximisation problem.
Example 4.15 shows that the solution to the expected rank-dependent utility problems
(4.7) and (4.9) involving a Wang transform with parameter γ and a CRRA utility
function with parameter η can be rationalised by a CRRA utility with parameter ηθ

γ+θ
.

Example 4.15 Let (μ, σ ) ∈ Dμ1,μ2,σ1,s , X∗
μ,σ , θ , x0 and Yx0

WPμ,σ
as in Example 4.14,

and such that γ > −θ and ηθ = γ + θ . Then X∗
μ,σ solves the expected utility

maximisation problem

max
X∈Yx0

W
Pμ,σ

∫ ∞

0
u(x)dF P

μ,σ

X (x)

for the utility function

u(x) = 1

1 − ηθ
γ+θ

x
1− ηθ

γ+θ . (4.13)

The function u : R+ → R is nondecreasing and concave.

Proof Note that γ > −θ implies γ
θη

+ 1
η

= 0. Let P = P
μ,σ and ξP := e−rT

�P
. As

in [6], let c > 0 and define

ũ(x) =
∫ x

c

(F P

ξP
)−1(1 − F P

X∗
μ,σ

(y)
)
dy, x ∈ R+.

Because X∗
μ,σ is lognormally distributed, it follows that

(F P

ξP
)−1(1 − F P

X∗
μ,σ

(x)
) = κx

− ηθ
γ+θ ,
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where κ > 0 is a suitable constant. Thus

ũ(x) = κ
γ + θ

θ(1 − η) + γ

(
x

− ηθ
γ+θ

+1 − c
− ηθ

γ+θ
+1

)
.

In summary, as ũ is only determined up to positive affine transformations, X∗
μ,σ

solves the expected utility maximisation problem for the utility given in (4.13);
see [6, Theorem 2]. �

5 Rationalising robust cost-efficient payoffs

When there is no ambiguity on the probability measure P, there is a close relation-
ship between cost-efficiency and payoff optimisation: For any cost-efficient payoff
X, there exists a utility function u (unique up to a linear transformation) such that X

also solves the expected utility maximisation problem (see [6]). In this section, we
show that this result can be generalised to the robust setting developed previously in
that robust cost-efficient payoffs can be rationalised in terms of the maxmin utility
framework introduced in Gilboa and Schmeidler [27]. Specifically, we show – under
the same assumptions as in Theorems 4.8 and 4.10 – that payoffs maximise a robust
utility functional as in [27] if and only if they are robust cost-efficient.

In the following result, we distinguish two cases: (a) we deal with law-invariant
utility functionals and FSD ordering and assume that the various (robust) maximi-
sation problems have unique solutions, or (b) we deal with general utility function-
als and stochastic ordering and do not require uniqueness of the solutions, but as-
sume that the solution X∗ of the various maximisation problems can be written as
X∗ = f (�∗) for some f ∈ F.

Theorem 5.1 Assume FSSD ⊆ F ⊆ FFSD. Let Assumptions 2.17–2.19 hold. Let
X∗ ∈ X be a payoff. Let x0 = e−rT EQ[X∗] < ∞. Let c > 0 be such that F P

∗
X∗(c) > 0

for some P
∗ ∈ P . Let ξ∗ = e−rT

�∗ and define

u(x) =
∫ x

c

F−1
ξ∗

(
1 − F P

∗
X∗(y)

)
dy, x ∈ R+. (5.1)

Assume that EP[u(X∗)] < ∞ for all P ∈ P . We further assume that one of the
following two conditions is satisfied:

(a) F = FFSD.
(b) X∗ = f (�∗) P∗-a.s. for some f ∈ F and (F P

∗
X∗)−1 ◦ F P

∗
�∗ ∈ F.

Then the following statements are equivalent:

i) X∗ is cost-efficient under P∗.
ii) It holds that X∗ = (F P

∗
X∗)−1(F P

∗
�P

∗ (�P
∗
)) P∗-a.s.

iii) X∗ is P∗-a.s. nondecreasing in �∗.
iv) X∗ solves the F-robust cost-efficiency problem for F P

∗
X∗ .
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v) X∗ solves the expected utility maximisation problem under P
∗ for the utility

function u, i.e.,

max
X∈Yx0

E
P∗ [u( · )]

EP∗ [u(X)].

vi) X∗ solves the robust expected utility problem for the utility function u, i.e.,

max
X∈Yx0

(EP[u( · )])P∈P

inf
P∈P

EP[u(X)],

and the solution is unique if condition (a) is satisfied.
vii) There is a family of utility functionals (WP)P∈P that is F-family-consistent on

Yx0
(WP)P∈P with respect to P

∗ such that X∗ ∈ Yx0
(WP)P∈P and X∗ is the solution to the

maximisation problem under P∗, i.e., to

max
X∈Yx0

W
P∗

WP∗(X).

If (a) holds, the solution is additionally unique and the family of utility functionals is
law-invariant.

viii) There is a family of utility functionals (WP)P∈P that is F-family-consistent on
Yx0

(WP)P∈P with respect to P
∗ such that X∗ is the solution to the robust maximisation

problem, i.e., to

max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X).

If (a) holds, the solution is additionally unique and the family of utility functionals is
law-invariant.

Proof The equivalence between i), ii) and iii) follows from Lemma B.1. The equiv-
alence between iv) and ii) follows from Theorem 3.1 and Remark 3.2. Note that
(FP

∗
X∗)−1◦F P

∗
�∗ ∈ FFSD is always true. By [6, Theorem 3], i) implies v). By Lemma B.3

and [6, Lemma 3], v) implies i). By Example 4.4, v) implies vii) trivially; just define
WP( · ) = EP∗ [u( · )] for all P ∈ P . If (a) holds, v) implies vi) by Theorem 4.8 and
Example 4.4 as EP[u(X∗)] < ∞ for all P ∈ P by assumption. If (b) holds, v) im-
plies vi) by Theorem 4.10. vi) implies viii) trivially. By Lemma B.3 and Lemma B.4,
if (a) holds, vi) implies i) and vii) implies i) and viii) implies i). Note that if (b) holds,
iii) is always true because f ∈ F ⊆ FFSD is nondecreasing. �

Remark 5.2 Assuming that all functions in F are nondecreasing, i.e., that F ⊆ FFSD,
is not really a restriction. Otherwise, there are two sure (constant) payoffs x0, y0 ∈ X
such that x0 < y0, but the distribution of y0 does not dominate the distribution of x0
in the integral stochastic ordering with respect to F.

Example 5.3 Assume F = FSSD. Consider the robust rank-dependent expected utility
maximisation problem in Example 4.14 with the solution X∗

μ1,s
defined in (4.8). Let
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P
∗ = P

μ1,s and �∗ = �P
∗
. With the help of the explicit expressions of F P

∗
X∗

μ1,s
and F P

∗
�∗

from the proofs of Examples 4.14 and 4.15, it is easy to see that (b) in Theorem 5.1
holds if γ < 0.

Let us start from viii) in Theorem 5.1. Equation (4.8) implies that the solution
X∗

μ1,s
is a nondecreasing function of �∗. Hence iii) in Theorem 5.1 is satisfied. As

shown by Example 4.15, X∗
μ1,s

also solves an expected utility maximisation problem
for the utility in (4.13), which illustrates v) in Theorem 5.1. One can easily verify
that ii) in Theorem 5.1 is respected by X∗

μ1,s
. Hence Theorem 3.1 implies that X∗

μ1,s

solves the robust FSSD-cost-efficiency problem as stated in iv) in Theorem 5.1.

The utility functionals in Theorem 5.1 for case (b) need not be law-invariant or
increasing, i.e., X ≤ Y P-a.s. need not imply WP(X) ≤ WP(Y ). We provide a simple
example of such a utility functional.

Example 5.4 Define X∗ = f (�∗) for some f ∈ F. Let x0 = EQ[X∗]. For P ∈ P ,
define

WP(X) =
{

1, if X = X∗
P-a.s.,

0, otherwise,

which is trivially F-family-consistent on X with respect to any P. An agent with
such a utility functional only likes X∗ and neglects everything else. She is not law-
invariant and does not prefer more to less. Someone interested only in the market
portfolio or in the risk-free bond might have such a utility functional. The solution
to the robust maximisation problem viii) is X∗, which is cost-efficient because X∗ is
nondecreasing in �∗. A utility function for v) can be constructed as in (5.1).

6 Final remarks

In this paper, we assume that the agent has Knightian uncertainty. She is unsure about
the precise physical measure describing the financial market and knows only that the
true physical measure lies within a set P of probability measures. Given this ambigu-
ity, it is no longer possible to target a payoff with a given distribution function. In par-
ticular, the close relation between payoffs that are the cheapest possible in reaching a
target distribution function and the optimality thereof under law-invariant increasing
preferences is a priori lost, as there is no consensus regarding what probability dis-
tribution to adopt. For this reason, we introduce the notion of a robust cost-efficient
payoff.

For a given distribution function F0, the robust cost-efficiency problem aims at
finding the cheapest payoff whose distribution function dominates F0 under all pos-
sible physical measures in some integral stochastic ordering. We solve this problem
under some conditions (namely, when there exists a least favourable measure P

∗ and
the integral stochastic ordering �F is cost-consistent). The solution is identical to the
solution to the cost-efficiency problem without model ambiguity under the physical
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measure P∗ and given in closed form. We are thus able to reduce the problem formu-
lated in a robust setting to a problem formulated in a standard setting without model
ambiguity.

Finally, we show that this notion of robust cost-efficiency plays a key role in op-
timal robust payoff selection and that a very general class of robust payoff selection
problems (possibly in a nonexpected utility setting) can be reduced to the maxmin
expected utility setting of [27] for a well-chosen concave utility function.

For this to hold, we make a relatively minor assumption on the family of utility
functionals, namely, that it is family-consistent. To the best of our knowledge, family-
consistency is new to the literature, and we provide several examples in the context
of expected utility theory, Yaari’s dual theory and rank-dependent utility theory.

We assume a static setting in which intermediate trading is not possible. While
allowing dynamic rebalancing may make it possible to achieve higher levels for the
objective at hand (e.g. robust expected utility), this possibility is only clear when there
are no transaction costs, which is not realistic. In practice, transaction costs usually
contain a fixed part, and hence dynamic trading can only occur a finite number of
times since otherwise bankruptcy occurs. The study of optimal investments in the
presence of fixed costs is not yet very well understood. Recently, Belak et al. [4] and
Bayraktar et al. [3] provide optimal strategies in a Black–Scholes market without am-
biguity and assuming expected utility. By contrast, our static setting makes it possible
to deal with ambiguity and to address fairly general objectives.

Appendix A: Proof for Example 2.13

Lemma A.1 Let F and G be two distribution functions. Then we have G �FTSD F if
and only if

∫ η

−∞

∫ ξ

−∞
F(x)dxdξ ≤

∫ η

−∞

∫ ξ

−∞
G(x)dxdξ, η ∈ R.

Proof See Gotoh and Konno [33, Theorem 2.2]. �

We are now ready to construct the counterexample stated in Example 2.13.

Proof of Example 2.13 Apply the chain rule to show that FTSD is
composition-consistent. Next, we construct two distribution functions such that one
dominates the other in TSD, but is cheaper.

Step 1: Define some market setting as in Sect. 3.2.1: Let μ1 = 0.01, r = 0, T = 1
and s = 0.1. Then μ1−r

s2 = 1. Choose S0 such that �∗ := �P
μ1 = hμ1,s(ST ) = ST ,

i.e., log S0 = −0.0025. Under P∗ := P
μ1 , the stock is lognormally distributed with

parameters μ1 − s2

2 + log S0 = 0.0025 and s. Under Q, the stock is also lognormally

distributed with parameters r − s2

2 + log S0 = −0.0075 and s. Moreover, P∗ is a least
favourable measure with respect to the set FFSD, and hence also with respect to FTSD

because FTSD ⊆ FFSD.
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Step 2: Define two distribution functions: Let

F(x) =

⎧⎪⎨
⎪⎩

0, x < 0,

x, 0 ≤ x < 1,

1, x ≥ 1,

and for p0 ∈ (0, 1), let

G(x) =

⎧⎪⎨
⎪⎩

0, x < 0,

p0, 0 ≤ x < 1,

1, x ≥ 1.

So F is the uniform distribution function and G jumps at zero and at one. It follows
that F−1(p) = p and that

G−1(p) =
{

0, p ∈ (0, p0],
1, p > p0.

Step 3: Show that F dominates G in TSD: It holds for η ∈ (0, 1) that

∫ η

−∞

∫ ξ

−∞
F(x)dxdξ =

∫ η

0

∫ ξ

0
xdxdξ = 1

6
η3

and that
∫ η

−∞

∫ ξ

−∞
G(x)dxdξ =

∫ η

0

∫ ξ

0
p0dxdξ = 1

2
p0η

2.

Hence if 1
6η3 ≤ 1

2p0η
2 or, equivalently, p0 ≥ 1

3 , it follows that G �FTSD F .
Step 4: Compute the lowest cost of both distribution functions: The cost-efficient

payoff for F is

XF = F−1(F P
∗

�∗ (�∗)
) = F P

∗
ST

(ST ).

The lowest price of F can be computed numerically as

EQ[XF ] =
∫ ∞

0
F P

∗
ST

(s)f r
ST

(s)ds = 0.472.

The cost-efficient payoff for G is

XG = G−1(F P
∗

�∗ (�∗)
) =

{
1, if ST > (F P

∗
ST

)−1(p0),

0, otherwise.

Its price is

EQ[XG] =
∫ ∞

(FP∗
ST

)−1(p0)

f r
ST

(s)ds = 1 − F
Q

ST

(
(F P

∗
ST

)−1(p0)
)
.
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Under P∗, XF is uniformly distributed and XG is a digital option. If p0 = 1
3 , the

lowest price for G is 0.63, which is greater than the lowest price to be paid for F . But
in this case G �FTSD F ; hence TSD is not cost-consistent. �

Appendix B: Auxiliary results

Lemma B.1 Fix P ∈ P . Let � := dP
dQ

be the Radon–Nikodým derivative of P with
respect to Q. Assume that under P, � is continuously distributed and that 1/� has
finite variance. Then there is a P-a.s. unique optimiser to the standard cost-efficiency
problem under the probability measure P given by

X∗ = F−1
0

(
F P

�P
(�)

)
.

Moreover, X∗ is left-continuous and nondecreasing P-a.s.

Proof Let ξ = e−rT

�
. Then 1 − F P

ξ (ξ) = F P

�P
(�). This claim follows both from

Dybvig [23, 22] and from Bernard et al. [5, Corollary 2]. See also [53, Proposi-
tion 2.7] for the importance of the continuity assumption on � in obtaining the
uniqueness. �

Lemma B.2 Fix P ∈ P . Let � := dP
dQ

. Assume that � is continuously distributed

under P. A payoff X ∈ AP

F0
is P-cost-efficient if and only if it is nondecreasing in �

P-a.s.

Proof See [5, Corollary 2 and Proposition 2]. �

In the following two lemmas, we show that the solution of the single or robust
maximisation problem is cost-efficient if it is unique.

Lemma B.3 Let P ∈ P with corresponding likelihood ratio �P. Assume that �P is
continuously distributed under P and that WP is P-law-invariant and X̃ is a P-a.s.
unique solution to the maximisation problem (4.4) under P. Then X̃ is P-cost-efficient.

Proof Let

X∗ = (F P

X̃
)−1(F P

�P
(�P)

)
.

Then X∗ solves the standard cost-efficiency problem for F P

X̃
and therefore we have

EQ[X∗] ≤ EQ[X̃] and F P

X̃
= F P

X∗ . Hence by the law-invariance of (WP)P∈P , it holds

that X∗ ∈ Yx0
WP

. It follows by law-invariance that

max
X∈Yx0

WP

WP(X) = WP(X̃) = WP(X∗).

As X̃ is the unique solution, we must have X̃ = X∗
P-a.s., and so X̃ is cost-efficient.

�
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Lemma B.4 Assume F = FFSD. Under Assumptions 2.17–2.19, suppose that the
robust maximisation problem (4.3) has a unique solution X̃ and that (WP)P∈P is
law-invariant and FFSD-family-consistent on Yx0

(WP)P∈P with respect to P
∗. Then X̃ is

P
∗-cost-efficient.

Proof The proof is similar to the one for Lemma B.3. Let

X∗ = (F P
∗

X̃
)−1(F P

∗
�∗ (�∗)

)
.

It holds by law-invariance that

max
X∈Yx0

(WP)P∈P

inf
P∈P

WP(X) = inf
P∈P

WP(X̃) = inf
P∈P

WP(X∗). �
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