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Abstract
We start with a stochastic control problem where the control process is of finite varia-
tion (possibly with jumps) and acts as integrator both in the state dynamics and in the
target functional. Problems of such type arise in the stream of literature on optimal
trade execution pioneered by Obizhaeva and Wang (J. Financ. Mark. 16:1–32, 2013)
(models with finite resilience). We consider a general framework where the price im-
pact and the resilience are stochastic processes. Both are allowed to have diffusive
components. First we continuously extend the problem from processes of finite vari-
ation to progressively measurable processes. Then we reduce the extended problem
to a linear–quadratic (LQ) stochastic control problem. Using the well-developed the-
ory on LQ problems, we describe the solution to the obtained LQ one and translate
it back to the solution for the (extended) initial trade execution problem. Finally, we
illustrate our results by several examples. Among other things, the examples discuss
the Obizhaeva–Wang model with random (terminal and moving) targets, the necessity
to extend the initial trade execution problem to a reasonably large class of progres-
sively measurable processes (even going beyond semimartingales), and the effects of
diffusive components in the price impact process and/or the resilience process.

Keywords Optimal trade execution · Stochastic price impact · Stochastic resilience ·
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Backward stochastic differential equation

� T. Kruse
tkruse@uni-wuppertal.de

J. Ackermann
jackermann@uni-wuppertal.de

M. Urusov
mikhail.urusov@uni-due.de

1 Department of Mathematics & Informatics, University of Wuppertal, Gaußstr. 20, 42119
Wuppertal, Germany

2 Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00780-024-00537-1&domain=pdf
mailto:tkruse@uni-wuppertal.de
mailto:jackermann@uni-wuppertal.de
mailto:mikhail.urusov@uni-due.de


814 J. Ackermann et al.

Mathematics Subject Classification 91G10 · 93E20 · 60H10 · 60G99

JEL Classification C02 · G10 · G11

1 Introduction

In the literature on optimal trade execution in illiquid financial markets, there arise
stochastic control problems where the control is a process of finite variation (possibly
with jumps) that acts as integrator both in the state dynamics and in the target func-
tional. For brevity, we use the term finite-variation (FV) stochastic control for such
problems. Notice that the class of FV stochastic control problems contains the class
of singular stochastic control problems. In contrast, for control problems where the
state is driven by a controlled stochastic differential equation (SDE) and the control
acts as one of the arguments in that SDE and as one of the arguments in the integrand
of the target functional, we use the term standard stochastic control problems.

In this article, we present a general solution approach to FV stochastic control
problems that arise in the literature on optimal trade execution. We set up an FV
stochastic control problem of the same type as in Obizhaeva and Wang [37] and
its extensions like e.g. Alfonsi and Acevedo [4], Bank and Fruth [13], Fruth et
al. [24, 25]. We then show how it can be transformed into a standard linear–quadratic
(LQ) stochastic control problem which can be solved with the help of state-of-the-art
techniques from stochastic optimal control theory.

In the introduction, we first describe the FV stochastic control problem and show-
case its usage in finance, before presenting our solution approach, summarising our
main contributions and embedding our paper into the literature.

1.1 Finite-variation (FV) stochastic control problem

As a starting point, we consider in this paper the following stochastic control prob-
lem. Fix T > 0 and let (�,FT ,F = (Ft )t∈[0,T ], P ) be a filtered probability
space satisfying the usual conditions. Let ξ be an FT -measurable random variable
and ζ = (ζs)s∈[0,T ] a progressively measurable process both satisfying suitable inte-
grability assumptions (see (2.3) below). Further, let λ = (λs)s∈[0,T ] be a bounded
progressively measurable process. Let γ = (γs)s∈[0,T ] be a positive Itô process
driven by some Brownian motion and R = (Rs)s∈[0,T ] an Itô process driven by a
(stochastically) correlated Brownian motion (see (2.1) and (2.2) below). Throughout
the introduction, we fix t ∈ [0, T ] and x, d ∈ R and denote by Afv

t (x, d) the set
of all adapted, càdlàg, finite-variation (FV) processes X = (Xs)s∈[t−,T ] satisfying
Xt− = x, XT = ξ and appropriate integrability assumptions (see (2.5)–(2.7) below).
Note that X ∈ Afv

t (x, d) potentially has a jump at the initial time, i.e., Xt might differ
from the initial position Xt−. To highlight that the full description of X ∈ Afv

t (x, d)

requires an assignment of the value Xt− and not only Xs , s ∈ [t, T ], we use the
notation (Xs)s∈[t−,T ] throughout the article. To each X ∈ Afv

t (x, d), we associate a
stochastic process DX = (DX

s )s∈[t−,T ] satisfying

dDX
s = −DX

s dRs + γsdXs, s ∈ [t, T ], DX
t− = d. (1.1)
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We consider the FV stochastic control problem of minimising the cost functional

J fv
t (x, d,X) = Et

[ ∫
[t,T ]

(
DX

s− + 1

2
γs�Xs

)
dXs +

∫ T

t

λsγs(Xs − ζs)
2ds

]
(1.2)

over X ∈ Afv
t (x, d), where Et [ · ] is a shorthand notation for E[ · |Ft ] and the integral∫

[t,T ] · · · dXs includes a potential jump of X at the initial time t .

1.2 Financial interpretation

Stochastic control problems with a cost functional of the form (1.2) or a special case
thereof play a central role in the literature on optimal trade execution problems (see
the literature discussion in Sect. 1.5 below). Consider an institutional investor who
holds immediately prior to time t ∈ [0, T ] a position x ∈ R (x > 0 meaning a long
position of x shares and x < 0 a short position of −x shares) of a certain financial
asset. The investor trades the asset during the period [t, T ] in such a way that at each
time s ∈ [t−, T ], the position is given by the value Xs of the adapted, càdlàg, FV
process X = (Xs)s∈[t−,T ] (satisfying Xt− = x). More precisely, Xs− represents the
position immediately prior to the trade at time s, while Xs is the position immediately
after that trade.

The investor’s goal is to reach the target position

XT = ξ

during the course of the trading period [t, T ]. Note that we allow ξ to be random to
incorporate the possibility that the target position is not known at the beginning of
trading, but only revealed at the terminal time T . Such situations may for example
be faced by airline companies buying on forward markets the kerosene they need in
T months. Their precise demand for kerosene at that future time depends on several
factors, such as ticket sales and flight schedules, that are not known today, but are
only gradually learned.

We assume that the market the investor trades in is illiquid, implying that the in-
vestor’s trades impact the asset price. To model this effect, we assume (as is typically
done in the literature on optimal trade execution) an additive impact on the price. This
means that the realised price at which the investor trades at time r ∈ [t, T ] consists
of an unaffected price S0

r plus a deviation DX
r that is caused by the investor’s trades

during [t, r].
We assume that the unaffected price process S0 = (S0

r )r∈[0,T ] is a càdlàg martin-
gale satisfying appropriate integrability conditions. Then integration by parts and the
martingale property of S0 ensure that expected trading costs due to S0 are given by

Et

[ ∫
[t,T ]

S0
r dXr

]
= Et [ξS0

T ] − xS0
t .

Thus these costs do not depend on the investor’s trading strategy X and are therefore
neglected in the sequel (we refer to Ackermann et al. [1, Remark 2.2] for a more
detailed discussion in the case ξ = 0).
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The deviation process DX associated to X is given by (1.1). Informally speaking,
we see from (1.1) that a trade of size dXs at time s ∈ [t, T ] impacts DX by γsdXs .
So the factor γs determines how strongly the price reacts to trades, and the process γ

is therefore called the price impact process. In particular, because γ is nonnegative,
a buy trade dXs > 0 leads to higher and a sell trade dXs < 0 to lower prices.

The second component −DX
s dRs in the dynamics (1.1) describes the behaviour

of DX when the investor is not trading. Typically, it is assumed that R is an increasing
process such that in the absence of trades, DX is reverting to 0 with relative rate dRs .
Therefore R is called the resilience process. We refer to Ackermann et al. [3] for a
discussion of the effects of “negative” resilience, where R might also be decreasing.
We highlight that in the present paper, we allow R to have a diffusive part.

In summary, we note that the deviation prior to a trade of the investor at a time
s ∈ [t, T ] is given by DX

s−, while it is DX
s = DX

s− + γs�Xs afterwards. We take
the mean DX

s− + 1
2γs�Xs of these two values as the realised price per unit so that

the investor’s overall trading costs due to DX amount to
∫
[t,T ](D

X
s− + 1

2γs�Xs)dXs .
This describes the first integral on the right-hand side of (1.2).

Assuming that λ is nonnegative, the second integral
∫ T

t
λsγs(Xs − ζs)

2ds on the
right-hand side of (1.2) can be understood as a risk term that penalises any deviation
of the position X from the moving target ζ in a quadratic way. The parametrisation
λsγs , s ∈ [0, T ], for the weight is chosen out of mathematical convenience since it
makes some of the following assumptions and results shorter to state. Likewise, one
can use λ̃s , s ∈ [0, T ], as a weight and replace λ by λ̃/γ in the subsequent assump-
tions and results. A possible and natural choice for the moving target ζ would be
ζs = Es[ξ ], s ∈ [0, T ], so that the risk term ensures that any optimal strategy X does
not deviate too much from the (expected) target position during the trading period.

1.3 Solution approach

The overarching goal of this paper is to show that the FV stochastic control problem
(1.2) is equivalent to a standard LQ stochastic control problem (see Corollaries 3.3
and 3.4 below). The derivation of this result is based on the following insights.

The first observation is that in general, the functional (1.2) does not admit a min-
imiser in Afv

t (x, d) (see Sect. 5.3 below for a specific example). In Ackermann et
al. [1], the functional (1.2) was extended to a set of càdlàg semimartingales X, and
it was shown that its minimum is attained in this set of semimartingales if and only
if a certain process derived from the solution of an associated backward stochastic
differential equation (BSDE) can be represented by a càdlàg semimartingale (see [1,
Theorem 2.4]).

In the present work, we go one step further and extend the functional (1.2) to the
set Apm

t (x, d) of progressively measurable processes X = (Xs)s∈[t−,T ] satisfying
appropriate integrability conditions (see (2.5) below) and the boundary conditions
Xt− = x and XT = ξ . To do so, we first derive alternative representations of the first
integral inside the expectation in (1.2) and the deviation in (1.1) that do not involve
X ∈ Afv

t (x, d) as an integrator (see Proposition 2.3). It follows that the resulting
alternative representation of J fv

t (see Proposition 2.4) is well defined not only on
Afv

t (x, d), but even on Apm
t (x, d), and we denote this extended functional by J

pm
t
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(see Sect. 2.3). We next introduce a metric on Apm
t (x, d) and prove that J

pm
t is the

unique continuous extension of J fv
t from Afv

t (x, d) to Apm
t (x, d) (see Theorem 2.8).

In particular, the infima of J fv
t over Afv

t (x, d) and of J
pm
t over Apm

t (x, d) coincide.
Next, for a given X ∈ Apm

t (x, d), we identify the process

HX
s = γ

− 1
2

s DX
s − γ

1
2

s Xs, s ∈ [t, T ],
as a useful tool in our analysis. Despite X and DX having discontinuous paths in
general, the process HX, which we call the scaled hidden deviation process, is always
continuous. Moreover, we show that HX can be expressed in feedback form as an

Itô process with coefficients that are linear in γ − 1
2 DX and HX (see Lemma 2.7).

Subsequently, we reinterpret the process γ − 1
2 DX as a control process u and HX

as the associated state process. Since the cost functional J
pm
t is quadratic in HX

and u = γ − 1
2 DX, we arrive at a standard LQ stochastic control problem (see (3.1)

and (3.2)) whose minimal cost coincides with the infimum of J
pm
t over Apm

t (x, d)

(see Corollary 3.3). Importantly, there is also a one-to-one correspondence between
square-integrable controls u for this standard problem and strategies X ∈ Apm

t (x, d),
which allows to recover the minimiser X∗ ∈ Apm

t (x, d) of J
pm
t from a minimiser u∗

of the standard problem and vice versa (see Corollary 3.4).
We then solve the LQ stochastic control problem in (3.1) and (3.2) using tech-

niques provided in the literature on stochastic optimal control theory. More precisely,
we apply results from Kohlmann and Tang [34] (we indicate in Remark 4.1 how we
could alternatively use results from Sun et al. [40]) to provide conditions that guar-
antee that an optimal control u∗ exists (and is unique). This optimal control u∗ in
the LQ problem is characterised by two BSDEs; one is a quadratic BSDE of Riccati
type, the other is linear, however, with unbounded coefficients (see Theorem 4.4). In
Corollary 4.5, we translate everything back and obtain a unique optimal execution
strategy in the class of progressively measurable processes in closed form (in terms
of the solutions to the mentioned BSDEs).

1.4 Summary of our contributions

Our contributions are as follows:
(a) The Obizhaeva–Wang-type FV stochastic control problem (1.1), (1.2) is con-

tinuously extended to the set Apm
t (x, d) of appropriate progressively measurable

processes X.
(b) The problem (1.1), (1.2) is rather general. In particular, it includes the follow-

ing features:
– Presence of random terminal and moving targets ξ and (ζs).
– The price impact is a positive Itô process (γs).
– The resilience is an Itô process (Rs) acting as an integrator in (1.1) (also see

Remark 1.1 below).
(c) Via introducing the mentioned scaled hidden deviation process HX and rein-

terpreting the process γ − 1
2 DX as a control in an (a priori different) stochastic control

problem, the problem extended to Apm
t (x, d) is reduced to an explicitly solvable LQ

stochastic control problem. Thus a unique optimal execution strategy in Apm
t (x, d) is

obtained in closed form (in terms of the solutions to two BSDEs).
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Remark 1.1 It is worth noting that in our current parametrisation, only processes R

with dynamics dRs = ρs ds without a diffusive component were considered up to
now in the literature on optimal trade execution in Obizhaeva–Wang-type models
(and actually the term “resilience” was previously used for ρ). Moreover, in most
papers, ρ is assumed to be positive, that is, only the case of an increasing R was
studied previously.

1.5 Literature discussion

FV stochastic control problems arise in the group of literature on optimal trade execu-
tion in limit order books with finite resilience. The pioneering work by Obizhaeva and
Wang [37] (first posted in 2005 on SSRN) models the price impact via a block-shaped
limit order book, where the impact decays exponentially at a constant rate. This em-
beds into our model via a price impact process γ that is a positive constant and a
resilience process R given by Rs = ρs with some positive constant ρ > 0. Alfonsi et
al. [5] study constrained portfolio liquidation in the Obizhaeva–Wang model. Subse-
quent works within this group of literature either extend this framework in different
directions or suggest alternative frameworks with similar features.

There is a subgroup of models which include more general limit order book
shapes; see Alfonsi et al. [6], Alfonsi and Schied [7], Predoiu et al. [38]. Models in
another subgroup extend the exponential decay of the price impact to general decay
kernels; see Alfonsi et al. [8], Gatheral et al. [27]. Models with multiplicative price
impact are analysed in Becherer et al. [17, 18]. We mention that in [18], the (multi-
plicative) deviation is of Ornstein–Uhlenbeck type and incorporates a diffusion term
(but this is different from our diffusion term that results from a diffusive part in the
resilience R). Superreplication and optimal investment in a block-shaped limit order
book model with exponential resilience is discussed in Bank and Dolinsky [11, 12]
and in Bank and Voß [16].

The present paper belongs to the subgroup of the literature studying
time-dependent (possibly stochastic) price impact γ or resilience R in generalised
Obizhaeva–Wang models. In this regard, we mention the works by Alfonsi and
Acevedo [4], Bank and Fruth [13] and Fruth et al. [24], where deterministically
varying price impact and resilience are considered. Fruth et al. [25] allow
stochastically varying price impact (resilience is still deterministic) and study the
arising optimisation problem over monotone strategies. Optimal strategies in a
discrete-time model with stochastically varying resilience and constant price impact
are derived in Siu et al. [39]. In Ackermann et al. [1, 3, 2], both price impact and
resilience are stochastic.

We now describe the differences to our present paper in more detail. In [2], optimal
execution is studied in discrete time via dynamic programming. In [1], the framework
is closest to the one in this paper. Essentially, our current framework is the framework
from [1] extended by a risk term with some moving target (ζs), a possibly non-zero
(random) terminal target ξ and a larger class of resilience processes (in [1], as in
many previous papers, R is assumed to have the dynamics dRs = ρsds and ρ is
called resilience). In [3], the framework is similar to [1], while the aim is to study
qualitative effects of “negative” resilience (in the sense that ρs ≤ 0 with ρ as in the
previous sentence).
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Now, to compare the approach in the present paper with that in [1], we first recall
that in [1], the FV stochastic control problem of the type (1.1), (1.2) is extended to
allow càdlàg semimartingale trading strategies X, and the resulting optimal execu-
tion problem over semimartingales is studied. The approach in [1] is based on (1.1),
(1.2) (extended with some additional terms), but this does not work beyond semi-
martingales as X acts as integrator there. In contrast, our continuous extension needs
to employ essentially different ideas since we want to consider the set Apm

t (x, d)

of progressively measurable strategies (in particular, beyond semimartingales). This
extension is indeed necessary to get an optimiser (see the discussion at the end of
Sect. 5.3).

Especially with regard to our extension result, we now mention several papers
where in different models with finite resilience, trading strategies are not restricted
to be of finite variation. The first instance known to us is Lorenz and Schied [35],
who discuss the dependence of optimal trade execution strategies on a drift in the
unaffected price. In order to react to non-martingale trends, they allow càdlàg semi-
martingale trading strategies. Gârleanu and Pedersen [26, Sect. 1.3] allow strategies
of infinite variation in an infinite-horizon portfolio optimisation problem under mar-
ket frictions. Becherer et al. [19] prove a continuous extension result for gains of
a large investor in the Skorokhod J1- and M1-topologies in the class of predictable
strategies with càdlàg paths. As discussed in the previous paragraph in more detail,
the strategies in [1] are càdlàg semimartingales. In Horst and Kivman [29], càdlàg
semimartingale strategies emerge in the limiting case of a vanishing instantaneous
impact parameter, where the initial modelling framework is inspired by Graewe and
Horst [28] and Horst and Xia [31].

To complement the preceding discussion from another perspective, we mention
Carmona and Webster [22] who examine high-frequency trading in limit order books
in general (not necessarily related with optimal trade execution). It is very interesting
that one of their conclusions is strong empirical evidence for the infinite-variation
nature of trading strategies of high-frequency traders.

Finally, let us mention that in the context of trade execution problems, risk terms
with zero moving target have been included e.g. in Ankirchner et al. [9], Ankirchner
and Kruse [10] and Graewe and Horst [28]. Inequality terminal constraints have been
considered in Dolinsky et al. [23], and risk terms with general terminal and moving
targets appear in the models of e.g. Bank et al. [14], Bank and Voß [15], Horst and
Naujokat [30] and Naujokat and Westray [36]. In particular, [10, 15, 23] consider
random terminal targets ξ within trade execution models where position paths are
required to be absolutely continuous functions of time. This restriction of the set of
position paths entails technical difficulties that make these problems challenging to
analyse. In particular, existence of admissible paths that satisfy the terminal constraint
is far from obvious and can in general only be assured under further conditions on ξ .
Since position paths in our model are allowed to jump at the terminal time, we do not
face these challenges in our framework.

1.6 Structure of the present article

The paper is structured as follows. Section 2 is devoted to the continuous extension
of our initial trade execution problem to the class of progressively measurable strate-



820 J. Ackermann et al.

gies. Section 3 reduces the problem for the progressively measurable strategies to a
standard LQ stochastic control problem. In Sect. 4, we present the solution to the
obtained LQ problem and translate it back to the solution for the trade execution
problem (extended to progressively measurable strategies). In Sect. 5, we illustrate
our results with several examples. Finally, Sect. 6 contains the proofs together with
some auxiliary results necessary for them.

2 From finite-variation to progressively measurable execution
strategies

In this section, we first set up the FV stochastic control problem (see Sect. 2.1). In
Sect. 2.2, we then derive alternative representations of the cost functional and the
deviation process which do not require the strategies to be of finite variation. We
use these results in Sect. 2.3 to extend the cost functional to progressively measur-
able strategies. In Sect. 2.5, we show that this is the unique continuous extension.
Section 2.4 introduces the hidden deviation process as a key tool for the proofs of
Sect. 2.5. All proofs of this section are deferred to Sect. 6.

2.1 The FV stochastic control problem

Fix T > 0 and m ≥ 2, and let (�,FT ,F = (Fs)s∈[0,T ], P ) be a filtered probability
space satisfying the usual conditions and supporting an m-dimensional Brownian
motion W = (W 1, . . . ,Wm) with respect to the filtration F.

We first fix some notation. For t ∈ [0, T ], conditional expectations with respect
to Ft are denoted by Et [ · ]. For t ∈ [0, T ] and a càdlàg process X = (Xs)s∈[t−,T ],
the jump at time s ∈ [t, T ] is denoted by �Xs = Xs −Xs−. We follow the convention
that for t ∈ [0, T ], r ∈ [t, T ] and a càdlàg semimartingale L = (Ls)s∈[t−,T ], jumps
of the càdlàg integrator L at time t contribute to integrals of the form

∫
[t,r] · · · dLs .

In contrast, we write
∫
(t,r] · · · dLs when we do not include jumps of L at time t in the

integral. The notation
∫ r

t
· · · dLs is sometimes used for continuous integrators L. For

n ∈ N and y ∈ R
n, let |y| = (

∑n
j=1 y2

j )
1
2 . For every t ∈ [0, T ], let L1(�,Ft , P ) be

the space of all (equivalence classes of) real-valued Ft -measurable random variables
Y such that ‖Y‖L1 = E[|Y |] < ∞. For every t ∈ [0, T ], let

L2
t = L2(� × [t, T ], Prog(� × [t, T ]), dP × ds|[t,T ]

)

denote the Hilbert space of all (equivalence classes of) real-valued progressively

measurable processes u = (us)s∈[t,T ] such that ‖u‖L2
t

= (E[∫ T

t
u2

s ds]) 1
2 < ∞.

The control problem we are about to set up requires as input the real-valued,
FT -measurable random variable ξ and the real-valued, progressively measurable
processes

μ = (μs)s∈[0,T ], σ = (σs)s∈[0,T ], ρ = (ρs)s∈[0,T ], η = (ηs)s∈[0,T ],

r = (rs)s∈[0,T ], ζ = (ζs)s∈[0,T ], λ = (λs)s∈[0,T ].
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We suppose that the processes μ, σ , ρ, η and λ are (dP × ds|[0,T ])-a.e. bounded.
Moreover, we assume that r is [−1, 1]-valued. We define WR by

dWR
s = rsdW 1

s +
√

1 − |rs |2 dW 2
s , s ∈ [0, T ], WR

0 = 0

and refer to r as the correlation process. The processes ρ and η give rise to the
continuous semimartingale R with

dRs = ρsds + ηsdWR
s , s ∈ [0, T ], R0 = 0, (2.1)

which is called the resilience process. We use the processes μ and σ to define the
positive continuous semimartingale γ by

dγs = γs(μsds + σsdW 1
s ), s ∈ [0, T ], (2.2)

with deterministic initial value γ0 > 0. We refer to γ as the price impact process.
Finally, we assume that ξ and ζ satisfy the integrability conditions

E[γT ξ2] < ∞, E

[ ∫ T

0
γsζ

2
s ds

]
< ∞. (2.3)

Remark 2.1 Note that the components W 3, . . . ,Wm of the Brownian motion are not
needed in the dynamics (2.1) and (2.2). We introduce these components already here
because in Sect. 4, in order to apply the results from the literature on LQ stochastic
control, we restrict the present setting by assuming that the filtration F is generated
by (W 1, . . . ,Wm). The components W 3, . . . ,Wm therefore serve as further sources
of randomness on which the model inputs may depend.

We next introduce the FV strategies we consider in the sequel. Given t ∈ [0, T ]
and d ∈ R, we associate to an adapted, càdlàg, FV process X = (Xs)s∈[t−,T ] a
process DX = (DX

s )s∈[t−,T ] defined by

dDX
s = −DX

s dRs + γsdXs, s ∈ [t, T ], DX
t− = d. (2.4)

If there is no risk of confusion, we sometimes simply write D instead of DX in the
sequel. For t ∈ [0, T ], x, d ∈ R, we denote by Afv

t (x, d) the set of all adapted,
càdlàg, FV processes X = (Xs)s∈[t−,T ] satisfying Xt− = x, XT = ξ and

E

[ ∫ T

t

γ −1
s (DX

s )2ds

]
< ∞, (2.5)

E

[( ∫ T

t

(DX
s )4γ −2

s η2
s ds

) 1
2
]

< ∞, (2.6)

E

[( ∫ T

t

(DX
s )4γ −2

s σ 2
s ds

) 1
2
]

< ∞. (2.7)
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Any element X ∈ Afv
t (x, d) is called an FV execution strategy. The process D = DX

defined via (2.4) is called the associated deviation process.
For t ∈ [0, T ], x, d ∈ R, X ∈ Afv

t (x, d) and associated DX, the cost func-
tional J fv

t is given by

J fv
t (x, d,X)

= Et

[ ∫
[t,T ]

DX
s−dXs + 1

2

∫
[t,T ]

γs�XsdXs +
∫ T

t

λsγs(Xs − ζs)
2ds

]
(2.8)

(see the proofs of Proposition 2.4 and Lemma 2.7 for well-definedness). The FV
stochastic control problem we consider consists of minimising the cost functional J fv

t

over X ∈ Afv
t (x, d).

2.2 Alternative representations for the cost functional and the deviation process

For t ∈ [0, T ], we introduce an auxiliary process ν = (νs)s∈[t,T ]. It is defined to be
the solution of

dνs = νsd(Rs + [R]s), s ∈ [t, T ], νt = 1. (2.9)

Observe that the inverse is given by

dν−1
s = −ν−1

s dRs, s ∈ [t, T ], ν−1
t = 1. (2.10)

Remark 2.2 Let t ∈ [0, T ] and d ∈ R. With the definition of ν in (2.9), for all
adapted, càdlàg, FV processes X = (Xs)s∈[t−,T ], the solution DX = (DX

s )s∈[t−,T ]
of the linear SDE (2.4) can be written as

DX
s = ν−1

s

(
d +

∫
[t,s]

νrγrdXr

)
, s ∈ [t, T ].

Proposition 2.3 Let t ∈ [0, T ] and x, d ∈ R. Suppose X is an adapted, càdlàg, FV
process with Xt− = x and associated process DX defined by (2.4). Then we have∫

[t,T ]
DX

s−dXs + 1

2

∫
[t,T ]

γs�XsdXs

= 1

2

(
γ −1
T (DX

T )2 − γ −1
t d2 −

∫ T

t

(DX
s )2ν2

s d(ν−2
s γ −1

s )

)
(2.11)

and

DX
r = γrXr + ν−1

r

(
d − γtx −

∫ r

t

Xsd(νsγs)

)
, r ∈ [t, T ]. (2.12)

As a consequence of Proposition 2.3 and relying on (2.5)–(2.7), we can rewrite
the cost functional J fv

t as follows. To shorten notation, we introduce the stochastic
process κ defined by

κs = 1

2
(2ρs + μs − σ 2

s − η2
s − 2σsηsrs), s ∈ [0, T ]. (2.13)
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Proposition 2.4 Let t ∈ [0, T ] and x, d ∈ R. Suppose that X ∈ Afv
t (x, d) with

associated deviation process DX defined by (2.4). Then J fv
t (x, d,X) in (2.8) admits

the representation

J fv
t (x, d,X)

= 1

2
Et

[
γ −1
T (DX

T )2 +
∫ T

t

(DX
s )2γ −1

s 2κsds +
∫ T

t

2λsγs(Xs − ζs)
2ds

]

− d2

2γt

a.s. (2.14)

Remark 2.5 Analogues of Proposition 2.4 can be found in the literature in other re-
lated settings; see e.g. Fruth et al. [24, Lemmas 7.4 and 8.6] and Fruth et al. [25, proof
of Lemma 5.3 in Appendix B]. A small technical point which might be worth noting
is that we present a somewhat different proof below. The idea in [24, 25] is to de-
rive an analogue of (2.11) by applying the substitution dXs = γ −1

s (dDX
s + DX

s dRs)

and then to compute the expectation. Exactly the same idea would also work in our
present setting, but it would result in more complicated calculations, and moreover,
the right-hand side of (2.11) would then look rather different (but this would of course
be an equivalent representation). The reason is that the process R, hence DX, can
have non-vanishing quadratic variation. Here we essentially express everything not
through DX, but rather through νDX, which has finite variation by Remark 2.2 (as X

has finite variation here). This allows reducing calculations and provides a somewhat
more compact form of (2.11).

2.3 Progressively measurable execution strategies

We point out that the right-hand side of (2.14) is also well defined for progressively
measurable processes X satisfying an appropriate integrability condition and with as-
sociated deviation DX defined by (2.12) for which one assumes (2.5). This motivates
the following extension of the setting from Sect. 2.1.

For t ∈ [0, T ], x, d ∈ R and a progressively measurable X = (Xs)s∈[t−,T ] with∫ T

t
X2

s ds < ∞ a.s. and Xt− = x, we define the process DX = (DX
s )s∈[t−,T ] by

DX
s = γsXs + ν−1

s

(
d − γtx −

∫ s

t

Xrd(νrγr )

)
, s ∈ [t, T ], DX

t− = d (2.15)

(recall ν from (2.9)). Notice that the condition
∫ T

t
X2

s ds < ∞ a.s. ensures that the
stochastic integral in (2.15) is well defined. Again, we sometimes write D instead
of DX. Further, for t ∈ [0, T ], x, d ∈ R, let Apm

t (x, d) be the set of (equivalence
classes of) progressively measurable processes X = (Xs)s∈[t−,T ] with Xt− = x and
XT = ξ that satisfy

∫ T

t
X2

s ds < ∞ a.s. and such that condition (2.5) holds true
for DX defined by (2.15). To be precise, we stress that the equivalence classes for
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Apm
t (x, d) are understood with respect to the equivalence relation

X(1) ∼ X(2) means X(1)
. = X(2)

. (dP × ds)-a.e. on � × [t, T ],
X

(1)
t− = X

(2)
t− (= x) and X

(1)
T = X

(2)
T (= ξ). (2.16)

Any element X ∈ Apm
t (x, d) is called a progressively measurable execution strategy.

Again the process D = DX, now defined via (2.15), is called the associated deviation
process. Clearly, we have Afv

t (x, d) ⊆ Apm
t (x, d).

Given t ∈ [0, T ], x, d ∈ R and X ∈ Apm
t (x, d) with associated DX from (2.15),

we define the cost functional J
pm
t by

J
pm
t (x, d,X)

= 1

2
Et

[
γ −1
T (DX

T )2 +
∫ T

t

(DX
s )2γ −1

s 2κsds +
∫ T

t

2λsγs(Xs − ζs)
2ds

]

− d2

2γt

. (2.17)

Observe that we have the following corollary of Propositions 2.3 and 2.4.

Corollary 2.6 Let t ∈ [0, T ], x, d ∈ R and X ∈ Afv
t (x, d) with associated de-

viation process DX from (2.4). Then X is in Apm
t (x, d), DX satisfies (2.15), and

J fv
t (x, d,X) = J

pm
t (x, d,X).

2.4 The hidden deviation process

For t ∈ [0, T ], x, d ∈ R and X ∈ Apm
t (x, d) with associated deviation process DX,

we define HX by HX
s = DX

s − γsXs , s ∈ [t, T ]. Observe that if the investor follows
an FV execution strategy X ∈ Afv

t (x, d) until time s ∈ [t, T ] and then decides
to sell Xs units of the asset (Xs < 0 means buying) at time s, then by (2.4), the
resulting deviation at time s equals DX

s −γsXs . The value of HX
s hence represents the

hypothetical deviation if the investor decides to close the position at time s ∈ [t, T ].
We therefore call HX the hidden deviation process.

Despite X ∈ Apm
t (x, d) and DX in general being discontinuous, the hidden de-

viation process HX is always continuous. This can be seen from (2.15) and the fact
that R (hence also ν) and γ are continuous. In the case of an FV execution strategy
X ∈ Afv

t (x, d), we have dHX
s = −DsdRs − Xsdγs , s ∈ [t, T ]. In particular, the

infinitesimal change of the hidden deviation is driven by the changes of the resilience
process and the price impact process.

For t ∈ [0, T ], x, d ∈ R and X ∈ Apm
t (x, d), we furthermore introduce the scaled

hidden deviation process HX defined by

HX
s = γ

− 1
2

s HX
s = γ

− 1
2

s DX
s − γ

1
2

s Xs, s ∈ [t, T ]. (2.18)

From a mathematical viewpoint, the scaled hidden deviation plays an extremely im-
portant role in what follows. It is therefore instructive to see in what kind of units it
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is measured. The unit of X is number (of shares), while both DX and γ are measured
in $. Thus the scaled hidden deviation HX is measured in

√
$.

Also for HX and HX, we sometimes simply write H and H , respectively. Note
that due to (2.15), we have

HX
s = γ

− 1
2

s ν−1
s

(
d − γtx −

∫ s

t

Xrd(νrγr)

)
, s ∈ [t, T ].

We next show that the scaled hidden deviation process HX satisfies a linear SDE
and an L2-bound. Moreover, we derive a representation of J pm in terms of HX.

Lemma 2.7 Let t ∈ [0, T ], x, d ∈ R and X ∈ Apm
t (x, d). Then we have

dHX
s =

(
1

2

(
μs − 1

4
σ 2

s

)
HX

s − 1

2

(
2(ρs + μs) − σ 2

s − σsηsrs

)
γ

− 1
2

s DX
s

)
ds

+
(

1

2
σsH

X
s − (σs + ηsrs)γ

− 1
2

s DX
s

)
dW 1

s

− ηs

√
1 − |rs |2 γ

− 1
2

s DX
s dW 2

s , s ∈ [t, T ],

HX
t = d√

γt

− √
γt x. (2.19)

Moreover, E[sups∈[t,T ](HX
s )2] < ∞ and

J
pm
t

(
x, d,X

)

= 1

2
Et

[
(HX

T + √
γT ξ)2 +

∫ T

t

2(κs + λs)γ
−1
s (DX

s )2ds

]
− d2

2γt

+ Et

[ ∫ T

t

(
λs(H

X
s + √

γs ζs)
2 − 2λs(H

X
s + √

γs ζs)γ
− 1

2
s DX

s

)
ds

]
. (2.20)

2.5 Continuous extension of the cost functional

Corollary 2.6 states that for FV execution strategies, the cost functionals J fv
t and J

pm
t

are the same. In this subsection, we show that J
pm
t can be considered as an extension

of J fv
t to progressively measurable strategies in the following way: We introduce a

metric d on Apm
t (x, d) and show in Theorem 2.8 that (i) J

pm
t (x, d,X) is continuous in

the strategy X ∈ Apm
t (x, d), (ii) Afv

t (x, d) is dense in Apm
t (x, d) and (iii) the metric

space (Apm
t (x, d), d) is complete.

The first and second parts of Theorem 2.8 mean that J
pm
t (x, d, · ) under the metric

d is a unique continuous extension of J fv
t (x, d, · ) from Afv

t (x, d) to Apm
t (x, d). The

third part of Theorem 2.8 means that under the metric d, Apm
t (x, d) is the largest

space where such a continuous extension is uniquely determined by J fv
t (x, d, · )

on Afv
t (x, d). This is because the completeness of (Apm

t (x, d), d) is equivalent to
the following statement: For any metric space (Ât (x, d), d̂) containing Apm

t (x, d)

and such that d̂|Apm
t (x,d) = d, the set Apm

t (x, d) is closed in Ât (x, d).
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For t ∈ [0, T ], x, d ∈ R and X, Y ∈ Apm
t (x, d) with associated deviation

processes DX, DY defined by (2.15), we define

d(X, Y ) =
(

E

[ ∫ T

t

(DX
s − DY

s )2γ −1
s ds

]) 1
2

. (2.21)

Identifying any processes that are equal (dP × ds|[t,T ])-a.e., this is indeed a metric
on Apm

t (x, d); see Lemma 6.2.
Note that for fixed t ∈ [0, T ] and x, d ∈ R, we may consider the cost functional

in (2.17) as a function J
pm
t (x, d, · ) : (Apm

t (x, d), d) → (L1(�,Ft , P ), ‖ · ‖L1). In-
deed, using (2.5), Lemma 2.7, (2.3) and the boundedness of the input processes, we
see that J

pm
t (x, d,X) ∈ L1(�,Ft , P ) for all X ∈ Apm

t (x, d).

Theorem 2.8 Let t ∈ [0, T ] and x, d ∈ R.
(i) Suppose that X ∈ Apm

t (x, d). For every sequence (Xn)n∈N in Apm
t (x, d) with

limn→∞ d(Xn,X) = 0, we have limn→∞‖J pm
t (x, d,Xn) − J

pm
t (x, d,X)‖L1 = 0.

(ii) For any X ∈ Apm
t (x, d), there exists a sequence (Xn)n∈N in Afv

t (x, d) such
that limn→∞ d(Xn,X) = 0. In particular, we have

ess inf
X∈Afv

t (x,d)

J fv
t (x, d,X) = ess inf

X∈Apm
t (x,d)

J
pm
t (x, d,X). (2.22)

(iii) For any Cauchy sequence (Xn)n∈N in (Apm
t (x, d), d), there exists an ele-

ment X0 ∈ Apm
t (x, d) such that limn→∞ d(Xn,X0) = 0.

In Corollary 4.5 below, we provide sufficient conditions that ensure that the
infimum on the right-hand side of (2.22) for t = 0 is indeed a minimum.

3 Reduction to a standard LQ stochastic control problem

In this section, we recast the problem of minimising J
pm
t over X ∈ Apm

t (x, d) as a
standard LQ stochastic control problem. All proofs of this section are given in Sect. 6.

3.1 The first reduction

Note that (2.20) shows that for t ∈ [0, T ], x, d ∈ R and X ∈ Apm
t (x, d), the costs

J
pm
t (x, d,X) depend in a quadratic way on (HX, γ − 1

2 DX). Moreover, (2.19) says

that the dynamics of HX depend linearly on the pair (HX, γ − 1
2 DX). These two

observations suggest to view the minimisation problem for J
pm
t over progressively

measurable execution strategies X ∈ Apm
t (x, d) as an LQ stochastic control problem

with state process HX and control γ − 1
2 DX. This motivates the following definitions.
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For every t ∈ [0, T ], x, d ∈ R and u ∈ L2
t , we consider the state process H̃ u

associated to u and defined by

dH̃ u
s =

(
1

2

(
μs − 1

4
σ 2

s

)
H̃ u

s − 1

2

(
2(ρs + μs) − σ 2

s − σsηsrs

)
us

)
ds

+
(

1

2
σsH̃

u
s − (σs + ηsrs)us

)
dW 1

s − ηs

√
1 − |rs |2 usdW 2

s , s ∈ [t, T ],

H̃ u
t = d√

γt

− √
γt x, (3.1)

and the cost functional Jt defined by

Jt

(
d√
γt

− √
γt x, u

)

= 1

2
Et

[
(H̃ u

T + √
γT ξ)2 +

∫ T

t

2(κs + λs)u
2
s ds

]

+ 1

2
Et

[ ∫ T

t

(
2λs(H̃

u
s + √

γs ζs)
2 − 4λs(H̃

u
s + √

γs ζs)us

)
ds

]
. (3.2)

Once again we sometimes simply write H̃ instead of H̃ u. The LQ stochastic control
problem is to minimise (3.2) over the set of admissible controls u ∈ L2

t .
For every progressively measurable execution strategy X ∈ Apm

t (x, d), there ex-
ists a control u ∈ L2

t such that the cost functional J
pm
t can be rewritten in terms of

Jt (and − d2

2γt
). In fact, this is achieved by taking u = γ − 1

2 DX, as outlined in the
motivation above. We state this as Lemma 3.1.

Lemma 3.1 Let t ∈ [0, T ] and x, d ∈ R. Suppose that X ∈ Apm
t (x, d) with as-

sociated deviation DX. Define u by us = γ
− 1

2
s DX

s , s ∈ [t, T ]. Then u ∈ L2
t and

J
pm
t (x, d,X) = Jt (

d√
γt

− √
γt x, u) − d2

2γt
a.s.

On the other hand, we may also start with u ∈ L2
t and derive a progressively

measurable execution strategy X ∈ Apm
t (x, d) such that the expected costs match.

Lemma 3.2 Let t ∈ [0, T ] and x, d ∈ R. Suppose that u ∈ L2
t and let H̃ u be the

associated solution of (3.1). Define X by

Xs = γ
− 1

2
s (us − H̃ u

s ), s ∈ [t, T ), Xt− = x, XT = ξ.

Then X ∈ Apm
t (x, d) and J

pm
t (x, d,X) = Jt (

d√
γt

− √
γt x, u) − d2

2γt
a.s.

Lemmas 3.1 and 3.2 together with Theorem 2.8 establish the following equiva-
lence of the control problems pertaining to J fv

t , J
pm
t and Jt .
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Corollary 3.3 For t ∈ [0, T ] and x, d ∈ R, we have

ess inf
X∈Afv

t (x,d)

J fv
t (x, d,X) = ess inf

X∈Apm
t (x,d)

J
pm
t (x, d,X)

= ess inf
u∈L2

t

Jt

(
d√
γt

− √
γt x, u

)
− d2

2γt

a.s.

Furthermore, Lemmas 3.1, 3.2 and Corollary 3.3 provide a method to obtain an
optimal progressively measurable execution strategy and potentially an optimal FV
execution strategy from the standard optimal control problem, and vice versa.

Corollary 3.4 Let t ∈ [0, T ] and x, d ∈ R.
(i) Suppose that X∗ ∈ Apm

t (x, d) minimises J
pm
t over Apm

t (x, d) and let DX∗
be

the associated deviation process. Then u∗ defined by

u∗
s = γ

− 1
2

s DX∗
s , s ∈ [t, T ],

minimises Jt over L2
t .

(ii) Suppose that u∗ ∈ L2
t minimises Jt over L2

t and let H̃ u∗
be the associated

solution of (3.1) for u∗. Then X∗ defined by

X∗
s = γ

− 1
2

s (u∗
s − H̃ u∗

s ), s ∈ [t, T ), X∗
t− = x, X∗

T = ξ,

minimises J
pm
t over Apm

t (x, d).
Moreover, if X∗ ∈ Afv

t (x, d) (in the sense that there is an element of Afv
t (x, d) in

the equivalence class of X∗, see (2.16)), then X∗ minimises J fv
t over Afv

t (x, d).

3.2 Formulation without cross-terms

Note that the last integral in the definition (3.2) of the cost functional Jt involves a
product between the state process H̃ u and the control process u. A larger part of the
literature on LQ optimal control considers cost functionals that do not contain such
cross-terms. In particular, this applies to Kohlmann and Tang [34] whose results we
apply in Sect. 4 below. For this reason, we provide in this subsection a reformulation
of the control problem (3.1) and (3.2) that does not contain cross-terms. In order to
carry out the transformation necessary for this, we need to impose in this subsection
a further condition on our model inputs.

Assumption 3.5 We assume that there exists a constant C ∈ [0,∞) such that

|λ.| ≤ C|λ. + κ.| (dP × ds)-a.e. on � × [0, T ].

Under Assumption 3.5, we always set

λ.

λ. + κ.
= 0 on the set {(ω, s) : λs(ω) + κs(ω) = 0}.
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In this connection, we remark that the expression λ
λ+κ

appears in calculations be-
low only in integrands, where the respective integrators L always have the form
dLs = · · · ds + ∑

i · · · dWi
s . Notice that if progressively measurable processes Z

and Z′ are such that Z is integrable with respect to L and Z = Z′ (dP × ds)-a.e.,
then also Z′ is integrable with respect to L and the stochastic integrals

∫ ·
0 Zs dLs and∫ ·

0 Z′
s dLs are indistinguishable. Therefore the (dP × ds)-nullset in Assumption 3.5

never matters.
Now in order to get rid of the cross-term in (3.2), we transform for t ∈ [0, T ] any

control process u ∈ L2
t in an affine way to ûs = us − λs

λs+κs
(H̃ u

s +√
γs ζs), s ∈ [t, T ].

This leads to the new controlled state process Ĥ û defined by

dĤ û
s =

(
μs

2
− 1

8
σ 2

s − λs

λs + κs

(
ρs + μs − σ 2

s + σsηsrs

2

))
Ĥ û

s ds

−
(

ρs + μs − σ 2
s + σsηsrs

2

)
ûsds

− λs

λs + κs

(
ρs + μs − σ 2

s + σsηsrs

2

)√
γs ζsds

+
(

σs

2
− λs

λs + κs

(σs + ηsrs)

)
Ĥ û

s dW 1
s − (σs + ηsrs)ûsdW 1

s

− λs

λs + κs

(σs + ηsrs)
√

γs ζsdW 1
s − λs

λs + κs

ηs

√
1 − |rs |2 Ĥ û

s dW 2
s

− ηs

√
1 − |rs |2 ûsdW 2

s − λs

λs + κs

ηs

√
1 − |rs |2√γs ζsdW 2

s , s ∈ [t, T ],

Ĥ û
t = d√

γt

− √
γt x. (3.3)

The meaning of (3.3) is that we only reparametrise the control (u 
→ û), but not the
state variable (Ĥ û = H̃ u); see Lemma 3.6 below for the formal statement.

For t ∈ [0, T ], x, d ∈ R, û ∈ L2
t and associated Ĥ û, we define the cost

functional Ĵt by

Ĵt

(
d√
γt

− √
γt x, û

)

= Et

[
1

2
(Ĥ û

T + √
γT ξ)2

+
∫ T

t

(
λsκs

λs + κs

(Ĥ û
s + √

γs ζs)
2 + (λs + κs)û

2
s

)
ds

]
. (3.4)

This cost functional does not exhibit cross-terms, but is equivalent to Jt of (3.2) in
the sense of the following result.
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Lemma 3.6 Let Assumption 3.5 be in force. Let t ∈ [0, T ] and x, d ∈ R.
(i) Consider u ∈ L2

t with associated state process H̃ u defined by (3.1). Then the
process û defined by ûs = us − λs

λs+κs
(H̃ u

s +√
γs ζs), s ∈ [t, T ], is in L2

t and we have

Ĥ û = H̃ u and Jt (
d√
γt

− √
γt x, u) = Ĵt (

d√
γt

− √
γt x, û).

(ii) Consider û ∈ L2
t with associated state process Ĥ û defined by (3.3). Then the

process u defined by us = ûs + λs

λs+κs
(Ĥ û

s +√
γs ζs), s ∈ [t, T ], is in L2

t and we have

H̃ u = Ĥ û and Jt (
d√
γt

− √
γt x, u) = Ĵt (

d√
γt

− √
γt x, û).

As a corollary, we obtain the following link between optimal controls for Ĵt and Jt .

Corollary 3.7 Let Assumption 3.5 be in force. Let t ∈ [0, T ] and x, d ∈ R.
(i) Suppose that u∗ ∈ L2

t is an optimal control for Jt and let H̃ u∗
be the solution

of (3.1) for u∗. Then û∗ defined by

û∗
s = u∗

s − λs

λs + κs

(H̃ u∗
s + √

γs ζs), s ∈ [t, T ],

is an optimal control in L2
t for Ĵt .

(ii) Suppose that û∗ ∈ L2
t is an optimal control for Ĵt and let Ĥ û∗

be the solution
of (3.3) for û∗. Then u∗ defined by

u∗
s = û∗

s + λs

λs + κs

(Ĥ û∗
s + √

γs ζs), s ∈ [t, T ],

is an optimal control in L2
t for Jt .

4 Solving the LQ control problem and the trade execution problem

We now solve the LQ control problem from Sect. 3 and consequently obtain a solution
of the trade execution problem.

Remark 4.1 The solution approach of Kohlmann and Tang [34] which we are about
to apply is built on the close connection between standard LQ stochastic control
problems and Riccati-type BSDEs (BSRDEs). This connection is well known and
dates back at least to Bismut (see e.g. Bismut [20, 21]). The central challenge in this
approach is to establish the existence of a solution to the BSRDE. Kohlmann and
Tang [34] prove such results in a general framework which in particular covers our
problem formulation in Sect. 3.2 under appropriate assumptions.

There is a variety of further results in the literature on LQ stochastic control prob-
lems that provide existence results for BSRDEs under different sets of assumptions.
A specific potential further possibility is for example to use the results of the recent
article by Sun et al. [40] in our setting. The setup of [40] allows cross-terms in the
cost functional and, more interestingly, the results in [40] hold under a uniform con-
vexity assumption on the cost functional, which is a weaker requirement than the
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usually imposed nonnegativity and positivity assumptions on the coefficients of the
cost functional. However, in general, the terminal costs and the running costs in (3.2)
(and also in (3.4)) contain terms such as (H̃ u

T +√
γT ξ)2 and λs(H̃

u
s +√

γs ζs)
2 which

are inhomogeneous. Therefore the results of [40] are only directly applicable in the
special case where ξ = 0 and at least one of λ and ζ vanishes. A possible route for
future research could be to incorporate inhomogeneous control problems as presented
in Sect. 3 into the framework of [40].

Throughout this section, let the following assumption be in force.

Assumption 4.2 In our general setting (see Sect. 2.1), we additionally assume that the
filtration F we work with is the augmented natural filtration of the Brownian motion
(W 1, . . . ,Wm). Furthermore, we set the initial time to t = 0. We also assume that
the stochastic processes λ and κ = 1

2 (2ρ + μ − σ 2 − η2 − 2σηr) are nonnegative
(dP × ds|[0,T ])-a.e.

We emphasise at this point that the results presented in Sects. 2 and 3 are valid for
more general filtrations and for processes λ and κ possibly taking negative values.
This opens the way for applying Sects. 2 and 3 in other settings in future research.

Remark 4.3 Note that the assumption of nonnegativity of λ and κ is necessary to apply
the results of Kohlmann and Tang [34]. Indeed, [34] requires that λ+κ (the coefficient
in front of û2 in (3.4)) and λκ

λ+κ
(the coefficient in front of (Ĥ û

s + √
γs ζs)

2 in (3.4))
are nonnegative and bounded, which implies that λ and κ have to be nonnegative.
Moreover, we note that nonnegativity of λ and κ ensures that Assumption 3.5 is
satisfied. Further, we observe that λ + κ and λκ

λ+κ
are bounded, as required. Indeed,

we clearly have λκ
λ+κ

≤ κ , and it remains to recall that μ, σ , ρ, η and λ are bounded
and r is [−1, 1]-valued (see Sect. 2.1).

Note that the LQ control problem of Sect. 3.2, which consists of minimising
the functional Ĵ0 in (3.4) with state dynamics given by (3.3), is of the form con-
sidered in [34, Eqs. (79)–(81)]. The solution can be described by two BSDEs [34,
Eqs. (9) and (85)]. The first, [34, Eq. (9)], is a Riccati-type BSDE, which in our
setting reads

dKs = −g(s,Ks, L
1
s , L

2
s )ds +

m∑
j=1

L
j
s dW

j
s , s ∈ [0, T ], KT = 1

2
, (4.1)
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with the driver

g(s,Ks, L
1
s , L

2
s )

=
(

μs + λs

λs + κs

( λs

λs + κs

(σ 2
s + 2σsηsrs + η2

s ) − 2(ρs + μs)
))

Ks

+
(

σs − λs

λs + κs

2(σs + ηsrs)

)
L1

s − λs

λs + κs

2ηs

√
1 − |rs |2 L2

s + λsκs

λs + κs

− N 2
s

Ds

with

Ns :=
(

ρs + μs − λs

λs + κs

(σ 2
s + 2σsηsrs + η2

s )

)
Ks

+ (σs + ηsrs)L
1
s + ηs

√
1 − |rs |2 L2

s , (4.2)

Ds := λs + κs + (σ 2
s + 2σsηsrs + η2

s )Ks. (4.3)

We call a pair (K,L) with L = (L1, L2, . . . , Lm) a solution to the BSDE (4.1) if

(i) K is an adapted, continuous, nonnegative and bounded process;
(ii) D = λ + κ + (σ 2 + 2σηr + η2)K > 0 (dP × ds|[0,T ])-a.e.;
(iii) L1, . . . , Lm ∈ L2

0;
(iv) the BSDE (4.1) is satisfied P -a.s.

The requirements of nonnegativity and boundedness of K can be explained here by
the fact that under mild conditions, such a solution exists (see Theorem 4.4 below).
Condition (ii) ensures that there is no problem with division in the driver of (4.1)
where the quantity D appears in the denominator. Moreover, it is worth noting that
for K ≥ 0, we always have D ≥ 0 as σ 2 + 2σηr + η2 = (σ + ηr)2 + η2(1 − |r|2)
and λ + κ ≥ 0. From this, we also see that the quantity D can vanish only in “very
degenerate” situations. Hence condition (ii) is quite natural.

To shorten notation, we introduce for a solution (K,L) of the BSDE (4.1) the
process θ = (θs)s∈[0,T ] by

θs = Ns

Ds

(4.4)

with Ns , Ds from (4.2) and (4.3). Next, we consider the second BSDE [34, (85)],
which is linear and reads in our setting

dψs = −f (s, ψs, φ
1
s , φ2

s )ds +
m∑

j=1

φ
j
s dW

j
s , s ∈ [0, T ],

ψT = −1

2
√

γT ξ, (4.5)
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with the driver

f (s, ψs, φ
1
s , φ2

s )

=
(

μs

2
− σ 2

s

8
−

(
ρs + μs − σ 2

s + σsηsrs

2

)( λs

λs + κs

+ θs

))
ψs

+
(

σs

2
− (σs + ηsrs)

( λs

λs + κs

+ θs

))(
φ1

s + λs

λs + κs

(σs + ηsrs)
√

γs ζsKs

)

− ηs

√
1 − |rs |2

(
λs

λs + κs

+ θs

)(
φ2

s + λs

λs + κs

ηs

√
1 − |rs |2√γs ζsKs

)

+ λs

λs + κs

√
γs ζs

((
ρs + μs − σ 2

s + σsηsrs

2

)
Ks

+ (σs + ηsrs)L
1
s + ηs

√
1 − |rs |2 L2

s

)
− λsκs

λs + κs

√
γs ζs .

A pair (ψ, φ) with φ = (φ1, φ2, . . . , φm) is called a solution to the BSDE (4.5) if

(i) ψ is an adapted continuous process with E[sups∈[0,T ] ψ2
s ] < ∞;

(ii) φ is progressively measurable with
∫ T

0 |φs |2ds < ∞ P -a.s.;

(iii) the BSDE (4.5) is satisfied P -a.s.

For a solution (K,L) of the BSDE (4.1) and a corresponding solution (ψ, φ) of

the BSDE (4.5), we define the process θ0 for s ∈ [0, T ] by

θ0
s =

((
ρs + μs − σ 2

s + σsηsrs

2

)
ψs + λs

λs + κs

√
γs ζs(σ

2
s + 2σsηsrs + η2

s )Ks

+ (σs + ηsrs)φ
1
s + ηs

√
1 − |rs |2 φ2

s

)/
Ds ,

(4.6)

where Ds is from (4.3). We further introduce for x, d ∈ R and s ∈ [0, T ] the SDE

dĤ ∗
s = Ĥ ∗

s dYs + dZs , Ĥ ∗
0 = d√

γ0
− √

γ0 x, (4.7)
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where for s ∈ [0, T ],

dYs =
(

μs

2
− σ 2

s

8
−

(
ρs + μs − σ 2

s + σsηsrs

2

)( λs

λs + κs

+ θs

))
ds

+
(

σs

2
− (σs + ηsrs)

( λs

λs + κs

+ θs

))
dW 1

s

− ηs

√
1 − |rs |2

(
λs

λs + κs

+ θs

)
dW 2

s ,

dZs =
(

ρs + μs − σ 2
s + σsηsrs

2

)(
θ0
s − √

γs ζs

λs

λs + κs

)
ds

+ (σs + ηsrs)

(
θ0
s − √

γs ζs

λs

λs + κs

)
dW 1

s

+ ηs

√
1 − |rs |2

(
θ0
s − √

γs ζs

λs

λs + κs

)
dW 2

s .

We shall show that the solution Ĥ ∗ of (4.7) is the optimal state process in the stochas-
tic control problem to minimise Ĵ0 of (3.4). Notice that Ĥ ∗ can be easily expressed
via Y and Z in closed form.

In the next result, we summarise consequences from Kohlmann and Tang [34]
in our setting to obtain a minimiser of Ĵ0 in (3.4) and a representation of the
minimal costs.

Theorem 4.4 Under Assumption 4.2, assume there exists ε ∈ (0,∞) with λ + κ ≥ ε

(dP × ds|[0,T ])-a.e. or σ 2 + 2σηr + η2 ≥ ε (dP × ds|[0,T ])-a.e. Then:
(i) There exists a unique solution (K,L) of the BSDE (4.1). If σ 2 +2σηr +η2 ≥ ε

(dP × ds|[0,T ])-a.e., there exists c ∈ (0,∞) with P [Ks ≥ c for all s ∈ [0, T ]] = 1.
(ii) There exists a unique solution (ψ, φ) of the BSDE (4.5).
(iii) Let x, d ∈ R, and let Ĥ ∗ be the solution of the SDE (4.7). Then û∗ defined by

û∗
s = θsĤ

∗
s − θ0

s , s ∈ [0, T ], (4.8)

is the unique optimal control in L2
0 for Ĵ0, and Ĥ ∗ is the corresponding state process

(i.e., Ĥ ∗ = Ĥ û∗
).

(iv) Let x, d ∈ R. The costs associated to the optimal control (4.8) are given by

inf
û∈L2

0

Ĵ0

(
d√
γ0

− √
γ0 x, û

)
= Ĵ0

(
d√
γ0

− √
γ0 x, û∗

)

= K0

(
d√
γ0

− √
γ0 x

)2

− 2ψ0

(
d√
γ0

− √
γ0 x

)
+ C0,
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where

C0 = 1

2
E0[γT ξ2] − E0

[ ∫ T

0
(θ0

s )2(λs + κs + (σ 2
s + 2σsηsrs + η2

s )Ks

)
ds

]

+ E0

[ ∫ T

0
Ks

λ2
s

(λs + κs)2
γsζ

2
s (σ 2

s + 2σsηsrs + η2
s )ds

]

+ E0

[ ∫ T

0
2

λs

λs + κs

√
γs ζsψs

(
ρs + μs − σ 2

s + σsηsrs

2

)
ds

]

+ E0

[ ∫ T

0
2

λs

λs + κs

√
γs ζs

(
φ1

s (σs + ηsrs) + φ2
s ηs

√
1 − |rs |2

)
ds

]

+ E0

[ ∫ T

0

λsκs

λs + κs

γsζ
2
s ds

]
. (4.9)

Proof Observe that the problem in Sect. 3.2 fits into the framework in Kohlmann and
Tang [34, Sect. 5]. In particular, the coefficients in the SDE (3.3) for Ĥ û and the cost
functional Ĵ0 (see (3.4)) are bounded and the inhomogeneities are in L2

0. Moreover,
1
2 , λκ

λ+κ
and λ + κ are nonnegative, and the filtration in this section by assumption is

generated by the Brownian motion (W 1, . . . ,Wm).
(i) If λ + κ ≥ ε, this is an immediate consequence of [34, Theorem 2.1]. In the

case σ 2 + 2σηr + η2 ≥ ε, this is an application of [34, Theorem 2.2].
(ii) This is due to [34, Theorem 5.1].
(iii) The first part of [34, Theorem 5.2] yields the existence of a unique optimal

control û∗ which is given in feedback form by the formula û∗ = θĤ û∗ − θ0. We
obtain (4.7) by plugging this into (3.3).

(iv) The second part of [34, Theorem 5.2] provides us with the optimal costs. �

By applying Corollaries 3.7 and 3.4, we obtain a solution to the trade execution
problem of Sect. 2.

Corollary 4.5 Impose Assumption 4.2 and assume there exists ε ∈ (0,∞) with
λ + κ ≥ ε (dP × ds|[0,T ])-a.e. or σ 2 + 2σηr + η2 ≥ ε (dP × ds|[0,T ])-a.e. Let
(K,L) be the unique solution of the BSDE (4.1), (ψ, φ) the unique solution of the
BSDE (4.5), and recall the definitions (4.4) of θ and (4.6) of θ0. Let x, d ∈ R. Then
X∗ defined by

X∗
0− = x, X∗

T = ξ,

X∗
s = γ

− 1
2

s

((
θs + λs

λs + κs

− 1
)
Ĥ ∗

s + γ
1
2

s ζs

λs

λs + κs

− θ0
s

)
, s ∈ [0, T ),
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with Ĥ ∗ from (4.7) is the unique (up to (dP × ds|[0,T ])-nullsets) optimal execution
strategy in Apm

0 (x, d) for J
pm
0 . The associated costs are given by

inf
X∈Apm

0 (x,d)

J
pm
0 (x, d,X)

= J
pm
0 (x, d,X∗)

= K0

(
d√
γ0

− √
γ0 x

)2

− 2ψ0

(
d√
γ0

− √
γ0 x

)
+ C0 − d2

2γ0

with C0 from (4.9).

Remark 4.6 (i) Note that the BSDE (4.1) contains neither ξ nor ζ . In particular, the
solution component K and the process θ from (4.4) do not depend on the choice of ξ

or ζ (although they depend on the choice of λ). In contrast, the BSDE (4.5) involves
both ξ and ζ . If ξ = 0 and at least one of λ and ζ is equivalent to 0, then (ψ, φ)

from (4.5), θ0 from (4.6) and C0 from (4.9) vanish.
(ii) Under the assumptions of Corollary 4.5, we have K0 ≤ 1

2 . This is a direct
consequence of Corollary 4.5 and (i) above. Indeed, choose ξ = 0 and ζ = 0 (by (i),
this does not affect K). Then Corollary 4.5 and (i) show for the optimal strategy X∗
from Corollary 4.5 that J

pm
0 (1, 0, X∗) = K0γ0. The suboptimal FV execution strat-

egy X0− = 1, Xs = 0, s ∈ [0, T ], in Afv
0 (1, 0) incurs the costs J

pm
0 (1, 0, X) = γ0

2 ,
and hence K0 ≤ 1

2 .
(iii) Our present setting essentially includes that in Ackermann et al. [1], where

ξ = 0, λ = 0 and η = 0 (and therefore the processes ζ and r are not needed; cf. (2.1)
and (2.8)). The word “essentially” relates to different integrability conditions and to
the fact that in [1], the formulation is for a continuous local martingale and a general
filtration instead of Brownian motion with a Brownian filtration. For ξ = 0, λ = 0
and η = 0, the FV control problem associated with (2.4)–(2.8) is extended in [1] to
a problem where the control X is a càdlàg semimartingale that acts as an integrator
in the extended state dynamics of the form (2.4) and with a target functional of the
form (2.8). Here, the word “extended” relates to the fact that (2.4) and (2.8) need
to be extended with certain additional terms when allowing general semimartingale
strategies; see [1]. In [1], the existence of an optimal semimartingale strategy as well
as its form (when it exists) are characterised in terms of a certain process β̃, which
is in turn defined via a solution (Y, Z,M⊥) to a certain quadratic BSDE (see [1,
Eq. (3.2)]). It is worth noting that if ξ = 0, λ = 0 and η = 0, all formulas in the
present section simplify greatly, and in particular, the BSDE (4.1) above is equivalent
to the BSDE (3.2) in [1]. The relation is Y = K , Z = L1, dM⊥

s = ∑m
j=2 L

j
s dW

j
s ,

where for the sake of a fair comparison, we consider the subsetting in [1] where the
filtration is generated by the m-dimensional Brownian motion (W 1, . . . ,Wm) and
the continuous local martingale M is W 1. Further, for ξ = 0, λ = 0 and η = 0, our
process θ from (4.4) reduces to the above-mentioned process β̃ (see [1, Eq. (3.5)]),
while (ψ, φ) from (4.5), θ0 from (4.6) and C0 from (4.9) vanish.

(iv) It is also instructive to compare Corollary 4.5, where we obtain that the control
problem extended to Apm

0 (x, d) always admits a minimiser, with [1, Theorem 3.4],



Reducing OW-type execution problems to stochastic LQ problems 837

where it turns out that an optimal semimartingale strategy can fail to exist. See the
discussion at the end of Sect. 5.3 for a specific example.

4.1 On the continuity of optimal position paths

In the setting of Obizhaeva and Wang [37], optimal position paths X∗ exhibit jumps
(so-called block trades) at times 0 and T , but are continuous on the interior (0, T )

(see also Sect. 5.1 below). An interesting question is whether the continuity on (0, T )

prevails in the generalised setting considered in the present paper. This is not reason-
able to expect when we have a risk term with a “sufficiently irregular” process ζ , and
indeed, we see in Example 5.1 below that the continuity of X∗ on (0, T ) can fail (this
is discussed in Remark 5.2).

More interestingly, such a continuity can already fail even without the risk term
(i.e., λ = 0) and with terminal target ξ = 0. Indeed, consider the setting with σ = 0,
λ = 0, ξ = 0 and non-diffusive resilience process R given by Rs = ρs (with ρ a
deterministic constant). Then it follows from [1, Example 6.2] that continuity of the
price impact process γ is not sufficient for continuity of the optimal position paths X∗
on (0, T ): It is shown that if the paths of γ are absolutely continuous, then a jump of
the weak derivative of γ on (0, T ) already causes X∗ to jump on (0, T ).

Moreover, it is possible that the random terminal target position ξ causes the
optimal position path X∗ to jump in (0, T ) with all other input processes being
continuous. We present an example for this phenomenon in Sect. 5.2.

A way to obtain sufficient conditions for the continuity of X∗ on (0, T ) consists
of combining Corollary 4.5 with path regularity results for BSDEs. Indeed, if the co-
efficient processes ρ, μ, σ , η, r , λ, ζ are continuous and if one can ensure that the
solution components L1, L2 and φ1, φ2 (which correspond to the martingale repre-
sentation part of the solution) of the BSDE (4.1) resp. (4.5) have continuous sam-
ple paths, then Corollary 4.5 ensures that X∗ also has continuous sample paths on
(0, T ). Results that guarantee continuity of BSDE solutions in a Markovian frame-
work, including the quadratic case, can for example be found in Imkeller and Dos
Reis [32].

5 Examples

In this section, we apply the preceding results in specific case studies.

5.1 The Obizhaeva–Wang model with random targets

The models developed by Obizhaeva and Wang [37] can be considered as special
cases of the setup in Sect. 2. Indeed, we obtain the problem of [37, Sect. 6] by setting
μ ≡ 0, σ ≡ 0, η ≡ 0, r ≡ 0, λ ≡ 0 and choosing ρ ∈ (0,∞) and ξ ∈ R as
deterministic constants.

Example 5.1 In this example, we apply our results (in particular, Corollary 4.5) and
provide closed-form solutions (see (5.5) below) for optimal progressively measur-
able execution strategies in versions of these problems which allow general random
terminal targets ξ and general running targets ζ .
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Let x, d ∈ R. Suppose that μ ≡ 0, σ ≡ 0, η ≡ 0 and r ≡ 0. Furthermore,
assume that ρ ∈ (0,∞) and λ ∈ [0,∞) are deterministic constants. We take some
ξ and ζ as specified in Sect. 2.1 (in particular, see (2.3)). Note that the conditions of
Theorem 4.4 and Corollary 4.5 hold true and that γs = γ0 for all s ∈ [0, T ]. In the
current setting, the BSDE (4.1) reads

dKs =
(

ρ2

ρ + λ
K2

s + 2λρ

ρ + λ
Ks − λρ

ρ + λ

)
ds +

m∑
j=1

L
j
s dW

j
s , s ∈ [0, T ],

KT = 1

2
. (5.1)

By Theorem 4.4, there exists a unique solution (K,L). Since the driver and the ter-
minal condition in (5.1) are deterministic, we obtain L ≡ 0, and hence (5.1) is in
fact a scalar Riccati ODE with constant coefficients. Such an equation can be solved
explicitly, and in our situation, we obtain in the case λ > 0 that

Ks = 1

2

λ tanh(
√

λ ρ(T −s)√
λ+ρ

) + √
λ(ρ + λ)

(
ρ
2 + λ) tanh(

√
λ ρ(T −s)√

λ+ρ
) + √

λ(ρ + λ)
, s ∈ [0, T ],

and in the case λ = 0 that

Ks = 1

2 + (T − s)ρ
, s ∈ [0, T ]. (5.2)

The process θ from (4.4) is here given by θs = ρ
λ+ρ

Ks , s ∈ [0, T ]. The BSDE (4.5)
becomes

dψs =
(

ρλ

λ + ρ
+ ρθs

)
ψsds + ρλ

λ + ρ

√
γ0 ζs(1 − Ks)ds

+
m∑

j=1

φ
j
s dW

j
s , s ∈ [0, T ],

ψT = −1

2
√

γ0 ξ. (5.3)

Again by Theorem 4.4, there exists a unique solution (ψ, φ). The solution compo-
nent ψ is given by

ψs = 1

�s

√
γ0

(
− 1

2
�T Es[ξ ] − ρλ

λ + ρ
Es

[ ∫ T

s

�r(1 − Kr)ζrdr

])
, s ∈ [0, T ],

where we have introduced

�s = exp

(
− ρ

∫ s

0

( λ

λ + ρ
+ θr

)
dr

)

= exp

(
− ρ

λ + ρ

(
λs + ρ

∫ s

0
Krdr

))
, s ∈ [0, T ]. (5.4)
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The process θ0 in (4.6) is given by θ0
s = ρ

λ+ρ
ψs , s ∈ [0, T ]. Further, the SDE (4.7)

reads

dĤ ∗
s = −ρ

(
λ

λ + ρ
+ θs

)
Ĥ ∗

s ds + ρ

(
θ0
s − √

γ0 ζs

λ

λ + ρ

)
ds, s ∈ [0, T ],

Ĥ ∗
0 = d√

γ0
− √

γ0 x,

and has the solution

Ĥ ∗
s = �s

(
d√
γ0

− √
γ0 x + ρ

∫ s

0
�−1

r

(
θ0
r − √

γ0 ζr

λ

λ + ρ

)
dr

)
, s ∈ [0, T ],

with � given by (5.4). It then follows from Corollary 4.5 that the stochastic process
X∗ defined by X∗

0− = x, X∗
T = ξ and

X∗
s = γ

− 1
2

0

((
θs − ρ

λ + ρ

)
Ĥ ∗

s − θ0
s

)
+ ζs

λ

λ + ρ

= ρ

λ + ρ
(1 − Ks)�s

(
x − d

γ0
+ ρ

λ + ρ

∫ s

0
�−1

r

(
λζr − ρ√

γ0
ψr

)
dr

)

+ ρ

λ + ρ

(
λ

ρ
ζs − 1√

γ0
ψs

)
, s ∈ [0, T ), (5.5)

is the (up to (dP × ds|[0,T ])-nullsets unique) execution strategy in Apm
0 (x, d) that

minimises J
pm
0 .

Remark 5.2 From Example 5.1, we see that discontinuities of the target process ζ

can cause jumps of the optimal position path X∗ in (0, T ). Indeed, as θ , θ0 and
Ĥ ∗ are continuous, it follows from (5.5) that in the case λ > 0, paths of the optimal
strategy X∗ inherit discontinuities from ζ on (0, T ) (in particular, X∗ jumps on (0, T )

whenever ζ does).

In the next example, we study the case λ ≡ 0 in more detail.

Example 5.3 In the setting of Example 5.1, suppose that λ ≡ 0. If the terminal tar-
get ξ ∈ R is a deterministic constant, it follows from Obizhaeva and Wang [37,
Proposition 3] that the optimal FV execution strategy is given by

X∗
s =

(
x − ξ − d

γ0

)
1 + (T − s)ρ

2 + Tρ
+ ξ, s ∈ [0, T ). (5.6)

So the optimal strategy consists of potential block trades (jumps of X∗) at the time
points 0 and T and a continuous linear trading program on [0, T ). In the following,
we analyse how this structure changes when we allow a random terminal target ξ .

First recall that the solution of the BSDE (5.1) is given in this case by (5.2). It
follows that � from (5.4) simplifies to �s = 2+(T −s)ρ

2+Tρ
, s ∈ [0, T ]. For the solution
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component ψ of the BSDE (5.3), we thus obtain

ψs = −
√

γ0

2 + (T − s)ρ
Es[ξ ], s ∈ [0, T ].

The optimal strategy from (5.5) on [0, T ) becomes

X∗
s = (1 − Ks)�s

(
x − d

γ0
− ρ

∫ s

0
�−1

r

1√
γ0

ψrdr

)
− 1√

γ0
ψs

=
(

x − d

γ0

)
1 + (T − s)ρ

2 + Tρ
+ ρ

(
1 + (T − s)ρ

) ∫ s

0

Er [ξ ]
(2 + (T − r)ρ)2

dr

+ Es[ξ ]
2 + (T − s)ρ

, s ∈ [0, T ). (5.7)

Integration by parts implies that (note that (Er [ξ ])r∈[0,T ] is a continuous martingale)
∫ s

0

Er [ξ ]
(2 + (T − r)ρ)2 dr =

∫ s

0
Er [ξ ]d 1

ρ(2 + (T − r)ρ)

= Es[ξ ]
ρ(2 + (T − s)ρ)

− E0[ξ ]
ρ(2 + Tρ)

−
∫ s

0

1

ρ(2 + (T − r)ρ)
dEr [ξ ], s ∈ [0, T ).

Substituting this into (5.7) yields for s ∈ [0, T ) that

X∗
s =

(
x − E0[ξ ] − d

γ0

)
1 + (T − s)ρ

2 + Tρ
+ Es[ξ ] −

∫ s

0

1 + (T − s)ρ

2 + (T − r)ρ
dEr [ξ ]

=
(

x − E0[ξ ] − d

γ0

)
1 + (T − s)ρ

2 + Tρ
+ E0[ξ ]

+
∫ s

0

(
1 − 1 + (T − s)ρ

2 + (T − r)ρ

)
dEr [ξ ].

We finally obtain the alternative representation

X∗
s =

(
x − E0[ξ ] − d

γ0

)
1 + (T − s)ρ

2 + Tρ

+ E0[ξ ] +
∫ s

0

1 + (s − r)ρ

2 + (T − r)ρ
dEr [ξ ], s ∈ [0, T ),

for (5.7). We see that this optimal strategy X∗ ∈ Apm
0 (x, d) consists of two addi-

tive parts. The first part corresponds exactly to the optimal deterministic strategy
in (5.6), where the deterministic terminal target is replaced by the expected termi-
nal target E0[ξ ]. The second part represents fluctuations around this deterministic
strategy which incorporate updates about the random terminal target ξ . Note that this
stochastic integral vanishes in expectation although it is not a martingale (indeed, the
time s is not only the upper bound of integration, but also appears in the integrand).
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5.2 A discontinuous optimal position path for continuous inputs

We now show that the optimal strategy can have jumps inside (0, T ) even if all input
processes, including ζ , are continuous. Let x, d ∈ R. Take λ ≡ 0, ζ ≡ 0, η ≡ 0,

r ≡ 0, μ ≡ 0 and assume that σ ∈ (0,∞) and ρ ∈ ( σ 2

2 ,∞) are deterministic con-
stants. Moreover, we later consider an appropriate random terminal target ξ satisfying
the assumptions of Sect. 2.1 to produce a jump of the optimal strategy.

Note that the conditions of Theorem 4.4 and Corollary 4.5 hold true. In particular,
there exists a unique solution (K,L) of the BSDE (4.1), and it is given by (compare
also with [1, Sect. 5.2]) L ≡ 0 and

Ks = ρ − σ 2

2

σ 2

/
W

(
ρ − σ 2

2

σ 2
e
c0− ρ2

σ2 s

)
, s ∈ [0, T ],

where W denotes the Lambert W -function and c0 = ln 2 + 1
σ 2 (2ρ − σ 2 + ρ2T ). The

process θ from (4.4) becomes

θs = ρKs

ρ − σ 2

2 + σ 2Ks

, s ∈ [0, T ],

and both θ and K are deterministic, increasing, continuous, (0, 1/2]-valued functions.
For some t0 ∈ (0, T ), let

ξ = −2γ
− 1

2
0 exp

(
− σ

2
W 1

T + 3

8
σ 2T +

(
ρ − σ 2

2

) ∫ T

0
θsds

)

×
(

σ

∫ T

t0

�sθsds +
∫ T

t0

�sdW 1
s

)
,

where

�t = exp

(
− σ 2

8
t −

(
ρ − σ 2

2

) ∫ t

0
θsds

)
, t ∈ [0, T ].

Note that ξ is FT -measurable and E[γT ξ2] < ∞. The terminal target ξ here is
defined in such a way that the unique solution (ψ, φ) of the BSDE (4.5) (cf. Theo-
rem 4.4) is given by φ1 = 1[t0,T ], φj ≡ 0, j ∈ {2, . . . , m}, and

ψt =
⎧⎨
⎩

0, 0 ≤ t < t0,

�−1
t (σ

∫ t

t0
�sθsds + ∫ t

t0
�sdW 1

s ), t0 ≤ t ≤ T .

It follows for the process θ0 in (4.6) that

θ0
t =

⎧⎪⎨
⎪⎩

0, 0 ≤ t < t0,

(ρ− σ2
2 )ψt+σ

ρ− σ2
2 +σ 2Kt

, t0 ≤ t ≤ T .
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We thus have

�θ0
t0

= σ

ρ − σ 2

2 + σ 2Kt0

> 0.

From Corollary 4.5, we obtain the existence of a unique optimal strategy X∗ and that

X∗
s = γ

− 1
2

s ((θs−1)Ĥ ∗
s −θ0

s ), s ∈ [0, T ). Since γ , θ and Ĥ ∗ (see (4.7)) are continuous

and �θ0
t0

> 0, we obtain that �X∗
t0

= −γ
− 1

2
t0

�θ0
t0

< 0. Hence the optimal strategy
has a jump at t0 ∈ (0, T ).

5.3 An example where J fv
0 does not admit a minimiser

Let x, d ∈ R with x �= d
γ0

. Suppose that σ ≡ 0, η ≡ 0, λ ≡ 0, r ≡ 0, ζ ≡ 0, ξ = 0.
Choose μ to be a bounded deterministic càdlàg function such that there exists a con-
stant δ ∈ (0, T ) with μ having infinite variation on [0, T − δ], and take ρ ∈ R \ {0}
such that there exists ε ∈ (0,∞) with 2ρ + μ ≥ ε. Note that this corresponds to the
setting in Ackermann et al. [1, Example 6.4]. Moreover, observe that the conditions
of Corollary 4.5 are satisfied.

In the current setting, the BSDE (4.1) becomes

dKs =
(

− μsKs + 2(ρ + μs)
2K2

s

2ρ + μs

)
ds +

m∑
j=1

L
j
s dW

j
s , s ∈ [0, T ],

KT = 1

2
.

Its solution is given by (K, 0), where (see also Y in [1, Sect. 6])

Ks = e
∫ T
s μrdr

/( ∫ T

s

2(ρ + μr)
2

2ρ + μr

e
∫ T
r μ�d�dr + 2

)
, s ∈ [0, T ],

is a deterministic continuous function of finite variation. We have that

θs = 2(ρ + μs)

2ρ + μs

Ks, s ∈ [0, T ],

which is the same as β̃ in [1, Example 6.4]. The solution of the BSDE (4.5) is given
by (ψ, φ) = (0, 0), and it holds that θ0 ≡ 0. Furthermore, (4.7) reads

dĤ ∗
s =

(
μs

2
− (ρ + μs)θs

)
Ĥ ∗

s ds, s ∈ [0, T ], Ĥ ∗
0 = d√

γ0
− √

γ0 x,

and is solved by the continuous deterministic FV function

Ĥ ∗
s =

(
d√
γ0

− √
γ0 x

)
exp

( ∫ s

0

(μr

2
− (ρ + μr)θr

)
dr

)
, s ∈ [0, T ],

which is nonvanishing due to our assumption x �= d
γ0

.
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Note that at this point, it is easy to explain why we exclude the case x = d
γ0

in this

example. Namely, if x = d
γ0

, we get Ĥ ∗ ≡ 0 and then the optimal strategy is to close
the position immediately, i.e., X∗

0− = x, X∗
s = 0, s ∈ [0, T ], which is always an FV

strategy.
To continue, by Corollary 4.5, there exists a (up to (dP ×ds|[0,T ])-nullsets) unique

minimiser X∗ of J
pm
0 in Apm

0 (x, d), and it is given by

X∗
0− = x, X∗

T = 0, X∗
s = γ

− 1
2

s (θs − 1)Ĥ ∗
s , s ∈ [0, T ).

Assume by way of contradiction that there exists a minimiser X0 of J fv
0 in the set

Afv
0 (x, d) of FV execution strategies. We know from Corollary 3.3 that X0 is then

also a minimiser of J
pm
0 in the set Apm

0 (x, d) of progressively measurable execution
strategies. It follows that X0 = X∗ (dP × ds|[0,T ])-a.e. Since Ĥ ∗ is nowhere 0, we
obtain that

1 + γ
1
2 X0

Ĥ ∗ = θ (dP × ds|[0,T ])-a.e. (5.8)

Observe that the left-hand side is a process of finite variation. On the other hand, our
assumption on μ easily yields that θ has infinite variation. This contradiction proves
that in the setting of this example, J fv

0 does not admit a minimiser in Afv
0 (x, d).

We can say even more: In this example, there exists no optimal semimartingale
strategy, where under a semimartingale strategy, we formally understand a semi-
martingale that is an element of Apm

0 (x, d). Indeed, if we had a semimartingale X0 as
a minimiser, we should still get (5.8) (with a semimartingale X0). The left-hand side
would then be a semimartingale. On the other hand, it is shown in [1, Example 6.4]
that there does not exist any semimartingale β with β = θ (dP × ds|[0,T ])-a.e.
Thus the cost functional does not have a minimiser in the set of semimartingales,
but we are now able to find a minimiser in the set of progressively measurable
execution strategies.

5.4 An example with a diffusive resilience

As already mentioned in the introduction, the literature on optimal trade execution in
Obizhaeva–Wang-type models typically assumes that R is an increasing process. In
Ackermann et al. [1] and Ackermann et al. [3], R is allowed to have finite variation.
Now we consider an example with a truly diffusive R.

Let x, d ∈ R with x �= d
γ0

. Let ξ = 0, λ ≡ 0, ζ ≡ 0 and μ ≡ 0. Moreover,
suppose that r ∈ [−1, 1] and η, ρ, σ ∈ R are deterministic constants such that

κ = 1

2
(2ρ − σ 2 − η2 − 2σηr) > 0 and σ 2 + η2 + 2σηr > 0

(in particular, we thus need ρ > 0). Note that the assumptions of Corollary 4.5 are
satisfied. We moreover remark that the subsetting with η ≡ 0 corresponds to the
setting in [1, Sect. 5.2]. Therefore the difference to [1, Sect. 5.2] is that we now
consider a more general resilience.
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The Riccati BSDE (4.1) becomes

dKs = (ρKs + (σ + ηr)L1
s + η

√
1 − |r|2 L2

s )
2

(σ 2 + η2 + 2σηr)Ks + κ
ds − σL1

s ds

+
m∑

j=1

L
j
s dW

j
s , s ∈ [0, T ],

KT = 1

2
.

This has the solution (K,L) = (K, 0) with, for s ∈ [0, T ],

Ks = κ

σ 2 + η2 + 2σηr

/
W

(
κ

σ 2 + η2 + 2σηr
exp

(
c − ρ2s

σ 2 + η2 + 2σηr

))
,

where c = ln 2 + 2κ+ρ2T

σ 2+η2+2σηr
(compare also with [1, Sect. 5.2]) and W denotes the

Lambert W -function. We further have

θs = ρKs

(σ 2 + η2 + 2σηr)Ks + κ
, s ∈ [0, T ].

Observe that (ψ, φ) = (0, 0) is the solution of (4.5) in the present setting and that we
get θ0 ≡ 0 in (4.6). Moreover, the SDE (4.7) reads

dĤ ∗
s =

(
− σ 2

8
−

(
ρ − σ 2 + σηr

2

)
θs

)
Ĥ ∗

s ds +
(

σ

2
− (σ + ηr)θs

)
Ĥ ∗

s dW 1
s

− η

√
1 − |r|2 θsĤ

∗
s dW 2

s , s ∈ [0, T ],

with Ĥ ∗
0 = d√

γ0
− √

γ0 x. Hence we obtain for all s ∈ [0, T ] that

Ĥ ∗
s =

(
d√
γ0

− √
γ0 x

)

× exp

(
σ

2
W 1

s − (σ + ηr)

∫ s

0
θrdW 1

r − η

√
1 − |r|2

∫ s

0
θrdW 2

r

)

× exp

(
− σ 2s

4
− (ρ − σ 2 − σηr)

∫ s

0
θrdr − σ 2 + η2 + 2σηr

2

∫ s

0
θ2
r dr

)
.

It follows from Corollary 4.5 that the optimal execution strategy is given by

X∗
s =

(
x − d

γ0

)
(1 − θs) exp

(
− (σ + ηr)

∫ s

0
θrdW 1

r − η

√
1 − |r|2

∫ s

0
θrdW 2

r

)

× exp

(
− (ρ − σ 2 − σηr)

∫ s

0
θrdr − σ 2 + η2 + 2σηr

2

∫ s

0
θ2
r dr

)

for s ∈ [0, T ).
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We can show here that K and θ both are continuous, deterministic, increasing,
(0, 1/2]-valued functions of finite variation. Since θ < 1, the optimal strategy on
[0, T ) always has the same sign as x− d

γ0
. Moreover, the optimal strategy is stochastic

and has infinite variation, as in [1, Sect. 5.2]. But in contrast to [1, Sect. 5.2] where
the price impact always has infinite variation, we can here set σ ≡ 0 for a choice
of η2 ∈ (0, 2ρ). In this case, the price impact γ ≡ γ0 is a deterministic constant,
but the optimal strategy still has infinite variation (due to the infinite variation in the
resilience R).

Observe furthermore that by making use of η and r , we can choose the parameters
in the current setting in such a way that κ > 0 and σ 2 + η2 + 2σηr > 0 are satisfied,
but condition (3.1) in [1], i.e., 2ρ − σ 2 > 0, is violated.

With regard to Sect. 5.3, we remark that in both sections, there is no optimal strat-
egy in Afv

0 (x, d). But in contrast to Sect. 5.3, in the current section, there exists an
optimal semimartingale strategy.

5.5 Cancellation of infinite variation

We now present an example where the infinite variation in the price impact process γ

is “cancelled” by the infinite variation in the resilience process R and we obtain an
optimal strategy X∗ of finite variation.

Let x, d ∈ R. Let ξ = 0, λ ≡ 0, ζ ≡ 0 and μ ≡ 0. Suppose that r = −1 and ρ > 0
are deterministic constants, and assume that η and σ are progressively measurable,
(dP × ds|[0,T ])-a.e. bounded processes such that η = σ (dP × ds|[0,T ])-a.e. It then
holds (dP × ds|[0,T ])-a.e. that σ 2 + η2 + 2σηr = 0 and κ = ρ > 0. In particular,
the assumptions of Corollary 4.5 are satisfied.

The BSDE

dKs = ρK2
s ds − σsL

1
s ds +

m∑
j=1

L
j
s dW

j
s , s ∈ [0, T ], KT = 1

2
,

which is the BSDE (4.1) in the present setting, has the solution (K,L) = (K, 0) with

Ks = 1

2 + (T − s)ρ
, s ∈ [0, T ]

(cf. Sect. 5.1). We obtain θ ≡ K , that (ψ, φ) = (0, 0) is the solution of (4.5), and
that θ0 ≡ 0. It follows that (4.7) has the solution, for s ∈ [0, T ],

Ĥ ∗
s =

(
d√
γ0

− √
γ0 x

)
exp

(
− 1

4

∫ s

0
σ 2

r dr − ρ

∫ s

0
Krdr + 1

2

∫ s

0
σrdW 1

r

)
.

For the optimal execution strategy from Corollary 4.5, we then compute that

X∗
s =

(
x − d

γ0

)
1 + (T − s)ρ

2 + Tρ
, s ∈ [0, T ).

The optimal strategy in the current setting with general stochastic σ = η and negative
correlation r = −1 is thus the same as in the Obizhaeva–Wang setting σ = 0 = η
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(cf. Obizhaeva and Wang [37, Proposition 3]; see also [1, Sect. 4.2]). In particular, the
optimal strategy is deterministic and of finite variation, although the price impact γ

and the resilience R are both stochastic and of infinite variation (at least if σ = η is
nonvanishing).

We finally remark that this setting does not reduce to the Obizhaeva–Wang setting
σ = 0 = η. Indeed, while the optimal strategies for σ = 0 = η and for general
stochastic σ = η with correlation r = −1 coincide, this is not true for the associated
deviation processes. In general, we have

DX∗
s = −γ0

(
x − d

γ0

) 1

2 + Tρ
exp

( ∫ s

0
ηrdW 1

r − 1

2

∫ s

0
η2

r dr

)
, s ∈ [0, T ),

which for a nonvanishing η and x �= d
γ0

has infinite variation, but is constant in the
Obizhaeva–Wang setting (take η = 0).

6 Proofs

In this section, we provide the proofs for the results in Sects. 2 and 3. We furthermore
state and prove some auxiliary results used in the proofs of the main results.

For reference in several proofs, note that the order book height, i.e., the reciprocal
of the price impact, has dynamics

dγ −1
s = γ −1

s

( − (μs − σ 2
s )ds − σsdW 1

s

)
, s ∈ [0, T ]. (6.1)

We moreover observe that Itô’s lemma gives

dγ
1
2

s = γ
1
2

s

(
1

2
μs − 1

8
σ 2

s

)
ds + 1

2
γ

1
2

s σsdW 1
s , s ∈ [0, T ],

dγ
− 1

2
s = γ

− 1
2

s

(
− 1

2
μs + 3

8
σ 2

s

)
ds − 1

2
γ

− 1
2

s σsdW 1
s , s ∈ [0, T ]. (6.2)

Proof of Proposition 2.3 Integration by parts implies for all s ∈ [t, T ] that

d(νsDs) = νsdDs + Dsdνs + d[ν,D]s
= −νsDsdRs + νsγsdXs + νsDsdRs + νsDsd[R]s + d[ν,D]s
= νsγsdXs + νsDsd[R]s + d[ν,D]s .

Since

d[ν,D]s = νsd[R,D]s = −νsDsd[R]s , s ∈ [t, T ],
it follows that the process D̃s = νsDs , s ∈ [t, T ], D̃t− = d , satisfies

dD̃s = d(νsDs) = νsγsdXs, s ∈ [t, T ]. (6.3)

In particular, D̃ is of finite variation.
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The facts that �Ds = γs�Xs and dD̃s = νsγsdXs , s ∈ [t, T ], imply that

∫
[t,T ]

(2Ds− + γs�Xs)dXs =
∫

[t,T ]
(2Ds− + �Ds)dXs

=
∫

[t,T ]
(2Ds− + �Ds)γ

−1
s ν−1

s dD̃s

=
∫

[t,T ]
ν−2
s γ −1

s (2D̃s− + �D̃s)dD̃s

=
∫

[t,T ]
ϕsd(D̃2

s ), (6.4)

where we set ϕs = ν−2
s γ −1

s , s ∈ [t, T ], and in the last equality use that

d(D̃2
s ) = (2D̃s− + �D̃s)dD̃s, s ∈ [t, T ],

as D̃ has finite variation. Summing up, (6.4) yields

∫
[t,T ]

Ds−dXs + 1

2

∫
[t,T ]

γs�XsdXs

= 1

2

(
D̃2

T ϕT − D̃2
t−ϕt −

∫ T

t

D̃2
s dϕs

)

= 1

2

(
γ −1
T D2

T − γ −1
t d2 −

∫ T

t

D2
s ν

2
s d(ν−2

s γ −1
s )

)
.

In order to show (2.12), we first obtain from (6.3) and integration by parts that

νrDr − d = νrγrXr − γtx −
∫

[t,r]
Xsd(νsγs) −

∫
[t,r]

d[νγ,X]s , r ∈ [t, T ].

This implies that

Dr = γrXr + ν−1
r

(
d − γtx −

∫ r

t

Xsd(νsγs)

)
, r ∈ [t, T ]. �

Proof of Proposition 2.4 We first consider the integrator ν−2γ −1 on the right-hand
side of (2.11). Integration by parts and (2.10) yield for all s ∈ [t, T ] that

d(ν−2
s γ −1

s ) = ν−1
s d(γ −1

s ν−1
s ) + γ −1

s ν−1
s dν−1

s + d[ν−1, γ −1ν−1]s
= 2ν−1

s γ −1
s dν−1

s + ν−2
s dγ −1

s + ν−1
s d[γ −1, ν−1]s + d[ν−1, γ −1ν−1]s

= −2ν−2
s γ −1

s dRs + ν−2
s dγ −1

s − ν−2
s d[γ −1, R]s + d[ν−1, γ −1ν−1]s .



848 J. Ackermann et al.

Note that for all s ∈ [t, T ], we have

d[ν−1, γ −1ν−1]s = −ν−1
s d[R, γ −1ν−1]s

= −ν−1
s d

[
R,

∫ ·

t

γ −1dν−1 +
∫ ·

t

ν−1dγ −1
]

s

= −ν−1
s γ −1

s d[R, ν−1]s − ν−2
s d[R, γ −1]s

= ν−2
s γ −1

s d[R]s − ν−2
s d[R, γ −1]s .

It hence follows for all s ∈ [t, T ] that

d(ν−2
s γ −1

s ) = −2ν−2
s γ −1

s dRs + ν−2
s dγ −1

s − 2ν−2
s d[γ −1, R]s + ν−2

s γ −1
s d[R]s .

Plugging this into (2.11) from Proposition 2.3, we obtain that

∫
[t,T ]

Ds−dXs + 1

2

∫
[t,T ]

γs�XsdXs

= 1

2

(
γ −1
T D2

T − γ −1
t d2

−
∫ T

t

D2
s (dγ −1

s + γ −1
s d[R]s − 2γ −1

s dRs − 2d[γ −1, R]s)
)

. (6.5)

We further have by (2.1) and (6.1) that for all s ∈ [t, T ],

dγ −1
s + γ −1

s d[R]s − 2γ −1
s dRs − 2d[γ −1, R]s

= −γ −1
s (μs − σ 2

s )ds − γ −1
s σsdW 1

s + γ −1
s η2

s ds − 2γ −1
s ρsds − 2γ −1

s ηsdWR
s

+ 2γ −1
s σsηsrsds

= −γ −1
s (2ρs + μs − σ 2

s − η2
s − 2σsηsrs)ds − γ −1

s σsdW 1
s − 2γ −1

s ηsdWR
s . (6.6)

It follows from (2.5) and the boundedness of the input processes that

E

[∣∣∣∣
∫ T

t

D2
s γ

−1
s (2ρs + μs − σ 2

s − η2
s − 2σsηsrs)ds

∣∣∣∣
]

< ∞.

The Burkholder–Davis–Gundy inequality together with (2.7) shows that

E

[
sup

r∈[t,T ]

∣∣∣∣
∫ r

t

D2
s γ

−1
s σsdW 1

s

∣∣∣∣
]

≤ cE

[( ∫ T

t

D4
s γ

−2
s σ 2

s ds

) 1
2
]

< ∞

for some constant c ∈ (0,∞). We therefore get Et [
∫ T

t
D2

s γ
−1
s σsdW 1

s ] = 0. Simi-

larly, (2.6) implies that Et [
∫ T

t
2D2

s γ
−1
s ηsdWR

s ] = 0. It thus follows from (6.5), (6.6)



Reducing OW-type execution problems to stochastic LQ problems 849

and (2.13) that

Et

[ ∫
[t,T ]

Ds−dXs + 1

2

∫
[t,T ]

γs�XsdXs

]

= 1

2
Et

[
γ −1
T D2

T +
∫ T

t

D2
s γ

−1
s 2κsds

]
− d2

2γt

.

By the definition (2.8) of J fv
t , this proves (2.14). �

The dynamics that we compute in the following lemma are used in the proofs of
Lemmas 2.7 and 6.5.

Lemma 6.1 Let t ∈ [0, T ], x, d ∈ R. Assume that X is a progressively measurable

process such that
∫ T

t
X2

s ds < ∞ a.s. For αs = γ
− 1

2
s ν−1

s , s ∈ [t, T ], and

βs = d − γtx −
∫ s

t

Xrd(νrγr ), s ∈ [t, T ],

we then have for all s ∈ [t, T ] that

d(αsβs)

= −γ
1
2

s Xs

(
(μs + ρs + η2

s + σsηsrs)ds + (σs + ηsrs)dW 1
s + ηs

√
1 − |rs |2 dW 2

s

)

+ αsβs

(
− ρs − 1

2
μs + 3

8
σ 2

s + 1

2
σsηsrs

)
ds

+ αsβs

((
− ηsrs − 1

2
σs

)
dW 1

s − ηs

√
1 − |rs |2 dW 2

s

)

+ γ
1
2

s Xs

(
3

2
ηsσsrs + 1

2
σ 2

s + η2
s

)
ds. (6.7)

Proof Integration by parts implies that for s ∈ [t, T ],

d(αsβs) = −αsXsd(νsγs) + βsd(γ
− 1

2
s ν−1

s ) − Xsd[γ − 1
2 ν−1, νγ ]s . (6.8)
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Furthermore, integration by parts, (2.9), (2.1) and (2.2) yield

d(νsγs)

= νsdγs + γsνsdRs + γsνsd[R]s + νsd[R, γ ]s
= νsγsμsds + νsγsσsdW 1

s + νsγsρsds

+ νsγsηsrsdW 1
s + νsγsηs

√
1 − |rs |2 dW 2

s + νsγsη
2
s ds + νsγsσsηsrsds

= νsγs

(
(μs + ρs + η2

s + σsηsrs)ds

+ (σs + ηsrs)dW 1
s + ηs

√
1 − |rs |2 dW 2

s

)
. (6.9)

Also by integration by parts and (2.10), (2.1) and (6.2), we get

d(γ
− 1

2
s ν−1

s ) = −γ
− 1

2
s ν−1

s dRs + ν−1
s dγ

− 1
2

s − ν−1
s d[R, γ − 1

2 ]s
= −γ

− 1
2

s ν−1
s ρsds − γ

− 1
2

s ν−1
s ηsrsdW 1

s − γ
− 1

2
s ν−1

s ηs

√
1 − |rs |2 dW 2

s

+ γ
− 1

2
s ν−1

s

(
− 1

2
μs + 3

8
σ 2

s

)
ds − 1

2
γ

− 1
2

s ν−1
s σsdW 1

s

+ 1

2
γ

− 1
2

s ν−1
s σsηsrsds

= αs

(
− ρs − 1

2
μs + 3

8
σ 2

s + 1

2
σsηsrs

)
ds

+ αs

((
− ηsrs − 1

2
σs

)
dW 1

s − ηs

√
1 − |rs |2 dW 2

s

)
. (6.10)

It follows from (6.9) and (6.10) that for all s ∈ [t, T ],

d[γ − 1
2 ν−1, νγ ]s = γ

1
2

s

(
− ηsrs − 1

2
σs

)
(σs + ηsrs)ds − γ

1
2

s η2
s (1 − |rs |2)ds

= −γ
1
2

s

(
3

2
ηsσsrs + 1

2
σ 2

s + η2
s

)
ds. (6.11)

We then plug (6.9)–(6.11) into (6.8), which yields (6.7). �

Proof of Lemma 2.7 We set αs = γ
− 1

2
s ν−1

s , s ∈ [t, T ], and

βs = d − γtx −
∫ s

t

Xrd(νrγr ), s ∈ [t, T ].

It then holds that Hs = αsβs , s ∈ [t, T ]. We use Lemma 6.1 and substitute

−γ
1
2 X = H − γ − 1

2 D
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in (6.7) to obtain for all s ∈ [t, T ] that

dHs = (Hs − γ
− 1

2
s Ds)

(
μs + ρs − 1

2
σsηsrs − 1

2
σ 2

s

)
ds

+ (Hs − γ
− 1

2
s Ds)

(
(σs + ηsrs)dW 1

s + ηs

√
1 − |rs |2 dW 2

s

)

+ Hs

(
− ρs − 1

2
μs + 3

8
σ 2

s + 1

2
σsηsrs

)
ds

+ Hs

((
− ηsrs − 1

2
σs

)
dW 1

s − ηs

√
1 − |rs |2 dW 2

s

)

= −γ
− 1

2
s Ds

((
μs + ρs − 1

2
σsηsrs − 1

2
σ 2

s

)
ds

+ (σs + ηsrs)dW 1
s + ηs

√
1 − |rs |2 dW 2

s

)

+ Hs

((1

2
μs − 1

8
σ 2

s

)
ds + 1

2
σsdW 1

s

)
.

This proves (2.19). In particular, H satisfies an SDE that is linear in H and γ − 1
2 D.

Due to the boundedness of ρ, μ, σ , η, r , the coefficients of the SDE are bounded.

Moreover, E[∫ T

t
(γ

− 1
2

s Ds)
2ds] < ∞ by (2.5), and Ht = γ

− 1
2

t d − γ
1
2

t x (cf. (2.18)) is
square-integrable. We thus obtain E[sups∈[t,T ] H 2

s ] < ∞ (see for instance Zhang [41,
Theorems 3.2.2 and 3.3.1]).

We next prove that the cost functional (2.17) admits the representation (2.20). To
this end, note that (2.18) implies for all s ∈ [t, T ] that

γs(Xs − ζs)
2 = (γ

− 1
2

s Ds − Hs − γ
1
2

s ζs)
2

= γ −1
s D2

s − 2γ
− 1

2
s Ds(Hs + γ

1
2

s ζs) + (Hs + γ
1
2

s ζs)
2.

Due to the assumption (2.3) on ζ and the fact that E[sups∈[t,T ] H 2
s ] < ∞, we ob-

tain Et [
∫ T

t
(H s + γ

1
2

s ζs)
2ds] < ∞ a.s. Combining this with (2.5) and the Cauchy–

Schwarz inequality yields Et [
∫ T

t
|γ − 1

2
s Ds(Hs + γ

1
2

s ζs)|ds] < ∞ a.s. Since λ is
bounded, we conclude that

Et

[ ∫ T

t

λsγs(Xs − ζs)
2ds

]
= Et

[ ∫ T

t

λsγ
−1
s D2

s ds

]

+ Et

[ ∫ T

t

λs(Hs + γ
1
2

s ζs)
2ds

]

− 2Et

[ ∫ T

t

λsγ
− 1

2
s Ds(Hs + γ

1
2

s ζs)ds

]
, (6.12)
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where all conditional expectations are well defined and finite. Moreover, (2.18) im-

plies that γ
− 1

2
T DT = HT + γ

1
2

T XT and thus γ −1
T D2

T = (HT + √
γT ξ)2. Inserting

this and (6.12) into (2.17), we obtain (2.20). �

Lemma 6.2 Let t ∈ [0, T ] and x, d ∈ R. Then (2.21) defines a metric on Apm
t (x, d)

(identifying any processes that are equal (dP × ds|[t,T ])-a.e.).

Proof Note first that d(X, Y ) ≥ 0 for all X, Y ∈ Apm
t (x, d) and that d(X, Y ) is fi-

nite due to (2.5). Symmetry of d is obvious. The triangle inequality follows from
the Cauchy–Schwarz inequality. Now take X, Y ∈ Apm

t (x, d) with associated de-
viation processes DX, DY . If X = Y (dP × ds|[t,T ])-a.e., it follows that also

γ − 1
2 DX = γ − 1

2 DY (dP × ds|[t,T ])-a.e. and thus

d(X, Y ) =
(

E

[ ∫ T

t

(γ
− 1

2
s DX

s − γ
− 1

2
s DY

s )2ds

]) 1
2 = 0.

For the other direction, suppose that d(X, Y ) = 0. This implies that

γ − 1
2 DX − γ − 1

2 DY = 0 (dP × ds|[t,T ])-a.e.

By the definition of DX and DY , it further follows from multiplying by νγ
1
2 that

νsγs(Xs − Ys) =
∫ s

t

(Xr − Yr)d(νrγr) (dP × ds|[t,T ])-a.e. (6.13)

Observe that νγ > 0. Define L = (Ls)s∈[t,T ] by Lt = 0, dLs = ν−1
s γ −1

s d(νsγs)

and notice that L has the form dLs = · · · ds + · · · dW 1
s + · · · dW 2

s by (6.9). Denote
by K the right-hand side of (6.13) and observe that K is a continuous “version” of
the process νγ (X − Y), where the word “version” is understood in the sense that
the processes are equal (dP × ds|[t,T ])-a.e. Using the above form of dLs , we obtain
from (6.13) that K satisfies the stochastic integral equation

Ks =
∫ s

t

Kr dLr, s ∈ [t, T ].

This has the unique solution K ≡ 0. As X − Y is a “version” of ν−1γ −1K (in the
above sense), we conclude that X = Y (dP × ds|[t,T ])-a.e. �

We now prepare the proof of Theorem 2.8. The next result on the scaled hidden
deviation is helpful there to show convergence of the cost functional.

Lemma 6.3 Let t ∈ [0, T ], x, d ∈ R and X ∈ Apm
t (x, d) with associated deviation

process D and scaled hidden deviation process H . Suppose in addition that (Xn)n∈N
is a sequence in Apm

t (x, d) such that limn→∞ E[∫ T

t
(Dn

s − Ds)
2γ −1

s ds] = 0 for the
associated deviation processes Dn, n ∈ N. For the associated scaled hidden deviation
processes Hn, n ∈ N, we then have limn→∞ E[sups∈[t,T ](Hn

s − Hs)
2] = 0.
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Proof Define δHn = Hn − H , n ∈ N, and for n ∈ N, s ∈ [t, T ], z ∈ R, let

bn
s (z) = −1

2

(
2(ρs + μs) − σ 2

s − σsηsrs

)
(γ

− 1
2

s Dn
s − γ

− 1
2

s Ds) + 1

2

(
μs − 1

4
σ 2

s

)
z,

an
s (z) =

(
− (σs + ηsrs)(γ

− 1
2

s Dn
s − γ

− 1
2

s Ds) + 1

2
σsz,

− ηs

√
1 − |rs |2 (γ

− 1
2

s Dn
s − γ

− 1
2

s Ds)

)
.

In view of (2.19), it then holds for all n ∈ N that

d(δHn
s ) = bn

s (δHn
s )ds + an

s (δHn
s )d

(
W 1

s

W 2
s

)
, s ∈ [t, T ], δHn

t = 0.

Linearity of bn, an, n ∈ N, and boundedness of μ, ρ, σ , η, r imply that there ex-
ists a constant c1 ∈ (0,∞) such that for all n ∈ N and all z1, z2 ∈ R, it holds
(dP × ds|[t,T ])-a.e. that

|bn(z1) − bn(z2)| + |an(z1) − an(z2)| ≤ 1

2

∣∣∣∣μ − 1

4
σ 2

∣∣∣∣|z1 − z2| + 1

2
|σ ||z1 − z2|

≤ c1|z1 − z2|.
By boundedness of μ, ρ, σ , η, r and Jensen’s inequality, there exists c2 ∈ (0,∞)

such that for all n ∈ N, we have

E

[( ∫ T

t

|bn
s (0)|ds

)2]
+ E

[ ∫ T

t

|an
s (0)|2ds

]
≤ c2E

[ ∫ T

t

(Dn
s − Ds)

2γ −1
s ds

]
.

For instance Zhang [41, Theorem 3.2.2] (see also [41, Theorem 3.4.2]) now implies
that there exists a constant c3 ∈ (0,∞) such that for all n ∈ N, we have

E
[

sup
s∈[t,T ]

|Hn
s − Hs |2

]
≤ c3E

[( ∫ T

t

|bn
s (0)|ds

)2

+
∫ T

t

|an
s (0)|2ds

]

≤ c2c3E

[ ∫ T

t

(Dn
s − Ds)

2γ −1
s ds

]
,

and the right-hand side tends to 0 by assumption. �

In order to establish existence of an appropriate approximating sequence in Theo-
rem 2.8, we rely on Lemma 6.4 below. For its statement and the proof of the second
part of Theorem 2.8, we introduce the process Z = (Zs)s∈[0,T ] defined by

Zs = exp

(
−

∫ s

0

(1

2
σu + ηuru

)
dW 1

u −
∫ s

0
ηu

√
1 − |ru|2 dW 2

u

)
. (6.14)
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Observe that by Itô’s lemma, Z solves the SDE

dZs = Zs

2

((1

2
σs + ηsrs

)2 + η2
s (1 − |rs |2)

)
ds

− Zs

(
1

2
σs + ηsrs, ηs

√
1 − |rs |2

)
d

(
W 1

s

W 2
s

)
, s ∈ [0, T ],

Z0 = 1. (6.15)

Lemma 6.4 Let t ∈ [0, T ] and u ∈ L2
t . Then there exists a sequence (vn)n∈N of

bounded càdlàg FV processes such that

lim
n→∞ E

[ ∫ T

t

(
us

Zs

− vn
s

)2

Z2
s ds

]
= 0.

In particular, for the sequence (un)n∈N defined by un = vnZ, n ∈ N, each un is a
càdlàg semimartingale with E[sups∈[t,T ]|un

s |p] < ∞ for all p ≥ 2 (in particular,
un ∈ L2

t ), and

lim
n→∞ E

[ ∫ T

t

(us − un
s )

2ds

]
= 0.

Proof Define A by As = ∫ s

0 Z2
r dr , s ∈ [0, T ], and v by vs = us

Zs
, s ∈ [t, T ].

We verify the assumptions of Karatzas and Shreve [33, Lemma 3.2.7]. The process
A is continuous, adapted and nondecreasing. Note that boundedness of σ , η and r

implies that the coefficients of (6.15) are bounded. It follows for any p ≥ 2 that
E[sups∈[0,T ]|Zs |p] < ∞ (see e.g. [41, Theorem 3.4.3]) and hence

E[AT ] = E

[ ∫ T

0
Z2

r dr

]
< ∞.

Since u ∈ L2
t , we have that v is progressively measurable and satisfies

E

[ ∫ T

t

v2
s dAs

]
= E

[ ∫ T

t

u2
s ds

]
< ∞.

Thus [33, Lemma 3.2.7] applies and yields the existence of a sequence (v̂n)n∈N of
(càglàd) simple processes such that

lim
n→∞ E

[ ∫ T

t

(vs − v̂n
s )2dAs

]
= 0.

Define vn
s (ω) = limr↓s v̂n

r (ω), s ∈ [t, T ), ω ∈ �, n ∈ N, and vn
T = 0, n ∈ N. Then

(vn)n∈N is a sequence of bounded càdlàg FV processes such that

lim
n→∞ E

[ ∫ T

t

(vs − vn
s )2dAs

]
= 0.
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Note that for each n ∈ N, un defined by un
s = vn

s Zs , s ∈ [t, T ], is càdlàg. Since vn

is bounded for each n ∈ N and E[sups∈[0,T ]|Zs |p] < ∞ for all p ≥ 2, we have that
E[sups∈[t,T ]|un

s |p] is finite for each n ∈ N, p ≥ 2. It furthermore holds that

E

[ ∫ T

t

(us − un
s )

2ds

]
= E

[ ∫ T

t

(vs − vn
s )2dAs

]
→ 0 as n → ∞. �

For the part in Theorem 2.8 on completeness of (Apm
t (x, d), d), we show how

to construct an execution strategy X0 ∈ Apm
t (x, d) based on a square-integrable

process u0 and a process H 0 that satisfies the SDE (2.19) (with u0 instead of γ − 1
2 D).

This result is also crucial for Lemma 3.2.

Lemma 6.5 Let t ∈ [0, T ] and x, d ∈ R. Suppose that u0 = (u0
s )s∈[t,T ] ∈ L2

t and
let H 0 be given by H 0

t = d√
γt

− √
γt x and, for s ∈ [t, T ],

dH 0
s =

(
1

2

(
μs − 1

4
σ 2

s

)
H 0

s − 1

2

(
2(ρs + μs) − σ 2

s − σsηsrs

)
u0

s

)
ds

+
(

1

2
σsH

0
s − (σs + ηsrs)u

0
s

)
dW 1

s − ηs

√
1 − |rs |2 u0

s dW 2
s . (6.16)

Define X0 by

X0
s = γ

− 1
2

s (u0
s − H 0

s ), s ∈ [t, T ), X0
t− = x, X0

T = ξ.

Then X0 ∈ Apm
t (x, d), and the associated deviation process is D0 = γX0 + γ

1
2 H 0.

Proof First, X0 is progressively measurable and has initial value X0
t− = x and

terminal value X0
T = ξ . Furthermore, it holds that

∫ T

t

(X0
s )

2ds ≤ 2
∫ T

t

γ −1
s (u0

s )
2ds + 2

∫ T

t

γ −1
s (H 0

s )2ds < ∞ a.s.

since γ and H 0 have a.s. continuous paths and E[∫ T

t
(u0

s )
2ds] < ∞. We are therefore

able to define D0 by (2.15). Moreover, set αs = γ
− 1

2
s ν−1

s , s ∈ [t, T ], and

βs = d − γtx −
∫ s

t

X0
r d(νrγr ), s ∈ [t, T ].
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It follows from Lemma 6.1 and −γ
1
2

s X0
s = H 0

s − u0
s , s ∈ [t, T ), that for s ∈ [t, T ],

d(αsβs) = (H 0
s − u0

s )

((
μs + ρs − 1

2
σsηsrs − 1

2
σ 2

s

)
ds

+ (σs + ηsrs)dW 1
s + ηs

√
1 − |rs |2 dW 2

s

)

+ αsβs

(
− ρs − 1

2
μs + 3

8
σ 2

s + 1

2
σsηsrs

)
ds

+ αsβs

((
− ηsrs − 1

2
σs

)
dW 1

s − ηs

√
1 − |rs |2 dW 2

s

)
.

We combine this with

dH 0
s = −u0

s

((
μs + ρs − 1

2
σsηsrs − 1

2
σ 2

s

)
ds

+ (σs + ηsrs)dW 1
s + ηs

√
1 − |rs |2 dW 2

s

)

+ H 0
s

((1

2
μs − 1

8
σ 2

s

)
ds + 1

2
σsdW 1

s

)
, s ∈ [t, T ],

to obtain for all s ∈ [t, T ] that

d(αsβs − H 0
s )

= (αsβs − H 0
s )

(
− ρs − 1

2
μs + 3

8
σ 2

s + 1

2
σsηsrs

)
ds

+ (αsβs − H 0
s )

((
− ηsrs − 1

2
σs

)
dW 1

s − ηs

√
1 − |rs |2 dW 2

s

)
. (6.17)

Note that αtβt = γ
− 1

2
t d − γ

1
2

t x = H 0
t . We thus conclude that 0 is the unique solution

of (6.17), and hence

H 0
s = αsβs = γ

− 1
2

s ν−1
s

(
d − γtx −

∫ s

t

X0
r d(νrγr )

)
, s ∈ [t, T ].

This gives D0 = γX0+γ
1
2 H 0, i.e., D0

s = γ
1
2

s u0
s , s ∈ [t, T ) and D0

T = γT ξ + γ
1
2

T H 0
T .

Then E[∫ T

t
(u0

s )
2ds] < ∞ immediately yields (2.5), proving that X0 ∈ Apm

t (x, d).
�

We finally are able to prove Theorem 2.8.

Proof of Theorem 2.8 (i) Denote by D, Dn, n ∈ N, the deviation processes associated
to X, Xn, n ∈ N, and let H and Hn, n ∈ N, be the corresponding scaled hidden
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deviation processes. By Lemma 2.7, we have for all n ∈ N that

|J pm
t (x, d,Xn) − J

pm
t (x, d,X)|

=
∣∣∣∣1

2
Et

[ ∫ T

t

γ −1
s

(
(Dn

s )2 − D2
s

)
2(κs + λs)ds

]

− 2Et

[ ∫ T

t

λsγ
− 1

2
s

(
Dn

s (Hn
s + γ

1
2

s ζs) − Ds(Hs + γ
1
2

s ζs)
)
ds

]

+ Et

[ ∫ T

t

λs

(
(Hn

s + γ
1
2

s ζs)
2 − (Hs + γ

1
2

s ζs)
2)ds

]

+ 1

2
Et [(Hn

T + γ
1
2

T ξ)2 − (HT + γ
1
2

T ξ)2]
∣∣∣∣.

Boundedness of λ, r , ρ, μ, η and σ implies (recall also (2.13)) that there exists a
constant c ∈ (0,∞) such that for all n ∈ N,

E[|J pm
t (x, d,Xn) − J

pm
t (x, d,X)|]

≤ E[|(Hn
T + γ

1
2

T ξ)2 − (HT + γ
1
2

T ξ)2|] + cE

[ ∫ T

t

∣∣γ −1
s

(
(Dn

s )2 − D2
s

)∣∣ds

]

+ cE

[ ∫ T

t

∣∣γ − 1
2

s

(
Dn

s (Hn
s + γ

1
2

s ζs) − Ds(Hs + γ
1
2

s ζs)
)∣∣ds

]

+ cE

[ ∫ T

t

|(Hn
s + γ

1
2

s ζs)
2 − (Hs + γ

1
2

s ζs)
2|ds

]
. (6.18)

We treat the terminal costs first. For all n ∈ N, we have

E[|(Hn
T + γ

1
2

T ξ)2 − (HT + γ
1
2

T ξ)2|]

= E[|(Hn
T )2 + 2Hn

T γ
1
2

T ξ − H 2
T − 2HT γ

1
2

T ξ |]

≤ E[|(Hn
T )2 − H 2

T |] + 2E[|(Hn
T − HT )γ

1
2

T ξ |]

≤ E[|(Hn
T )2 − H 2

T |] + 2
(
E[(Hn

T − HT )2]) 1
2 (E[γT ξ2]) 1

2 .

From

lim
n→∞ E

[ ∫ T

t

(Dn
s − Ds)

2γ −1
s ds

]
= 0 (6.19)

(cf. (2.21)) and Lemma 6.3, we have that

lim
n→∞ E

[
sup

s∈[t,T ]
|Hn

s − Hs |2
]

= 0. (6.20)
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Since furthermore E[γT ξ2] < ∞, we obtain that

lim
n→∞ E[|(Hn

T + γ
1
2

T ξ)2 − (HT + γ
1
2

T ξ)2|] = 0.

The second term in (6.18) converges to 0 using (6.19). For the third term in (6.18),
we have for all n ∈ N that

E

[ ∫ T

t

∣∣γ − 1
2

s

(
Dn

s (Hn
s + γ

1
2

s ζs) − Ds(Hs + γ
1
2

s ζs)
)∣∣ds

]

≤ E

[ ∫ T

t

(|Hs + γ
1
2

s ζs | |Dn
s − Ds |γ − 1

2
s + γ

− 1
2

s |Dn
s | |Hn

s − Hs |)ds

]

≤
(

E

[ ∫ T

t

(H s + γ
1
2

s ζs)
2ds

]) 1
2
(

E

[ ∫ T

t

(Dn
s − Ds)

2γ −1
s ds

]) 1
2

+
(

E

[ ∫ T

t

γ −1
s (Dn

s )2ds

]) 1
2

T
1
2

(
E

[
sup

s∈[t,T ]
|Hn

s − Hs |2
]) 1

2
. (6.21)

Lemma 2.7 and (2.3) yield E[∫ T

t
(H s + γ

1
2

s ζs)
2ds] < ∞. Moreover, due to (6.19),

E[∫ T

t
γ −1
s (Dn

s )2ds] is bounded uniformly in n ∈ N. So it follows from (6.19)–(6.21)
that the third term in (6.18) converges to 0 as n → ∞. The last term in (6.18)
converges to 0 using (2.3) and (6.20). This proves (i).

(ii) Suppose that X ∈ Apm
t (x, d). Let u be defined by

us = γ
− 1

2
s Ds, s ∈ [t, T ],

where D denotes the deviation process associated to X. Then u is progressively
measurable, and (2.5) gives that E[∫ T

t
u2

s ds] < ∞. By Lemma 6.4, there exists a
sequence (vn)n∈N of bounded càdlàg FV processes such that

lim
n→∞ E

[ ∫ T

t

(
us

Zs

− vn
s

)2

Z2
s ds

]
= 0,

where Z is defined in (6.14). Set un = vnZ, n ∈ N. This is a sequence of càdlàg
semimartingales in L2

t which satisfies

lim
n→∞‖u − un‖L2

t
= 0. (6.22)

Moreover, for all n ∈ N and p ≥ 2, we have E[sups∈[t,T ]|un
s |p] < ∞. For each un,

let Hn be the solution of (6.16). We then define a sequence of càdlàg semimartingales
Xn, n ∈ N, by

Xn
s = γ

− 1
2

s (un
s − Hn

s ), s ∈ [t, T ), Xn
t− = x, Xn

T = ξ.
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By Lemma 6.5, Xn ∈ Apm
t (x, d) for all n ∈ N and for the associated deviation

process Dn = γXn + γ
1
2 Hn. It follows for all n ∈ N that

Dn
s = γ

1
2

s un
s , s ∈ [t, T ).

Therefore, we have for all n ∈ N that

d(Xn,X) =
(

E

[ ∫ T

t

(Dn
s − Ds)

2γ −1
s ds

]) 1
2 =

(
E

[ ∫ T

t

(un
s − us)

2ds

]) 1
2

.

Due to (6.22), we thus have limn→∞ d(Xn,X) = 0. We next show for all n ∈ N that
Xn has finite variation. To this end, we observe that for all n ∈ N and s ∈ [t, T ),
integration by parts gives

dXn
s = γ

− 1
2

s d(un
s − Hn

s ) + (un
s − Hn

s )dγ
− 1

2
s + d[γ − 1

2 , un − Hn]s . (6.23)

Again using integration by parts and (6.15) yields for all n ∈ N and s ∈ [t, T ] that

dun
s = vn

s dZs + Zsdvn
s + d[vn, Z]s

= 1

2
un

s

((1

2
σs + ηsrs

)2 + η2
s (1 − |rs |2)

)
ds − un

s

(
1

2
σs + ηsrs

)
dW 1

s

− un
s ηs

√
1 − |rs |2 dW 2

s + Zsdvn
s .

This and (6.16) imply for all n ∈ N and s ∈ [t, T ] that

γ
− 1

2
s d(un

s − Hn
s ) = γ

− 1
2

s

(
ρs + μs + 1

2
η2

s − 3

8
σ 2

s

)
un

s ds

− γ
− 1

2
s

(
1

2
μs − 1

8
σ 2

s

)
Hn

s ds

+ γ
− 1

2
s

1

2
σs(u

n
s − Hn

s )dW 1
s + γ

− 1
2

s Zsdvn
s . (6.24)

Moreover, it follows from (6.2) for all n ∈ N and s ∈ [t, T ] that

(un
s − Hn

s )dγ
− 1

2
s = (un

s − Hn
s )γ

− 1
2

s

(
− 1

2
μs + 3

8
σ 2

s

)
ds

− (un
s − Hn

s )γ
− 1

2
s

1

2
σsdW 1

s . (6.25)

We combine (6.23)–(6.25) to obtain for all n ∈ N and s ∈ (t, T ) that

dXn
s = γ

− 1
2

s un
s

(
ρs + 1

2
μs + 1

2
η2

s

)
ds − γ

− 1
2

s Hn
s

1

4
σ 2

s ds + γ
− 1

2
s Zsdvn

s

+ d[γ − 1
2 , un − Hn]s .
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Since vn has finite variation for all n ∈ N, this representation shows that also Xn

has finite variation for all n ∈ N. Note that for all n ∈ N, by Proposition 2.3, the
process (2.4) associated to the càdlàg FV process Xn is nothing but Dn. Since η is
bounded, there exists c ∈ (0,∞) such that for all n ∈ N, we have

E

[( ∫ T

t

(Dn
s )4γ −2

s η2
s ds

) 1
2
]

= E

[( ∫ T

t

(un
s )

4η2
s ds

) 1
2
]

≤ cE
[

sup
s∈[t,T ]

(un
s )

2
]

< ∞.

This implies (2.6). Similarly, by boundedness of σ , we obtain (2.7). We thus conclude
that Xn ∈ Afv

t (x, d) for all n ∈ N.
(iii) Let (Xn)n∈N be a Cauchy sequence in (Apm

t (x, d), d). For n ∈ N, we de-

note by Dn the deviation process associated to Xn. Then (γ − 1
2 Dn)n∈N is a Cauchy

sequence in the Hilbert space (L2
t , | · |L2

t
), and so there exists u0 ∈ L2

t such that

lim
n→∞‖γ − 1

2 Dn − u0‖L2
t

= 0.

Define X0 by X0
t− = x, X0

T = ξ , X0
s = γ

− 1
2

s (u0
s − H 0

s ), s ∈ [t, T ), where H 0 is
given by (6.16). By Lemma 6.5, it holds that X0 ∈ Apm

t (x, d). We furthermore obtain

from Lemma 6.5 that the associated deviation process is D0 = γX0 + γ
1
2 H 0. By the

definition of X0, this yields γ
− 1

2
s D0

s = u0
s , s ∈ [t, T ). It follows that

d(Xn,X0) =
(

E

[ ∫ T

t

(γ
− 1

2
s Dn

s − γ
− 1

2
s D0

s )
2ds

]) 1
2 = ‖γ − 1

2 Dn − u0‖L2
t

and hence limn→∞ d(Xn,X0) = 0. �

Proof of Lemma 3.1 By its definition, u is progressively measurable and due to (2.5)
satisfies E[∫ T

t
u2

s ds] < ∞; hence u ∈ L2
t . Let

Hs = γ
− 1

2
s Ds − γ

1
2

s Xs, s ∈ [t, T ],

be the scaled hidden deviation (2.18) associated to X. We can substitute u = γ − 1
2 D

in the cost functional (2.20) and also in the dynamics (2.19) of H . Observe that H

follows the same dynamics as the state process H̃ associated to u (see (3.1)), and that
the initial values Ht = d√

γt
− √

γt x = H̃t are equal. Therefore H and H̃ coincide,
which completes the proof. �

Proof of Lemma 3.2 It follows from Lemma 6.5 that X ∈ Apm
t (x, d). Moreover, by

Lemma 6.5, the associated deviation satisfies D = γX + γ
1
2 H̃ , that is, it holds that

Ds = γ
1
2

s us, s ∈ [t, T ),

and H̃ is the scaled hidden deviation of X. Thus J
pm
t (x, d,X) is given by (2.20).

In the definition (3.2) of Jt , we may replace u under the integrals with respect to
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Lebesgue measure by γ − 1
2 D. This shows that

J
pm
t (x, d,X) = Jt

(
d√
γt

− √
γt x, u

)
− d2

2γt

. �

Proof of Lemma 3.6 (i) First, û is progressively measurable. Furthermore, using

E

[ ∫ T

t

u2
s ds

]
< ∞, E

[
sup

s∈[t,T ]
H̃ 2

s

]
< ∞, E

[ ∫ T

0
γsζ

2
s ds

]
< ∞

and Assumption 3.5 implies that E[∫ T

t
û2

s ds] < ∞. Hence û ∈ L2
t . Substituting

us = ûs + λs

λs + κs

(H̃s + √
γs ζs), s ∈ [t, T ],

in (3.1) leads to (3.3). For the cost functional, observe that

1

2

(
2λs(H̃s + √

γs ζs)
2 − 4λs(H̃s + √

γs ζs)us

) + (κs + λs)u
2
s

= λs(H̃s + √
γs ζs)

2 − (λs + κs)
λ2

s

(λs + κs)2
(H̃s + √

γs ζs)
2

+ (λs + κs)

(
us − λs

λs + κs

(H̃s + √
γs ζs)

)2

= λsκs

λs + κs

(Ĥs + √
γs ζs)

2 + (λs + κs)û
2
s , s ∈ [t, T ]. (6.26)

(ii) Note that (3.3) is an SDE that is linear in Ĥ , û and
√

γ ζ . Furthermore,
the boundedness of ρ, μ, σ , η, r and Assumption 3.5 imply that the coefficients
of the SDE are bounded. Since moreover E[∫ T

t
((ûs)

2 + γsζ
2
s )ds] < ∞ and Ĥt is

square-integrable, we get that E[sups∈[t,T ] Ĥ 2
s ] < ∞ (see e.g. [41, Theorems 3.2.2

and 3.3.1]). We can thus argue similarly to (i) that u ∈ L2
t . A substitution of û in (3.3)

yields (3.1). A reverse version of the calculation in (6.26) proves equality of the cost
functionals. �
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