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Abstract
We consider an optimal liquidation problem with instantaneous price impact and
stochastic resilience for small instantaneous impact factors. Within our modelling
framework, the optimal portfolio process converges to the solution of an optimal liq-
uidation problem with general semimartingale controls when the instantaneous im-
pact factor converges to zero. Our results provide a unified framework within which
to embed the two most commonly used modelling frameworks in the liquidation lit-
erature and provide a foundation for the use of semimartingale liquidation strategies
and the use of portfolio processes of unbounded variation. Our convergence results
are based on novel convergence results for BSDEs with singular terminal conditions
and novel representation results of BSDEs in terms of uniformly continuous functions
of forward processes.

Keywords Portfolio liquidation · Singular BSDE · Stochastic liquidity · Singular
control

Mathematics Subject Classification 93E20 · 91B70 · 60H30

JEL Classification G11 · G12 · G19

1 Introduction

The impact of limited liquidity on optimal trade execution has been extensively ana-
lysed in the mathematical finance and stochastic control literature in recent years.
The majority of the optimal portfolio liquidation literature allows one of two possible
price impacts. The first approach, pioneered by Bertsimas and Lo [6] and Almgren

� U. Horst
horst@math.hu-berlin.de

E. Kivman
kivmanev@hu-berlin.de

1 Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099
Berlin, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00780-024-00536-2&domain=pdf
mailto:horst@math.hu-berlin.de
mailto:kivmanev@hu-berlin.de


760 U. Horst, E. Kivman

and Chriss [3], divides the price impact into a purely temporary effect, which depends
only on the present trading rate and does not influence future prices, and a permanent
effect, which influences the price depending only on the total volume that has been
traded in the past. The temporary impact is typically assumed to be linear in the trad-
ing rate, leading to a quadratic term in the cost functional. The original modelling
framework has been extended in various directions, including general stochastic set-
tings with and without model uncertainty and multi-player and mean-field-type mod-
els by many authors, including Ankirchner et al. [4], Cartea et al. [9], Fu et al. [14],
Gatheral and Schied [17], Graewe et al. [19], Horst et al. [23], Kruse and Popier [24]
and Neuman and Voß [29].

A second approach, initiated by Obizhaeva and Wang [30], assumes that price im-
pact is not permanent but transient, with the impact of past trades on current prices de-
caying over time. When impact is transient, one often allows both absolutely contin-
uous and singular trading strategies. When singular controls are admissible, optimal
liquidation strategies usually comprise large block trades at the initial and terminal
time. The work of Obizhaeva and Wang has been extended by Alfonsi et al. [2], Chen
et al. [11], Fruth et al. [13], Gatheral [16], Guéant [20], Horst and Naujokat [21],
Lokka and Xu [27] and Predoiu et al. [31], among many others.

Single- and multi-asset liquidation problems with instantaneous and transient mar-
ket impact and stochastic resilience where trading is confined to absolutely continu-
ous strategies have been analysed in Graewe and Horst [18] and Horst and Xia [22],
respectively. This is consistent with the empirical work of Large [25] and Lo and
Hall [26], which suggests that this resilience does indeed vary stochastically. Al-
though only absolutely continuous trading strategies were admissible in [18, 22],
numerical simulations reported in [18] suggest that if all model parameters are de-
terministic constants, then the optimal portfolio process converges to the solution
in [30] with two block trades and a constant trading rate as the instantaneous impact
parameter converges to zero. Cartea and Jaimungal [10] provide empirical evidence
that the instantaneous price impact is indeed (much) smaller than permanent (or tran-
sient) price impact. The numerical simulations in [18] suggest that the model in [18]
provides a common framework within which to embed the two most commonly used
liquidation models [3, 30] as limiting cases.

This paper provides a rigorous convergence analysis within a Markovian factor
model. It turns out that the stochastic setting is quite different from the deterministic
one. Most importantly, we show that in the stochastic setting, the optimal portfolio
processes obtained in [18] converge in the Skorohod M2-topology to a process of in-
finite variation with jumps as the instantaneous market impact parameter converges
to zero. Our second main result is to prove that the limiting portfolio process is opti-
mal in a liquidation model with semimartingale execution strategies and to explicitly
compute the optimal trading cost in the semimartingale execution framework.

Showing that the limiting model solves a liquidation model with semimartingale
execution strategies is more than a mere byproduct. Control problems with semi-
martingale strategies are usually difficult to solve because there are no canonical can-
didates for the value function and/or optimal strategies. We show that the solution
in the limiting model is fully determined by the unique bounded solution to a one-
dimensional quadratic BSDE. Our limit result provides a novel approach to solving
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control problems with semimartingale strategies that complements the approaches in
Ackermann et al. [1] and Lorenz and Schied [15]. They solved related models by
passing to a continuous-time limit from a sequence of discrete-time models.

Within a portfolio liquidation framework, inventory processes with infinite varia-
tion were first considered by Lorenz and Schied [28] to the best of our knowledge.
Later, Becherer et al. [5] considered a trading framework with generalised price im-
pact and proved that the cost functional depends continuously on the trading strat-
egy, considered in several topologies. Bouchard et al. [7] considered infinite-variation
inventory processes in the context of hedging.

The paper closest to ours is the recent work by Ackermann et al. [1]. They con-
sidered a liquidation model with general RCLL semimartingale trading strategies.
Their framework is more general than ours as they allow more general filtrations
and stochastic order book depth. At the same time, their analysis is confined to risk-
neutral traders. In our setting, when the model parameters are deterministic and the
instantaneous price impact goes to zero, the case of risk-neutral traders – which is
then a special case of the model studied in [1] – is explicitly solvable. Allowing for
risk aversion renders the impact model significantly more complicated as it adds a
quadratic dependence of the integrated trading rate into the HJB equation; cf. [18]
for details.

Our work also complements the work of Gârleanu and Pedersen [15]. They con-
sider an array of market impact models, including a model with purely transient
costs. They write [15, beginning of Sect. 1.3] that “with purely persistent price-impact
costs, the optimal portfolio policy can have jumps and infinite quadratic variation.”
As in [1], they justify portfolio holdings with infinite quadratic variation by taking a
limit of a sequence of discrete-time models with increasing trading frequency. They
also prove that the optimal portfolio processes in the discrete-time models converge
to the optimal portfolio process in the corresponding continuous-time model if either
the instantaneous price impact converges to a positive constant or the instantaneous
price impact factor multiplied by the (increasing) trading frequency converges to zero.
However, they do not consider the general case of an instantaneous price impact fac-
tor converging to zero. Most importantly, they consider a portfolio choice problem on
an infinite time horizon, which avoids the liquidation constraint at the terminal time.

Last but not least, our work complements the work of Carmona and Webster [8],
who provide strong evidence that inventories of large traders often do have indeed
a nontrivial quadratic-variation component. For instance, for the Blackberry stock,
they analyse the inventories of “the three most active Blackberry traders” on a partic-
ular day, namely CIBC World Markets Inc., Royal Bank of Canada Capital Markets
and TD Securities Inc. From their data, they “suspect that RBC (resp. TD Securi-
ties) were trading to acquire a long (resp. short) position in Blackberry” and found
that the corresponding inventory processes were of infinite variation. More gener-
ally, they find that systematic tests “on different days and other actively traded stocks
give systematic rejections of this null hypothesis [quadratic variation of inventory
being zero], with a p-value never greater than 10−5”. Our results suggest that inven-
tories with nontrivial quadratic variation arise naturally when market depth is high
and resilience and/or market risk fluctuates stochastically. This is very intuitive; in
deep markets, it is comparably cheap to frequently adjust portfolios to stochastically
varying market environments.



762 U. Horst, E. Kivman

The main technical challenge in establishing our convergence results is that the
solution to the limiting model cannot be obtained by taking the limit of the three-
dimensional quadratic BSDE system that characterises the solution in the model with
positive instantaneous impact. Instead, we prove that the limit is fully characterised
by the solution to a one-dimensional quadratic BSDE. Remarkably, this BSDE is in-
dependent of the liquidation requirement. As a result, full liquidation takes place if
the instantaneous impact parameter converges to zero even if full liquidation is not
strictly required. The reason is a loss in book value of the remaining shares that out-
weighs the liquidation cost for small instantaneous impact. Our convergence result is
based on a novel representation result for solutions to BSDEs driven by Itô processes
in terms of uniformly continuous functions of the forward process and on a series of
novel convergence results for sequences of singular stochastic integral equations and
random ODEs, which we choose to report in an abstract setting in Appendix A and B,
respectively.

The limiting portfolio process is optimal in a liquidation model with general semi-
martingale execution strategies. Within our modelling framework where the cost co-
efficients are driven by continuous factor processes, block trades optimally occur
only at the beginning and the end of the trading period. This is very intuitive as one
would expect large block trades to require some form of trigger such as an external
shock leading to a discontinuous change of cost coefficients. The proof of optimality
proceeds in three steps. We first prove that the jump part of the limiting portfolio
process can be approximated by absolutely continuous processes. This allows us to
approximate the trading costs in the semimartingale model by trading costs in the
pre-limit models from which we finally deduce the optimality of the limiting process
in the semimartingale model by using the optimality of the approximating inventory
processes in the pre-limit models. As a byproduct of our approximation, we also ob-
tain that the optimal costs are given in terms of the aforementioned one-dimensional
quadratic BSDE.

The rest of the paper is organised as follows. In Sect. 2, we recall the modelling
setup from [18, 22] and summarise our main results. The proofs are given in Sects. 3
and 4. A series of fairly abstract convergence results for various stochastic equations
with singularities upon which our convergence results are based is postponed to two
appendices.

Notation. Throughout, randomness is described by an R
m-valued Brownian mo-

tion (Wt )t∈[0,T ] defined on (�,F , (Ft )t∈[0,T ],P), a complete probability space,
where (Ft )t∈[0,T ] denotes the filtration generated by W , augmented by the P-nullsets.
Unless otherwise specified, all equations and inequalities hold in the P-a.s. sense. For
a subset A ⊆ R

d , we denote by L2
Prog(� × [0, T ]; A) the set of all progressively

measurable A-valued stochastic processes (Xt )t∈[0,T ] such that E[∫ T

0 |Xt |2 dt] < ∞,
while L∞

Prog(� × [0, T ]; A) denotes the subset of essentially bounded processes. By

L2
P (� × [0, T ]; A) and L∞

P (� × [0, T ]; A), we denote the respective subsets of pre-
dictable processes. Whenever T − appears, we mean that there exists an ε > 0 such
that a statement holds for all T ′ ∈ (T − ε, T ).
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2 Problem formulation and main results

In this section, we introduce two portfolio liquidation models with stochastic mar-
ket impact. In the first model, analysed in Sect. 2.1, the investor is confined to ab-
solutely continuous trading strategies. For small instantaneous market impact, we
prove that the optimal liquidation strategy converges to a semimartingale with jumps.
In Sect. 2.2, we therefore analyse a liquidation model with semimartingale trading
strategies. We prove that the limiting process obtained in Sect. 2.1 is optimal in a
model where semimartingale strategies that satisfy a suitable regularity condition are
admissible.

2.1 Portfolio liquidation with absolutely continuous strategies

We take the liquidation model analysed in Graewe and Horst [18] and Horst and
Xia [22] as our starting point and consider an investor that needs to close, within a
given time interval [0, T ], a (single-asset) portfolio of x0 > 0 shares using a trading
strategy ξ = (ξt )t∈[0,T ]. If ξt < 0, the investor is selling the asset at a rate ξt at
time t ∈ [0, T ]; otherwise she is buying it. For a given strategy ξ , the corresponding
portfolio process Xξ = (X

ξ
t )t∈[0,T ] satisfies the ODE

dX
ξ
t = ξt dt, X

ξ
0 = x0.

The set of admissible strategies is given by

A := L2
Prog(� × [0, T ];R).

For a general inventory process X ∈ L2
P (�×[0, T ];R), the corresponding transient

price impact is described by the unique stochastic process YX = (YX
t )t∈[0,T ] that

satisfies the ODE

dYX
t = γ dXt − ρtY

X
t dt, YX

0 = 0, (2.1)

for some constant γ > 0 and some essentially bounded, progressively measurable,
(0,∞)-valued process ρ = (ρt )t∈[0,T ]. The process YX may be viewed as describing
an additional shift in the unaffected benchmark price process generated by the large
investor’s trading activity. For ξ ∈ A, we write Y ξ := YXξ

.
For any instantaneous impact factor η > 0 and any penalisation factor

N ∈ N = N (η) := [N(η),∞],

where

N(η) := γ + 1 + √
2η max(‖λ‖L∞ , γ ‖ρ‖L∞),
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the cost functional is given by

J η,N (ξ) = E

[
η

2

∫ T

0
(ξt )

2 dt +
∫ T

0
Y

ξ
t dX

ξ
t + 1

2

∫ T

0
λt (X

ξ
t )2 dt

+ N

2
(X

ξ
T )2 − X

ξ
T Y

ξ
T

]

.

The first term in J η,N (ξ) captures the instantaneous trading costs, the second the
costs from a transient price impact, and the third captures market risk, where the
adapted and nonnegative process λ = (λt )t∈[0,T ] specifies the degree of risk. If
N = ∞, the fourth term should formally be read as +∞1{Xξ

T �=0} with the conven-

tion 0 · ∞ = 0. This captures the case where full liquidation is required; this case
is analysed in [18]. The case γ + 1 ≤ N < ∞ is analysed in [22]. The fifth term
captures an additional loss in the book value of the remaining shares. It drops out of
the cost function if N = ∞; see [18, 22] for further details on the impact costs and
cost coefficients.

It has been shown in [18, 22] that the optimisation problem

min
ξ∈A

J η,N (ξ) (2.2)

has a solution ξ̂ η,N for any N ∈ N and any η > 0. The solution is given in terms
of a backward SDE system with possibly singular terminal condition. We index the
optimal trading strategies and state processes by η and N as we are interested in their
behaviour for small instantaneous impact factors for both finite and infinite N .

The next theorem follows directly from [18, Theorems 2.5 and 2.6] and [22,
Theorem 2.1].

Theorem 2.1 With the above assumptions, for all η ∈ (0,∞) and N ∈ N , the
following hold:

i) The BSDE system

−dA
η,N
t =

(

λt − 1

η
(A

η,N
t − γB

η,N
t )2

)

dt − Z
η,N,A
t dWt,

−dB
η,N
t =

(

− ρtB
η,N
t + 1

η
(γC

η,N
t − B

η,N
t + 1)(A

η,N
t − γB

η,N
t )

)

dt

− Z
η,N,B
t dWt,

−dC
η,N
t =

(

− 2ρtC
η,N
t − 1

η
(γC

η,N
t − B

η,N
t + 1)2

)

dt − Z
η,N,C
t dWt

with terminal condition

B
η,N
T = 1, C

η,N
T = 0,
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together with A
η,N
T = N for N < ∞ and limt↗T A

η,∞
t = ∞ in L∞ if N = ∞, has

a solution

(
(Aη,N , Bη,N , Cη,N ), (Zη,N,A, Zη,N,B, Zη,N,C)

)

that belongs to the space L∞
P (� × [0, T ];R3) ×L2

Prog(� × [0, T ];R3×m) if N < ∞
and to the space L∞

P (� × [0, T −];R3) × L2
Prog(� × [0, T −];R3×m) if N = ∞.

ii) The liquidation problem (2.2) has a solution ξ̂ η,N . The corresponding state
process

(X̂η,N , Ŷ η,N ) := (Xξ̂η,N

, Y ξ̂η,N

)

is given by the (unique) solution to the ODE system

∂t X̂
η,N
t = − 1√

η
D

η,N
t X̂

η,N
t − 1√

η
E

η,N
t Ŷ

η,N
t ,

∂t Ŷ
η,N
t = − γ√

η
D

η,N
t X̂

η,N
t − γ√

η
E

η,N
t Ŷ

η,N
t − ρt Ŷ

η,N
t (2.3)

with initial conditions X̂
η,N
0 = x0 and Ŷ

η,N
0 = 0, where

Dη,N := 1√
η
(Aη,N − γBη,N ), Eη,N := 1√

η
(γCη,N − Bη,N + 1).

Let us now define the process

Ẑη,N := γ X̂η,N − Ŷ η,N .

The benefit of defining this process is that in the ODE (2.3), the terms that are mul-
tiplied by

√
η−1 drop out so that we expect that the process Ẑη,N remains stable for

small values of η. Next, we state a result on the optimal state process and the previ-
ously introduced process Ẑη,N that will be important for our subsequent analysis. In
particular, we show that the optimal portfolio process X̂η,N never changes its sign.
The proof is given in Sect. 3.1.1.

Theorem 2.2 For all η ∈ (0,∞), N ∈ N , the process Ẑη,N is nonincreasing on
[0, T ]. Moreover,

P[X̂η,N
t ∈ (0, x0), Ŷ

η,N
t ∈ (−γ x0, 0), Ẑ

η,N
t ∈ (0, γ x0) for all t ∈ (0, T )] = 1.

We are interested in the dynamics of the optimal portfolio processes for small
instantaneous price impact. We address this problem within a factor model where the
cost coefficients λ and ρ are driven by an Itô diffusion, which is given by the unique
strong solution to the SDE

dχt = μ(t, χt ) dt + σ(t, χt ) dWt, χ0 = χ0
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on [0, T ] with χ0 ∈ R
n. We assume throughout that the function

(μ, σ ) : [0, T ] × R
n → R

n × R
n×m

is bounded, measurable and uniformly Lipschitz-continuous in the space variable, i.e.,

|(μ, σ )(t, x1) − (μ, σ )(t, x2)| ≤ c|x1 − x2|.
Assumption 2.3 The processes ρ and λ are of the form

(ρt , λt ) = f (t, χt )

for some bounded C1,2 function f = (f ρ, f λ) : [0, T ] × R
n → [0,∞)2 with

bounded derivatives. Moreover, the function f ρ is bounded away from zero.

For convenience, we define the stochastic process ϕ = (ϕt )t∈[0,T ] by

ϕt := √
λt + 2γρt

and choose constants ρ, ρ, ϕ, ϕ, λ ∈ (0,∞) such that

ρ ≤ ρ ≤ ρ, 0 ≤ λ ≤ λ, ϕ ≤ ϕ ≤ ϕ.

In what follows, we heuristically argue that the processes X̂η,N converge to a limit
process X̂0 (independent of N ) as η → 0 and identify the limit X̂0. Since the ODE
system (2.3) is not defined for η = 0, we cannot define the limiting process as the
solution to this system. Instead, we first identify the limits of the coefficients of the
ODE system and then derive candidate limits for the state processes in terms of the
limiting coefficients.

2.1.1 Convergence of the coefficient processes

In this section, we state the convergence results for the coefficient processes Dη,N

and Eη,N of the ODE system (2.3) as η → 0. In particular, we prove that their limits
D0 and E0 exist and are driven by a common factor, which is given by the solution
of a quadratic BSDE.

Before proceeding to the limit result, we provide some heuristics for the conver-
gence. Assuming for simplicity that all coefficients are deterministic, the dynamics
of the coefficient processes satisfy

√
ηḊ

η,N
t = (D

η,N
t )2 − λt − γ Ḃ

η,N
t ,

√
ηĖ

η,N
t = 2

√
ηρtE

η,N
t + γ (E

η,N
t )2 − 2ρt (1 − B

η,N
t ) − Ḃ

η,N
t .

Letting η → 0, we expect that

0 = (D0
t )

2 − λt − γ Ḃ0
t ,

0 = γ (E0
t )

2 − 2ρt (1 − B0
t ) − Ḃ0

t ,
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that is, we expect that

D0
t =

√
γ Ḃ0

t + λt , E0
t =

√
γ −1

(
Ḃ0

t + 2ρt (1 − B0
t )

)
. (2.4)

Moreover, by the choice of the coefficients Dη,N and Eη,N and by the BSDE in
Theorem 2.1 i), we expect that in the limit,

−Ḃ0
t = −ρtB

0
t + D0

t E
0
t . (2.5)

The three equalities combined yield

(D0
t + γE0

t )
2 = γ Ḃ0

t + λt + 2γD0
t E

0
t + γ

(
Ḃ0

t + 2ρt (1 − B0
t )

)

= (ϕt )
2 + 2γ (Ḃ0

t + D0
t E

0
t − ρtB

0
t )

= (ϕt )
2. (2.6)

Plugging (2.5) and (2.6) back into (2.4) yields

D0
t = (ϕt )

−1(λt + γρtB
0
t ), E0

t = (ϕt )
−1ρt (2 − B0

t ).

Hence we expect D0 and E0 to be driven by B0 and B0 to satisfy the ODE

−Ḃ0
t = −ρtB

0
t + D0

t E
0
t

= − 1

ϕ2
t

(
γ (ρtB

0
t )2 − 2λtρt (1 − B0

t )
)

with terminal condition B0
T = 1 (because B

η,N
T = 1). Our heuristic also suggests that

the limit processes are independent of the liquidation requirement.

Example 2.4 If λ = Cρ for some constant C ≥ 0, then the process B0 can be
computed explicitly. If C = 0, then B0

t = 2/(2 + ∫ T

t
ρs ds). If C > 0, then

B0
t = −C

γ
+ 1

γ

√
C(C + 2γ ) coth

(

arcoth
( C + γ√

C(C + 2γ )

)
+

√
C

C + 2γ

∫ T

t

ρs ds

)

.

The preceding heuristic suggests that the limiting coefficient processes are driven
by a solution to the BSDE corresponding to the above ODE for B0. The following
lemma is proved in Sect. 3.1.2.

Lemma 2.5 There exists a unique solution (B0, Z0,B) in the space

L∞
P

(
� × [0, T ]; (0,∞)

) × L2
P (� × [0, T ];Rm)

to the BSDE

−dB0
t = − 1

ϕ2
t

(
γ (ρtB

0
t )2 − 2λtρt (1 − B0

t )
)

dt − Z
0,B
t dWt, B0

T = 1. (2.7)
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The process B0 is bounded from above by 1 and from below by

B0
t := exp

( − ϕ−2γ ρ2(T − t)
)
. (2.8)

Moreover, there exists a uniformly continuous function (a so-called “decoupling
field”) h : [0, T ] ×R

n → R such that B0 and (h(t, χt ))t∈[0,T ] are indistinguishable.

We prove below that the process Bη,N converges to B0 as η → 0 and that Dη,N

and Eη,N converge to the processes

D0
t := (ϕt )

−1(λt + γρtB
0
t ), E0

t := (ϕt )
−1ρt (2 − B0

t ), (2.9)

respectively. In view of Lemma 2.5, these processes are well defined, and so the
dynamics (2.7) of the process B0 can be rewritten as

−dB0
t = −(ρtB

0
t − D0

t E
0
t ) dt − Z

0,B
t dWt, B0

T = 1.

Likewise, the BSDE for the process Bη,N in Theorem 2.1 can be rewritten as

−dB
η,N
t = −(ρtB

η,N
t − D

η,N
t E

η,N
t ) dt − Z

η,N,B
t dWt, B

η,N
T = 1. (2.10)

This suggests that the process Bη,N converges to B0 on the entire interval [0, T ], and
this is proved below; note that all the processes B have the same terminal condition
at time T . By contrast, convergence of the processes Dη,N and Eη,N can only be
expected to hold on compact subintervals [0, T − ε] of [0, T ) because the terminal
conditions of the limiting and approximating processes are different. It turns out that
we can prove a slightly stronger result for the supremum of the processes D and E,
and this explains the different choices of intervals for the supremum and the infimum
in the following lemma. Specifically, we have the following result. Its proof is given
in Sect. 3.2.1.

Proposition 2.6 Let

bη,N := Bη,N − B0, dη,N := Dη,N − D0, eη,N := Eη,N − E0.

Then for all ε > 0, there exists an η0 > 0 such that for all η ∈ (0, η0] and for all
N ∈ N ,

P

[
sup

t∈[0,T )

max(|bη,N
t |,−d

η,N
t , e

η,N
t ,−d

η,N
t − γ e

η,N
t ) ≤ ε,

inf
t∈[0,T −ε] min(−d

η,N
t , e

η,N
t ,−d

η,N
t − γ e

η,N
t ) ≥ −ε

]
= 1.

2.1.2 Convergence of the state process

Having derived the limits of the coefficient processes, we can now heuristically derive
the limits of the processes X̂η,N , Ŷ η,N and Ẑη,N , which we denote by X̂0, Ŷ 0 and
Ẑ0, respectively.
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Since X̂
η,∞
T = 0 for all η > 0, we expect that X̂0

T = 0. We prove in Lemma 3.11
that this convergence also holds if N is finite. The proof heavily relies on the
optimality of X̂0 in the semimartingale portfolio liquidation model.

Assuming that the optimal trading strategy remains stable if η → 0, the ODE (2.3)
suggests that the term Dη,NX̂η,N + Eη,N Ŷ η,N is small for small η and hence that

D0
t X̂

0
t = −E0

t Ŷ
0
t on [0, T ).

We do not conjecture the above relation at the terminal time because the convergence
of Dη,N and Eη,N only holds on [0, T ). Assuming that

Ẑ0 = γ X̂0 − Ŷ 0 on [0, T ),

equation (2.6) implies

Ẑ0 = − ϕ

D0
Ŷ 0 and hence Ŷ 0 = −D0

ϕ
Ẑ0.

On the other hand, by definition, ∂t Ẑ
η,N = ρŶ η,N . As η → 0, this suggests that

∂t Ẑ
0 = ρŶ 0 and hence that

∂t Ẑ
0
t = −ρtD

0
t

ϕt

Ẑ0, Ẑ0
0 = γ x0.

This motivates us to define the process

Ẑ0
t := γ x0 exp

(

−
∫ t

0

ρs

ϕs

D0
s ds

)

, t ∈ [0, T ].

Since we expect that X̂0
T = 0 and that Ẑ0 = γ X̂0 − Ŷ 0, we now introduce the

candidate limiting state processes

X̂0
t := 1[0,T )(t)

E0
t

ϕt

Ẑ0
t ,

Ŷ 0
t := −1[0,T )(t)

D0
t

ϕt

Ẑ0
t − 1{T }(t)Ẑ0

T , t ∈ [0, T ]. (2.11)

Since (X̂0
0−, Ŷ 0

0−) = (x0, 0), we expect that the limiting state process jumps at the
initial and the terminal time. In particular, we cannot expect uniform convergence on
[0, T ].

We also expect the limiting state processes to be of unbounded variation, as sug-
gested by Fig. 1. The figure also suggests that the portfolio process is more or less
monotone for large η, while this property is lost for small η. When η → 0, adjust-
ments to small changes in market environments are cheap. This is very different from
round-trip strategies where an investor uses the price impact caused by him/herself to
drive market prices into a favourable direction.

Figure 1 also suggests that the limiting portfolio process jumps only at the times
0 and T . This is consistent with the definition of the candidate processes (2.11) as
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Fig. 1 Optimal trading strategies X̂η,∞ for the liquidation model for different instantaneous impact
factors, and their limit X̂0 for m = n = T = x0 = 1, γ = 3, ρt = 1 + 0.9 sin(2.5Wt ), λ ≡ 1

well as the observation in Horst and Naujokat [21], according to which jumps in the
optimal strategy can only be triggered by exogenous shocks like jumps in the cost
coefficients, which are absent in the present model.

It remains to clarify in which sense the state processes converge. In contrast to the
convergence result in Proposition 2.6, we can only expect convergence in probabil-
ity because the state process follows a forward ODE while the coefficient processes
follow backward SDEs; see also Appendix B.2. The following result establishes uni-
form convergence in probability on compact subintervals of (0, T ) along with some
“upper/lower convergence” at the initial and terminal time. The proof is given in
Sect. 3.2.2.

Theorem 2.7 For all ε > 0 and δ > 0, there exists an η0 > 0 such that for all
η ∈ (0, η0] and all N ∈ N ,

P

[
sup

t∈[ε,T )

max(X̂
η,N
t − X̂0

t , Ŷ
η,N
t − Ŷ 0

t ) ≤ ε,

inf
t∈[0,T −ε] min(X̂

η,N
t − X̂0

t , Ŷ
η,N
t − Ŷ 0

t ) ≥ −ε
]

≥ 1 − δ.

The preceding theorem does not provide a convergence result on the whole time
interval, due to the jumps of the limit processes at the initial and terminal time. How-
ever, along with our results from Sect. 2.2, it allows us to prove the convergence of
the graphs of the state processes on the entire time interval. The completed graph of
an RCLL function X : {0−} ∪ [0, T ] → R with finitely many jumps is defined by

GX := {(t, x) ∈ [0, T ] × R : x = Xt = Xt− or Xt− < Xt, x ∈ [Xt−, Xt ]
or Xt− > Xt, x ∈ [Xt,Xt−]}.
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The Skorohod M2-distance between X and Y is defined as the Hausdorff distance
between their completed graphs, i.e.,

dM2(X, Y ) := max
(

sup
p∈GX

min
q∈GY

|p − q|∞, sup
q∈GY

min
p∈GX

|p − q|∞
)

∈ [0,∞],

where

|(s, y)|∞ := max(|s|, |y|).

If strict liquidation is required, then Theorem 2.7 is sufficient to prove convergence
of the state processes in the Skorohod M2 sense. Even if liquidation is not required,
it turns out that the terminal position converges to zero as η → 0. Heuristically, this
can be seen as follows.

Let t0 ∈ (0, T ). Disregarding market risk costs, which we expect to be of or-
der O(T − t0) and hence negligible if t0 → T , and disregarding instantaneous im-
pact costs for the moment, the cost functional for any given admissible strategy ξ is
given by

∫ T

t0

Y ξ
s ξs ds − X

ξ
T Y

ξ
T + N

2
(X

ξ
T )2

= Y
ξ
T X

ξ
T − Y

ξ
t0
X

ξ
t0

−
∫ T

t0

Ẏ ξ
s Xξ

s ds − X
ξ
T Y

ξ
T + N

2
(X

ξ
T )2

= −Y
ξ
t0
X

ξ
t0

−
∫ T

t0

γ ξsX
ξ
s ds +

∫ T

t0

ρY ξ
s Xξ

s ds + N

2
(X

ξ
T )2

= −Y
ξ
t0
X

ξ
t0

− γ

2

(
(X

ξ
T )2 − (X

ξ
t0
)2) +

∫ T

t0

ρY ξ
s Xξ

s ds + N

2
(X

ξ
T )2

= −Y
ξ
t0
X

ξ
t0

+ γ

2
(X

ξ
t0
)2 + N − γ

2
(X

ξ
T )2 +

∫ T

t0

ρY ξ
s Xξ

s ds.

Hence we expect the controllable costs to satisfy

E

[
N − γ

2
(X

ξ
T )2 +

∫ T

t0

ρY ξ
s Xξ

s ds

]

= E

[
N − γ

2
(X

ξ
T )2

]

+ O(T − t0)

plus instantaneous impact costs. Since N > γ , this suggests to make X
ξ
T small, which

is cheap if η is small. More precisely, we have the following result; its proof is given
in Sect. 3.2.3.

Proposition 2.8 For all ε > 0 and δ > 0, there exists an η0 > 0 such that for all
η ∈ (0, η0] and all N ∈ N ,

P[dM2(X̂
η,N , X̂0) ≤ ε] ≥ 1 − δ.
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2.2 Optimal liquidation with semimartingale strategies

In this section, we prove that the limit process X̂0 is the optimal portfolio process in
a trade execution model with semimartingale trading strategies.

In our semimartingale model, a trading strategy is given by a triple

θ = (j+, j−, V ),

where j+ and j− are real-valued, nondecreasing pure jump processes and V is with
respect to the Brownian filtration a real-valued continuous semimartingale starting
in zero. The jump processes j+ and j− describe the cumulative effects of buying,
respectively selling, large blocks of shares, while the continuous semimartingale V

describes the effect of continuously trading small amounts of the stock. The portfolio
process Xθ = (Xθ

t )t∈[0,T ] associated with a strategy θ is then given by

Xθ
t = x0 + j+

t − j−
t + Vt .

The associated price impact process, again given by (2.1), is denoted by Y θ . We note
that Xθ and Y θ are semimartingales.

We assume that strict liquidation is required and that the cost associated with a
trading strategy θ is given by

J 0(θ) := E

[ ∫

(0,T ]
Y θ

s− dXθ
s +

∫ T

0

1

2
λs(X

θ
s )2 ds + γ

2
[Xθ ]T

]

.

The first term captures the transient price impact cost; the second captures market
risk. The third term emerges as an additional cost term when passing from discrete to
continuous time, as shown in Ackermann et al. [1]. Moreover, in the absence of this
term, arbitrarily low costs can be achieved; see [1] for details.

The cost function can be conveniently rewritten as

J 0(θ) = E

[
γ

2
(j+

0 − j−
0 )2 +

∫

(0,T ]
1

2
(Y θ

s− + Y θ
s ) dXθ

s

+
∫ T

0

1

2
λs(X

θ
s )2 ds + γ

2
[V ]T

]

.

This representation supports our intuition that the price impact before and the price
impact after the jump equally influence the total cost. The first term in this expression
captures the cost of the initial block trade at time t = 0.

The cost functional is well defined under the following admissibility condition.

Definition 2.9 A trading strategy θ = (j+, j−, V ) is called admissible if the liq-
uidation constraint Xθ

T = 0 holds, if j± are RCLL, predictable, real-valued, non-
decreasing and square-integrable pure jump processes, and if V is a continuous
semimartingale starting in zero with

E

[
max

t∈[0,T ] |Vt |2
]

< ∞. (2.12)

The set of all admissible trading strategies is denoted by A0.
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Our goal is now to solve the optimisation problem

min
θ∈A0

J 0(θ).

To this end, we verify directly that the limit process X̂0 obtained in Sect. 2.1 is
optimal. The results there show that the process has the representation

X̂0
t = x0 − ĵ−

t + V̂t ,

where the jump process ĵ− and the continuous part are given by, respectively,

ĵ−
t := x0 − X̂0

0 + 1{T }(t)X̂0
t−,

V̂t := (ϕt )
−2ρt (2 − B0

t )Ẑ0
t − (ϕ0)

−2ρ0(2 − B0
0 )Ẑ0

0 .

In view of Assumption 2.3 and because B0 is a continuous semimartingale and Ẑ0 is
differentiable, the process V̂ is a continuous semimartingale starting in zero. Hence
the following holds.

Lemma 2.10 The strategy θ̂ = (0, ĵ−, V̂ ) is admissible.

In order to prove that θ̂ is optimal, we approximate the cost and the portfolio
process associated with any strategy θ ∈ A0 by the cost and portfolio processes cor-
responding to absolutely continuous trading strategies. To this end, we first approxi-
mate the continuous semimartingale part V by differentiable processes. The proof of
the following result is given in Sect. 4.1.

Lemma 2.11 For all θ = (j+, j−, V ) ∈ A0 and all β, δ > 0, there exist a constant
ν > 0 and an adapted and continuous V̇ β,ν : � × [0, T ] → [−β

ν
,

β
ν
] such that

max
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
V̇ β,ν

s ds

∣
∣
∣
∣ ≤ max

t∈[0,T ] |Vt | (2.13)

and

P

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
V̇ β,ν

s ds − Vt

∣
∣
∣
∣ ≤ 3β

]

≥ 1 − δ. (2.14)

Next, we approximate the portfolio process Xθ by a portfolio process associated
with an absolutely continuous strategy. To this end, for all θ ∈ A0 and β, ν, ε > 0,
we define the integrable process

ξ
θ,β,ν,ε
t :=

⎧
⎨

⎩

1
ε
(j+

t − j+
t−ε) − 1

ε
(j−

t − j−
t−ε) + V̇

β,ν
t , t ≤ T − ε,

− 1
ε
(x0 + ∫ T −ε

0 ξ
θ,β,ν,ε
u du), t > T − ε.

In view of the square-integrability of j±, we see that ξθ,β,ν,ε belongs to A. The
corresponding portfolio process is denoted by Xθ,β,ν,ε. The proof of the following
result is given in Sect. 4.2.
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Lemma 2.12 For all θ = (j+, j−, V ) ∈ A0 and for all δ > 0, there exist β > 0,
ν > 0 and ε > 0 such that

E

[ ∫ T

0
(X

θ,β,ν,ε
t − Xθ

t )2 dt

]

≤ δ.

For all ξ ∈ A with
∫ T

0 ξs ds = −x0, we can define V
ξ
t := ∫ t

0 ξs ds to obtain that
(0, 0, V ξ ) ∈ A0 and for all η > 0, we have

J η,∞(ξ) = J 0(0, 0, V ξ ) + η

2
E

[ ∫ T

0
(ξt )

2 dt

]

. (2.15)

The preceding lemma allows us to establish a cost estimate. The proof is given in
Sect. 4.3.

Lemma 2.13 For all C > 0, there exists a constant D(C) > 0 such that for all
θ = (j+, j−, V ) ∈ A0 with E[∫ T

0 (Xθ
t )2 dt] ≤ C and all ξ ∈ A with

∫ T

0 ξs ds = −x0,
we have

|J 0(θ) − J 0(0, 0, V ξ )|

≤ D(C)

(√

E

[ ∫ T

0
(Xθ

t − X
ξ
t )2 dt

]

+ E

[ ∫ T

0
(Xθ

t − X
ξ
t )2 dt

])

.

As a consequence of the previous results, the optimal instantaneous price impact
term converges to zero as η → 0. The proof is given in Sect. 4.4.

Lemma 2.14 We have

lim
η→0

η

2
E

[ ∫ T

0
(ξ̂

η,∞
t )2 dt

]

= 0.

The cost estimate in Lemma 2.13 allows us to establish the optimality of the trad-
ing strategy θ̂ by using the optimality of ξ̂ η,∞ in the strict liquidation model with
absolutely continuous strategies. It turns out that the minimal trading costs are fully
determined by the initial value B0

0 of the process B0 along with the impact factor γ

and the initial portfolio.

Theorem 2.15 It holds that

min
θ∈A0

J 0(θ) = J 0(θ̂) = 1

2
γ (x0)

2B0
0 .

Proof Let us assume to the contrary that θ̂ does not minimise the cost functional J 0

over the set A0. Then there exist a strategy θ = (j+, j−, V ) ∈ A0 and a constant
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δ ∈ (0,∞) such that J 0(θ) + δ ≤ J 0(θ̂ ). Moreover, due to (2.15) and Lemma 2.13,
for all η, β, ν, ε ∈ (0,∞), we have (for convenience, let p(x) := x + √

x)

J η,∞(ξ θ,β,ν,ε) − J η,∞(ξ̂ η,∞)

≤ J η,∞(ξ θ,β,ν,ε) − J 0(θ) + J 0(θ̂) − δ − J 0(0, 0, V ξ̂η,∞
)

≤ −δ + η

2
E

[ ∫ T

0
(ξ

θ,β,ν,ε
t )2 dt

]

+ |J 0(θ) − J 0(0, 0, V ξθ,β,ν,ε

)|

+ |J 0(θ̂) − J 0(0, 0, V ξ̂η,∞
)|

≤ −δ + η

2
E

[ ∫ T

0
(ξ

θ,β,ν,ε
t )2 dt

]

+ D

(

E

[ ∫ T

0
(Xθ

t )2 dt

])

p

(

E

[ ∫ T

0
(Xθ

t − X
θ,β,ν,ε
t )2 dt

])

+ D

(

E

[ ∫ T

0
(Xθ̂

t )2 dt

)]

p

(

E

[ ∫ T

0
(X̂0

t − X̂
η,∞
t )2 dt

])

. (2.16)

According to Lemma 2.12, we can first choose β, ν, ε ∈ (0,∞) and then, due to
|X̂η,∞

t | ≤ x0 (cf. Theorem 2.2), choose η ∈ (0,∞) small enough according to
Theorem 2.7 such that the right-hand side of (2.16) is negative. This contradicts the
optimality of ξ̂ η,∞ for J η,∞ and proves the optimality of θ̂ .

It remains to compute J 0(θ̂ ). In view of (2.15), for all η ∈ (0,∞), we have

J 0(θ̂) = J 0(θ̂ ) − J 0(0, 0, V ξ̂η,∞
) − η

2
E

[ ∫ T

0
(ξ

η,∞
t )2 dt

]

+ J η,∞(ξ̂ η,∞).

The difference of the first two terms converges to zero as η → 0, which is verified by
using Lemma 2.13 and Theorem 2.7 as in the above calculation. The third term con-
verges to zero by Lemma 2.14. Hence, using the representation of the value function
given in [18],

J 0(θ̂) = lim
η→0

J η,∞(ξ̂ η,∞) = lim
η→0

1

2
A

η,∞
0 (x0)

2

= (x0)
2

2
lim
η→0

(
√

ηD
η,∞
0 + γB

η,∞
0 ) = 1

2
γ (x0)

2B0
0 . �

Remark 2.16 If λ ≡ 0, our model is a special case of the model analysed in Acker-
mann et al. [1], which also contains cases when there is no optimal trading strategy.
However, since γ is constant in our model, the processes “μ” and “σ” introduced in
[1] are equal to zero. This implies that the equation “β̃ = Y ” holds in their notation.
As shown in [1, Sect. 5], the process “M⊥” introduced therein is also equal to zero,
which implies that “Y ” and hence “β̃” is a semimartingale. Thus [1, Theorem 2.3 (ii)]
confirms that under this property, an optimal trading strategy does indeed exist.
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3 Proofs for Sect. 2.1

This section proves the results stated in Sect. 2.1. We start with a priori estimates
and regularity properties for the coefficient processes that specify the optimal state
processes.

3.1 A priori estimates and regularity properties

3.1.1 The case η > 0

The following estimates have been established in Graewe and Horst [18] and Horst
and Xia [22], except for the upper bound on Eη,N for finite N which is stronger than
the corresponding one in [22]. It can be established using the same arguments as in
[18, proof of Proposition 3.2] by noting that D

η,N
T < ∞ if N is finite.

Lemma 3.1 Let

κ :=
√

2 max(λ, γ ρ).

For all η ∈ (0,∞), N ∈ N and s, t ∈ [0, T ) with s ≤ t , we have that

e−ρ(T −s) ≤ Bη,N
s ≤ 1,

0 ≤ Eη,N
s ≤ γ −1κ tanh

(√
η−1 κ(T − s)

) ≤ γ −1κ,

0 < Dη,N
s ≤ κ coth

(√
η−1 κ(T − s)

) ≤ κ coth
(√

η−1 κ(T − t)
)
.

The preceding estimates allow us to prove that neither the optimal portfolio
process nor the corresponding spread process change sign.

Proof of Theorem 2.2 Put V (t) := X̂
η,N
t Ŷ

η,N
t . Then V (0) = 0 and V satisfies

the ODE

V̇ (t) = −(√
η−1(D

η,N
t + γE

η,N
t ) + ρt

)
V (t)

−
√

η−1
(
E

η,N
t (Ŷ

η,N
t )2 + γD

η,N
t (X̂

η,N
t )2).

As a result,

V (t) = − exp

(

−
∫ t

0

(√
η−1(Dη,N

u + γEη,N
u ) + ρu

)
du

)

×
∫ t

0

√
η−1

(
Eη,N

s (Ŷ η,N
s )2 + γDη,N

s (X̂η,N
s )2)

× exp

(∫ s

0

(√
η−1(Dη,N

u + γEη,N
u ) + ρu

)
du

)

ds.
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In view of Lemma 3.1, this shows that V (t) < 0 on (0, T ). Hence strict positivity of
X̂

η,N
0 yields

P[X̂η,N
t > 0, Ŷ

η,N
t < 0 for all t ∈ (0, T )] = 1.

Thus the definition of Ẑη,N along with (2.3) yields ∂t Ẑ
η,N
t = ρt Ŷ

η,N
t < 0 on (0, T ).

Moreover,

X̂
η,N
t < γ −1Ẑ

η,N
t ≤ γ −1Ẑ

η,N
0 = x0 and Ŷ

η,N
t > −Ẑ

η,N
t ≥ −γ x0. �

Next, we prove that the process Bη,N satisfies an L1 uniform continuity property.
We refer to Appendix A for a discussion of general regularity properties of stochastic
processes.

Lemma 3.2 The process Bη,N satisfies Condition A.1 stated in Appendix A on [0, T ]
uniformly in N ∈ N and η ∈ (0,H ], for all H ∈ (0,∞).

Proof Let ε, ε1 > 0, s > T − ε1 and let V and τ be arbitrary according to the
definition of Condition A.1. By Lemma 3.1, if ε1 is small enough,

|E[V (Bη,N
τ − Bη,N

s )]| ≤ (
1 − exp(−ρε1)

)
E[|V |] ≤ εE[|V |].

If s ≤ T −ε1, the assertion follows from the integral representation (2.10) along with
the estimates established in Lemma 3.1 by using that the stochastic integral in (2.10)
is a martingale on [0, T − ε1]. We emphasise that Zη,N,B is possibly defined only
on [0, T −], and so the stochastic integral may be a martingale only away from the
terminal time. �

3.1.2 The case η = 0

We are now going to establish a priori estimates on the candidate limiting coeffi-
cient processes. First, we show that Assumption 2.3 directly implies the following
regularity result for the parameter processes.

Lemma 3.3 The processes χ , ρ, λ, ϕ and ϕ−1 satisfy Condition A.2 introduced in
Appendix A.

Proof The process χ satisfies Condition A.2 due to Lemmas A.11, A.4 and A.7. The
rest immediately follows by Lemma A.10. �

We are now ready to prove that the process B0 is well defined.

Proof of Lemma 2.5 The existence result follows from a standard argument. In fact,
it is well known that for any b ∈ [1,∞), the BSDE

−dBb
t = ψb(t, χt , B

b
t ) dt − Zb

t dWt, Bb
T = 1 (3.1)
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with Lipschitz-continuous driver (we recall f λ, f ρ defined in Assumption 2.3)

ψb(t, χ, b) := − 1

f λ(t, χ) + 2γf ρ(t, χ)

×
(

γf ρ(t, χ)2(b
2 ∧ b2) − 2f λ(t, χ)f ρ(t, χ)

(
1 − (b ∧ b)+

)
)

has a unique solution (Bb, Zb) ∈ L2
P (� × [0, T ];R × R

m) (cf. Theorem A.13). Let
us then define the functions φ, φ : � × [0, T ] × R × R

m → R by

φ(t, b, z) := −ϕ−2γ ρ2b, φ(t, b, z) := 0.

By definition, (B0, 0) is the unique solution to the BSDE with driver φ and terminal

condition 1, where the lower bound B0 on the process B0 was defined in (2.8). Like-
wise, (1, 0) is the unique solution of the BSDE with driver φ and the same terminal
condition. Since

ψb(t, χt , B
0
t ) > φ(t, B0

t , 0) and ψb(t, χt , 1) < φ(t, 1, 0),

the standard comparison principle for BSDEs with Lipschitz-continuous drivers yields

B0 ≤ Bb ≤ 1.

This proves that (B1, Z1) is the desired unique bounded solution to the BSDE (2.7).
The second assertion follows Theorem A.13 applied to the BSDE (3.1) for b = 1. �

Having established the existence of the process B0, the processes D0 and E0 are
well defined. The following lemma establishes estimates and regularity properties for
D0 and E0.

Lemma 3.4 We have the a priori estimates

γ ρ

ϕ
exp

(

− γ ρ2

ϕ2 T

)

≤ D0
t ≤ ϕ−1(λ + γ ρ),

ϕ−1ρ ≤ E0
t ≤ 2ϕ−1ρ.

Moreover, the processes D0 and E0 satisfy Condition A.2.

Proof The a priori estimates can be obtained by plugging the bounds on B0 from
Lemma 2.5 into the definitions of D0 and E0 given in (2.9). Moreover, if we denote
by h the function derived from Lemma 2.5, then for all t ∈ [0, T ],

D0
t =

(
f λ + γf ρh

√
f λ + 2γf ρ

)

(t, χt ), E0
t =

(
(2 − h)f ρ

√
f λ + 2γf ρ

)

(t, χt ).
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In view of Assumption 2.3, the processes D0 and E0 can be represented as uniformly
continuous functions of the factor process χ , and hence the assertion follows from
Lemmas 3.3 and A.10. �

The next lemma can be viewed as the analogue to Theorem 2.2 in the case η = 0.

Lemma 3.5 It holds

P[X̂0
t ∈ (0, x0), Ŷ

0
t ∈ (−γ x0, 0) for all t ∈ (0, T )] = 1.

Proof Due to Lemma 3.4, D0 is positive and hence, for t ∈ (0, T ),

0 < Ẑ0
t < x0γ.

Since D0+γE0 = ϕ on [0, T ), it thus follows from Lemma 3.4 that for all t ∈ (0, T ),

0 < X̂0
t = ϕt − D0

t

γ ϕt

Ẑ0
t < γ −1Ẑ0

t < x0,

0 > Ŷ 0
t = −ϕt − γE0

t

ϕt

Ẑ0
t > −Ẑ0

t > −γ x0. �

3.2 Proof of the convergence results

In this section, we prove our main convergence results. We start with the conver-
gence of the coefficients of the ODE system (2.3). Subsequently, we prove that the
convergence of the coefficients yields convergence of the state process.

3.2.1 Proof of Proposition 2.6

The proof of Proposition 2.6 is split into a series of lemmas. In the first step, we
establish the convergence, as η → 0, of the auxiliary processes

F
η,N
t := D

η,N
t + γE

η,N
t −→ F 0 := ϕ

and

Gη,N := ρBη,N + ϕEη,N −→ G0 := ρB0 + ϕE0 = 2ρ.

On [0, T ), the processes Fη,N and Gη,N satisfy the dynamics

dF
η,N
t =

√
η−1

(
(F

η,N
t )2 − (ϕt )

2) dt + 2γρtE
η,N
t dt

+
√

η−1(Z
η,N,A
t − 2γZ

η,N,B
t + γ 2Z

η,N,C
t ) dWt, (3.2)

−d(ϕ−1Gη,N)t =
√

η−1
( − G

η,N
t + 2ρt − E

η,N
t (F

η,N
t − ϕt )

)
dt − 2ρtE

η,N
t dt

− d(ϕ−1ρBη,N)t +
√

η−1(Z
η,N,B
t − γZ

η,N,C
t ) dWt. (3.3)
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A general convergence result for integral equations of the above form is established
in Appendix B.1.2. It allows us to prove the following two results.

Lemma 3.6 Let f η,N := Fη,N − ϕ. For all ε > 0, there exists an η0 > 0 such that
for all η ∈ (0, η0] and all N ∈ N ,

P

[
sup

s∈[0,T −ε]
f η,N

s ≤ ε, inf
s∈[0,T )

f η,N
s ≥ −ε

]
= 1.

Proof For every N ∈ N , we apply Lemma B.4 to P η := Fη,N with

ψ := 1, a(x, y) := (x+)2 − y2, P 0 := ϕ,

qη := 0, L
η
t := 2γ

∫ t

0
ρsE

η,N
s ds,

noticing that ε �→ η0 = η0(ε) is independent of N . Assumption B.3 i) is satisfied
with P := ϕ + 3κ due to Lemma 3.1. If N = ∞, then Assumption B.3 ii) a) is
satisfied due to Theorem 2.1 and the a priori estimates derived in Lemmas 3.1 and
3.4. If N < ∞ and η ≤ ϕ−2, then E

η,N
T = 0 and

f
η,N
T = D

η,N
T + γE

η,N
T − D0

T − γE0
T =

√
η−1(N − γ ) − ϕT ≥

√
η−1 − ϕ ≥ 0,

which shows Assumption B.3 ii) b). Assumption B.3 iii) is trivially satisfied because
qη = 0. Assumption B.3 iv) follows by direct computation using ε := ϕ/2 and
β := ϕ/2. Assumption B.3 v) follows from Lemmas 3.3 and 3.1. �

It is not difficult to show that similar arguments as those used to prove the conver-
gence of f η,N can be applied to −gη,N := −Gη,N + 2ρ. As a result, the intervals
[0, T ) and [0, T − ε] in the statement of the convergence result for gη,N need to be
swapped. We omit the proof of the corresponding next result.

Lemma 3.7 For all ε > 0, there exists an η0 > 0 such that for all η ∈ (0, η0] and all
N ∈ N ,

P

[
sup

s∈[0,T )

gη,N
s ≤ ε, inf

s∈[0,T −ε] g
η,N
s ≥ −ε

]
= 1.

We are now going to prove the almost sure convergence to zero of the process
bη,N := Bη,N − B0. To this end, we first observe that

Dη,N = Fη,N − γEη,N , ϕEη,N = Gη,N − ρBη,N

yields

− Dη,NEη,N = −f η,NEη,N − Gη,N + ρBη,N + γ ϕ−2(Gη,N − ρBη,N)2.
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Plugging this into (2.10) shows that

dB
η,N
t = ( − G

η,N
t − f

η,N
t E

η,N
t + 2ρtB

η,N
t + γ (ϕt )

−2(G
η,N
t − ρtB

η,N
t )2) dt

+ Z
η,N,B
t dWt

on [0, T ). Performing an analogous computation for B0 and subtracting the two
equations yields

db
η,N
t =

(
(b

η,N
t )2γ (ϕt )

−2(ρt )
2 + b

η,N
t

(
2ρt − 2γ (ϕt )

−2ρt (G
0
t − ρtB

0
t )

)

− f
η,N
t E

η,N
t − g

η,N
t

+ γ (ϕt )
−2g

η,N
t

(
g

η,N
t + 2G0

t − ρt (2b
η,N
t + 2B0

t )
))

dt

+ (Z
η,N,B
t − Z

0,B
t ) dWt

on [0, T ). Using that

2ρt − 2γ (ϕt )
−2ρt (G

0
t − ρtB

0
t ) = 2ρt (ϕt )

−1D0
t ,

g
η,N
t + 2G0

t − ρt (2b
η,N
t + 2B0

t ) = −g
η,N
t + 2ϕtE

η,N
t

shows that

db
η,N
t =

(
(b

η,N
t )2γ (ϕt )

−2(ρt )
2 + b

η,N
t 2(ϕt )

−1ρtD
0
t − f

η,N
t E

η,N
t

+ g
η,N
t

( − 1 − γ (ϕt )
−2g

η,N
t + 2γ (ϕt )

−1E
η,N
t

))
dt

+ (Z
η,N,B
t − Z

0,B
t ) dWt

on [0, T ). This BSDE is different from (3.2) and (3.3). We apply Lemma B.2 to prove
the following result.

Lemma 3.8 For all ε > 0, there exists an η0 > 0 such that for all η ∈ (0, η0] and all
N ∈ N ,

P

[
sup

s∈[0,T ]
|bη,N

s | ≤ ε
]

= 1.

Proof For every N ∈ N , we apply Lemma B.2 with

a(t, b) := b2γ (ϕt )
−2(ρt )

2 + b2(ϕt )
−1ρtD

0
t ,

q
η
t := −f

η,N
t E

η,N
t + g

η,N
t

(
2γ (ϕt )

−1E
η,N
t − 1 − γ (ϕt )

−2g
η,N
t

)
.

Assumption B.1 i) follows from the a priori estimates on Bη,N (Lemma 3.1), B0

(Lemma 2.5) and D0 (Lemma 3.4). Assumption B.1 ii) follows from the a priori
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estimates on Bη,N and B0, where the mapping ε �→ δ is independent of N . Assump-
tion B.1 iii) follows from the same estimates and Lemmas 3.6 and 3.7, where the
choice of η1 is independent of N . Assumption B.1 iv) is satisfied because we can
choose ε1 > 0 small enough such that

−ε1γ (ϕ)−1ρ + 2D0 ≥ 0. �

3.2.2 Proof of Theorem 2.7

First we need to prove an auxiliary result:

Lemma 3.9 Let I ⊆ R be a compact interval and Y = (Yt )t∈I a continuous, adapted,
R

d -valued stochastic process. Then the modulus of continuity

sup
s,t∈I,|s−t |≤ν

|Yt − Ys |

converges to 0 in probability as ν → 0.

Proof For all ω ∈ �, Y(ω) is uniformly continuous; hence the modulus of continuity
converges to 0 as ν → 0 P-a.s. This implies convergence in probability. �

Proof of Theorem 2.7 Convergence on compact subintervals of [0, T ) follows from
Theorem B.8 applied to the ODEs

∂t X̂
η,N
t = −

√
η−1F

η,N
t

(

X̂
η,N
t − E

η,N
t

F
η,N
t

Ẑ
η,N
t

)

,

∂t Ẑ
η,N
t = γρt X̂

η,N
t − ρt Ẑ

η,N
t (3.4)

and

X̂0
t = E0

t

ϕt

Ẑ0
t , Ẑ0

t = Ẑ0
0 exp

(∫ t

0

(
γρs

E0
s

ϕs

− ρs

)
ds

)

on [0, T ). In fact, Condition (B.10) follows from Proposition 2.6 and Condition
(B.11) from Theorem 2.2. Finally, D0 > 0 (see Lemma 3.4), from which we de-

duce that x0 >
E0

0
ϕ0

Ẑ0
0. Thus by Theorem B.8, applied once for every N ∈ N and

every ν > 0, there exists for all ν, δ ∈ (0,∞) some η1 = η1(ν, δ) ∈ (0,∞) such that
for all η ∈ (0, η1] and all N ∈ N , the set

M
ν,η,N
0 :=

{
sup

t∈[0,T −ν]
max(|Ẑ0

t − Ẑ
η,N
t |, X̂0

t − X̂
η,N
t ) ≤ ν,

inf
t∈[ν,T −ν](X̂

0
t − X̂

η,N
t ) ≥ −ν

}

satisfies

P[Mν,η,N
0 ] > 1 − δ/2. (3.5)
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Near the terminal time, we cannot use this theorem since the convergence Eη,N

Fη,N → E0

ϕ
holds only on [0, T −]. Instead, we apply increment bounds on intervals of the form
[T − ν, T ] to prove that for all η > 0, N ∈ N and for all sufficiently small

ν ∈ (0, ε/2] and β ∈ (0, ε/3], (3.6)

the set

M
ν,ε,η,N
1 :=

{
inf

t∈[T −ν,T )
(X̂0

t − X̂
η,N
t ) ≥ −ε

}

contains the set M
ν,η,N
0 ∩ M

β,ν

2 ∩ M
ν,η,N
3 , where

M
β,ν

2 :=
{

sup
s,t∈[T −ν,T )

(|ϕs − ϕt | ∨ |E0
s − E0

t | ∨ |X̂0
s − X̂0

t |) ≤ β
}
,

M
ν,η,N
3 :=

{
sup

t∈[T −ν,T )

(
e
η,N
t ∨ (−f

η,N
t )

) ≤ ν
}
.

The probability of the last two events can be made large by Lemma 3.9 and Proposi-
tion 2.6: for all β, δ, ν ∈ (0,∞), there exist ν0(β, δ), η2(ν) ∈ (0,∞) such that

inf
ν≤ν0(β,δ)

P[Mβ,ν

2 ] > 1 − δ/2, inf
η≤η2(ν)

inf
N∈N

P[Mν,η,N
3 ] = 1.

In order to see that Mν,ε,η,N
1 ⊇ M

ν,η,N
0 ∩M

β,ν
2 ∩M

ν,η,N
3 , we assume to the contrary

that there exists

ω ∈ (M
ν,η,N
0 ∩ M

β,ν
2 ∩ M

ν,η,N
3 )\Mν,ε,η,N

1 .

To obtain the desired contradiction, we show that for any such ω, there exists a time
s(ω) ∈ [T − ν, T ) for which we can deduce both nonnegativity and strict negativity
of ∂t X̂

η,N

s(ω)(ω) simultaneously.

We start with the choice of s(ω). Because we have ω /∈ M
ν,ε,η,N
1 , there exists

some t ∈ [T − ν, T ) with X̂
η,N
t (ω) − X̂0

t (ω) > ε. Since ω ∈ M
β,ν
2 and due to (3.6),

this yields that

X̂
η,N
t (ω) > X̂0

T −ν(ω) + 2ε

3
.

Since ω belongs to M
ν,η,N
0 and due to (3.6), this implies that

X̂
η,N
T −ν(ω) < X̂0

T −ν(ω) + 2ε

3
< X̂

η,N
t (ω).

Now we can choose s(ω) ∈ (T − ν, t) minimal with the property that

X̂
η,N

s(ω)(ω) = X̂0
T −ν(ω) + 2ε

3
. (3.7)

Due to the minimality of s(ω), we have ∂t X̂
η,N

s(ω)(ω) ≥ 0.
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We now show that this derivative must also be strictly negative. In fact, due to (3.4),

√
η∂t X̂

η,N

s(ω)
(ω) = −F

η,N

s(ω)
(ω)X̂

η,N

s(ω)
(ω) + E

η,N

s(ω)
(ω)Ẑ

η,N

s(ω)
(ω).

Since Ẑη,N is nonincreasing (Theorem 2.2), using (3.7) again, the right-hand side of
the above equation can be bounded from above by

− ϕT −ν(ω)X̂0
T −ν(ω) + (

ϕT −ν(ω) − ϕs(ω)(ω)
)
X̂0

T −ν(ω) − f
η,N

s(ω)(ω)X̂0
T −ν(ω)

− F
η,N

s(ω)(ω)
2ε

3
+ E0

T −ν(ω)Ẑ0
T −ν(ω) + E0

T −ν(ω)
(
Ẑ

η,N
T −ν(ω) − Ẑ0

T −ν(ω)
)

+ (
E0

s(ω)(ω) − E0
T −ν(ω)

)
Ẑ

η,N
T −ν(ω) + e

η,N

s(ω)(ω)Ẑ
η,N
T −ν(ω).

Since ω ∈ M
ν,η,N
3 , we have F

η,N

s(ω)(ω) = ϕs(ω)(ω)+f
η,N

s(ω)(ω) ≥ ϕ−ν, which is strictly

positive if ν < ϕ. Moreover, we have −ϕX̂0 + E0Ẑ0 = 0 on [0, T ). Because also

ω ∈ M
ν,η,N
0 ∩ M

β,ν

2 ∩ M
ν,η,N
3 and X̂0, E0 and Ẑη,N are bounded, this shows that

∂t X̂
η,N

s(ω)(ω) < 0 if ν and β are chosen small enough. The convergence of Ŷ η,N − Ŷ 0

on [0, T −] follows from

Ŷ η,N − Ŷ 0 = γ (X̂η,N − X̂0) − (Ẑη,N − Ẑ0)

and (3.5). The convergence on [T −, T ] follows from the fact that

sup
s∈[T −ν,T ]

|(Ẑη,N
s − Ẑ0

s ) − (Ẑ
η,N
T −ν − Ẑ0

T −ν)|

can be made arbitrarily small by choosing ν small since ∂t Ẑ
η,N = ρŶ η,N ,

∂t Ẑ
0 = ρŶ 0 and both Ŷ η,N and Ŷ 0 are bounded. �

3.2.3 Proof of Proposition 2.8

The proof of the convergence of the optimal portfolio processes in the Skorohod
M2-sense follows from Theorem 2.7 if strict liquidation is required. If strict liqui-
dation is not required, the results of Sect. 2.2 are required to establish the assertion.
This is not a circular argument since the proofs of Sect. 2.2 only use the results of
Sect. 2.1 concerning the liquidating case N = ∞.

Since θ̂ = (0, ĵ−, V̂ ) is optimal in the model introduced in Sect. 2.2 (cf. Theo-
rem 2.15), it is easy to show that the strategy θ̂ q := (ĵ+,q , ĵ−,q , V̂ q) is admissible
for every q ∈ R, where

V̂
q
t = V̂t + qt,

ĵ
+,q
t − ĵ

−,q
t = −ĵ−

t − 1{T }(t)qT .

The following lemma shows that we can express the cost term corresponding to the
transient price impact without Itô integrals. The proof is an immediate consequence
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of Itô’s formula for semimartingales (see Protter [32, Theorem II.32]) and the fact
that γ 2[V ] is equal to the continuous part of [Y θ ]. We omit it.

Lemma 3.10 For all θ = (j+, j−, V ) ∈ A0 and all t ∈ [0, T ], it holds that

∫

(0,t]
1

2
(Y θ

s− + Y θ
s ) dXθ

s = 1

2γ
(Y θ

t )2 − γ

2
(j+

0 − j−
0 )2 − γ

2
[V ]t + 1

γ

∫ t

0
ρs(Y

θ
s )2 ds.

Using Lemma 3.10, it is not difficult to check that the mapping q �→ J 0(θ̂q) is
differentiable and that

0 = ∂J 0(θ̂q)

∂q

∣
∣
∣
∣
q=0

= E

[

− Ŷ 0
T e− ∫ T

0 ρu du

∫ T

0
tρt e

∫ t
0 ρu du dt +

∫ T

0
2tρt Ŷ

0
t dt

−
∫ T

0
2ρt Ŷ

0
t e− ∫ t

0 ρu du

∫ t

0
sρse

∫ s
0 ρu du ds dt +

∫ T

0
tλt X̂

0
t dt

]

. (3.8)

This allows us to prove that full liquidation is optimal if η → 0 even if it is not
formally required.

Lemma 3.11 We have that limη→0 supN∈N E[X̂η,N
T ] = 0.

Proof We assume to the contrary that lim supη→0 supN∈N E[X̂η,N
T ] > 0 and prove

that this contradicts the optimality of J η,N (ξ̂ η,N ). To this end, we consider the
admissible trading strategies

ξ̂
η,N,q
t := ξ̂

η,N
t + q,

compute the derivative of the function q �→ J η,N (ξ̂ η,N,q) and show that the derivative
at q = 0 does not vanish for small η if

lim sup
η→0

sup
N∈N

E[X̂η,N
T ] > 0.

Obviously, ξ̂ η,N,q ∈ A and

X̂
η,N,q
t := X

ξ̂η,N,q

t = X̂
η,N
t + qt.
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Straightforward computations lead to

0 = ∂J η,N (ξ̂ η,N,q)

∂q

∣
∣
∣
∣
q=0

= E

[

η(X̂
η,N
T − x0) − Ŷ

η,N
T e− ∫ T

0 ρu du

∫ T

0
tρt e

∫ t
0 ρu du dt +

∫ T

0
2tρt Ŷ

η,N
t dt

−
∫ T

0
2ρt Ŷ

η,N
t e− ∫ t

0 ρu du

∫ t

0
sρse

∫ s
0 ρu du ds dt +

∫ T

0
tλt X̂

η,N
t dt

+ (N − γ )T X̂
η,N
T + γ X̂

η,N
T e− ∫ T

0 ρu du

∫ T

0
tρt e

∫ t
0 ρu du dt

]

.

Subtracting (3.8) yields

0 = E

[

− ηx0 + X̂
η,N
T

(
η + (N − γ )T

) +
∫ T

0
2tρt (Ŷ

η,N
t − Ŷ 0

t ) dt

+ (Ẑ
η,N
T − Ẑ0

T )e− ∫ T
0 ρu du

∫ T

0
tρt e

∫ t
0 ρu du dt +

∫ T

0
tλt (X̂

η,N
t − X̂0

t ) dt

−
∫ T

0
2ρt (Ŷ

η,N
t − Ŷ 0

t )e− ∫ t
0 ρu du

∫ t

0
sρse

∫ s
0 ρu du ds dt

]

≥ −ηx0 + (
η + (N − γ )T

)
E[X̂η,N

T ] − T λE

[ ∫ T

0
|X̂η,N

t − X̂0
t | dt

]

− 2(T ρ + ρ2T 2eT ρ)E

[ ∫ T

0
|Ŷ η,N

t − Ŷ 0
t | dt

]

− T 2ρeT ρ
E[|Ẑη,N

T − Ẑ0
T |].

In view of Theorems 2.2 and 2.7, Lemma 3.5 and using

∂t (Ẑ
η,N − Ẑ0) = ρ(Ŷ η,N − Ŷ 0),

the sum of the three last expected values is small uniformly in N if η is small. Hence,
if lim supη→0 supN∈N E[X̂η,N

T ] > 0, then the sum on the right-hand side of the above
inequality is strictly positive when first choosing η0 > 0 small enough and then
choosing (η̃, Ñ) with η̃ ≤ η0 such that

E[X̂η̃,Ñ
T ] ≥ 1

2
lim sup

η→0
sup

N∈N
E[X̂η,N

T ].
�

We are now ready to prove the convergence of X̂η,N to X̂0 in the Skorohod
M2-sense. To this end, we have to bound the distance of each point of any of the
graphs to the other graph. In the inner interval [ε, T − ε], it is enough to consider
X̂η,N − X̂0, which we have bounded by Theorem 2.7.

Proof of Proposition 2.8 To prove that the probability of

dM2(X̂
η,N , X̂0) ≤ ε
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is large for small η > 0, we need to prove that the distance of any point (t, x)

from either G
X̂η,N (ω)

or G
X̂0(ω)

to the respective other graph is small on a set of
large probability. To this end, we fix a small enough ν ∈ (0, ε). If t ∈ [ν, T − ν],
the claim follows directly from Theorem 2.7. For t ∈ [0, ν) ∪ (T − ν, T ], we use
Theorem 2.7 along with the facts that (i) the completed graph of a discontinuous
function contains the line segments joining the values of the function at the points
of discontinuity, (ii) the increments of X̂0 are small in the sense of Lemma 3.9,
and (iii) limη→0 supN∈N E[X̂η,N

T ] = 0 by Lemma 3.11. For instance, consider an
ω ∈ � with

sup
u∈[0,T −ν]

(
X̂0

u(ω) − X̂η,N
u (ω)

) ≤ ν

and assume that (t, x) ∈ G
X̂η,N (ω)

with t < ν and x < X̂0
0(ω) − ν. Since

x = X̂
η,N
t (ω), the mean value theorem yields an s ∈ [0, t] such that X̂0

s (ω) = x + ν,
which proves that (s, x + ν) ∈ G

X̂0(ω)
and

d∞
(
(t, x), (s, x + ν)

) = (t − s) + ν ≤ 2ν. �

4 Proofs for Sect. 2.2

4.1 Proof of Lemma 2.11

In order to prove Lemma 2.11, we first define, for all β, ν ∈ (0,∞) and x ∈ R,

f β,ν(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

−β/ν, x ≤ −β,

x/ν, −β ≤ x ≤ β,

β/ν, x ≥ β.

For any admissible strategy (j+, j−, V ) ∈ A0, there exists a unique pathwise dif-
ferentiable, adapted stochastic process (Ṽ

β,ν
t )t∈[0,T ] such that Ṽ

β,ν
0 = 0 and its time

derivative satisfies

V̇
β,ν
t (ω) = f β,ν

(
Vt (ω) − Ṽ

β,ν
t (ω)

)
.

Now (2.13) can easily be verified by the comparison principle: For all ε > 0 and all
t ∈ [0, T ], we have

f β,ν

(

Vt −
(

max
s∈[0,T ] |Vs | + ε

))

< 0

and hence, for all ε > 0 and t ∈ [0, T ],
Ṽ

β,ν
t ≤ max

s∈[0,T ] |Vs | + ε.

Analogously, we can prove that Ṽ
β,ν
t ≥ − maxs∈[0,T ] |Vs | − ε.
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Now we are going to prove (2.14). For β, ν ∈ (0,∞), let

M :=
{

sup
s,t∈[0,T ],|s−t |≤ν

|Vs − Vt | ≤ β
}
.

In view of Lemma 3.9, it is enough to prove that

|Vt (ω) − Ṽ
β,ν
t (ω)| < 3β

for all ω ∈ M and t ∈ [0, T ]. In order to see this, let us assume to the contrary that
the statement is wrong. Then by continuity, since V0 − Ṽ

β,ν
0 = 0, there exist some

ω ∈ M and t1 ∈ [0, T ] such that

|Vt1(ω) − Ṽ
β,ν
t1

(ω)| = 3β.

We choose the smallest such t1 ∈ [0, T ]. Then for each t ∈ [(t1 − ν)+, t1],
|Vt (ω) − Ṽ

β,ν
t (ω)| ≥ |Vt1(ω) − Ṽ

β,ν
t1

(ω)| − |Vt1(ω) − Vt(ω)|
− |Ṽ β,ν

t1
(ω) − Ṽ

β,ν
t (ω)|

≥ 3β − β − (t1 − t)
β

ν
≥ β.

Since V0 − Ṽ
β,ν

0 = 0, we have t1 > ν. Since V·(ω) − Ṽ
β,ν· (ω) is continuous and has

no roots in [t1 −ν, t1], it does not change sign on this interval. We may hence without
loss of generality assume that Vt1(ω) − Ṽ

β,ν
t1

(ω) = 3β. This implies that

Vt (ω) − Ṽ
β,ν
t (ω) ≥ β

for all t ∈ [t1 − ν, t1]. By definition, for all those t , we have V̇
β,ν
t (ω) = β/ν. This,

however, contradicts the minimality of t1 as V̇
β,ν
s = β/ν and

Vt1−ν(ω) − Ṽ
β,ν
t1−ν(ω) = Vt1−ν(ω) − Vt1(ω) + Vt1(ω) − Ṽ

β,ν
t1

(ω)

+ Ṽ
β,ν
t1

(ω) − Ṽ
β,ν
t1−ν(ω)

≥ −β + 3β +
∫ t1

t1−ν

V̇ β,ν
s ds = 3β.

This finishes the proof of Lemma 2.11. �

4.2 Proof of Lemma 2.12

The proof of Lemma 2.12 requires the following result on the jump processes.

Lemma 4.1 Let (jt )t∈[0,T ] be a [0,∞)-valued, nondecreasing and progressively
measurable stochastic process with E[(jT )2] < ∞. Then (putting jt = 0 for t < 0)

lim
ε→0

E

[ ∫ T

0
(jt − jt−ε)

2 dt

]

= 0.
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Proof First we want to bound
∫ T

0 (jt − jt−ε)
2 dt through a term that depends on

∫ T

0 (jt − jt−2ε)
2 dt and apply this bound inductively. For every ε > 0, we have

∫ T

0
(jt − jt−2ε)

2 dt =
∫ T

0
(jt − jt−ε + jt−ε − jt−2ε)

2 dt

≥
∫ T

0
(jt − jt−ε)

2 dt +
∫ T −ε

0
(jt − jt−ε)

2 dt

= 2
∫ T

0
(jt − jt−ε)

2 dt −
∫ T

T −ε

(jt − jt−ε)
2 dt.

Moreover, jt ≤ jT and jt−ε ≥ jT −ε−ε for t ∈ [T − ε, T ] give

∫ T

T −ε

(jt − jt−ε)
2 dt ≤

∫ T

T −ε

(jT − jT −2ε)
2 dt ≤ ε(jT − jT −2ε)

2.

As a result,

1

ε

∫ T

0
(jt − jt−ε)

2 dt ≤ 1

2ε

∫ T

0
(jt − jt−2ε)

2 dt + 1

2
(jT − jT −2ε)

2.

Hence, inductively, for all ε ∈ (0, T ) and k ∈ {1, 2, . . .}, we have

1

ε

∫ T

0
(jt − jt−ε)

2 dt ≤ 1

2ε

∫ T

0
(jt − jt−2ε)

2 dt + 1

2
(jT − jT −2ε)

2

≤ 1

4ε

∫ T

0
(jt − jt−4ε)

2 dt + 1

4
(jT − jT −4ε)

2

+ 1

2
(jT − jT −2ε)

2

≤ · · ·

≤ 1

2kε

∫ T

0
(jt − jt−2kε)

2 dt +
k∑

�=1

1

2�
(jT )2

≤ 1

2kε

∫ T

0
(jt − jt−2kε)

2 dt + (jT )2.

Hence for all k ∈ N,

E

[ ∫ T

0
(jt − jt−ε)

2 dt

]

≤
(

T

2k
+ ε

)

E[(jT )2].

This shows the desired result. �

We are now ready to prove the approximation of arbitrary portfolio processes by
absolutely continuous ones.
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Proof of Lemma 2.12 By the triangle inequality, for all β, ν, ε > 0,

√

E

[ ∫ T

0
(X

θ,β,ν,ε
t − Xθ

t )2 dt

]

≤
√

E

[ ∫ T

0

( ∫ t

(T −ε)∧t

V̇
β,ν
s ds

)2

dt

]

+
∑

∗∈{+,−}

√

E

[ ∫ T

0

( ∫ (T −ε)∧t

0

1

ε
(j∗

s − j∗
s−ε) ds − j∗

t

)2

dt

]

+
√

E

[ ∫ T

0

(
1

ε

(
t − (T − ε)

)+
X

θ,β,ν,ε
T −ε

)2

dt

]

+
√

E

[ ∫ T

0

( ∫ t

0
V̇

β,ν
s ds − Vt

)2

dt

]

. (4.1)

We analyse the four terms separately. The first can be bounded by

√

E

[ ∫ T

0

( ∫ t

(T −ε)∧t

V̇
β,ν
s ds

)2

dt

]

≤
√

E

[ ∫ T

T −ε

( ∫ t

T −ε

V̇
β,ν
s ds

)2

dt

]

≤ ε
3
2 β

ν
−→ 0 for ε → 0.

Regarding the second term, for all ε < T/2,

∫ (T −ε)∧t

0

1

ε
(j∗

s − j∗
s−ε) ds − j∗

t = −
∫ (T −ε)∧t

((T −ε)∧t)−ε

1

ε
(j∗

t − j∗
s ) ds.
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Using the monotonicity of the jump processes, it follows from Lemma 4.1 that

√

E

[ ∫ T

0

(∫ (T −ε)∧t

0

1

ε
(j∗

s − j∗
s−ε) ds − j∗

t

)2

dt

]

=
√

E

[ ∫ T

0

( ∫ (T −ε)∧t

((T −ε)∧t)−ε

1

ε
(j∗

t − j∗
s ) ds

)2

dt

]

≤ 1

ε

√

E

[ ∫ T

0

( ∫ (T −ε)∧t

((T −ε)∧t)−ε

(j∗
t − j∗

s ) ds

)2

dt

]

=
√

E

[ ∫ T −ε

0
(j∗

t − j∗
t−ε)

2 dt

]

+ E

[ ∫ T

T −ε

(j∗
t − j∗

T −2ε)
2 dt

]

≤
√

E

[ ∫ T

0
(j∗

t − j∗
t−ε)

2 dt

]

+ εE[(j∗
T )2] −→ 0 for ε → 0. (4.2)

For the third term, we conclude from the Itô isometry and the definition of ξθ,β,ν,ε that

√

E

[ ∫ T

0

(
1

ε

(
t − (T − ε)

)+
X

θ,β,ν,ε
T −ε

)2

dt

]

=
√

ε

3
E

[(

x0 +
∫ T −ε

0
ξ

θ,β,ν,ε
s ds

)2]

≤ x0

√
ε

3
+

∑

∗∈{+,−}

√
ε

3
E

[( ∫ T −ε

0

1

ε
(j∗

s − j∗
s−ε) ds

)2]

+
√

ε

3
E

[( ∫ T −ε

0
V̇

β,ν
s ds

)2]

.

Now we can bound

√
ε

3
E

[( ∫ T −ε

0
V̇

β,ν
s ds

)2]

≤ T
β

ν

√
ε

3
−→ 0 for ε → 0.
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Moreover, in view of (4.2),
√

ε

3
E

[( ∫ T −ε

0

1

ε
(j∗

s − j∗
s−ε) ds

)2]

=
√

1

3
E

[ ∫ T

T −ε

( ∫ (T −ε)∧t

0

1

ε
(j∗

s − j∗
s−ε) ds

)2

dt

]

≤
√

1

3
E

[ ∫ T

0

( ∫ (T −ε)∧t

0

1

ε
(j∗

s − j∗
s−ε) ds − j∗

t

)2

dt

]

+
√

1

3
E

[ ∫ T

T −ε

(j∗
t )2 dt

]

≤ 1√
3

√

E

[ ∫ T

0
(j∗

t − j∗
t−ε)

2 dt

]

+ εE[(j∗
T )2] +

√
ε

3
E[(j∗

T )2] −→ 0 for ε → 0.

It remains to consider the fourth term in (4.1). To this end, let

Mβ,ν :=
{

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
V̇ β,ν

s ds − Vt

∣
∣
∣
∣ ≤ 3β

}

.

Then using (2.13) in the last step,
√

E

[ ∫ T

0

( ∫ t

0
V̇

β,ν
s ds − Vt

)2

dt

]

≤
√

E

[ ∫ T

0
1Mβ,ν

( ∫ t

0
V̇

β,ν
s ds − Vt

)2

dt

]

+
√

E

[

1�\Mβ,ν

∫ T

0
(Vt )2 dt

]

+
√

E

[

1�\Mβ,ν

∫ T

0

( ∫ t

0
V̇

β,ν
s ds

)2

dt

]

≤ 3β
√

T +
√

TE

[
1�\Mβ,ν max

t∈[0,T ] |Vt |2
]

+
√

TE

[

1�\Mβ,ν max
t∈[0,T ]

( ∫ t

0
V̇

β,ν
s ds

)2]

≤ 3β
√

T + 2
√

TE

[
1�\Mβ,ν max

t∈[0,T ] |Vt |2
]
.

By (2.12), the single random variable maxt∈[0,T ] |Vt |2 is in L1 and hence uni-
formly integrable. So we can first choose β > 0 small enough, then, according to
Lemma 2.11, choose ν > 0 small enough such that P[�\Mβ,ν] is sufficiently small,
and finally choose ε > 0 small enough in order to obtain the desired result. �

4.3 Proof of Lemma 2.13

We start with a technical lemma.



Optimal trade execution under small market impact 793

Lemma 4.2 Let (M,A, μ) be a measure space and u, v ∈ L2(M). Then

∫

M

|u2 − v2| dμ ≤
∫

M

(u − v)2 dμ + 2

√∫

M

(u − v)2 dμ

∫

M

v2 dμ.

Proof Due to the Hölder and triangle inequalities,

∫

M

|u2 − v2| dμ =
√∫

M

(u − v)2 dμ

√∫

M

(u + v)2 dμ

≤
√∫

M

(u − v)2 dμ

(√∫

M

(u − v)2 dμ +
√∫

M

(2v)2 dμ

)

. �

The following technical lemma provides useful estimates for the impact process.

Lemma 4.3 Let X ∈ L2
P (�×[0, T ];R). Then the transient price impact process YX

given by (2.1) satisfies YX ∈ L2
P (� × [0, T ];R) and

√
E[(YX

T )2] ≤ γ

(

X0 +
√
E[(XT )2] + ρ exp(T ρ)

√

TE

[ ∫ T

0
(Xs)2 ds

])

, (4.3)

√

E

[ ∫ T

0
(YX

t )2 dt

]

≤ γX0
√

T + γ
(
1 + T ρ exp(T ρ)

)
√

E

[ ∫ T

0
(Xt )2 dt

]

. (4.4)

If X0 = 0, then we additionally have for all s, t ∈ [0, T ] with s < t that

√

E

[ ∫ t

s

(YX
u )2 du

]

≤ γ ρ exp(T ρ)

√

(t − s)TE

[ ∫ s

0
(Xu)2 du

]

+ γ
(
1 + ρ exp(T ρ)

√
(t − s)T

)
√

E

[ ∫ t

s

(Xu)2 du

]

. (4.5)

Proof Inequality (4.3) follows from the explicit formula

YX
t = γXt − γ exp

(

−
∫ t

0
ρu du

)(

X0 +
∫ t

0
ρsXs exp

( ∫ s

0
ρu du

)
ds

)

(4.6)
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and the triangle inequality. Moreover,
√

E

[ ∫ T

0
(YX

t )2 dt

]

≤ γ

√

E

[ ∫ T

0
(Xt )2 dt

]

+ γ

√

E

[ ∫ T

0
exp

(

− 2
∫ t

0
ρu du

)(

X0 +
∫ t

0
ρsXs exp

( ∫ s

0
ρu du

)
ds

)2

dt

]

.

(4.7)

Substituting the inequality
√

E

[ ∫ T

0
exp

(

− 2
∫ t

0
ρu du

)(

X0 +
∫ t

0
ρsXs exp

( ∫ s

0
ρu du

)
ds

)2

dt

]

≤
√
E[T (X0)2] + ρ exp(T ρ)

√

TE

[( ∫ T

0
|Xs | ds

)2]

≤ X0
√

T + T ρ exp(T ρ)

√

E

[ ∫ T

0
(Xs)2 ds

]

into (4.7) yields (4.4). To prove (4.5), let X0 = 0. Then due to (4.6),

|YX
u − γXu| ≤ γ ρ exp(T ρ)

∫ u

0
|Xr | dr

for all u ∈ [0, T ] and so

E

[ ∫ t

s

(YX
u − γXu)

2 du

]

≤ (t − s)T γ 2ρ2 exp(2T ρ)E

[ ∫ t

0
(Xu)

2 du

]

.

Using the subadditivity of the square root, we now obtain (4.5) from
√

E

[ ∫ t

s

(YX
u )2 du

]

≤
√

E

[ ∫ t

s

(YX
u − γXu)2 du

]

+
√

E

[ ∫ t

s

(γXu)2 du

]

≤ γ ρ exp(T ρ)

√

(t − s)TE

[ ∫ s

0
(Xu)2 du

]

+ γ ρ exp(T ρ)

√

(t − s)TE

[ ∫ t

s

(Xu)2 du

]

+ γ

√

E

[ ∫ t

s

(Xu)2 du

]

. �



Optimal trade execution under small market impact 795

We are now ready to prove our approximation result for the cost functional.

Proof of Lemma 2.13 For θ = (j+, j−, V ) ∈ A0 and ξ ∈ A,

|J 0(θ) − J 0(0, 0, V ξ )|

≤
∣
∣
∣
∣E

[
γ

2
(j+

0 − j−
0 )2 +

∫

(0,T ]
1

2
(Y θ

t− + Y θ
t ) dXθ

t −
∫ T

0
Y

ξ
t dX

ξ
t + γ

2
[V ]T

]∣
∣
∣
∣

+ λ

2
E

[ ∫ T

0
|(Xθ

t )2 − (X
ξ
t )2| dt

]

.

Due to Lemma 4.2, the last term can be estimated as

E

[ ∫ T

0
|(Xθ

t )2 − (X
ξ
t )2| dt

]

≤ E

[ ∫ T

0
(Xθ

t − X
ξ
t )2 dt

]

+ 2

√

E

[ ∫ T

0
(Xθ

t − X
ξ
t )2 dt

]

E

[ ∫ T

0
(Xθ

t )2 dt

]

.

Moreover, using first Lemma 3.10 and then Lemmas 4.3 and 4.2, we obtain

∣
∣
∣
∣E

[
γ

2
(j+

0 − j−
0 )2 +

∫

(0,T ]
1

2
(Y θ

t− + Y θ
t ) dXθ

t −
∫ T

0
Y

ξ
t dX

ξ
t + γ

2
[V ]T

]∣
∣
∣
∣

=
∣
∣
∣
∣E

[
γ

2
(j+

0 − j−
0 )2 + 1

2γ
(Y θ

T )2 − γ

2
(j+

0 − j−
0 )2 − γ

2
[V ]T + 1

γ

∫ T

0
ρt (Y

θ
t )2 dt

− 1

2γ
(Y

ξ
T )2 − 1

γ

∫ T

0
ρt (Y

ξ
t )2 dt + γ

2
[V ]T

]∣
∣
∣
∣

≤ 1

2γ
E[|(Y θ

T )2 − (Y
ξ
T )2|] + ρ

γ
E

[ ∫ T

0
|(Y θ

t )2 − (Y
ξ
t )2| dt

]

≤
(

1

2
T γ ρ2e2T ρ + ργ (1 + T ρeT ρ)2

)

E

[ ∫ T

0
(Xθ

t − X
ξ
t )2 dt

]

+ √
T γ ρeT ρ

√

E

[ ∫ T

0
(Xθ

t − X
ξ
t )2 dt

](

x0 + ρeT ρ

√

TE

[ ∫ T

0
(Xθ

t )2 dt

])

+ 2ρ
(
1 + T ρeT ρ

)
√

E

[ ∫ T

0
(Xθ

t − X
ξ
t )2 dt

]

×
(

γ x0
√

T + γ (1 + T ρeT ρ)

√

E

[ ∫ T

0
(Xθ

t )2 dt

])

. �
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4.4 Proof of Lemma 2.14

We assume the contrary, i.e., that there exists a constant c > 0 such that for all H > 0,
there exists some η ∈ (0,H) with

η

2
E

[ ∫ T

0
(ξ̂

η,∞
t )2 dt

]

> c. (4.8)

The optimality of ξ̂ η,∞ and (2.15) imply that for all η, ν, β, ε > 0,

0 ≥ J η,∞(ξ̂ η,∞) − J η,∞(ξ θ̂,β,ν,ε)

= η

2
E

[ ∫ T

0
(ξ̂

η,∞
t )2 dt

]

− η

2
E

[ ∫ T

0
(ξ

θ̂,β,ν,ε
t )2 dt

]

+ J 0(0, 0, V ξ̂η,∞
) − J 0(θ̂ ) + J 0(θ̂) − J 0(0, 0, V ξ θ̂,β,ν,ε

). (4.9)

We now prove that (4.8) contradicts (4.9). By Theorem 2.13 and since |X̂0
t | ≤ x0, we

obtain (for convenience, let p(x) := x + √
x)

|J 0(0, 0, V ξ̂η,∞
) − J 0(θ̂)| ≤ D

(
T (x0)

2)p

(

E

[ ∫ T

0
(X̂

η,∞
t − X̂0

t )
2 dt

])

and

|J 0(θ̂ ) − J 0(0, 0, V ξ θ̂,β,ν,ε

)| ≤ D
(
T (x0)

2)p

(

E

[ ∫ T

0
(Xθ̂

t − X
θ̂,β,ν,ε
t )2 dt

])

.

Plugging the results into (4.9) yields that for all η > 0 that satisfy (4.8), we have

0 > c − η

2
E

[ ∫ T

0
(ξ

θ̂,β,ν,ε
t )2 dt

]

− D
(
T (x0)

2)
(

p
(
E

[ ∫ T

0
(X̂

η,∞
t − X̂0

t )
2 dt

])

+ p
(
E

[ ∫ T

0
(Xθ̂

t − X
θ̂,β,ν,ε
t )2 dt

]))

. (4.10)

Due to Lemma 2.12, we can first choose β, ν, ε > 0 sufficiently small to get

D
(
T (x0)

2)p

(

E

[ ∫ T

0
(Xθ̂

t − X
θ̂,β,ν,ε
t )2 dt

])

<
c

2
.

Since |X̂η,∞
t | ≤ x0 (cf. Theorem 2.2) and in view of Theorem 2.7, we can then choose

η > 0 sufficiently small and satisfying (4.8) such that the right-hand side of (4.10) is
larger than zero, which is a contradiction. This finishes the proof of Lemma 2.14.
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Appendix A: Regularity properties of Itô processes and BSDEs

In this appendix, we introduce some regularity properties of stochastic processes,
which we use to prove various convergence results for stochastic processes.

We consider a continuous, adapted, Rd -valued stochastic process Y = (Yt )t∈I on
some interval I (i.e., a convex subset of R) and introduce the following continuity
conditions.

Condition A.1 For all ε ∈ (0,∞), there exists δ ∈ (0,∞) such that for all s ∈ I ,
Fs-measurable and integrable V : � → R and stopping times τ : � → [s, s+δ] ∩ I ,

|E[V (Yτ − Ys)]| ≤ εE[|V |].
Condition A.2 For all ε ∈ (0,∞), there exists δ ∈ (0,∞) such that for all s ∈ I ,

E

[
sup

t∈[s,s+δ]∩I

|Yt − Ys |
∣
∣
∣Fs

]
≤ ε.

Definition A.3 A family of stochastic processes is said to uniformly satisfy Condi-
tion A.1 or A.2 on I if all processes satisfy the respective property and δ can be
chosen uniformly for all processes.

In what follows, we list some auxiliary results.

Lemma A.4 An R
d -valued stochastic process Y = ((Y 1

t , . . . , Y d
t ))t∈I satisfies Con-

dition A.1 (resp. Condition A.2) if and only if all components Y i satisfy Condition A.1
(resp. Condition A.2).

Lemma A.5 Condition A.2 implies Condition A.1.

Proof Due to Lemma A.4, it is enough to consider a real-valued Y . To show the
assertion, we then calculate

|E[V (Yτ − Ys)]| = ∣
∣E

[
VE[Yτ − Ys |Fs]

]∣
∣ ≤ E

[
|V |E[|Yτ − Ys |

∣
∣Fs

]] ≤ E[|V |]ε.
�

Remark A.6 If we want to bound a term of the form |E[1N(Yτ − Ys)]| for some
N ⊆ M ∈ Fs with N /∈ Fs , then Condition A.1 is not enough; in this case, we
need the stronger Condition A.2.

Lemma A.7 Let X = (Xt )t∈I and Y = (Yt )t∈I be continuous, adapted, real-valued
processes which satisfy Condition A.1 (resp. Condition A.2). Then X + Y satisfies
Condition A.1 (resp. Condition A.2).

Theorem A.8 Let X = (Xt )t∈I and Y = (Yt )t∈I be continuous, adapted, essentially
bounded, real-valued processes. Then:

– If X satisfies Condition A.2 and Y satisfies Condition A.1, then XY satisfies
Condition A.1.

– If X and Y both satisfy Condition A.2, then XY also satisfies Condition A.2.
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Proof The second part of the statement can be proved directly via

|XtYt − XsYs | ≤ |Xt ||Yt − Ys | + |Ys ||Xt − Xs |.
The first part of the statement follows from

|E[V (XτYτ − XsYs)]| ≤ |E[V Yτ (Xτ − Xs)]| + |E[V Xs(Yτ − Ys)]|. �

Next, we prove some properties of the concave envelope of the modulus of con-
tinuity of a uniformly continuous function. We use these results to show that a
uniformly continuous function of an Itô process with bounded coefficients satisfies
Condition A.2.

Lemma A.9 Let (X, ‖ ·‖X) be a normed space with a nonempty and convex subset D,
let (Y, dY ) be a metric space, let f : D → Y and for every t ∈ [0,∞), let

ω̃f (t) := sup
x1,x2∈D,‖x1−x2‖X≤t

dY

(
f (x1), f (x2)

)
,

ωf (t) := inf{ψ(t) : ψ : [0,∞) → [0,∞) is concave and ψ ≥ ω̃f }.
Then ω̃f : [0,∞) → [0,∞] is nondecreasing and satisfies ω̃f (0) = 0, and for all
s, t ∈ [0,∞) with s > 0, we have

ω̃f (t) ≤ t + s

s
ω̃f (s). (A.1)

If ω̃f is finite-valued, then ωf takes values in [0,∞), is concave, nondecreasing and
for all x1, x2 ∈ D,

dY

(
f (x1), f (x2)

) ≤ ωf (‖x1 − x2‖X). (A.2)

If f is uniformly continuous, then ω̃f is finite-valued, ω̃f and ωf are continuous in
0 and ωf (0) = 0.

Proof By definition, ω̃f is nondecreasing and satisfies ω̃f (0) = 0. To prove (A.1),
let s, t ∈ [0,∞) with s > 0 and x1, x2 ∈ D with ‖x1 − x2‖X ≤ t . Let N := �t/s�
and

xk := k

N
x1 + N − k

N
x2 for k = 0, . . . , N.

Then xk ∈ D because D is convex and ‖xk − xk+1‖X = 1
N

‖x1 − x2‖X ≤ s. Hence

dY

(
f (x1), f (x2)

) ≤
N−1∑

k=0

dY

(
f (xk), f (xk+1)

)

≤ N max
k

ω̃f (‖xk − xk+1‖X) ≤ (t + s)
ω̃f (s)

s
.
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Having established (A.1), we know that if ω̃f is finite-valued, then it is bounded
above by an affine (hence concave) function. In particular, the concave envelope is
well defined and satisfies (A.2). Concavity and monotonicity of ωf are clear. Finally,
uniform continuity of f implies that ω̃f is finite-valued and continuous in 0. In order
to see ωf (0) = 0 and continuity of ωf in 0, let ε > 0 be arbitrary and let δ > 0
be such that ω̃f (δ) ≤ ε/2. Due to (A.1), ω̃f and hence ωf is bounded above by the
affine and hence concave function t �→ ((t + δ)/δ)(ε/2). In particular, for all t ≤ δ,
we obtain ωf (t) ≤ ε. �

Lemma A.10 Let X = (Xt )t∈I be a continuous, adapted, Rd -valued process which
satisfies Condition A.2 and let f : [0, T ] × R

d → R be uniformly continuous. Then
(f (t, Xt ))t∈[0,T ] also satisfies Condition A.2.

Proof There exists a function ωf with the properties listed by Lemma A.9 (with the
max-norm | · |∞ on [0, T ] × R

d ). Now let δ > 0 be arbitrary. Using (A.2) and the
concavity and monotonicity of ωf , we obtain that

E

[
max

s≤t≤T ∧(s+δ)
|f (t,Xt ) − f (s,Xs)|

∣
∣
∣Fs

]

≤ E

[
max

s≤t≤T ∧(s+δ)
ωf (|t − s| ∨ |Xt − Xs |∞)

∣
∣
∣Fs

]

≤ E

[
ωf

(
δ ∨ max

s≤t≤T ∧(s+δ)
|Xt − Xs |∞

)∣
∣
∣Fs

]

≤ ωf

(
δ + E

[
max

s≤t≤T ∧(s+δ)
|Xt − Xs |∞

∣
∣
∣Fs

])
.

Since ωf is continuous in 0 and X satisfies Condition A.2, we can choose δ > 0
small enough such that this term is not greater than ε. �

Lemma A.11 Let (σ̃t )t∈[0,T ] ∈ L∞
P (�×[0, T ];Rm). Then (

∫ t

0 σ̃u dWu)t∈[0,T ] satisfies
Condition A.2.

Proof Let σ > 0 be a componentwise bound on σ̃ . By Jensen’s inequality,

E

[

max
s≤t≤T ∧(s+δ)

∣
∣
∣

∫ t

s

σ̃u dWu

∣
∣
∣

∣
∣
∣
∣Fs

]

≤
√

E

[

max
s≤t≤T ∧(s+δ)

∣
∣
∣

∫ t

s

σ̃u dWu

∣
∣
∣
2
∣
∣
∣
∣Fs

]

.

In order to prove that the conditional expectation on the right-hand side is bounded,
we apply the classical Doob maximal inequality for the conditional measures with
respect to all sets A ∈ Fs with positive probability and obtain

√

E

[

max
s≤t≤T ∧(s+δ)

∣
∣
∣

∫ t

s

σ̃u dWu

∣
∣
∣
2
∣
∣
∣
∣Fs

]

≤ 2

√

E

[∣
∣
∣

∫ T ∧(s+δ)

s

σ̃u dWu

∣
∣
∣
2
∣
∣
∣
∣Fs

]

.
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Then by combining these inequalities and using the Itô isometry for conditional
expectations, we finally obtain

E

[

max
s≤t≤T ∧(s+δ)

∣
∣
∣

∫ t

s

σ̃u dWu

∣
∣
∣

∣
∣
∣
∣Fs

]

≤ 2

√

mE

[ ∫ T ∧(s+δ)

s

mσ 2 du

∣
∣
∣
∣Fs

]

≤ 2mσ
√

δ.

�

Remark A.12 Obviously, we have the same result for the drift part of an Itô process,
i.e., if μ̃ ∈ L∞

Prog(� × [0, T ];Rm), then (
∫ t

0 μ̃u du)t∈[0,T ] satisfies Condition A.2.
However, we cannot expect the weaker Condition A.1 under weaker integrability
assumptions, as the following example shows. Take T = 2, μ̃u := 1[1,2](u)|W1|,
ε := 1, δ ∈ (0, 1) arbitrary and s := 1, τ := 1 + δ, V := 1{δ|W1|>1}. Then

|E[V ∫ 1+δ

1 μ̃u du]|
E[|V |] = E[1{δ|W1|>1}δ|W1|]|

E[1{δ|W1|>1}] > 1.

Finally, we prove that the strong Condition A.2 holds for a certain class of BSDEs
driven by forward SDEs. Specifically, we prove that the solution to the BSDE can
be expressed as a uniformly continuous function of the forward process and then
we apply Lemma A.10. The representation of the solution in terms of a continuous
function has already been proved by El Karoui [12].

For all (t, x) ∈ [0, T ] × R
n, we consider on [t, T ] the SDE

dXt,x
s = μ̃(s,Xt,x

s ) ds + σ̃ (s, Xt,x
s ) dWs, X

t,x
t = x,

where μ̃, σ̃ : [0, T ]×R
n → R

n ×R
n×m are measurable and bounded and satisfy the

Lipschitz condition

|(μ̃, σ̃ )(t, x1) − (μ̃, σ̃ )(t, x2)| ≤ L|x1 − x2|.
By the previous results, we obtain that Xt,x satisfies Condition A.2. Standard compu-
tations show that there exists a constant C ∈ (0,∞) such that for all t ∈ [0, T ] and
x1, x2 ∈ R

n,

E

[
sup

s∈[t,T ]
|Xt,x1

s − Xt,x2
s |2

]
≤ C|x1 − x2|2. (A.3)

Theorem A.13 Let � : Rn → R be bounded, ψ : [0, T ] × R
n × R → R continuous

and bounded and let both functions satisfy the Lipschitz condition

|�(x1) − �(x2)| + |ψ(t, x1, y1) − ψ(t, x2, y2)| ≤ L(|x1 − x2| + |y1 − y2|).
For (t, x) ∈ [0, T ] × R

n, let (Y t,x, Zt,x) ∈ L2
P (� × [0, T ];R × R

m) be the unique
solution to the BSDE on [t, T ] given by

−dY t,x
s = ψ(s,Xt,x

s , Y t,x
s ) ds − Zt,x

s dWs, Y
t,x
T = �(X

t,x
T )



Optimal trade execution under small market impact 801

driven by the forward process Xt,x (Y t,x exists due to [12, Theorem 2.1]). Then there
exists a uniformly continuous function h : [0, T ] × R

n → R, which does not depend
on (t, x), such that

P
[
h(s,Xt,x

s ) = Y t,x
s for all s ∈ [t, T ]] = 1. (A.4)

In particular, the process Y t,x satisfies Condition A.2 on [t, T ].
Proof By [12, Theorem 3.4] and the remark following it, there exists a decoupling
field h : [0, T ] × R

n → R that is 1/2-Hölder continuous in t and locally Lipschitz-
continuous in x such that (A.4) holds. It therefore remains to prove the uniform
continuity of h. Since

h(t, x) = E

[

�(X
t,x
T ) +

∫ T

t

ψ
(
u,Xt,x

u , h(u,Xt,x
u )

)
du

]

,

we see that h is bounded, say |h| ≤ h. Then

ω̃h(s, δ) := sup
|x1−x2|≤δ

|h(s, x1) − h(s, x2)|

is finite-valued, and Lemma A.9 therefore allows us to define its concave envelope
ωh(s, · ) : [0,∞) → [0,∞).

Using the Lipschitz-continuity of ψ , we obtain for all x1, x2 ∈ R
n and t ∈ [0, T ]

that

|h(t, x1) − h(t, x2)|
≤ LE[|Xt,x1

T − X
t,x2
T |]

+ L

∫ T

t

(
E[|Xt,x1

u − Xt,x2
u |] + E[ω̃h(u, |Xt,x1

u − Xt,x2
u |)]) du.

Using (A.3) along with Lemma A.9, if |x1 − x2| ≤ δ, then

E[|Xt,x1
T − X

t,x2
T |] ≤ Cδ

and

E[ω̃h(u, |Xt,x1
u − Xt,x2

u |)] ≤ ωh(u,E[|Xt,x1
u − Xt,x2

u |]) ≤ ωh(u,Cδ)

for some constant C ∈ (0,∞) that depends only on μ̃, σ̃ and L. In view of (A.1),

ωh(u,Cδ) ≤ (C + 1)ω̃h(u, δ).

This shows that

ω̃h(t, δ) ≤ LCδ + L

∫ T

t

(
Cδ + (C + 1)ω̃h(u, δ)

)
du

= LCδ(1 + T − t) + L(C + 1)

∫ T

t

ω̃h(u, δ) du.
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Hence Gronwall’s inequality implies that h is uniformly Lipschitz-continuous in the
second variable. Since h is uniformly 1/2-Hölder-continuous in the first variable, this
proves the assertion. �

Appendix B: Convergence results for SDEs and random ODEs

In this appendix, we establish three convergence results for stochastic integral equa-
tions that are useful to establish the convergence of our coefficient and state pro-
cesses. In Sect. B.1, we consider sequences of SDEs parametrised by η → 0 with
“positive feedback”, i.e., sequences of equations that are driven away from their lim-
its. In Sect. B.2, we consider sequences of random ODE systems parametrised by
η → 0 with “negative feedback”, which are driven towards their limit.

For equations with positive feedback, we require a priori information about the
terminal value and the increments of the coefficient processes to be bounded indepen-
dently of their past (see Conditions A.1 and A.2). These bounds prevent the stochastic
process from reaching its terminal value if a large difference between the limit and the
pre-limit occurs at some time s ∈ (0, T ). This will imply a.s. uniform convergence.
An almost sure statement under negative feedback cannot be expected. Instead, we
follow a pathwise approach and establish uniform convergence in probability.

B.1 SDEs with positive feedback

B.1.1 An equation without scaling

We first consider a family of real-valued, adapted, continuous stochastic processes
bη = (b

η
t )t∈(0,T ) that satisfy the integral equation

db
η
t = (

a(t, b
η
t ) + q

η
t

)
dt + Z

η

t dWt on (0, T ), (B.1)

where a : � × (0, T ) × R → R is adapted and continuous and (q
η
t )t∈(0,T ) is an

adapted, real-valued, continuous stochastic process and

(Z
η

t )t∈(0,T ) ∈ L2
Prog

(
� × (0, T −];Rm

)
.

Our goal is to prove that the processes (b
η
t )t∈(0,T ) with terminal conditions b

η
T = 0

converge to 0 as η → 0 uniformly on (0, T ) if the process qη does and if the map-
ping a is such that bη is driven away from 0. Intuitively, the last condition makes it
impossible for bη to return to 0 at the terminal time once it has left a neighbourhood
of 0. Specifically, we assume that the following assumption is satisfied.

Assumption B.1 i) There exists a real constant a > 0 such that

sup
t∈(0,T )

sup
η>0

|a(t, b
η
t )| ≤ a.

ii) For all ε > 0, there exists a δ > 0 such that for all η > 0,

P

[
sup

t∈[T −δ,T )

|bη
t | ≤ ε

]
= 1.
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iii) There exists a function η1 : (0,∞) → (0,∞) such that for all ε > 0 and
η ≤ η1(ε),

P

[
sup

t∈(0,T −ε]
|qη

t | ≤ ε
]

= 1.

iv) There exists an ε1 > 0 such that

inf
t∈(0,T )

inf
b∈[−ε1,ε1]

ba(t, b) ≥ 0.

Lemma B.2 Under Assumption B.1, there exists a function η0 : (0,∞) → (0,∞),
which depends only on η1 and the mapping ε �→ δ introduced in Assumption B.1 ii),
such that for all ε > 0 and all η ∈ (0, η0(ε)],

P

[
sup

s∈(0,T )

∣
∣bη

s

∣
∣ ≤ ε

]
= 1.

Proof Let ε ∈ (0, ε1]. In the first step, we show that there exists an η0(ε) > 0 such
that

σε,η := inf{t ∈ (0, T ) : P[bη
s < −ε] = 0 for all s ∈ [t, T )}

satisfies σε,η = 0 for all η ∈ (0, η0(ε)]. Since bη is continuous, this will imply that
for all η ∈ (0, η0(ε)],

P

[
inf

s∈(0,T )
bη
s ≥ −ε

]
= 1.

The other part of the statement can be proved analogously.
We now assume to the contrary that 0 < σε,η and prove that this leads to a con-

tradiction if η is small enough. For all s ∈ (0, T ) and η ∈ (0,∞), we can define the
stopping time

τ s := τ s,ε,η := inf{u ∈ [s, T ) : bη
u = −ε/2}.

By Assumption B.1 ii), there exists a small enough δ > 0 such that for all s ∈ (0, T )

and η ∈ (0,∞),

P[bη
s < −ε, τ s > T − δ] = 0. (B.2)

Since τ s is a stopping time, the square-integrability of Z
η
, the optional sampling

theorem and Assumption B.1 i), iv), (B.1) and (B.2) yield that for all s ∈ (0, σ ε,η)

and η ∈ (0,∞),

ε

2
P[bη

s < −ε] ≤ E[1{bη
s <−ε}(b

η
τs − bη

s )]

= E

[

1{bη
s <−ε}

( ∫ τ s∧σε,η

s

a(t, b
η
t ) dt

+
∫ τ s

τ s∧σε,η

a(t, b
η
t ) dt +

∫ τ s

s

q
η
t dt

)]

.
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Inside the second integral, if σε,η < τs , we have b
η
t ∈ [−ε,−ε/2]. Hence

ε

2
P[bη

s < −ε] ≤ P[bη
s < −ε]

(
(σ ε,η − s)a + T sup

t∈[0,T −δ]
|qη

t |
)
. (B.3)

The assumption 0 < σε,η implies that for any α > 0, we can find

σε,η − α ≤ s ≤ σε,η

with P[bη
s < −ε] > 0. However, due to Assumption B.1 ii) and iii), we can choose

α ≤ ε/(5a), δ ≤ ε/(5T ) and η0(ε) < η1(δ) such that (B.3) leads to a contradiction
because P[bη

s < −ε] > 0. This implies 0 = σε,η. �

B.1.2 An equation with scaling

In this section, we establish an abstract convergence result for stochastic processes
(P

η
t )t∈(0,T ) indexed by some parameter η > 0 that satisfy the integral equation

d(ψP η)t =
√

η−1
(
a(P

η
t , P 0

t ) + q
η
t

)
dt + dL

η
t + Z

η

t dWt on (0, T ), (B.4)

where a : R2 → R is a measurable mapping, (ψt )t∈(0,T ), (P
η
t )t∈(0,T ), (P 0

t )t∈(0,T ),
(q

η
t )t∈(0,T ) and (L

η
t )t∈(0,T ) are adapted, real-valued, continuous stochastic processes

and

(Z
η

t )t∈(0,T ) ∈ L2
Prog

(
� × (0, T −];Rm

)
.

Our goal is to prove that the processes P η converge to P 0 as η → 0 uniformly
on compact subintervals of (0, T ) if the mapping a is such that P η is driven away
from P 0 and if the boundary condition limt→T (P

η
t − P 0

t ) ≥ 0 holds. If the integral
equation (B.4) holds on the whole interval (0, T ], then it is enough to assume that
P

η
T ≥ P 0

T . When applying the abstract convergence result to the BSDEs (3.2) and
(3.3), the former condition holds if N = ∞, while the latter holds if N is finite.

Assumption B.3 i) There exist positive constants ψ , ψ , P such that ψ ≤ ψ ≤ ψ ,

|P 0| ≤ P and P η ≥ −P . Moreover, there exists a function η1 : (0,∞) → (0,∞)

such that

P η|�×(0,T −ε] ≤ P for all ε > 0 and η ≤ η1(ε).

ii) One of the following two “boundary conditions” holds:
a) For all η > 0, there exists a Tη < T such that

P

[
inf

Tη≤t<T
(P

η
t − P 0

t ) ≥ 0
]

= 1.

b) The integral equation (B.4) holds on the whole interval (0, T ] and P
η
T ≥ P 0

T .
Thus in particular, the processes ψ , P η, P 0, qη and Lη are continuous on (0, T ] and
Z

η ∈ L2
Prog(� × (0, T ];Rm).
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iii) There exists a function η2 : (0,∞) → (0,∞) such that for all ε > 0 and all
η ∈ (0, η2(ε)],

P

[
inf

t∈(0,T −ε] q
η
t ≥ −ε, sup

t∈(0,T )

q
η
t ≤ ε

]
= 1.

iv) The function a : R2 → R is nondecreasing and differentiable in the first
variable and a(P 0

t (ω), P 0
t (ω)) ≡ 0. Moreover, there exist ε, β > 0 such that

∂

∂x
a
(
x, P 0

t (ω)
) ≥ β for all |x − P 0

t (ω)| ≤ ε.

v) The processes ψ and P 0 satisfy Condition A.2, and the processes Lη (η > 0)

satisfy Condition A.1 uniformly in η > 0.

Lemma B.4 Under Assumption B.3, there exists a mapping η0 : (0,∞) → (0,∞)

that depends only on ψ , P , η1, η2, P 0, ε, β and the mapping ε �→ δ corresponding
to the uniform satisfaction of Condition A.1 by (Lη)η>0 such that for all ε > 0 and
η ∈ (0, η0(ε)],

P

[
sup

s∈(0,T −ε]
(P η

s − P 0
s ) ≤ ε, inf

s∈(0,T )
(P η

s − P 0
s ) ≥ −ε

]
= 1.

Proof Let pη := P η −P 0 and fix ε ∈ (0, ε]. We first show that there exists η0(ε) > 0
such that

sup
η≤η0(ε)

sup
s∈(0,T −ε]

P[pη
s > ε] = 0. (B.5)

Since pη is continuous, this proves that, for all η ≤ η0(ε),

P

[
sup

s∈(0,T −ε]
pη

s ≤ ε
]

= 1.

To show (B.5), we fix δ ≤ ε/2 and s ∈ (0, T − ε]. For all η > 0, we define the
stopping time

τη := (s + δ) ∧ inf{u ∈ [s, T ) : |pη
u| = ε/2} ≤ T − ε

2
.

The L2-integrability of Z
η

on [s, T − ε/2] and the optional sampling theorem give

0 = E

[

1{pη
s >ε}

(√
η−1

∫ τη

s

(
a(P η

u , P 0
u ) + qη

u

)
du + L

η
τη − Lη

s

+ ψsP
0
s − ψτηP 0

τη + ψsp
η
s − ψτηp

η
τη

)]

. (B.6)

We now analyse the various terms in (B.6) separately to deduce that P[pη
s > ε] = 0

if

η ≤ η0(ε) := min
(
η1(ε/2), η2

(
min(δ, βε/4)

))
.



806 U. Horst, E. Kivman

We first consider the term

E

[

1{pη
s >ε}

√
η−1

∫ τη

s

(
a(P η

u , P 0
u ) + qη

u

)
du

]

.

On {pη
s > ε}, we have p

η
u ≥ ε/2 for all u ∈ [s, τ η] and hence

a(P η
u , P 0

u ) = a(P 0
u + pη

u, P 0
u ) ≥ a(P 0

u + ε/2, P 0
u ) ≥ βε

2
. (B.7)

Together with our assumption on the process qη and our choice of η, this implies by
using (B.7) and q

η
u≥ −βε/4 that

E

[

1{pη
s >ε}

√
η−1

∫ τη

s

(
a(P η

u , P 0
u ) + qη

u

)
du

]

≥ E

[

1{pη
s >ε}

√
η−1(τ η − s)

βε

4

]

≥ δ

√
η−1 βε

4
P[pη

s > ε and τη = s + δ].

By Assumption B.3 v), Lemma A.5 and Theorem A.8, we can choose for any ε0 > 0
some δ > 0, which does not depend on η, such that

|E[1{pη
s >ε}(Yτη − Ys)]| ≤ ε0P[pη

s > ε] for Y = ψP 0, Lη (B.8)

and

E
[|ψτη − ψs |

∣
∣Fs

] ≤ ε0.

Using (B.8), the fact that P η|�×(0,T −ε] ≤ P by Assumption B.3 i) and p
η
τη ≤ 2P

yields

E[1{pη
s >ε}(ψsp

η
s − ψτηp

η
τη )] ≥ E

[
1{pη

s >ε and τη<s+δ}
(
ψsε/2 + (ψs − ψτη)ε/2

)]

+ E[1{pη
s >ε and τη=s+δ}(ψsε − ψτηp

η
τη )]

≥ ε

2
ψP[pη

s > ε and τη < s + δ] − εε0

2
P[pη

s > ε]
+ (εψ − 2ψ P)P[pη

s > ε and τη = s + δ].
Altogether this yields

0 ≥ P[pη
s > ε and τη = s + δ]

(

δ

√
η0(ε)−1 βε

4
− 2ε0 − εε0

2
+ εψ − 2ψ P

)

+ P[pη
s > ε and τη < s + δ]

(

− 2ε0 + ε

2
ψ − εε0

2

)

. (B.9)

Now if we choose first ε0 and then η0(ε) small enough, the coefficients that multiply
the probabilities in (B.9) become positive. Hence both probabilities must be equal to
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zero, and so we have P[pη
s > ε] = 0 if η ≤ η0(ε). Analogously, we can prove that

P[pη
s < −ε] = 0 for all s ∈ (0, T ). The main difference is that τη < T − δ does not

hold on the set {pη
s < −ε}. Instead, we only obtain τη < T (if Assumption B.3 ii) b)

holds) or τη < Tη (if Assumption B.3 ii) a) holds). �

B.2 ODE systems with negative feedback

In this section, we establish a convergence result for ODEs with random coeffi-
cients and a “nearly singular” driver. Specifically, we consider pairs of continuously
differentiable stochastic processes (Xη, Zη) which satisfy the ODE system

Ẋ
η
t = −A

η
t (X

η
t + B

η
t Z

η
t ), X

η
0 = x0,

Ż
η
t = CtX

η
t + DtZ

η
t , Z

η
0 = z0

on some time interval [0, S] for all η > 0, where Aη, Bη, C and D are continuous,
adapted, real-valued stochastic processes. We assume that the process Aη converges
in probability to infinity as η → 0, that the process Bη converges to a process B0 in
probability and that the processes (Xη, Zη) are uniformly bounded in probability.

Assumption B.5 There exists a continuous adapted process B0 such that for all
ε, δ ∈ (0,∞), there exists some η0 = η0(ε, δ) > 0 such that for all η ∈ (0, η0],

P

[

inf
t∈[0,S] A

η
t ≥ 1

ε
, sup
t∈[0,S]

|Bη
t − B0

t | ≤ ε

]

≥ 1 − δ. (B.10)

Moreover, for all δ ∈ (0, 1), there exists an L > 0 such that for all η > 0,

P

[
sup

t∈[0,S]
(|Xη

t | + |Zη
t |) ≤ L

]
≥ 1 − δ. (B.11)

In terms of the process B0, we define

X0
t := −B0

t Z0
t ,

Z0
t := z0 exp

( ∫ t

0
(−CsB

0
s + Ds) ds

)

.

Our goal is to prove that (Xη, Zη) → (X0, Z0) in a suitable sense as η → 0. Since
the initial condition of the processes Xη does not vary with η and since A

η
0 ↑ ∞, we

cannot expect convergence in t = 0. Instead, we first prove that Ẋη

Aη converges to 0 on
any compact subinterval of (0, S], with lower, respectively upper convergence near
the origin. More precisely, we have the following result.

Lemma B.6 If Assumption B.5 holds and if x0 +B0
0z0 > 0, then for all ε, δ ∈ (0,∞),

there exists η1 = η1(ε, δ) > 0 such that for all η ∈ (0, η1],

P

[

sup
t∈[0,S]

Ẋ
η
t

A
η
t

≤ ε, inf
t∈[ε,S]

Ẋ
η
t

A
η
t

≥ −ε

]

≥ 1 − δ.
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If x0 + B0
0z0 < 0, then the intervals [0, S] and [ε, S] in the above statement are to

be swapped. The mapping η1 depends only on B0, C, D, x0, z0 and the mappings
(ε, δ) �→ η0(ε, δ) and δ �→ L introduced in Assumption B.5.

Proof Let y0 := x0 + B0
0z0. We assume without loss of generality that y0 > 0. Then

there exists α0 > 0 such that

y0 − α|z0| > 0 for all α ≤ α0.

Let us now put

ML,η :=
{

sup
t∈[0,S]

(|B0
t | + |Ct | + |Dt | + |Xη

t | + |Zη
t |) ≤ L

}
,

Mα,η :=
{

inf
t∈[0,S] A

η ≥ 1

α
, sup
t∈[0,S]

|Bη
t − B0

t | ≤ α

}

,

Mβ,ν :=
{

sup
s,t∈[0,S],|s−t |≤ν

|B0
s − B0

t | ≤ β
}
.

Due to Assumption B.5 and Lemma 3.9, for all δ > 0, β > 0 and α ≤ α0, there exist
constants L0(δ), η0(α, δ) and ν0(β, δ) such that

inf
L≥L0

inf
η
P[ML,η] ≥ 1 − δ

6
, inf

η≤η0
P[Mα,η] ≥ 1 − δ

6
, inf

ν≤ν0
P[Mβ,ν] ≥ 1 − δ

6
.

Moreover, for all α ≤ α0 and P-a.a. ω ∈ Mα,η,

Ẋ
η
0(ω) ≤ −A

η
0(ω)

(
y0 − |Bη

0 (ω) − B0
0 (ω)||z0|

) ≤ − 1

α
(y0 − α|z0|) < 0. (B.12)

We are now ready to prove that for all ε, δ > 0, there exists η1 > 0 such that for
all η ≤ η1,

P

[

sup
t∈[0,S]

Ẋ
η
t

A
η
t

≤ ε

]

≥ 1 − δ

2
. (B.13)

To this end, we take an ω ∈ ML,η ∩ Mα,η ∩ Mβ,ν where (B.12) holds and assume

that there exists some t ∈ [0, S] such that Ẋ
η
t (ω)

A
η
t (ω)

≥ ε. It is enough to show that such

a t cannot exist for L large and α, β, ν, η small enough. Since Ẋη(ω)
Aη(ω)

is continuous

and
Ẋ

η
0 (ω)

A
η
0(ω)

< 0 if α ≤ α0, we can choose a minimal t ∈ [0, S] with the property that

Ẋ
η
t (ω)

A
η
t (ω)

= ε. Let

s := sup

{

u ∈ (0, t) : Ẋ
η
u(ω)

A
η
u(ω)

= ε/2

}

.
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Then Ẋ
η
s (ω)

A
η
s (ω)

= ε
2 and Ẋ

η
u(ω)

A
η
u(ω)

> ε
2 for all u ∈ (s, t]. We now distinguish two cases. If

t − s ≥ ν, then the fact that ω ∈ ML,η ∩ Mα,η yields

2L ≥ X
η
t (ω) − Xη

s (ω) =
∫ t

s

Ẋ
η
u(ω)

A
η
u(ω)

Aη
u(ω) du ≥ νε

2α
. (B.14)

If t − s < ν, we have

ε

2
= Ẋ

η
t (ω)

A
η
t (ω)

− Ẋ
η
s (ω)

A
η
s (ω)

= −X
η
t (ω) − B

η
t (ω)Z

η
t (ω) + Xη

s (ω) + Bη
s (ω)Zη

s (ω).

Using that ω ∈ Mα,η yields −X
η
t (ω) + X

η
s (ω) = − ∫ t

s
Ẋ

η
u(ω)

A
η
u(ω)

A
η
u(ω) du < 0. Using

that ω ∈ ML,η ∩ Mβ,ν yields

ε

2
≤ −B

η
t (ω)

∫ t

s

Żη
u(ω) du − Zη

s (ω)
(
B

η
t (ω) − Bη

s (ω)
)

≤ 2L2ν
(|B0

t (ω)| + |Bη
t (ω) − B0

t (ω)|)

+ L
(|Bη

t (ω) − B0
t (ω)| + |B0

t (ω) − B0
s (ω)| + |B0

s (ω) − Bη
s (ω)|)

≤ 2L2ν(L + α) + L(2α + β). (B.15)

Now we first choose L ≥ L0(δ), then β > 0 such that 3Lβ < ε
4 , then ν ≤ ν0(β, δ)

such that 2L2ν(L + α0) < ε
4 , then α ≤ α0 such that νε

2α
> 2L and α ≤ β, and finally

η1(ε, δ) ≤ η0(α, δ). Then both (B.14) and (B.15) are violated. As a result,

ML,η ∩ Mα,η ∩ Mβ,ν ⊆
{

sup
t∈[0,S]

Ẋ
η
t

A
η
t

≤ ε

}

,

and hence (B.13) holds.
It remains to prove that for suitably chosen parameters,

ML,η ∩ Mα,η ∩ Mβ,ν ⊆
{

inf
t∈[ε,S]

Ẋ
η
t

A
η
t

≥ −ε

}

.

To this end, we fix ω ∈ ML,η ∩ Mα,η ∩ Mβ,ν and assume that there exists a minimal

t ∈ [ε, S] such that Ẋ
η
t (ω)

A
η
t (ω)

≤ −ε. Using that ω ∈ ML,η ∩ Mα,η, it is straightfor-

ward to show that for all sufficiently small α, there exists an r ∈ [0, ε] such that
Ẋ

η
r (ω)

A
η
r (ω)

≥ −ε/2. Hence we can define

s := sup

{

u ∈ [0, t) : Ẋ
η
u(ω)

A
η
u(ω)

= −ε/2

}

.
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Then 0 ≤ s < t and Ẋ
η
u(ω)

A
η
u(ω)

∈ [−ε,−ε/2] for all u ∈ [s, t]. We can now use the same

arguments as in the first step to conclude that

P

[

inf
t∈[ε,S]

Ẋ
η
t

A
η
t

≥ −ε

]

≥ 1 − δ

2
. (B.16)

Combining (B.13) and (B.16) yields the desired result. �

Lemma B.7 Let Assumption B.5 be satisfied and let x0 + B0
0z0 �= 0. Then for all

ε, δ ∈ (0,∞), there exists η2 = η2(ε, δ) > 0 such that for all η ∈ (0, η2],

P

[
sup

t∈[0,S]
|Zη

t − Z0
t | ≤ ε

]
≥ 1 − δ.

The mapping η2 depends only on B0, C, D, x0, z0 and the mappings (ε, δ) �→ η0(ε, δ)

and δ �→ L introduced in Assumption B.5.

Proof Since

Z
η
t − Z0

t = exp

( ∫ t

0
(Du − Bη

uCu) du

)

×
∫ t

0
exp

(

−
∫ s

0
(Du − Bη

uCu) du

)(

(B0
s − Bη

s )CsZ
0
s − Cs

Ẋ
η
s

A
η
s

)

ds,

the assertion follows from Assumption B.5 and Lemma B.6. �

The next theorem follows by Assumption B.5 and Lemmas B.6 and B.7.

Theorem B.8 If Assumption B.5 holds and x0 + B0
0z0 > 0, then for all ε, δ ∈ (0,∞),

there exists η3 = η3(ε, δ) > 0 such that for all η ∈ (0, η3],

P

[
sup

t∈[0,S]
max(|Z0

t − Z
η
t |, X0

t − X
η
t ) ≤ ε, inf

t∈[ε,S](X
0
t − X

η
t ) ≥ −ε

]
≥ 1 − δ.

If x0 + B0
0z0 < 0, then the intervals [0, S] and [ε, S] in the statement are to be

swapped. The mapping η3 depends only on B0, C, D, x0, z0 and the mappings
(ε, δ) �→ η0(ε, δ) and δ �→ L introduced in Assumption B.5.
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