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Abstract 

This paper investigates how human capital concentration in cities is associated with 

working hours across different worker groups, an important but understudied dimension 

of urban agglomeration effects. Using microdata from the American Community 

Survey covering 240 metropolitan statistical areas in 2018, the study finds significant 

heterogeneous effects: a one percentage point increase in college graduate share is 

associated with a 0.043% increase in working hours for college graduates but a 0.023% 

decrease for non-college workers. The effects vary between employment types: college-

educated paid workers work 0.054% more hours while the self-employed work 0.071% 

fewer hours in cities with higher human capital stocks. Through a two-step two-stage 

least squares approach, the study reveals that these effects operate primarily through 

income changes rather than non-income channels. Alternative measures of human 

capital stock and various robustness checks confirm the main findings. These 

heterogeneous labor supply responses suggest that the welfare impact of place-based 

development initiatives depends not only on productivity gains but also on workers’ 

capacity to capture these benefits through skill development, highlighting the 

importance of complementing talent attraction policies with workforce development 

programs. 
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1 Introduction 

Cities are engines of economic growth, and cities with high human capital stocks, 

commonly known as “smart cities” in the urban economics literature (Shapiro 2006; 

Winters 2011), are particularly effective at fostering productivity and innovation. 1 

While existing literature has extensively documented that human capital externalities 

in smart cities enhance productivity and wages (Moretti 2004; Winters 2014), we know 

little about how they affect labor supply decisions. This gap limits our understanding 

of the overall welfare impact of human capital concentration, as output depends not 

only on productivity gains but also on how different worker groups adjust their working 

hours in response. 

This paper investigates who works longer hours in smart cities and why these labor 

supply patterns differ across worker groups. Understanding these patterns is crucial for 

evaluating the welfare implications of human capital externalities in urban labor 

markets. The findings directly inform place-based economic development initiatives as 

cities compete for talent. The welfare impact of such policies depends not only on 

productivity gains, but critically on how different worker segments adjust their labor 

supply in response to changing human capital concentrations. 

Previous research provides important context but leaves key questions unanswered. 

Studies show that localization economies can increase work hours through competition 

effects (Rosenthal and Strange 2008) and that self-employed workers respond 

 
1 The terms “city” and “metropolitan statistical area” (MSA) are used interchangeably in this paper. 
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differently to agglomeration from wage workers (Cai 2019). Research on human capital 

externalities demonstrates positive effects on productivity and wages (Moretti 2004; 

Winters 2014). Some evidence suggests that less-educated workers benefit more from 

these spillovers (Moretti 2004; Winters 2013). However, we lack evidence on how these 

externalities affect labor supply decisions across worker groups. 

This study uses microdata from the American Community Survey (ACS) 2018 

sample to examine how city-level human capital stocks influence hours worked. The 

empirical strategy addresses potential endogeneity by using the locations of historical 

land-grant universities as instruments for current human capital levels. Through a novel 

two-step two-stage least squares approach, the analysis decomposes income and non-

income channels affecting work hours. The study also explores heterogeneity across 

education levels and between self-employed and wage workers. 

The results reveal that college graduates work significantly more hours in smart 

cities while less educated workers work fewer hours, with these effects operating 

primarily through income channels. Among college graduates, employment type 

matters: the self-employed reduce hours while paid workers increase hours in high-

human-capital cities. Using population share of workers who hold a college degree with 

a major in science, technology, engineering, and mathematics (STEM) as an alternative 

measure of human capital yields similar patterns. 

This study contributes to the literature in two ways. First, it employs a novel two-

step two-stage least squares approach that demonstrates human capital externalities 
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affect hours worked primarily through income effects rather than behavioral spillovers. 

Second, it documents significant heterogeneity across education and employment types, 

showing how workers’ ability to capture benefits from human capital externalities 

depends on their skill levels. 

These findings have important implications for place-based economic 

development policies. When evaluating initiatives like corporate relocations or 

expansions, policymakers should consider heterogeneous labor supply responses across 

worker groups, not just focus on attracting talent. This suggests the importance of 

complementing place-based development policies with workforce development 

initiatives to ensure existing workers can benefit from human capital spillovers in their 

communities. 

The remainder of the paper is organized as follows: Section 2 discusses the 

conceptual framework, Section 3 introduces the empirical methodology and data, 

Section 4 presents the results, and Section 5 concludes. 

 

2 Conceptual Framework 

The labor supply of a worker in a city could be affected by the human capital stock 

through two broad mechanisms: income and non-income channels. While a higher 

supply of skilled workers might theoretically reduce wages, empirical evidence shows 

that human capital externalities increase earnings in smart cities (Moretti 2004; Winters 

2013; 2014). Workers respond to these income gains through two opposing mechanisms: 



4 

 

a substitution effect encouraging more work hours and an income effect reducing 

desired work hours. The net effect varies across worker groups depending on which 

force dominates 

The human capital stock of a city may also affect hours worked through non-

income channels such as learning spillovers and role model effects. Less-educated 

workers can learn from their more educated counterparts through observation and 

interaction (Jovanovic and Rob 1989; Glaeser 1999; Glaeser and Maré 2001). In cities 

with high concentrations of hard-working skilled workers, this learning process can 

create a role model effect, influencing lower-educated workers to increase their hours 

worked independently of income effects. Similarly, highly educated workers often 

respond to the work habits of their peers through professional networks and knowledge 

spillovers. This study empirically distinguishes between income and non-income 

channels in the subsequent analysis. 

Beyond these channels, sorting affects the relationship between city human capital 

stock and hours worked. Workers preferring longer hours may sort into cities, industries, 

and occupations offering additional compensation for extended work (Cai 2019). 

Conversely, those valuing leisure may select locations and jobs facilitating better skill-

employment matches (Rosenthal and Strange 2004). Smart cities accommodate both 

sorting types. Consequently, unobserved factors influencing workers’ location and job 

choices could bias estimates of human capital effects on hours worked. This study 

addresses this challenge using an instrumental variable estimation method detailed in 
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the next section. 

 

3 Empirical Framework and Data 

To investigate which workers work more in cities with higher human capital stocks, 

I estimate the following model: 

 ln(𝐻𝑜𝑢𝑟𝑠)𝑖𝑚 = 𝜃𝑆ℎ𝑎𝑟𝑒𝑚 + 𝑿𝑖𝑚𝜷 + 𝛿𝑠 + 𝜀𝑖𝑚 (1) 

where 𝑖  indexes individual workers, and 𝑚  indexes Metropolitan Statistical Areas 

(MSA).2 𝐻𝑜𝑢𝑟𝑠 measures usual hours worked per week. For the 𝑆ℎ𝑎𝑟𝑒𝑚, I employ 

two alternative measures: (1) the share of workers with college or higher degrees in an 

MSA (with higher values indicating “smarter” cities), and (2) the share of workers with 

STEM college degrees (capturing city STEM-intensity). 𝑿𝑖𝑚 includes demographic 

controls: a quartic of age, log commute time, gender, race (4 categories), birthplace (51 

categories), and college major (37 categories). 𝛿𝑠 represents state-of-workplace fixed 

effects, and 𝜀𝑖𝑚 is the error term. 

To mitigate endogeneity concerns, I employ an instrumental variable (IV) 

estimation strategy using the presence of land-grant universities in an MSA as an 

instrument for human capital stocks. These institutions, established under the Morrill 

Acts of 1862 and 1890, were located primarily based on land availability and 

agricultural considerations rather than economic factors (Moretti 2004; Iranzo and Peri 

2009; Winters 2013). Their initial placement was determined by factors unrelated to 

 
2 This study uses the MSA where individuals work as the geographic unit of analysis. The term "MSA" is used 

throughout for simplicity. 
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current labor markets, as they predated modern human capital concentration patterns. 

While this historical context supports their use as instruments, I acknowledge they may 

have influenced local economic development over the subsequent 160 years. Therefore, 

I complement my analysis with two robustness checks in Section 4.2 to assess 

sensitivity to potential violations of the exclusion restriction. 

For STEM share analysis, I modify the instrument to be the distance from an 

MSA's population center to its nearest land-grant university. This continuous measure 

provides greater variation for identification compared to the binary presence indicator, 

which is particularly important since STEM shares exhibit less volatility across MSAs 

than overall college shares, as illustrated in Figure 1. 

I estimate Equation (1) for three subsamples: all workers, non-college educated 

workers, and college graduates, to investigate heterogeneity. Similarly, when using 

STEM share as the human capital stock measure, I analyze non-college educated 

workers, non-STEM graduates, and STEM graduates separately. 

To investigate the mechanisms through which human capital stocks affect hours 

worked, I employ a two-step two-stage least squares approach to decompose the total 

effect into direct and indirect components. The direct effect operates through hourly 

earnings: human capital externalities increase local productivity and hourly incomes, 

which in turn influence labor supply decisions. The indirect effect captures any non-

income channels through which human capital concentration might affect hours worked, 

such as learning spillovers or role model effects. 
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In the first step, I isolate the direct income effect by estimating: 

 ln(𝐻𝑜𝑢𝑟𝑠)𝑖𝑚 = 𝛼𝐼𝑛𝑐𝑜𝑚𝑒𝑚 + 𝑿𝑖𝑚𝜷 + 𝛿𝑠 + 𝜇𝑖𝑚 (2) 

where 𝐼𝑛𝑐𝑜𝑚𝑒𝑚 is the regression-adjusted average hourly income at the MSA level.3 

To identify exogenous variation in local incomes, I instrument 𝐼𝑛𝑐𝑜𝑚𝑒𝑚  using a 

Bartik shift-share instrument that captures demand-driven changes in local income 

levels.4 This approach helps ensure that the error term 𝜇𝑖𝑚 primarily reflects supply-

side variation in hours worked rather than demand-side factors. 

In the second step, I test whether human capital stocks affect hours worked through 

non-income channels by estimating: 

 �̂�𝑖𝑚 = 𝛾𝑆ℎ𝑎𝑟𝑒𝑚 + 𝑿𝑖𝑚𝜷 + 𝛿𝑠 + 𝜖𝑖𝑚 (3) 

where �̂�𝑖𝑚 is the residual from Equation (2). Since �̂�𝑖𝑚 represents the variation in 

hours worked that is not explained by income effects, the coefficient 𝛾 captures the 

non-income channel effects. I instrument 𝑆ℎ𝑎𝑟𝑒𝑚  with the land-grant university 

indicator as in the main analysis. This two-step approach allows me to cleanly separate 

income and non-income effects while addressing endogeneity concerns at each stage. 

Given the inherent differences between self-employment and paid employment 

(Cai 2019), I further examine heterogeneity across these work arrangements. However, 

workers may self-select into these two groups. To address this potential selection bias, 

 
3 The adjusted hourly incomes are computed as the MSA fixed effects of a Mincer equation. 
4 I constructed Bartik instrumental variables at the MSA level following 𝐵𝑎𝑟𝑡𝑖𝑘𝑚 = ∑ 𝑠𝑘𝑚

2009𝑔𝑘�̃�𝑘 . Here, 𝑠𝑘𝑚
2009 

represents the employment share of industry 𝑘 in city 𝑚 in 2009. 𝑔𝑘�̃� measures the employment growth rate in 

industry 𝑘 from 2009 to 2018 across all cities except city 𝑚. I selected 2009 as the base year because consistent 

MSA workplace information only became available in the ACS from that year forward. Additionally, I utilized 

two-digit industry codes to calculate local industry shares and industry growth rates, excluding the public sector 

and military. 
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I employ a two-stage Heckman procedure (Heckman 1979). In the first stage, I estimate 

the probability of being in each employment type using a probit regression. In the 

second stage, I include the inverse Mills ratio from the first stage to correct for selection 

bias. Following Cai, Stephens, and Winters (2019) and to satisfy the exclusion 

restriction, I exclude the college major dummies in the second stage regression. 

The data used in this study come from the 2018 American Community Survey 

(ACS) microdata obtained through IPUMS-USA (Ruggles et al. 2019). The analytical 

sample is restricted to workers aged 26–59 who work more than 35 hours weekly in 

MSAs. The ACS data provide comprehensive worker information spanning labor 

market outcomes (hours, earnings), demographics, and educational background. 

The key independent variables are college and STEM shares at the MSA level, 

calculated using the full sample with personal survey weights and without age or 

working-hour restrictions. College share represents the proportion of individuals with 

college or higher degrees in an MSA’s total population, while STEM share captures the 

proportion with STEM-majored undergraduate degrees. STEM majors are defined 

following the U.S. Immigration and Customs Enforcement classification (Cai and 

Winters 2017).5 

As discussed above, I use the presence of at least one land-grant university in an 

MSA and the distance from the population center of each MSA to the nearest land-grant 

university as instruments for college and STEM shares, respectively. I combine the list 

 
5 The STEM list is available at https://www.ice.gov/sites/default/files/documents/Document/2016/stem-list.pdf. 

The majors in the ICE list are slightly different from those in the ACS, but the difference is negligibly small. I 

provide the STEM list of this study in Appendix Table A1. 

https://www.ice.gov/sites/default/files/documents/Document/2016/stem-list.pdf
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of land-grant universities from Nevins (1962) with the list of 1862 and 1890 land-grant 

colleges and universities from the National Institute of Food and Agriculture (NIFA) of 

the United States Department of Agriculture (USDA) to identify the land-grant 

universities. This yields a list of 67 land-grant universities for this study, which is 

available in Appendix Table A2. The official addresses of the land-grant universities 

were entered into GIS software to calculate distances for the STEM share instrument.6 

Table 1 presents the summary statistics by educational groups. College graduates 

work, on average, 44.796 hours per week in MSAs, while their non-college counterparts 

work 43.533 hours per week on average. STEM graduates work 45.078 hours per week, 

while non-STEM graduates work 44.685 hours per week. Thus, on average, college-

educated workers work more hours than non-college workers in MSAs, and STEM 

graduates work the most. 

[Please insert Table 1 here] 

Figure 1 provides a visual preview of the key relationships examined in this study. 

The left panel shows that college graduates tend to work longer hours in MSAs with 

higher college shares, while non-college workers exhibit the opposite pattern. A similar 

divergent pattern appears when using STEM shares as an alternative measure of human 

capital stock (right panel). These raw correlations suggest potentially heterogeneous 

effects of human capital externalities on hours worked across worker types. However, 

these patterns may reflect various confounding factors and selection issues. The 

 
6 The work described in this paragraph comes from Cai (2016). 
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following empirical analysis formally investigates these relationships while addressing 

potential endogeneity concerns. 

[Please insert Figure 1 here] 

 

4 Empirical Results 

4.1 Human Capital Stocks and Hours Worked 

This section begins by estimating Equation (1) to investigate the relationship 

between human capital stocks and hours worked by workers in cities. Panel A of Table 

2 reports the ordinary least squares (OLS) estimates. Column (1) shows that a 1 

percentage point increase in the share of college graduates in an MSA is correlated with 

a 0.002% increase in usual hours worked per week for an average worker, but the effect 

is not statistically significant. This implies that one standard deviation increase in 

college share corresponds to approximately 0.33 more hours worked per year,7 which 

is not economically significant. Next, the analysis examines heterogeneity between 

non-college and college workers. Column (2) shows that lower-educated workers work 

statistically fewer hours in smart cities at the 10% significance level. Column (3) 

reveals that for college graduates, a 1 percentage point increase in college share is 

associated with a 0.043% increase in hours worked, significant at the 1% level. In 

summary, these results demonstrate that non-college workers work fewer hours in smart 

cities while their college-educated counterparts work significantly more hours. 

 
7 I assume that workers work 48 weeks per year for simplicity. 
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However, these results could be biased due to the endogeneity issues discussed in 

Section 2. 

[Please insert Table 2 here] 

To address the endogeneity, I use the presence of at least one land-grant college in 

an MSA to instrument for college share. Panel B of Table 2 reports the two-stage least 

squares (2SLS) estimates. The estimated coefficients are larger than their OLS 

counterparts in absolute magnitudes and exhibit the same or higher precision, except 

for non-college workers. The full sample results show that one standard deviation 

increase in college share is associated with workers working 4.62 more hours per year 

at the 10% significance level. The effect for non-college workers remains negative and 

similar in magnitudes but becomes statistically insignificant. The coefficient for college 

graduates is statistically significant at the 1% level, showing that a 1 percentage point 

increase in college share associates with a 0.081% increase in hours worked among 

college graduates, or one standard deviation increase in college share leads to 13.06 

additional hours worked per year. The 2SLS results display a roughly similar pattern to 

the OLS results. This is supported by the results of the endogeneity tests, which fail to 

reject the null hypothesis that college share can be treated as exogenous at conventional 

significance levels, suggesting OLS estimates may be more efficient.8 

Nevertheless, the presence of a land-grant college proves to be a fair instrument 

 
8 To test for endogeneity, I implement a robust test based on differences in Sargan-Hansen statistics. The test 

compares two J-statistics: one treating college share as endogenous and another treating it as exogenous. Under the 

null hypothesis that college share can be treated as exogenous, the test statistic follows a chi-squared distribution. 

While this test is numerically equivalent to a Hausman test under homoskedasticity (see Hayashi 2000, pp. 233-

234), my implementation is robust to various violations of homoskedasticity. This provides a rigorous framework 

for evaluating the necessity of instrumental variables estimation. 
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for college share in this case. The first stage results show that the presence of a land-

grant college significantly predicts college share at the MSA level. The first stage F-

statistics are all larger than 10, indicating the specifications are less likely to suffer from 

a weak instrument issue. 

 

4.2 Sensitivity Analysis of the IV Strategy 

I conduct two analyses to assess the credibility of my identification strategy. First, 

following Conley, Hansen, and Rossi (2012), I relax the assumption that the presence 

of land-grant universities affects hours worked only through college share. Specifically, 

I allow land-grant universities to have a direct effect on hours worked by modifying the 

main specification to: 

ln(𝐻𝑜𝑢𝑟𝑠)𝑖𝑚 = 𝜃𝑆ℎ𝑎𝑟𝑒𝑚 + 𝜋𝐿𝐺𝑚 + 𝑿𝑖𝑚𝜷 + 𝛿𝑠 + 𝜀𝑖𝑚 

where 𝐿𝐺𝑚  is a dummy variable indicating the presence of at least one land-grant 

university in the MSA and 𝜋 represents its direct effect on hours worked. While π = 0 

in the baseline IV analysis, I now allow π to vary within [-0.001, 0.001]. Panel C of 

Table 2 reports these bounded estimates. For college graduates, the bounds [0.010, 

0.160] exclude zero, indicating that even allowing for meaningful direct effects of land-

grant university presence, the impact of college share remains significantly positive. 

For non-college workers, the bounds [-0.075, 0.038] include zero, consistent with the 

baseline results. 

As a second robustness check, I implement Oster (2019)'s coefficient stability 
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analysis to assess the influence of selection on unobservables. Panel D of Table 2 

reports two key statistics: Delta ( 𝛿 ), which indicates how strong selection on 

unobservables would need to be relative to selection on observables to explain away 

the estimated effect; and bias-adjusted treatment effects and identified sets calculated 

under the assumption of equal selection (𝛿 = 1 ), using 𝑅𝑚𝑎𝑥 = min{1.3�̃�2, 1}  as 

suggested by Oster (2019). 

For college graduates, the bounds [0.043, 0.059] exclude zero, supporting the 

significant positive effect. The delta of -19.773 indicates that selection on 

unobservables would need to be in the opposite direction and nearly 20 times as strong 

as selection on observables to nullify the result. For non-college workers, the bounds [-

0.023, -0.008] also exclude zero, supporting the OLS finding of a significant negative 

effect. The delta of 1.390 suggests selection on observables is stronger than that on 

unobservables, lending further credibility to these results. 

Collectively, these robustness checks support the main findings while also 

validating the endogeneity test results from Panel B, which fail to reject exogeneity at 

conventional levels. This suggests that while the IV estimates provide a useful 

robustness check, the OLS estimates may be more efficient in this context. 

 

4.3 Mechanism Tests 

To investigate the mechanism through which human capital stocks affect hours 

worked, I use the two-step procedure from Section 3 to decompose effects into income 
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and non-income channels. Panel A of Table 3 presents 2SLS estimates using a Bartik 

shift-share instrument to identify exogenous variation in local wages, ensuring residual 

variation reflects supply-side factors. For the full sample in Column (1), a one-unit 

increase in regression-adjusted income associates with a 0.017 increase in hours worked, 

though not statistically significant. Non-college graduates (Column 2) show a small 

negative effect (-0.004), also insignificant, suggesting neither the income nor 

substitution effect dominates. For college graduates (Column 3), the effect is positive 

and significant at the 1% level (0.033), implying the substitution effect dominates. 

These findings indicate the income channel matters primarily for college graduates, 

with less clear impacts on other groups. 

After isolating the income channel effects, I examine whether human capital 

stocks affect hours worked through non-income channels by using the residuals from 

the second stage of the first step estimation as the dependent variable of Equation (3). 

I return to using the land-grant university instrument for college share to maintain 

consistency with the main analysis. Panel B of Table 3 shows that while point estimates 

suggest positive effects for college graduates (0.028) and the full sample (0.006), none 

are statistically significant. The estimate for non-college workers is negative (-0.012) 

but also insignificant. These results indicate limited evidence of human capital stocks 

affecting hours worked through non-income channels, though relatively large standard 

errors limit statistical precision. 

[Please insert Table 3 here] 
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4.4 Heterogeneity Tests 

Prior research has documented that self-employed individuals work more hours 

than paid employees (Baines and Gelder 2003; Cai 2019; Parker 2004), a pattern 

confirmed by the estimates for paid-employment dummies in Table 2 regressions (not 

reported). Paid employees work significantly fewer hours: 0.058 log points less in the 

full sample, 0.065 points less for lower-educated workers, and 0.046 points less for 

college graduates. These heterogeneous differences between employment types may 

contribute to the patterns observed in Table 2. 

To investigate this heterogeneity, I split both the non-college and college samples 

into self-employment and paid-employment subsamples. Panel A of Table 4 presents 

the OLS results.9 For less-educated workers, college share significantly reduces hours 

worked only among the self-employed, with no significant effect on paid workers. 

Among college graduates, a 1 percentage point increase in college share produces 

divergent effects: reducing self-employed hours by 0.071% ( 𝑝 < 0.05 ) while 

increasing paid workers’ hours by 0.054% (𝑝 < 0.01). 

The results in Panel A of Table 4 may be biased due to non-random selection into 

self-employment and paid employment. Following Heckman (1979) and Cai, Stephens, 

and Winters (2019), I apply a two-stage Heckman selection correction procedure to 

account for potential selection bias. To satisfy the exclusion restriction, I use college 

 
9 The 2SLS results, which display a similar pattern, are provided in Appendix Table A3. 
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major dummies as exclusion variables. Panel B of Table 4 reports these results. 

Comparing results between Panel B and Panel A reveals subtle pattern changes. 

For college-educated workers, higher college share still reduces hours worked among 

the self-employed and increases hours for paid workers. The self-employment effect is 

smaller in magnitude but more precise, while the paid employment effect is larger with 

similar precision. These findings suggest differing leisure preferences between 

employment types among college graduates. For self-employed college graduates, the 

income effect dominates the substitution effect, while the opposite occurs for those in 

paid employment. 

A noteworthy difference between Panels B and A is that for lower educated 

workers, the effects of college share on hours worked become highly significant and 

larger in magnitude for both employment types, suggesting that the income effect 

dominates the substitution effect for both self-employed and paid non-college workers. 

This difference from Panel A results from selection bias, as evidenced by the 

statistically significant coefficients on the inverse Mills ratios in Panel B, particularly 

for paid employment. 

[Please insert Table 4 here] 

Panel B of Table 4 also reports the marginal effects for the first stage probit 

estimates of the Heckman procedure. The results show that college share is significantly 

associated with employment decisions for both education groups. Non-college workers 

are more likely to be self-employed (by 0.037 percentage points) and therefore less 
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likely to be paid workers in cities with higher college shares. This selection pattern 

explains why the negative effect of college share on hours worked among lower-

educated paid workers is underestimated in Panel A. In contrast, for college graduates, 

a 1 percentage point increase in college share reduces the probability of being self-

employed by 0.072 percentage points, and increases the probability of being a paid 

worker by the same magnitude. 

These findings partially align with existing literature. Sousa (2013) shows human 

capital spillovers increase self-employment among less-educated immigrants in ethnic 

enclaves, consistent with my results, while Acs, Braunerhjelm, Audretsch, and Carlsson 

(2009) demonstrate knowledge spillovers enhance entrepreneurship nationally. The 

literature on educational attainment and self-employment shows mixed results: some 

studies find educated workers more likely to be self-employed given sufficient wealth 

(Robinson and Sexton 1994; Greene and Saridakis 2008), while others suggest 

education is not a strong determinant (Bates 1995). Dawson, Henley, and Latreille 

(2009) connect higher education with "opportunity" entrepreneurship, and Baumann 

and Brändle (2012) find education explains self-employment when considering 

employment protection. My MSA-level results show college graduates gravitate toward 

paid employment while less-educated workers favor self-employment in smart cities, 

likely reflecting the earning opportunity differentials described in Cai and Winters 

(2017). 
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4.5 Alternative Measure for Human Capital Stocks: STEM Shares 

Previous research has shown that STEM graduates play a particularly important 

role in generating income externalities (Winters 2014). To further check the robustness 

of the findings above, I use the share of STEM-educated workers instead of college 

share as an alternative measure for human capital stock. Table 5 shows the estimated 

effects of STEM share on hours worked by different types of workers. 

The OLS results (Panel A of Table 5) show a highly significant and positive effect 

of STEM share on hours worked by college graduates (Column 2), while the effect on 

non-college workers is not significant (Column 1). These results align with the previous 

findings using college share as the measure of human capital. For STEM graduates 

specifically (Column 4), a 1 percentage point increase in STEM share is associated with 

0.082% more hours worked. This translates to approximately 8.16 additional hours 

worked per year given a one standard deviation increase in STEM share. Similarly, 

Column (3) shows that non-STEM graduates work 4.96 more hours per year with a one 

standard deviation increase in STEM share. As established in the mechanism analysis, 

income appears to be the primary channel through which human capital affects labor 

supply. The positive effect on working hours among STEM graduates appears to “spills 

over” to non-STEM graduates through income externalities, suggesting that the 

substitution effect dominates the income effect for both groups. 

Panel B of Table 5 reports the 2SLS results. All estimates increase in magnitude 

but decrease in precision. Instead of the land-grant university indicator used in Table 2, 
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I use log distance from each MSA’s population center to the nearest land-grant 

university as an instrument for STEM share. This choice aligns with the 1862 Act’s 

mandate for land-grant universities to teach “practical agriculture, science, military 

science, and engineering”10 – subjects that largely overlap with today’s STEM fields. 

The instrument’s validity is supported by the first stage results and F statistics reported 

at the bottom of Table 5. 

[Please insert Table 5 here] 

Following the approach in Table 4, I separate non-STEM and STEM samples into 

self-employment and paid-employment subsamples to investigate heterogeneous 

effects. Panel A of Table 6 presents the OLS results for these subsamples.11  The 

findings show that an increase in STEM share is associated with paid employees 

working significantly more hours, regardless of whether they are non-STEM or STEM 

workers, while the estimates for self-employed workers are both negative and 

statistically insignificant. These differential responses suggest that for self-employed 

workers, the income effect approximately balances the substitution effect, whereas for 

paid employees, the substitution effect clearly dominates the income effect. 

To control for potential selection bias, I apply the Heckman procedure as in Table 

4. The results shown in Panel B of Table 6 are consistent with those in Panel A. The 

main difference is that the magnitudes of the estimates for paid employment are larger, 

as college graduates are more likely to select into paid employment when STEM share 

 
10 See https://en.wikipedia.org/wiki/Land-grant_university 
11 The 2SLS results display a similar pattern and are provided in Appendix Table A4. 

https://en.wikipedia.org/wiki/Land-grant_university
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increases. This finding aligns with Cai and Winters (2017), who show that foreign 

STEM graduates prefer paid employment due to potential earning advantages. 

Additionally, as STEM share increases, non-STEM graduates are also more likely to 

enter paid employment. 

[Please insert Table 6 here] 

 

4.6 Sensitivity Analysis 

To verify result robustness, I conduct several sensitivity analyses based on the 

preferred specifications in Tables 2, 4, 5, and 6. Table 7 reports the estimated 

coefficients of college and STEM shares. Panels A to D present results controlling for 

ten dummy variables for education attainment, one indicator for marital status, and one 

indicator for children at home. Despite these variables’ potentially endogeneity to local 

economic conditions (hence their exclusion from main analyses), the results remain 

consistent with earlier findings. 

Immigrants may differ from natives in hours worked due to cultural differences 

and language proficiency. Panels E to H of Table 7 report the results after controlling 

for citizenship status, duration of residence in the United States (using five interval 

categories), and English language proficiency (using four categories). These additional 

controls do not substantially alter the main findings, confirming the robustness of the 

results. 

Working hours in different industries and occupations may inherently vary. 
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However, hours worked, industries, and occupations may be jointly determined due to 

unobserved worker heterogeneity. Therefore, I do not control for these variables in the 

main analyses. 

Panels I to L report the results including industry and occupation dummies for 

sensitivity analysis. Most results remain robust compared to the main findings. In Panel 

I, the significance levels switch in Columns (1) and (2) compared to Table 2, but this 

does not qualitatively change the pattern. In Panel J, the income effect slightly 

dominates the substitution effect for the self-employed. However, caution is warranted 

when interpreting these results since workers jointly choose their occupations, 

industries, and places of work. 

Panels M to P report the results controlling for Bartik shift-share instruments 

constructed using two-digit industry codes to account for local labor demand shocks. 

These results also remain robust. 

[Please insert Table 7 here] 

 

5 Conclusions 

This paper uses the ACS microdata to examine how human capital stocks are 

associated with the hours worked by different types of workers in MSAs. The results 

show that less-educated workers work marginally fewer hours and college-educated 

workers work significantly longer hours in smart cities. The effects primarily stem from 

income gains in smart cities. For non-college workers, the income effect weakly 



22 

 

dominates the substitution effect, while for college graduates, the substitution effect 

strongly dominates the income effect. 

After applying the Heckman correction, the results show that non-college workers 

work significantly fewer hours regardless of whether they are self-employed or in paid 

employment. Among college graduates, those who are self-employed work 

significantly fewer hours while those in paid employment work significantly more 

hours in smart cities. The findings remain robust when using STEM share as an 

alternative proxy for human capital stocks and when conducting several sensitivity tests. 

These findings have important implications for several pressing policy challenges 

in the U.S. First, the results provide new insights for place-based development 

initiatives, which have gained prominence with high-profile cases like Amazon’s HQ2 

selection. While these initiatives often emphasize attracting talent, the findings on 

heterogeneous labor supply responses suggest the need for a more nuanced approach. 

Cities competing for corporate relocations or expansions should consider how the 

influx of high-skilled workers might affect their entire labor market, including existing 

low-skilled workers’ employment patterns. 

Second, the finding that human capital externalities primarily operate through 

income channels highlights the importance of skill development. This is particularly 

relevant for regions experiencing industrial transitions, where federal and state job 

training programs, including the workforce development initiatives through community 

colleges, play a crucial role in helping workers capture the benefits of human capital 
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spillovers. 

Lastly, the results help explain the declining business dynamism in American cities. 

College graduates increasingly prefer paid employment in smart cities, consistent with 

observed trends in tech hubs like Silicon Valley and Boston where high-skilled workers 

join established firms rather than start new businesses. This suggests policies promoting 

entrepreneurship must address not just the general business environment but also 

specific challenges faced by high-skilled entrepreneurs in high-cost, talent-

concentrated cities. 

Several limitations should be noted. First, focusing exclusively on U.S. 

metropolitan areas limits generalizability to cities in countries with different labor 

market institutions, work cultures, and economic development levels. Future research 

could test whether these relationships between human capital stocks and working hours 

persist across diverse institutional contexts. Second, workers’ self-selection into 

occupations, industries, and cities complicates causal interpretation. Despite employing 

various strategies to address endogeneity, the cross-sectional nature of the data 

constrains causal inference. These findings should be viewed as descriptive evidence 

of important associations warranting further investigation. 
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Figure 1: Hours Worked by Education Type and Human Capital Stock 

 

Notes: The figure shows the relationship between average log weekly hours worked and human capital 

stocks (measured by college and STEM shares) across MSAs. Point sizes are weighted by MSA 

population. Solid and dashed lines show fitted linear relationships for college graduates and non-

college workers, respectively. Data source: 2018 ACS. 
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Table 1: Summary Statistics 

 Mean Std. Dev. Min Max 

Full sample (N=572,536)     

Usual hours worked per week 44.026 8.096 35.000 99.000 

College share 0.373 0.078 0.163 0.567 

STEM share 0.096 0.035 0.023 0.297 

Age 41.573 10.297 25.000 60.000 

Commute time 28.499 23.898 0.000 188.000 

Female 0.419  0.000 1.000 

Self-employment 0.092  0.000 1.000 

White 0.563  0.000 1.000 

Black 0.120  0.000 1.000 

Hispanic 0.214  0.000 1.000 

Asian 0.080  0.000 1.000 

Other races 0.023  0.000 1.000 

 Mean Std. Dev. Min Max 

Non-college (N=331,339)     

Usual hours worked per week 43.533 7.970 35.000 99.000 

College share 0.361 0.077 0.163 0.567 

STEM share 0.091 0.032 0.023 0.297 

Age 42.052 10.379 25.000 60.000 

Commute time 28.436 24.073 0.000 188.000 

Female 0.395  0.000 1.000 

Self-employment 0.094  0.000 1.000 

White 0.503  0.000 1.000 

Black 0.142  0.000 1.000 

Hispanic 0.286  0.000 1.000 

Asian 0.046  0.000 1.000 

Other races 0.022  0.000 1.000 

 Mean Std. Dev. Min Max 

College (N=241,197)     

Usual hours worked per week 44.796 8.230 35.000 99.000 

College share 0.391 0.075 0.163 0.567 

STEM share 0.102 0.038 0.023 0.297 

Age 40.826 10.123 25.000 60.000 

Commute time 28.597 23.623 0.000 188.000 

Female 0.457  0.000 1.000 

Self-employment 0.090  0.000 1.000 

White 0.656  0.000 1.000 

Black 0.085  0.000 1.000 

Hispanic 0.100  0.000 1.000 

Asian 0.133  0.000 1.000 
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Other races 0.025  0.000 1.000 

 Mean Std. Dev. Min Max 

Non-STEM (N=172,128)     

Usual hours worked per week 44.685 8.113 35.000 99.000 

College share 0.388 0.074 0.163 0.567 

STEM share 0.099 0.034 0.023 0.297 

Age 40.778 10.144 25.000 60.000 

Commute time 28.337 23.499 0.000 188.000 

Female 0.527  0.000 1.000 

Self-employment 0.095  0.000 1.000 

White 0.684  0.000 1.000 

Black 0.094  0.000 1.000 

Hispanic 0.105  0.000 1.000 

Asian 0.093  0.000 1.000 

Other races 0.024  0.000 1.000 

 Mean Std. Dev. Min Max 

STEM (N=69,069)     

Usual hours worked per week 45.078 8.511 35.000 99.000 

College share 0.398 0.078 0.163 0.567 

STEM share 0.109 0.046 0.023 0.297 

Age 40.944 10.070 25.000 60.000 

Commute time 29.252 23.920 0.000 188.000 

Female 0.281  0.000 1.000 

Self-employment 0.076  0.000 1.000 

White 0.587  0.000 1.000 

Black 0.062  0.000 1.000 

Hispanic 0.090  0.000 1.000 

Asian 0.236  0.000 1.000 

Other races 0.026  0.000 1.000 

Notes: This table provides the summary statistics for the variables used in the main analysis. Dummy 

variables for majors of study and states of workplace are omitted to conserve space. The sample is 

restricted to workers employed in Metropolitan Statistical Areas. Personal survey weights are used. 
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Table 2: Hours Worked and College Share 

 (1) (2) (3) 

 Full Non-college College 

A. OLS results: 

    

College share 0.002 -0.023* 0.043*** 

 (0.011) (0.013) (0.012) 

B. 2SLS results: 

    

College share 0.028* -0.016 0.081*** 

 (0.016) (0.021) (0.030) 

First Stage results    

    

Land grant 0.068*** 0.068*** 0.066*** 

 (0.019) (0.018) (0.019) 

Underidentification 6.706 7.648 5.658 

  {0.010} {0.006} {0.017} 

Weak identification 13.177 13.828 11.739 

Endogeneity 2.473 0.148 2.159 

  {0.116} {0.700} {0.142} 

C. Conley et al. (2012) bounds: 

    

College share [-0.021 0.075] [-0.075 0.038] [0.010 0.160] 

D. Oster (2019) bounds:    

    

College share [-0.004 0.002] [-0.023 -0.008] [0.043 0.059] 

Delta 0.373 1.390 -19.773 

N 572,536 331,339 241,197 

Notes: The dependent variable is log usual hours worked per week. The table only reports the estimates 

for the coefficients of interest due to space constraints. The regressions also control for age, log 

commute time, a gender dummy, a work type dummy, 4 race/ethnic group dummies, 51 birthplace 

dummies, 37 major of degree dummies, and state of workplace fixed effects. Standard errors in 

parentheses are clustered at the MSA level. Values in curly brackets represent p-values. Panel C reports 

bounds following Conley et al. (2012) assuming the presence of at least one land-grant university in an 

MSA as the instrument, with its direct effect on hours worked bounded between -0.001 and 0.001. 

Panel D reports coefficient bounds following Oster (2019) assuming 𝑅𝑚𝑎𝑥 = min{1.3�̃�2, 1}, where 

�̃�2 is the R-squared from the controlled regression, with “Delta” representing the ratio of selection on 

unobservables to selection on observables that would reduce the estimated effect to zero. Personal 

survey weights are used. * denotes significance at the 10% level; *** significance at the 1% level. 
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Table 3: Mechanism Test 

 (1) (2) (3) 

 Full Non-college College 

A. First step 2SLS results: 

    

Regression-adjusted income 0.017 -0.004 0.033*** 

 (0.010) (0.020) (0.011) 

    

B. Second step 2SLS results: 

    

College share 0.006 -0.012 0.028 

 (0.016) (0.021) (0.025) 

    

N 572,536 331,339 241,197 

Notes: The dependent variable of Panel A is log usual hours worked per week. The dependent variable 

of Panel B is the residual of the second stage regression in Panel A. The instrumental variable for Panel 

A is a Bartik shift-share constructed using two-digit industry codes. The instrument for Panel B is a 

dummy for the presence of at least one land-grant university in an MSA. The first-stage F statistics are 

larger than 10 in all specifications. The table only reports the estimates for the coefficients of interest 

for space conservation. The regressions also control for age, log commute time, a gender dummy, a 

work type dummy, 4 race/ethnic group dummies, 51 birthplace dummies, 37 major of degree dummies, 

and state of workplace fixed effects. Standard errors in parentheses are clustered at the MSA level. 

Personal survey weights are used. *** denotes significance at the 1% level. 

  



34 

 

 

Table 4: Self-employment vs. Paid employment 

 Non-college College 

 (1) (2) (3) (4) 

 Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

A. OLS results 

College 

share 

-0.051** -0.020 -0.071** 0.054*** 

(0.022) (0.013) (0.035) (0.011) 

B. Heckman procedure results 

College 

share 

-0.073*** -0.029*** -0.063*** 0.082*** 

(0.027) (0.005) (0.023) (0.006) 

     

Coefficient 

on the 

inverse 

Mills ratio 

-0.096 0.159*** -0.019* 0.110*** 

(0.107) (0.012) (0.010) (0.006) 

First Stage Marginal Effects 

     

College 

share 

0.037*** -0.037*** -0.072*** 0.072*** 

(0.008) (0.008) (0.010) (0.010) 

N 32,319 299,020 22,362 218,835 

Notes: The dependent variable is log usual hours worked per week. The dependent variable for the first 

stage of the Heckman procedure is a dummy variable for self-employment (Columns 1 and 3) and paid 

employment (Columns 2 and 4). The table only reports the estimates for the coefficients of interest for 

space conservation. The regressions also control for age, log commute time, a gender dummy, 4 

race/ethnic group dummies, 51 birthplace dummies, 37 major of degree dummies, and state of workplace 

fixed effects. Personal survey weights are used. * denotes significance at the 10% level; ** significance 

at the 5% level; *** significance at the 1% level. 
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Table 5: Hours Worked and STEM Share 

 (1) (2) (3) (4) 

 Non-college College Non-STEM STEM 

A. OLS results:     

     

STEM share -0.025 0.070*** 0.068*** 0.082*** 

 (0.019) (0.015) (0.017) (0.019) 

B. 2SLS results:     

     

STEM share 0.025 0.091** 0.078 0.126** 

 (0.043) (0.043) (0.048) (0.053) 

First Stage results     

     

Log distance to land 

grant 

-0.015*** -0.018*** -0.017*** -0.020*** 

(0.003) (0.004) (0.003) (0.006) 

Underidentification 6.901 7.287 6.574 6.708 

  [0.009] [0.007] [0.010] [0.010] 

Weak identification 20.897 22.212 33.923 10.099 

Endogeneity 1.405 0.320 0.067 0.764 

  [0.236] [0.571] [0.796] [0.382] 

N 331,339 241,197 172,128 69,069 

Notes: The dependent variable is log usual hours worked per week. The table only reports the estimates 

for the coefficients of interest for space conservation. The regressions also control for age, log 

commute time, a gender dummy, a work type dummy, 4 race/ethnic group dummies, 51 birthplace 

dummies, 37 major of degree dummies, and state of workplace fixed effects. Standard errors in 

parentheses are clustered at the MSA level. The numbers in brackets are p-values. Personal survey 

weights are used. ** denotes significance at the 5% level; *** significance at the 1% level. 
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Table 6: Self-employment vs. Paid employment 

 Non-STEM STEM 

 (1) (2) (3) (4) 

 Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

A. OLS results 

STEM 

share 

-0.038 0.078*** -0.098 0.094*** 

(0.078) (0.020) (0.141) (0.015) 

B. Heckman procedure results 

STEM 

share 

-0.034 0.125*** -0.065 0.179*** 

(0.053) (0.014) (0.090) (0.023) 

     

Coefficient 

on the 

inverse 

Mills ratio 

-0.012 0.077*** -0.027 0.222*** 

(0.015) (0.009) (0.017) (0.016) 

First Stage Marginal Effects 

     

STEM 

share 

-0.122*** 0.122*** -0.297*** 0.297*** 

(0.024) (0.024) (0.028) (0.028) 

N 16,918 155,210 5,444 63,625 

Notes: The dependent variable is log usual hours worked per week. The dependent variable for the first 

stage of the Heckman procedure is a dummy for being self-employed (Columns 1 and 3) and paid 

employment (Columns 2 and 4). The table only reports the estimates for the coefficients of interest for 

space conservation. The regressions also control for age, log commute time, a gender dummy, 4 

race/ethnic group dummies, 51 birthplace dummies, 37 major of degree dummies, and state of workplace 

fixed effects. Personal survey weights are used. *** denotes significance at the 1% level. 
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Table 7: Sensitivity Analysis 

A. Table 2: OLS including controls for education, marriage, and children 

 (1) (2) (3) 

 Full Non-college College 

College 

share 

-0.001 -0.024* 0.035*** 

(0.011) (0.013) (0.011) 

B. Table 4: Heckman procedure including controls for education, marriage, and children 

  Non-college College 

  (1) (2) (3) (4) 

  Self-

employment 

Paid 

employment 

Self-employment Paid employment 

College 

share 

 -0.071** -0.032*** -0.065*** 0.073*** 

 (0.029) (0.005) (0.023) (0.006) 

      

Coefficient 

on the 

inverse 

Mills ratio 

 -0.065 0.161*** -0.018* 0.112*** 

 (0.103) (0.011) (0.010) (0.006) 

C. Table 5: OLS including controls for education, marriage, and children 

  (1) (2) (3) (4) 

  Non-college College Non-STEM STEM 

STEM 

share 

 -0.027 0.052*** 0.058*** 0.055*** 

 (0.019) (0.015) (0.018) (0.020) 

D. Table 6: Heckman procedure including controls for education, marriage, and children 
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     Non-STEM STEM 

     (1) (2) (3) (4) 

     Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

STEM 

share 

    -0.039 0.116*** -0.077 0.128*** 

    (0.053) (0.014) (0.092) (0.018) 

         

Coefficient 

on the 

inverse 

Mills ratio 

    -0.013 0.084*** -0.023 0.168*** 

    (0.014) (0.008) (0.018) (0.013) 

E. Table 2: OLS including controls for citizenship, years in the United States, and English-speaking ability 

 (1) (2) (3) 

 Full Non-college College 

College 

share 

0.001 -0.024* 0.042*** 

(0.011) (0.013) (0.012) 

F. Table 4: Heckman procedure including controls for citizenship, years in the United States, and English-speaking ability 

  Non-college College 

  (1) (2) (3) (4) 

  Self-

employment 

Paid 

employment 

Self-employment Paid employment 

College 

share 

 -0.071*** -0.029*** -0.063*** 0.080*** 

 (0.026) (0.005) (0.023) (0.006) 

      

Coefficient  -0.087 0.153*** -0.018* 0.104*** 
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on the 

inverse 

Mills ratio 

 (0.104) (0.011) (0.010) (0.006) 

G. Table 5: OLS including controls for citizenship, years in the United States, and English-speaking ability 

  (1) (2) (3) (4) 

  Non-college College Non-STEM STEM 

STEM 

share 

 -0.028 0.068*** 0.066*** 0.083*** 

 (0.019) (0.016) (0.018) (0.020) 

H. Table 6: Heckman procedure including controls for citizenship, years in the United States, and English-speaking ability 

     Non-STEM STEM 

     (1) (2) (3) (4) 

     Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

STEM 

share 

    -0.037 0.122*** -0.077 0.168*** 

    (0.053) (0.014) (0.090) (0.021) 

         

Coefficient 

on the 

inverse 

Mills ratio 

    -0.011 0.074*** -0.024 0.202*** 

    (0.014) (0.008) (0.017) (0.014) 

I. Table 2: OLS including controls for industry and occupation fixed effects 

 (1) (2) (3) 

 Full Non-college College 

College 

share 

0.016* -0.001 0.042*** 

(0.008) (0.009) (0.012) 
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J. Table 4: Heckman procedure including controls for industry and occupation fixed effects 

  Non-college College 

  (1) (2) (3) (4) 

  Self-

employment 

Paid 

employment 

Self-employment Paid employment 

College 

share 

 -0.033* 0.001 -0.045* 0.074*** 

 (0.019) (0.004) (0.023) (0.006) 

      

Coefficient 

on the 

inverse 

Mills ratio 

 0.113*** 0.062*** -0.026* 0.074*** 

 (0.039) (0.005) (0.014) (0.006) 

K. Table 5: OLS including controls for industry and occupation fixed effects 

  (1) (2) (3) (4) 

  Non-college College Non-STEM STEM 

STEM 

share 

 0.012 0.072*** 0.054*** 0.106*** 

 (0.018) (0.015) (0.017) (0.015) 

L. Table 6: Heckman procedure including controls for industry and occupation fixed effects 

     Non-STEM STEM 

     (1) (2) (3) (4) 

     Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

STEM 

share 

    -0.014 0.080*** -0.073 0.141*** 

    (0.053) (0.013) (0.102) (0.016) 
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Coefficient 

on the 

inverse 

Mills ratio 

    -0.025 0.021*** -0.017 0.055*** 

    (0.019) (0.007) (0.043) (0.010) 

M. Table 2: OLS including control for Bartik shift share 

 (1) (2) (3) 

 Full Non-college College 

College 

share 

-0.005 -0.030** 0.041*** 

(0.013) (0.014) (0.013) 

N. Table 4: Heckman procedure including controls for Bartik shift share 

  Non-college College 

  (1) (2) (3) (4) 

  Self-

employment 

Paid 

employment 

Self-employment Paid employment 

College 

share 

 -0.069*** -0.034*** -0.053* 0.091*** 

 (0.026) (0.006) (0.028) (0.007) 

      

Coefficient 

on the 

inverse 

Mills ratio 

 -0.101 0.159*** -0.019* 0.110*** 

 (0.107) (0.012) (0.010) (0.006) 

O. Table 5: OLS including control for Bartik shift share 

  (1) (2) (3) (4) 

  Non-college College Non-STEM STEM 

STEM  -0.030 0.061*** 0.046** 0.099*** 
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share  (0.020) (0.018) (0.022) (0.020) 

P. Table 6: Heckman procedure including control for Bartik shift-share 

    Non-STEM STEM 

    (1) (2) (3) (4) 

    Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

STEM 

share 

   0.012 0.108*** -0.006 0.209*** 

   (0.062) (0.016) (0.105) (0.027) 

        

Coefficient 

on the 

inverse 

Mills ratio 

   -0.013 0.075*** -0.027 0.221*** 

   (0.015) (0.009) (0.017) (0.016) 

 

Notes: The dependent variable is log usual hours worked per week. The table only reports the estimates for the coefficients of interest for space conservation. The regressions 

also control for the same set of variables as in the indicated tables. Personal survey weights are used. * denotes significance at the 10% level; ** significance at the 5% level; 

*** significance at the 1% level. 
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Appendix Tables 

Table A1: STEM majors 

Animal Sciences 

Food Science 

Plant Science and Agronomy 

Soil Science 

Environmental Science 

Forestry 

Communication Technologies 

Computer and Information Systems 

Computer Programming and Data Processing 

Computer Science 

Information Sciences 

Computer Information Management and Security 

Computer Networking and Telecommunications 

General Engineering 

Aerospace Engineering 

Biological Engineering 

Architectural Engineering 

Biomedical Engineering 

Chemical Engineering 

Civil Engineering 

Computer Engineering 

Electrical Engineering 

Engineering Mechanics 

Environmental Engineering 

Geological and Geophysical Engineering 

Industrial and Manufacturing Engineering 

Materials Engineering and Materials Science 

Mechanical Engineering 

Metallurgical Engineering 

Mining and Mineral Engineering 

Naval Architecture and Marine Engineering 

Nuclear Engineering 

Petroleum Engineering 

Miscellaneous Engineering 

Engineering Technologies 

Engineering and Industrial Management 

Electrical Engineering Technology 

Industrial Production Technologies 

Mechanical Engineering Related Technologies 

Miscellaneous Engineering Technologies 

Biology 

Biochemical Sciences 
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Botany 

Molecular Biology 

Ecology 

Genetics 

Microbiology 

Pharmacology 

Physiology 

Zoology 

Neuroscience 

Miscellaneous Biology 

Mathematics 

Applied Mathematics 

Statistics and Decision Science 

Military Technologies 

Nutrition Sciences 

Mathematics and Computer Science 

Cognitive Science and Biopsychology 

Physical Sciences 

Astronomy and Astrophysics 

Atmospheric Sciences and Meteorology 

Chemistry 

Geology and Earth Science 

Geosciences 

Oceanography 

Physics 

Materials Science 

Multi-Disciplinary or General Science 

Nuclear 

Transportation Sciences and Technologies 

Health and Medical Preparatory Programs 

Pharmacy 

Actuarial Science 

Management Information Systems and Statistics 

Notes: The STEM majors are defined following the definition of the U.S. Immigration and Customs 

Enforcement (ICE). Some small adjustments are made to match the ACS data. 
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Table A2: Land-Grant Universities 

University Year 

Alabama A&M University 1890 

Auburn University 1862 

University of Arizona 1862 

University of Arkansas at Pine Bluff 1890 

University of Arkansas 1862 

University of California 1862 

Colorado State University 1862 

University of Connecticut 1862 

Delaware State University 1890 

University of Delaware 1862 

Florida A&M University 1890 

University of Florida 1862 

Fort Valley State University 1890 

University of Georgia 1862 

University of Idaho 1862 

University of Illinois 1862 

Purdue University 1862 

Iowa State University 1862 

Kansas State University 1862 

Kentucky State University 1890 

University of Kentucky 1862 

Louisiana State University 1862 

Southern University and A&M College 1890 

University of Maine 1862 

University of Maryland 1862 

University of Maryland Eastern Shore 1890 

Massachusetts Institute of Technology 1862 

University of Massachusetts 1862 

Michigan State University 1862 

University of Minnesota 1862 

Alcorn State University 1890 

Mississippi State University 1862 

Lincoln University 1890 

University of Missouri 1862 

Montana State University 1862 

University of Nebraska 1862 

University of Nevada 1862 

University of New Hampshire 1862 

Rutgers University, The State University of New 

Jersey 1862 

New Mexico State University 1862 
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Cornell University 1862 

North Carolina A&T State University  1890 

North Carolina State University 1862 

North Dakota State University 1862 

Ohio State University 1862 

Langston University 1890 

Oklahoma State University 1862 

Oregon State University 1862 

Pennsylvania State University 1862 

University of Rhode Island 1862 

Clemson University 1862 

South Carolina State University 1890 

South Dakota State University 1862 

Tennessee State University 1890 

University of Tennessee 1862 

Texas A&M University 1862 

Prairie View A&M University 1890 

Utah State University 1862 

University of Vermont 1862 

Virginia Tech 1862 

Virginia State University 1890 

Washington State University 1862 

West Virginia University 1862 

West Virginia State University 1890 

University of Wisconsin 1862 

University of Wyoming 1862 

University of the District of Columbia 1862 

Notes: This list combines the list of land-grant universities from Nevins (1962) and the list of 1862 and 

1890 land-grant colleges and universities from the National Institute of Food and Agriculture of the 

United States Department of Agriculture. 
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Table A3: 2SLS Estimates of Hours Worked and College Share - Self-

employment VS. Paid-employment 

 Non-college College 

 (1) (2) (3) (4) 

 Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

College share -0.131* -0.006 -0.108* 0.104*** 

 (0.067) (0.021) (0.063) (0.031) 

First Stage results     

     

Land grant 0.072*** 0.068*** 0.074*** 0.065*** 

 (0.021) (0.018) (0.022) (0.019) 

Underidentification 5.969 7.853 4.666 5.769 

  [0.015] [0.005] [0.031] [0.016] 

Weak 

identification 

11.449 14.095 11.150 11.753 

Endogeneity 2.414 0.658 0.308 3.358 

  [0.120] [0.417] [0.579] [0.067] 

N 32,319 299,020 22,362 218,835 

Notes: The dependent variable is log usual hours worked per week. The table only reports the estimates 

for the coefficients of interest for space conservation. The regressions also control for age, log commute 

time, a gender dummy, 4 race/ethnic group dummies, 51 birthplace dummies, 37 major of degree 

dummies, and state of workplace fixed effects. Standard errors in parentheses are clustered at the MSA 

level. The numbers in brackets are p-values. Personal survey weights are used. * denotes significance at 

the 10% level; *** denotes significance at the 1% level. 
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Table A4: 2SLS Estimates of Hours Worked and STEM Share - Self-

employment VS. Paid-employment 

 Non-STEM STEM 

 (1) (2) (3) (4) 

 Self-

employment 

Paid 

employment 

Self-

employment 

Paid 

employment 

STEM share -0.109 0.099* -0.350** 0.173*** 

 (0.127) (0.057) (0.171) (0.063) 

First Stage results     

     

Log distance to 

land grant 

-0.017*** -0.017*** -0.019*** -0.020*** 

(0.003) (0.003) (0.003) (0.006) 

Underidentification 5.376 6.736 6.300 6.604 

  [0.020] [0.009] [0.012] [0.010] 

Weak 

identification 

35.537 33.653 29.384 9.461 

Endogeneity 0.379 0.195 2.304 1.893 

  [0.538] [0.659] [0.129] [0.169] 

N 16,918 155,210 5,444 63,625 

Notes: The dependent variable is log usual hours worked per week. The table only reports the estimates 

for the coefficients of interest for space conservation. The regressions also control for age, log 

commute time, a gender dummy, 4 race/ethnic group dummies, 51 birthplace dummies, 37 major of 

degree dummies, and state of workplace fixed effects. Standard errors in parentheses are clustered at 

the MSA level. The numbers in brackets are p-values. Personal survey weights are used. * denotes 

significance at the 10% level; ** significance at the 5% level; *** significance at the 1% level. 


