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Abstract

I develop a banking model with monopolistic competition to analyze the effect

of reserve rate policy on bank insolvency risk, when banks are constrained by a

zero lower bound on deposit rates. When binding, the lower bound compresses

the solvency relevant deposit spread and causes it to be a function of the policy

rate, which results in the policy rate affecting bank default. The policy rate has an

impact through two separate effects: The direct effect increases default probability

unambiguously as a lower policy rate decreases the deposit spread for every realiza-

tion of credit risk. By contrast, the (indirect) risk effect may increase or decrease

default probability depending on the hazard function of credit risk. The risk effect

arises because banks endogenously adjust their solvency threshold in response to

a policy rate change. This novel result suggests that in a low interest rate envi-

ronment, the relationship between competition in the banking sector, monetary

policy and financial stability cannot be isolated from the underlying credit risk

distribution.
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1 Introduction

In the aftermath of the 2008 Financial Crisis monetary policy entered into uncharted

territory: Several central banks implemented a negative nominal interest rate policy

for the first time in modern economic history.1 This unprecedented policy experiment

exposed that the relevant zero lower bound does not relate to the policy rate, but rather

to deposit rates as many commercial banks did not fully pass-through negative interest

rates to their depositors. Evidence of this zero lower bound on deposit rates is well

documented by Eggertsson et al. (2024) for Switzerland, Sweden and Japan (among

other countries).

How does the zero lower bound on deposit rates and the policy rate impact bank

insolvency risk when banks have market power? This paper develops a partial equilib-

rium model of banking to answer this question and provides new insights by identifying

a novel interaction between credit risk and the policy rate that arises due to the lower

bound constraint.

The theoretical framework models monopolistically competitive banks subject to

a zero lower bound on deposit rates. In order to asses the effect on bank solvency,

I introduce credit risk arising from borrower default. The lower bound constraint

introduces a kink into the deposit supply function which causes the relative deposit

spread to become a function of the policy rate once the constraint binds. I find that

this generates an effect of the policy rate on the probability of bank insolvency and I

identify two separate effects that account for the total effect of the policy rate: There is

a direct effect, which is related to the deposit spread, and this effect is always negative:

The lower the policy rate, the lower the deposit spread, which reduces a bank’s net value

because it earns less on every unit of deposits. Hence lowering the policy rate increases

the probability of bank insolvency for every realization of credit risk. But there is also an

endogenous risk effect, which changes the set of credit risk realizations that trigger bank

default, because banks respond optimally to a change in the policy rate by adjusting

their solvency threshold. This risk effect is related to the hazard function and can be

1A brief overview about the implementation of negative nominal interest rates can be found in
Section 2 of Berentsen et al. (2020).
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positive or negative, depending on the particular credit risk distribution. Moreover, a

negative risk effect can give rise to a reversal effect of the policy rate through the bank

lending channel of monetary policy, such that policy rate cuts become contractionary.

Due to the interaction of both effects, the total effect of the policy rate on the

probability of bank insolvency is theoretically ambiguous. This precise decomposition

of the policy rate effect is a novel result and indicates that the relationship between

competition in the banking sector, monetary policy and financial stability is complex

and cannot be analyzed in isolation without taking into account the underlying credit

risk distribution.

Related Literature. Following the seminal work of Klein (1971) and Monti (1972),

the theoretical framework in this paper is a modified version of the canonical Monti-

Klein model (an in-depth overview of the standard Monti-Klein model can be found

in Section 3.2 of Freixas and Rochet (2008)). The research question however is closely

related to two branches of research: The theory on banks’ risk-taking implications of

conventional interest rate policy and the literature studying the relationship between

financial stability and competition in the banking sector.

Regarding the first branch of research, Dell’Ariccia et al. (2017) provide an exten-

sive overview (important contributions include Adrian and Shin (2010), Borio and Zhu

(2012) and Bruno and Shin (2015), among others): The relationship between safe rates

(which entail policy rates) and banks’ risk-taking behavior is theoretically ambiguous.

Traditional portfolio theory suggests that when safe rates are lowered, then risky in-

vestments become more attractive and banks increase the overall risk exposure. This

portfolio effect postulates a negative relationship between safe rates and risk-taking.

On the other hand models of asymmetric information, as in the seminal paper on credit

rationing by Stiglitz and Weiss (1981), predict a positive relationship. Credit risk may

depend on loan rates, such that borrowers are more likely to default if loan rates are

high. Because loan rates tend to be positively correlated with policy rates, the higher

the policy rate, the more likely is borrower default. In line with the traditional port-

folio theory, my model abstracts from asymmetric information. I contribute to this
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literature by showing that even absent any incentive problems like asymmetric infor-

mation, the relationship between safe policy rates and the probability of bank failure,

which captures banks’ risk-taking, can be ambiguous and fundamentally depends on

the underlying distribution of credit risk.

The second branch of research that is relevant is the literature analyzing the rela-

tionship between financial stability and banking competition. Early theoretical work by

Keeley (1990) argues that in less competitive markets banks incentives for risk-taking

are lower, because of comparatively higher monopoly rents and therefore more com-

petition among banks increases bank failure. In contrast, Boyd and De Nicolo (2005)

develop a theoretical model that incorporates the ideas from Stiglitz and Weiss (1981)

such that the riskiness of loans is a positive function of loan rates. In their model,

more bank competition suppresses loan rates and leads to a reduction in the proba-

bility of loan default. Therefore they find that more competition reduces the risk of

bank failure. But Martinez-Miera and Repullo (2010) argue that this result does not

necessarily translate to the (according to them) more realistic case of imperfect loan-

default-correlation among borrowers and they show that in this case, the relationship

between competition and the risk of bank failure is U-shaped. For the specific case

of monopolistic competition Damjanovic (2013) also finds this U-shaped relationship.

This is consistent with Allen and Gale (2004), where the authors consider a variety

of theoretical models and emphasize that the relationship between competition and

financial stability is complex and non-trivial. My work complements these findings by

highlighting that this relationship is not obvious and conditional on the distribution of

credit risk, but in contrast to the majority of the literature my research incorporates

market power in both the lending and deposit market. These theoretical findings are in

line with the empirical literature reviewed by Boyd and De Nicolo (2005), where they

describe the empirical evidence as mixed.

Unsurprisingly, the effect of safe rates, financial stability and banking competition

are closely interconnected, which ties both branches of research together. Martinez-

Miera and Repullo (2020) find that in a Cournot environment, the effect of safe rates

on the probability of bank failure depends on competition in the lending market via

3



the pass-through of financing cost to loan rates. If financial intermediaries have high

market power, then this pass-through is low and there is a positive relationship between

the probability of bank failure and safe rates, whereas in very competitive markets with

low market power this relationship is negative. In contrast to this result I do not find

that the degree of competition alone is able to account for a change in this relationship.

A broader perspective on market power is provided by Wang et al. (2022), where

they use structural estimation to find that the degree of bank market power explains

much of the imperfect transmission of policy rates. Closely related to the transmission

of policy rates is the more recent research on the limited pass-through of (negative)

interest rates and the role of a zero lower bound. The theoretical analysis in my paper

is motivated by the empirical evidence in Eggertsson et al. (2024) which documents

a zero lower bound on deposit rates for households in Sweden.2 This is in line with

Heider et al. (2019), where they find that in the Euro area banks were reluctant to

pass on negative rates to depositors. Consistently, Basten and Mariathasan (2018)

and Schelling and Towbin (2020) find similar empirical evidence for Switzerland and

Hong and Kandrac (2022) report this phenomena also for Japan. However Altavilla

et al. (2022) suggest that there is heterogeneity among banks regarding the zero lower

bound and the limited pass-through, because the transmission mechanism can be more

impaired for less healthy banks. Such a dimension is not accounted for in my model,

because due to symmetry, all banks will have the same balance sheet structure in

equilibrium and thus there is no heterogeneity among them.

On the theoretical side Ulate (2021) provides both a static banking model as well

as a dynamic DSGE model with New Keynesian features to study the transmissions

effects of negative interest rates onto the economy. In the former model, the author

introduces market power in lending and deposit markets as the key friction affecting the

2The work of Eggertsson et al. (2024) studies negative nominal interest rate policies in a DSGE
model, but their benchmark specification assumes perfectly competitive banks. By including money
storage costs and central bank reserves they can capture a disconnect between the policy and the de-
posit rate at the lower bound, which is different from a deposit spread that arises due to market power.
Interestingly, in their Appendix D.9.2, when they introduce monopolistic competition in the deposit
market, the deposit rate does no longer enter the first-order condition for lending, which is different
to my model. The authors conclude that depending on the parametrization, under monopolistic com-
petition negative interest rates can have positive or negative effects on the bank lending channel of
monetary policy.
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banking sector and a zero lower bound on deposit rates as a constraint. Market power is

essential in order to have the bank lending channel of monetary policy at work, because

only then are banks able to lower their lending rate when deposit rates are stuck at

zero. In this static setup, interest rate cuts are never contractionary, which is no longer

the case in the DSGE section of the paper, where the author introduces additional

frictions to allow for a net-worth channel of monetary policy, which can give rise to

contractionary effects. Such an reversal effect is studied in Abadi et al. (2023), where

the authors theoretically derive the reversal rate at which accommodative monetary

policy becomes contractionary for lending. In their framework, the key frictions are

deposit market power and bank lending that is constrained by net worth. In my model

there can also be a reversal effect in a low or negative interest rate environment, but

the source of this reversal effect is fundamentally different because it is related to credit

risk.

Lastly, since the existence of a deposit spread is crucial for the causal mechanism of

the zero lower bound, my research is in line with the recent literature that acknowledges

and emphasizes the deposit market structure and its role for banking. In Drechsler et al.

(2017) the authors describe a deposit channel as a novel mechanism for monetary policy

transmission and this channel arises due to market power. Furthermore Whited et al.

(2021) find a quantitatively important mechanism, based on deposit market power,

that can cause banks to take on more risks when interest rates are low.

The rest of this paper is organized as follows: Section 2 lays out the theoretical

framework. Section 3 characterizes the equilibrium. Section 4 evaluates the impact of

the zero lower bound, analyzes comparative statics of the policy rate and discusses the

reversal effect and the role of market power. Section 5 concludes.

2 Model

I modify the canonical Monti-Klein setup – which is a nominal, static one period par-

tial equilibrium banking model with non-competitive banks – along several dimensions:3

3Hence the model cannot capture certain aspects of banking such as maturity transformation.
Furthermore, the one period setup emphasizes the short-term character of the model.
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First, there are no costs of managing loan or deposit volume. Thus the deposit spread

only arises due to market power, which helps to clearly identify the causal mechanism

of the zero lower bound. Second, banks’ market power is modeled using the Dixit and

Stiglitz (1977) framework of monopolistic competition, which eases the formal deriva-

tions considerably. Third, I introduce a zero lower bound on the deposit rate following

Ulate (2021). Fourth, I extend the model by incorporating exogenous loan default risk

similar to Taggart and Greenbaum (1978), which endogenizes the probability of bank

insolvency.4 Fifth, in the balance sheet of a bank, the difference between its liabilities

and its loans is not divided into cash and an interbank market position. In my model,

this difference is solely given by a bank’s reserve holdings at the central bank.

2.1 Environment

There is a continuum of monopolistically competitive financial intermediaries called

banks, indexed by j ∈ [0, 1]. At the beginning of the period, each bank is endowed

with an identical level of equity, denoted by E. In the lending market, the bank lends

to an aggregate borrower and receives the gross lending rate (1 + lj). In the deposit

market, it attracts deposits by paying the gross deposit rate (1 + dj) to an aggregate

depositor. The role of the two aggregators is to collect bank individual quantities,

aggregate them and engage in lending with a representative firm and attract deposits

from a representative household. Both representative agents are not modeled explicitly.

Due to market power a bank faces a price-quantity trade-off in each market: Setting

a higher loan rate reduces the quantity of loans while offering a higher deposit rate

increases the quantity of deposits. Because of this price-quantity trade-off, a bank

wants to hold a bounded loan and deposit position in its balance sheet. So at the

beginning of the period, bank j observes the loan demand function Lj(lj), with L′
j < 0,

and the deposit supply function Dj(dj), with D′
j ≥ 0, and decides upon the loan and

4In Gordy (2003), the author discusses policy relevant frameworks to model loan portfolio risk.
This is a complex topic in finance and there might not exist analytical closed form solutions for these
frameworks. Therefore I opt for the more general approach as in Taggart and Greenbaum (1978), which
has the advantage of being a multiplicative formulation of credit risk. This is complementary to the
setup in Dixit and Stiglitz (1977), where the optimal loan (deposit) rate can be written as the product
of a markup (markdown) over the gross policy rate, which is also a multiplicative formulation. This
multiplicativity generates the tractability of the model.
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deposit rate which maps into outstanding loan and deposit volume, (1 + lj)Lj and

(1 + dj)Dj respectively.5 Deposits Dj and equity E can be invested in either loans

Lj or central bank reserve holdings Hj .
6 Central bank reserves pay a safe interest

rate i that acts as the policy rate in this model. Similar to Eggertsson et al. (2024)

and Ulate (2021), I assume that these reserves are non-negative, Hj ≥ 0, and thus

ignore borrowing from the central bank.7 Therefore, at the beginning of the period,

the balance sheet identity of bank j is given by

Hj + Lj = Dj + E. (1)

At the end of the period, the bank receives the loan repayment and pays back its

outstanding deposits. Here I introduce the notion of risk following Taggart and Green-

baum (1978): The loan repayment is stochastic and a bank might not receive full loan

repayment, which potentially causes the bank to be unable to reimburse its outstanding

deposit. At the end of the period, bank j receives the ex-ante uncertain loan repayment

θ(1 + lj)Lj , (2)

where the random variable θ has support [0, 1], a probability density function (PDF)

f(θ), a cumulative probability function (CDF) F (θ) and an unconditional expectation

E[θ] =
∫ 1
0 θf(θ) dθ ∈ (0, 1), where the distribution is known to the bank. Hence θ is the

stochastic share of performing loans at the end of the period.8 Intuitively, we can think

of f(θ) as the distribution of the project quality of a bank’s risky investments. Note

that the stochastic share θ is not bank specific, i.e. each bank will be repaid the same

share. There is a threshold value of θ, denoted by θ̂j , which determines the minimum

loan revenue bank j needs in order to be solvent. This threshold is implicitly defined

5The weak inequality for the deposit supply function arises because of the zero lower bound on
deposit rates; see the deposit supply function in (9).

6A bank will execute all of its market power to maximize its loan and deposit spread and any left
over liabilities will be placed as central bank reserves.

7See e.g. footnote 7 in Ulate (2021).
8The multiplicative nature of θ in expression (2) makes the model tractable. Together with the

multiplicative solutions for the loan and deposit rate, it implies that the key equilibrium equation of
the model given by equation (20) is also multiplicative. This will allow to clearly separate the total
effect of the policy rate into a risk and a direct effect.
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by the solvency constraint :

θ̂j(1 + lj)Lj + (1 + i)Hj = (1 + dj)Dj . (3)

The threshold θ̂j is the solvency threshold : Hence in this model, bank solvency refers to

a bank’s ability to fully reimburse depositors at the end of the period. Since a realization

θ ≤ θ̂j triggers bank insolvency and causes a bank to default, Pr(θ ≤ θ̂j) = F (θ̂j) is

the probability of bank insolvency.9 The solvency threshold θ̂j is endogenous, because it

depends on the loan rate lj and the deposit rate dj , both of which are choice variables.

Thus also the probability F (θ̂j) is endogenous and this probability is the measure of

bank insolvency risk (or risk-taking) in the model.

Realize that in this setup the willingness to repay loans is never an issue, only the

ability to do so. Without loss of generality, I assume that non-performing loans are

lost resources and cannot be recovered by the bank – so in the case of bank insolvency,

the bank seizes whatever is left and pays out its deposits as best as possible. I further

assume that the remaining outstanding deposits are covered by a deposit insurance: If

a bank has negative net value and is therefore not able to fully repay its deposits, then

there is a transfer from a deposit insurance institution that covers the difference. Thus

I implicitly assume that there are always enough resources in the economy to cover

insurance transfers. So in every possible state of the world, at the end of the period the

aggregate depositor always receives (1 + dj)Dj from each bank and hence the deposit

insurance causes deposits to be risk free. I abstract from modeling such an insurance

institution explicitly as it is not needed to get the main insights.10 Finally, note that

credit risk θ does not depend on the loan rate. This implies that I also abstract from

adverse selection that may arise in credit markets. Hence this setup does not account

9In this model a bank’s solvency risk corresponds to its liquidity risk. This follows from the the
one-period setup and because there is only deposit and equity funding.

10The main causal channel of the zero lower bound is not affected by this assumption and would
not change, if e.g. we assumed a risk-independent deposit insurance premium. This would only change
the level of the optimal deposit rate, but not the interaction of the ZLB, the policy rate and risk. See
Appendix C for more formal details. Furthermore, Dermine (1986) considers different deposit insurance
schemes and finds that a deposit insurance alters the independence result of the canonical Monti-Klein
model only in case of an over- or underpriced risk-dependent premium to the extend that the loan rate
becomes dependent on the deposit rate. But this dependency already occurs in my setup, because of
the endogenous solvency threshold. Therefore also a risk-dependent deposit insurance scheme would
not affect the main results. For further discussion on the independence result see Appendix E.
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for any incentive problems as described in Stiglitz and Weiss (1981).

A bank behaves in the best interest of its equity holders: The objective of the bank is

to maximize its end of period equity or net value NVj , which is given by

NVj = θ(1 + lj)Lj + (1 + i)Hj − (1 + dj)Dj ,

for a particular realization of θ. If we combine this equation with the solvency constraint

in (3) we get the expression NVj = (θ − θ̂j)(1 + lj)Lj . This formulation of net value

reveals that a bank’s ex-post net value is affected by the realization of credit risk as

long as Lj ̸= 0 and that its net value is non-negative as long as θ ≥ θ̂j .

Due to the stochastic nature of loans, the best a bank can do is to maximizes its

expected end of period net value. Combining the equation for expected net value with

the balance sheet identity in (1) yields the objective function:

E[NVj ] =

∫ 1

θ̂j

[(θ(1 + lj)− (1 + i))Lj + (i− dj)Dj + (1 + i)E] f(θ) dθ. (4)

The fact that the integral is only evaluated from the solvency threshold θ̂j to 1 (rather

than over the whole support of θ) is due to limited liability: For its optimal decision,

a bank only considers the states of the world in which it is solvent.

Loan Demand and Deposit Supply. Following Dixit and Stiglitz (1977), monop-

olistic competition is modeled using a CES-framework: There is a final loan producer,

which acts as the aggregate borrower, and a final deposit producer, which acts as the

aggregate depositor. Each producer uses a CES-technology to aggregate bank individ-

ual quantities into an aggregate volume. The final loan producer borrows from each

bank and lends the aggregate loan volume to a representative firm whereas the final

deposit producer attracts funds in form of a deposit from a representative household

and allocates it as individual deposits among all banks. Both the representative firm

as well as the household are not modeled explicitly. Monopolistic competition in each

market implies that loans and deposits are imperfect substitutes: The individual contri-

bution from each bank to the final loan or final deposit is essential and cannot be fully
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substituted, but at the same time each bank is too small to affect aggregate interest

rates and quantities.11

I assume that credit risk exogenously affects the representative firm and that the

final loan aggregator fully passes through this risk to each bank. The CES-aggregation

technology for loans is given by

LA =

(∫ 1

0
L

εl−1

εl

j dj

) εl

εl−1

,

where LA denotes the aggregate loan volume. In equilibrium σL ≡ εl

εl−1
corresponds to

the expected relative markup, where εl is the elasticity of substitution with εl > 1.12

The parameter σL also governs the curvature of the aggregation technology: In the

limiting case lim
εl→∞

σL = 1, the aggregation technology is linear and loans from different

banks are perfect substitutes – this is the case of perfect competition with marginal

cost pricing. The other limiting case of full monopoly is achieved if lim
εl→1

σL = ∞ and

hence monopolistic power implies εl > 1. I show in Appendix A.1 that in this setup

the solution to the optimization problem of the final loan producer yields a standard

CES-loan demand function:

Lj =

(
(1 + lj)

(1 + lA)

)−εl

LA, (5)

where lA is the economy wide loan rate. By imposing a zero-profit condition for the

11Even though there is empirical evidence for market power of banks, it is not obvious why deposits
are not perfect substitutes. One rationale could be that there are bank specific benefits for customers
(for instance better lending conditions). Another reason could be a certain idleness on the customer
side due to switching cost. Regarding loans, one argument for imperfect substitution are syndicated
loans: There, a consortium of banks grants a loan to a single borrower and hence each bank contributes
to the final loan. The important take-away is that the CES-framework is a mathematically convenient,
reduced form way to capture monopolistic competition, but it is no micro foundation for it.

12The parameter εl corresponds to the elasticity of substitution between a loan from bank j and

bank k, which is given by the absolute value of
∂

(
Lj
Lk

)
∂

(
(1+lj)

(1+lk)

) (1+lj)

(1+lk)

Lj
Lk

for j ̸= k. The CES-framework also

implies that this elasticity of substitution coincides with the gross price elasticity of loan demand, where

the latter is given by the absolute value of
∂Lj

∂(1+lj)

(1+lj)

Lj
.
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final loan producer, we can derive the aggregate lending rate as

(1 + lA) =

(∫ 1

0
(1 + lj)

1−εl dj

) 1

1−εl

. (6)

On the other hand, the aggregation technology for deposits is given by

DA =

(∫ 1

0
D

εd−1

εd

j dj

) εd

εd−1

,

whereDA denotes the aggregate deposit volume, the parameter εd < −1 is the elasticity

of substitution for deposits and σD ≡ εd

εd−1
is the markdown.13 The limiting case of

perfect competition is lim
εd→−∞

σD = 1 and full monopoly power is achieved if lim
εd→−1

σD =

1
2 . The deposit insurance ensures that the deposit side of the model is unaffected by

risk and thus apart from the restriction on the elasticity of substitution parameter, the

setup is formally identical to the one for loans. Therefore the optimal supply function

for deposits is given by

Dj =

(
(1 + dj)

(1 + dA)

)−εd

DA, (7)

where dA denotes the aggregate deposit rate in the economy. Again, imposing a zero-

profit condition for the final deposit producer implies the following aggregate deposit

rate:

(1 + dA) =

(∫ 1

0
(1 + dj)

1−εd dj

) 1

1−εd

. (8)

Banks take the aggregate quantities LA > 0 and DA > 0 as given.

Zero Lower Bound on Deposit Rate. In order to account for the zero lower

bound (ZLB) on deposit rates, following Ulate (2021), I impose an exogenous bound

on a bank’s deposit rate. This ZLB introduces a kink into the deposit supply function

and is crucial for the results. The ZLB modifies the deposit supply function in (7) such

13In contrast to the markup, the markdown exhibits no uncertainty because of the deposit insurance.
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that Dj is a composite function:

Dj =


(

(1+dj)

(1+dA)

)−εd

DA if dj ≥ 0

0 if dj < 0.

(9)

Intuitively, if bank j sets a negative deposit rate it attracts no deposits from households

(because they may hold cash instead of deposits). Notice that at dj = 0, the bank still

attracts positive deposits. The deposit supply function in (9) captures the ZLB without

a micro-foundation for it and thus is a reduced form way to think about what is observed

in the data: Commercial banks behaved as if they faced such a deposit supply function.

2.2 Bank Problem

A bank chooses the deposit rate dj and the loan rate lj in order to maximize its expected

net value (4) subject to the solvency constraint (3), the deposit supply function (9), the

loan demand function (5) and the non-negativity constraint on central bank reserves

Hj ≥ 0. The maximization problem that an individual bank j solves is therefore as

follows:14

max
{dj ,lj}

E[NVj ] =

∫ 1

θ̂j

[
(θ(1 + lj)− (1 + i))Lj + (i− dj)Dj + (1 + i)E

]
f(θ) dθ

s.t. θ̂j =
1

(1 + lj)Lj

(
(1 + i)Lj − (i− dj)Dj − (1 + i)E

)
,

Dj =


(

(1+dj)

(1+dA)

)−εd

DA if dj ≥ 0

0 if dj < 0,

Lj =

(
(1 + lj)

(1 + lA)

)−εl

LA,

Hj ≥ 0.

(10)

Optimal Deposit Rate. Because of the deposit insurance, uncertainty about bor-

rower’s loan repayments does not affect the deposit side of the model. If the zero lower

14I have substituted the balance sheet identity into the solvency constraint and into the objective
function and hence Hj is no longer a choice variable.
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bound on the deposit rate is not binding, the first-order condition corresponds to the

standard market power optimality condition and yields the following solution for the

optimal gross deposit rate:

(1 + dj) =
εd

εd − 1
(1 + i), (11)

where σD ≡ εd

εd−1
∈ (0, 1) is the markdown relative to the gross reserve rate (1 + i).15

Realize that the expression in (11) constitutes the solution for the deposit rate as

it characterizes the deposit rate only in terms of the exogenous variable i and the

parameter εd. Note further that the deposit rate does not depend on the loan rate.

On the other hand, if the zero lower bound constraint is binding, then the best a

bank can do is to set dj = 0.

Optimal Loan Rate. The first-order condition for the loan rate implies that the

solution for the optimal gross loan rate is characterized by

(1 + lj) =
εl

εl − 1

1

E[θ|θ ≥ θ̂j ]
(1 + i), (12)

where the expectation of θ conditional on θ ≥ θ̂j is defined as

E[θ|θ ≥ θ̂j ] ≡
∫ 1
θ̂j
θf(θ) dθ

1− F (θ̂j)
. (13)

Realize that this expression is not yet the solution for the loan rate as it still depends

on the endogenous solvency threshold θ̂j . There are some interesting observations re-

garding optimality condition (12). First, the expected marginal revenue relative to

marginal cost is given by
E[θ|θ≥θ̂j ](1+lj)

(1+i) = εl

εl−1
. Thus σL ≡ εl

εl−1
> 1 is the expected

markup, which is solely governed by a banks’ market power on the lending side. Sec-

ond, the conditional expectation arises due to the stochastic loan repayments – that

is, because there is a non-zero probability that borrowers will default on their loan

15Recall that a bank pays the deposit rate to its depositors. Therefore market power on the deposit
side manifests by the fact that the bank pays less to depositors relative to what it would pay under
perfect competition.
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contracts. Since E[θ] ≤ E[θ|θ ≥ θ̂j ] ≤ 1, the loan rate is higher when there is credit risk

relative to a world without risk. This is in line with basic economic intuition: A bank

prices in the possibility of borrower default. Third, the loan rate depends on the deposit

rate through the solvency threshold θ̂j since this threshold depends on dj . Therefore

the classic independence result of the canonical Monti-Klein model – namely that a

bank’s optimal loan and deposit rate decision are independent – does no longer hold.16

Fourth, the uniqueness of the solution for the loan rate depends on the uniqueness

of the solvency threshold θ̂j , because the conditional expectation is a function of this

threshold. This implies that the only reason why banks would choose different loan

rates are different solvency thresholds, since all other objects on the right-hand side of

equation (12) are independent of j. In general, the solution for the solvency threshold

may not be unique.

3 Equilibrium

There are three possible regimes depending on whether bank j sets a strictly positive,

zero or negative deposit rate. Regime 1 corresponds to the unconstrained benchmark

model of monopolistic competition, where the zero lower bound on deposit rates is not

binding. In regime 2, the zero lower bound binds. There will be a upper threshold for

the policy rate, denoted by i, such that if the policy rate falls below this threshold,

bank j switches from regime 1 to regime 2. The third regime applies when some banks

do no longer want to attract deposits, which is the case if the policy rate falls below a

lower threshold i. I will not analyze this third regime – where a bank sets a negative

deposit rate – in detail, because I focus on environments in which intermediaries accept

deposit funding and act as traditional depository banks.17

In regime 1, each bank chooses the same deposit rate dj = d because the right-hand

side of equation (11) is independent from bank-specific variables. This is also the case

16The fact that risky loans break the independence result of the Monti-Klein model is discussed
in Dermine (1986). Even though I model credit risk formally different than Dermine (1986), the
notion of risk is similar and the collapse of the independence result also occurs. I provide an extensive
commentary on the relationship between the Monti-Klein model and credit risk in Appendix E.

17Moreover, in reality banks still accepted deposits and did not turn away depositors during the
zero lower bound period. Some details on this third regime are discussed in Appendix A.2.
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in regime 2, since each bank sets dj = 0. But this symmetry does not necessarily apply

for the loan rate: Even though its solution is characterized by optimality condition

(12) in both regimes, the optimal loan rate depends on the solvency threshold and this

threshold may not be unique. If there are multiple solutions for θ̂j , then there is no

mechanism in the model that pins down a specific solution. But since there is symmetric

behavior among banks concerning the optimal deposit rate, it appears reasonable to

assume that they also choose the same optimal lending rate (as banks are identical

among all other dimensions). Thus we restrict the analysis to symmetric equilibria by

imposing symmetry with respect to banks lending behavior:

Assumption 1. All banks choose the same loan rate.

Assumption 1 implies that all bank choose the same solvency threshold θ̂. This is an

important conceptual difference between the optimal deposit and the optimal lending

rate: For the former, symmetry is an outcome of the model while for the latter, we

impose it.

The endogenous variables of the model are {(lj , lA, Lj), (dj , d
A, Dj), Hj , θ̂j}, the

exogenous variables are {i, LA, DA, E} and there are two parameters {εl, εd}. We can

now define the equilibrium concept of this model:

Definition 1 (Symmetric Partial Equilibrium). Given Assumption 1, a symmetric

partial equilibrium, conditional on the exogenous variables and parameters, consists of

(i) the solution for the deposit rate given by expression (11) in regime 1 and given

by dj = 0 in regime 2,

(ii) the solutions for the other endogenous variables that solve conditions (3), (5),

(6), (8), (9), (12) as well as the non-negativity constraint Hj = Dj +E −Lj ≥ 0

for each regime,

where the solution for any endogenous variable is identical for each bank j ∈ [0, 1].

I proceed by presenting the approach to solve for an equilibrium. Then I analyze the

key equilibrium equation which characterizes the differences across regimes and allows

to identify the impact of the zero lower bound on the equilibrium. Lastly, I discuss
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existence and uniqueness of equilibria. In Section B.1 of the Appendix, I provide the

model solution for f(θ) ∼ U [0, 1] and also review other distributions.

3.1 Model Solution

3.1.1 Regime 1: dj > 0

Deposits. When bank j sets a positive deposit rate dj > 0, the zero lower bound

on deposit rates is not binding. The solution for the optimal gross deposit rate is

given by expression (11) and all banks choose the same deposit rate dj = d. Since

all banks behave identically, the CES-setup implies that a bank’s individual rate and

quantity is identical to the aggregate rate and quantity, respectively. From equation

(8) it immediately follows that dA = d and from the deposit supply function in (7) it

then follows Dj = DA. Moreover notice from the optimization problem in (10) that

the deposit spread is a relevant object in the solvency constraint. It is given by

(i− d) =
1

1− εd
(1 + i) > 0. (14)

Note that this deposit spread is strictly positive. Banks want to stay in this regime

and set a strictly positive deposit rate d > 0 as long as the policy rate i is higher than

the exogenous threshold i:

i ≡ − 1

εd
. (15)

Since εd < −1, this threshold is strictly positive and strictly smaller than 1, i.e.

0 < i < 1. The upper threshold for the policy rate is solely driven by a bank’s market

power for deposits, since it only depends on the elasticity εd. Because the bank charges

a markdown, the zero lower bound becomes binding when the policy rate is strictly

positive.18

18Market power is the reason why the threshold is non-zero: Under perfect competition εd → −∞
and thus i → 0. Hence the ZLB would only bind if i < 0.
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Loans. Given assumption 1, banks do not only choose the same deposit rate, but

also the same loan rate. Hence equation (12) implies that they also choose the same

solvency threshold θ̂j . Therefore we omit the index j for both the loan rate and the

solvency threshold, i.e. lj = l and θ̂j = θ̂. The right-hand side of equation (12) is then

independent of bank-specific choices. Using this symmetry argument, we can derive

the aggregate gross loan rate from equation (6) as lA = l and the loan demand function

in (5) yields the solution for loans as Lj = LA. Due to its market power, it is optimal

for the bank to hold a bounded amount of loans on which it earns a positive loan

spread. The non-negativity constraint and the balance sheet identity then pins down

the solution for central bank reserves, where the reserve holdings of bank j are given

by Hj = DA+E−LA ≥ 0. Each bank holds the same amount of central bank reserves

and the non-negativity constraint implies DA + E ≥ LA.

Solvency Threshold. To derive the solution for θ̂, we combine the solvency con-

straint as written in the maximization problem (10) and plug in the expression for

the deposit spread in (14) to yield the equation that characterizes the solution for the

solvency threshold:

θ̂ =
(1 + i)

(1 + l)

(
LA − E

LA
− 1

1− εd
DA

LA

)
.

This equation together with the optimality condition for the loan rate in (12) constitutes

a system of two equations in the two unknowns {l, θ̂}. Combining both equations yields

the key equation to determine the optimal solvency threshold:

θ̂ = E[θ|θ ≥ θ̂] · κ1, (16)

where κ1 ≡ εl−1
εl

(
LA−E
LA − 1

1−εd
DA

LA

)
. Note that κ1 only contains exogenous variables

and parameters. Hence equation (16) is one equation in one unknown {θ̂}. In regime

2, there will be a similar equation; see equation (18). Because these are the key equa-

tions to determine the existence and uniqueness of an equilibrium, we will study the

characteristics of these two equations in more detail in Section 3.2.
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3.1.2 Regime 2: dj = 0

Deposits. The second regime prevails when i ≤ i and therefore the zero lower bound

on deposit rates is binding. The unconstrained optimization in regime 1 would prescribe

that bank j sets a negative deposit rate, but the bank is constrained and thus the best

it can do is to set a zero deposit rate, dj = 0. Given the demand function in (9), the

bank still attracts a positive amount of deposits. Note that there is still symmetry on

the deposit side and hence dj = d and dA = dj = 0 ∀ j. The deposit spread thus equals

(i− d) = i. (17)

Due to symmetry and the CES-deposit supply function, the solutions for the economy

wide deposit rate is dA = d and the solution for bank individual deposits is Dj = DA.

Loans. The optimal loan rate is still characterized by equation (12). Only the level

of the loan rate is affected as the solution for the loan rate depends on the deposit rate

through the solvency threshold θ̂. Due to Assumption 1 and the CES-loan demand

function, the solution for the endogenous variables are formally identical to regime 1

and thus lA = l, Lj = LA and Hj = DA + E − LA ≥ 0.

Solvency Threshold. To derive the solution for the solvency threshold, we again

combine the solvency constraint as written in the maximization problem (10) and plug

in the expression for the deposit spread in (17). The solution for θ̂ is therefore charac-

terized by the following equation:

θ̂ =
1

(1 + l)

[
(1 + i)

(
LA − E

LA

)
− i

DA

LA

]
.

Again, combining this equation with the optimality condition for the gross loan rate

yields the key equation to determine the optimal solvency threshold in regime 2:

θ̂ = E[θ|θ ≥ θ̂] · κ2, (18)
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where κ2 ≡ εl−1
εl

(
LA−E
LA − i

(1+i)
DA

LA

)
.

Regime Switch. An individual bank j could deviate from this regime 2-behavior,

choose a negative deposit rate and attract no deposits.19 There exist a cut-off value

of the policy rate at which such a behavior becomes profitable and generates a higher

expected net value, because accepting deposits is no longer optimal since the deposit

spread is too low. I postpone the in-depth derivations to Appendix A.2, but analyzing

such a deviating bank yields the threshold for the policy rate that induces a regime

switch to regime 3. An individual bank j is better-off by not deviating as long as the

policy rate is higher than the threshold i:

i ≡
−
[
1 + 1

εl−1
LA

E − εl

εl−1

(
LA

E

) 1

εl

]
1 + 1

εl−1
LA

E − εl

εl−1

(
LA

E

) 1

εl + DA

E

. (19)

This exogenous lower threshold for the policy rate is identical to the one found in Ulate

(2021), where the author proves that −1 < i < 0.20 As mentioned by Ulate (2021), this

lower threshold is only related to monopoly power on the lending market and not to

monopoly power in the deposit market as only the parameter εl affects this threshold.

The next figure summarizes at which policy rate the regime switches occur:

Policy Rate i

1i0i−1

Regime 1

Regime 2

Regime 3

Figure 1: Regimes as Functions of the Policy Rate i

Notes: This figure depicts which regime prevails at given values of the policy rate i. The upper

threshold i is given by expression (15) and the lower threshold i is given by expression (19).

19In regime 1, no bank has an incentive to deviate: Each bank choose the optimal deposit rate that
maximizes its expected net value and this rate is strictly positive as long as i > −1.

20The author assumes LA > E in his model, which is also used in the proof.
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3.2 Key Equilibrium Equation

The two key equations (16) and (18), which in essence represent the solvency constraints

for each regime, can be generalized as follows: For each regime R = {1, 2} the key

equation that determines the solution for the solvency threshold θ̂ is given by

θ̂ = E[θ|θ ≥ θ̂] · κR, (20)

where R = 1 if i ≥ i with 0 < i < 1, and R = 2 if i ≤ i < i with −1 < i < 0, and where

κR ≡ 1

σL

(
LA − E

LA
− φR

DA

LA

)
(21)

φR ≡ (i− d)

(1 + i)
=


1

1−εd
> 0 if R = 1

i
(1+i) ⪌ 0 if R = 2

(22)

σL ≡ εl

εl − 1
> 1.

Across regimes, the only difference in the key equation (20) appears in the coefficient κR.

This coefficient incorporates the exogenous variables and parameters of the solvency

constraint in (3) that are not related to the distribution of θ. In particular, only the

deposit spread relative to the gross policy rate, denoted by φR and defined in (22),

differs across regimes: In regime 1, this relative spread is not a function of the policy

rate, whereas in regime 2, it depends positively on the policy rate, i.e. φ2(i) with

∂φ2(i)
∂i = 1

(1+i)2
> 0. Hence the relative deposit spread is the only object that depends

on the policy rate, but only in regime 2. Note further that in regime 1 the relative

deposit spread is strictly positive, i.e φ1 > 0, since εd < −1. In regime 2 the sign of

φ2(i) depends on the sign of the policy rate and thus if i ̸= 0, then there is always a

relative spread in this regime.

Result 1 (Relative Deposit Spread and Policy Rate). The zero lower bound

on deposit rates only affects the relative deposit spread in equilibrium. This solvency

relevant deposit spread is given by φR ≡ (i−d)
(1+i) for R = {1, 2}.
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(1.1) If the zero lower bound on deposit rates is not binding, then R = 1 and φ1 =
1

1−εd
.

Therefore the relative deposit spread is independent of the policy rate.

(1.2) If the zero lower bound on deposit rates is binding, then R = 2 and φ2(i) =
i

(1+i) .

Therefore the relative deposit spread depends positively on the policy rate

This result determines how balance sheet positions interact with the policy rate: From

the definition of κR in (21) we see that the ratio involving equity, LA−E
LA , is never propor-

tional to the policy rate, whereas the deposit-to-loan ratio DA

LA acts as a proportionality

factor to φR.

Lastly, to gain economic intuition for the role of the relative deposit spread, notice

that in (21) the coefficient in front of DA

LA can be written as φR
σL

= 1
σL

(i−d)
(1+i) . From the

expression for the optimal loan rate given by (12), we realize that the denominator

of this ratio is equal to the expected loan rate, conditional on being solvent – that is

σL(1 + i) = E[θ|θ ≥ θ̂](1 + l). Therefore the ratio φR
σL

is the deposit spread relative to

the conditional, expected loan rate. This ratio is the solvency relevant interest rate

object in the model and in this ratio, the relative deposit spread φR fully governs how

the policy rate i affects the equilibrium.

3.3 Existence and Uniqueness

Whether equation (20) has a solution depends on both the properties of the conditional

expectation E[θ|θ ≥ θ̂] as well as on the coefficient κR, where the coefficient must satisfy

the following equilibrium condition:

Proposition 1. 0 ≤ κR ≤ 1 is a necessary condition such that a well-defined solution

to equation (20) exists.

Proof. See Appendix A.2.1.

Both sides of the key equation can be expressed as a function of the solvency threshold:

Let me denote the left-hand side by v(θ̂) = θ̂ and since v′(θ̂) = 1 > 0 it is strictly in-

creasing in θ̂. The right-hand side also depends on the solvency threshold, because the

conditional expectation is a function of θ̂, and I denote it by g(θ̂) = E[θ|θ ≥ θ̂]κR. A so-

lution for the solvency threshold θ̂, call it θ̂∗, is a fixed point that satisfies v(θ̂∗) = g(θ̂∗).
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Since the function g(θ̂) is scaled by the coefficient κR, any solution θ̂∗ is regime spe-

cific. To understand the impact of the conditional expectation on the existence and

uniqueness of a solution θ̂∗, emphasizing some of its properties is insightful:

Lemma 1. The conditional expectation E[θ|θ ≥ θ̂] has the following properties:

(i) Its lower bound is given by the unconditional expectation E[θ] and its upper bound

by 1, that is 0 < E[θ] ≤ E[θ|θ ≥ θ̂] ≤ 1.

(ii) It is not smaller than the solvency threshold θ̂, that is θ̂ ≤ E[θ|θ ≥ θ̂].

(iii) It is a non-decreasing function of θ̂, that is dE[θ|θ≥θ̂]

dθ̂
≥ 0.

Proof. See Appendix A.2.2.

Statement (iii) of Lemma 1 implies that also the function g(θ̂) is non-decreasing. Since

both functions v(θ̂) and g(θ̂) are non-decreasing in θ̂, it is not guaranteed that there

exists a single value θ̂∗ such that g(θ̂∗) = v(θ̂∗). Intuitively, since both functions are

non-decreasing, the graphs of these functions do not necessarily intersect. Therefore

there can be no, one or multiple solutions for the solvency threshold.21 I address the two

corner solutions in Appendix A.2; hence let us focus on interior solutions 0 < θ̂∗ < 1.22

The case with multiple interior solutions to equation (20) is illustrated in the next

figure:

21This maps into no, one or multiple solutions for the probability of bank insolvency F (θ̂) as well as
for the gross loan rate; from equation (12) we know that the gross loan rate depends on the solvency
threshold through the conditional expectation.

22θ̂∗ = 0 is a knife-edge case (or the limiting case of loan market monopoly). Moreover θ̂∗ = 1
cannot be optimal, because then the bank has negative net value in every state of the world and hence
the bank would be better off by stopping to operate.
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0
θ̂

g(θ̂), v(θ̂)

g(θ̂) = E[θ|θ ≥ θ̂] · κR
v(θ̂) = θ̂

θ̂∗I θ̂∗II
1

1

E[θ] · κR

E[θ]

45◦

Figure 2: Non-Unique Equilibrium for Solvency Threshold θ̂

Notes: This figure qualitatively represents equation (20) for regime R. The function v(θ̂) is depicted

in red and the function g(θ̂) is depicted in blue.

In Figure 2 there are two interior solutions θ̂∗I and θ̂∗II and hence the equilibrium is

non-unique. The first solution θ̂∗I corresponds to an equilibrium with a low solvency

threshold and a low probability of insolvency F (θ̂∗I ) relative to the second equilibrium

θ̂∗II . Note that E[θ|θ ≥ 0] = E[θ] whereas E[θ|θ ≥ 1] is not well-defined, because

then F (1) = 1 which implies that the denominator in the definition of the conditional

expectation in (13) is zero.

The functional form of the conditional expectation E[θ|θ ≥ θ̂], which determines

the specific shape of g(θ̂), is solely determined by the probability density f(θ). This

emphasizes that different distributional assumptions about the share of loan repayments

can give rise to different solutions for the solvency threshold and therefore affect the

existence and uniqueness of the equilibrium. Realize however that in each regime,

there is a unique solution for the deposit rate, because it is independent of the solvency

threshold. In contrast, we see from expression (12) that the solution for the loan

rate depends on θ̂ through E[θ|θ ≥ θ̂]. Therefore in both regimes, the existence and

uniqueness of the solution for the loan rate depends on the distribution of credit risk

f(θ).

Lastly, although there can be multiple solutions for θ̂, Assumption 1 guarantees

23



that each bank will choose the same solvency threshold. However in such a case, there

is no mechanism to pin down which of these the multiple solutions is chosen and hence

this is a situation with multiple symmetrical equilibria.

4 Analysis

4.1 Impact of the Zero Lower Bound

Notice from equations (14) and (17) that in both regimes, the absolute deposit spread

(i−d) depends on the policy rate i. However, as indicated by Result 1, for the solution

of the solvency threshold θ̂ the relative deposit spread φR ≡ (i−d)
(1+i) is relevant. The only

impact of the zero lower bound is that it causes this relative deposit spread to be a

function of the policy rate once the zero lower bound on deposit rates becomes binding

in regime 2. Figure 6 in the appendix depicts the relative deposit spread as a function

of the policy rate, but to gain intuition it is insightful to present the absolute deposit

spread as illustrated in the next figure:

0
Policy Rate i

Deposit Spread (i− d)

(i− d) = 1
1−εd

(1 + i) ⇒ ϕ1 ≡ (i−d)
(1+i) = 1

1−εd

(i− d) = i ⇒ ϕ2(i) ≡ (i−d)
(1+i) = i

1+i

i 1
45◦

1
1−εd

−1 i

Frontier: Optimal Deposit Spread of Bank

Regime 1: No ZLBRegime 2: ZLB

Figure 3: Deposit Spread as Function of Policy Rate

Notes: This figure depicts the solution for the deposit spread as a function of the policy rate for the

interval i ∈ [−1, 1].
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In Figure 3, the deposit spread in regime 1 is plotted as the blue dashed line and given

by (i − d) = 1
1−εd

(1 + i), but the relative deposit spread is constant and given by

φ1 ≡ (i−d)
(1+i) =

1
1−εd

> 0.23 Notice that in an unconstrained world, the deposit spread is

strictly positive for any value of the policy rate i > −1. On the other hand, in regime

2, the deposit spread is given by (i− d) = i and plotted as the red dashed line, which

coincides with the 45-degree line. In this regime, the relative deposit spread is a function

of the policy rate and given by φ2(i) ≡ (i−d)
(1+i) =

i
1+i . In this regime, if the policy rate is

lowered below zero, then the (relative) deposit spread becomes negative. If the policy

rate is negative, then for every unit of deposit a bank accepts, it loses money since the

deposit spread is negative, i.e. (i−d) = i < 0. Why is it still optimal to obtain deposit

funding in this case? Because attracting deposit allows the bank to extend its asset

side of the balance sheet – especially their loan position as they still want to exploit

their market power for loans. However, at some point this becomes too costly, precisely

in regime 3 when i < i, such that the bank stops accepting any deposits. In this case,

banks would prefer to have a negative reserve position at the central bank, which is

ruled out by assumption in my model as I impose a non-negativity constraint on central

bank reserves H ≥ 0. This is different to the basic Monti-Klein model, where banks can

hold a positive or negative net interbank position.24 To sum up, the green frontier in

Figure 3 is the optimal deposit spread as a function of the policy rate. The zero lower

bound on deposit rates introduces a kink into the optimal deposit spread function at

i = i and compresses the deposit spread (relative to the unconstrained regime 1).

4.2 Impact of the Policy Rate

To study the main predictions of the model, using comparative statics we will evaluate

for each regime how the policy rate affects the solvency threshold θ̂ in equilibrium.

This allows us to implicitly study how the probability of bank failure F (θ̂) is affected:

23The bank can achieve a constant relative spread by adjusting its deposit rate in response to reserve
rate changes. But when the zero lower bound is binding, the bank looses this margin as the deposit
rate is set to zero for any value of the policy rate.

24A negative position means that a bank can be indebted at other banks or at the central bank; the
latter would correspond to H < 0. As long as the interest rate on the net interbank positions is equal
to the policy rate, the results are nor affected. However if banks could get funds from other institutions
that cost them less than deposits, banks would not accept these costly deposits. In Figure 3, the green
frontier would be identical to the x-axis for i ≤ 0.
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Recall that the derivative of the CDF is the PDF, F ′(·) = f(·) ≥ 0 and hence the

probability of bank insolvency F (θ̂) is a non-decreasing function of θ̂. Therefore, if we

know how an exogenous variable affects the solvency threshold, then we know if this

variable increases or decreases the probability of bank failure. Given a solution for the

solvency threshold θ̂∗, the total effect of the reserve rate i on this threshold, denoted

by dθ̂∗

di , is given by

dθ̂∗

di︸︷︷︸
Total Effect

=
dθ̂∗

dκR︸︷︷︸
Risk Effect

× dκR
di

.︸ ︷︷ ︸
Direct Effect

The total effect is the result of an interaction between two different effects. The two

differentials on the right-hand side allow to distinguish them: A indirect risk effect,

characterized by dθ̂∗

dκR
, which relies on the assumption about the distribution f(θ), and

a direct effect of the policy rate that works through the relative deposit spread, char-

acterized by dκR
di .

The intuition for the two effects is as follows: In regime 2, the direct effect of the

policy rate is always negative: Ceteris paribus, the lower the policy rate, the lower the

(relative) deposit spread and thus the lower a bank’s net value, because it earns less

on its deposits. This increases the probability of bank insolvency for every realization

of credit risk. However, there is also the endogenous risk effect, which changes the set

of credit risk realizations that induce bank default, because banks respond optimally

to a change in the policy rate by changing their solvency threshold. Depending on the

distribution, this adjustment of the solvency threshold can go in either direction and

thus the risk effect is analytically ambiguous. In contrast, in regime 1 the direct effect

of the policy rate is zero – because the solvency relevant deposit spread is constant and

independent of the policy rate – and therefore the total effect is also zero.

I proceed by discussing the two effects formally and then present the results for the

total effect.
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Risk Effect. By totally differentiating the solution to key equation (20) with respect

to κR, we get the following expression for the risk effect:

dθ̂∗

dκR
=

E[θ|θ ≥ θ̂∗]

1−
(
κR × dE[θ|θ≥θ̂]

dθ̂
|θ̂=θ̂∗

) , (23)

where one can show that

dE[θ|θ ≥ θ̂]

dθ̂
= h(θ̂)

(
E[θ|θ ≥ θ̂]− θ̂

)
≥ 0 (24)

and where h(θ̂) denotes the hazard function which is given by

h(θ̂) =
f(θ̂)

1− F (θ̂)
≥ 0. (25)

Because the numerator of the right-hand side in expression (23) is the conditional

expectation, which is non-negative, the risk effect can be positive or negative depending

on whether the product κR × dE[θ|θ≥θ̂]

dθ̂
|θ̂=θ̂∗ in the denominator is bigger or smaller than

one. Thus the risk effect is closely linked to the derivative dE[θ|θ≥θ̂]

dθ̂
and notice from the

expression in (24) that this derivative is governed by the hazard function.25 For a given

κR, if the hazard function is sufficiently large, such that κR × dE[θ|θ≥θ̂]

dθ̂
|θ̂=θ̂∗ > 1, then

the denominator of the right-hand side in expression (23) is negative which causes the

risk effect to be negative. Crucially however, the hazard function is not restricted to

be smaller than one since it is not a probability. Hence the size of the hazard function

determines the sign of the risk effect.26

Proposition 2. Given a solution θ̂∗ and the hazard function h(θ̂) = f(θ̂)

1−F (θ̂)
,

(i) h(θ̂∗) < 1 is a sufficient, but not a necessary condition for a positive risk effect.

(ii) h(θ̂∗) > 1 is a necessary condition for a negative risk effect.

Proof. See Appendix A.3.1.

25Statement (i) and (ii) of Lemma 1 imply 0 ≤ E[θ|θ ≥ θ̂]− θ̂ ≤ 1. Therefore it is solely the hazard
function h(θ̂) that can cause the derivative in expression (24) to be larger than one.

26Intuitively, the hazard function tells us – in case of solvency – how likely it is that the realization
of θ was “close” to the solvency threshold θ̂, which is a notion of insolvency-hazard in this model.
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Notice the subtle difference in statement (i) and (ii) of Proposition 2; for instance, if

credit risk follows a uniform distribution, then h(θ̂∗) > 1 but the risk effect is positive

(see Appendix B.1). The risk effect reflects the distributional assumption about credit

risk, because the functional form of the hazard function is driven by this assumption.27

The model endogenously determines θ̂, but for the size of the hazard function the PDF

and CDF around this point, f(θ̂) and F (θ̂) respectively, are relevant. However, they

are solely determined by the assumption about the probability density f(θ). Without

specifying a particular distribution, the sign of the risk effect is therefore analytically

ambiguous.28

Direct Effect. The direct effect of the policy rate on the coefficient κR is given by

dκR
di︸︷︷︸

Direct Effect

=
dκR
dφR︸︷︷︸

Spread Effect

× dφR

di
.︸ ︷︷ ︸

ZLB Effect

(26)

This direct effect of the policy rate arises due to the interaction of the relative deposit

spread with the zero lower bound constraint, where dκR
dφR

is the effect of the relative

deposit spread on κR and where dφR
di captures the effect of the zero lower bound. The

former is computed by differentiating the definition of κR in (21):

dκR
dφR

= − 1

σL

DA

LA
< 0.

Since 0 < 1
σL

< 1 and DA

LA > 0, the effect of the relative deposit spread is strictly

negative and not regime specific. Regarding the ZLB effect, we know from Result 1

that in regime 1 the relative deposit spread φ1 is independent of the policy rate and in

regime 2, φ2(i) is an increasing function of the policy rate on the interval i ∈ (−1, 1).

Therefore dφ1

di = 0 and dφ2

di > 0. Hence we can rewrite the direct effect in equation (26)

27This is another advantage of the multiplicative nature of the model: Since the right-hand side of
equation (20) can be written as a product of the conditional expectation E[θ|θ ≥ θ̂] and the coefficient
κR, we know that the form of the solution θ̂∗ only depends on the functional form of the conditional
expectation, which in turn is solely determined by the distribution of θ.

28Since the risk effect is linked to the solvency threshold, the risk effect is also connected to the
limited liability assumption.
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as

dκR
di

= − 1

σL

DA

LA︸ ︷︷ ︸
Spread Effect< 0

× dφR

di︸︷︷︸
ZLB Effect≥ 0

≤ 0.

Conditional on the negative spread effect, the next table presents an overview across

regimes:

Regime Relative Spread φR ZLB Effect dφR
di Direct Effect dκR

di

1 1
1−εd

> 0 0 0

2 i
(1+i) ⪌ 0 1

(1+i)2
> 0 − 1

σL

DA

LA × 1
(1+i)2

< 0

Table 1: Impact of ZLB across Regimes

Notes: For each regime R = {1, 2}, this table shows how the relative deposit spread φR and thus the

coefficient κR depend on the policy rate i ∈ (−1, 1).

Total Effect. In regime 1, the direct effect of the policy rate on κ1 is zero, because

the relative deposit spread is independent of the policy rate:

dκ1
di

= 0.

Hence the total effect of the policy rate on the solvency threshold is always zero inde-

pendently of the risk effect:

dθ̂∗

di
=

dθ̂∗

dκ1︸︷︷︸
Risk Effect≷0

× dκ1
di︸︷︷︸
=0

= 0.

Since the solvency threshold is not affected by the policy rate, this implies that the

probability of bank failure F (θ̂∗) is also not affected.

Result 2 (Neutrality of Reserve Rate Policy in Regime 1). If the zero lower

bound on the deposit rate is not binding, then in equilibrium the policy rate has no effect
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on the solvency threshold, independently of the distribution of credit risk. Therefore

reserve rate policy does not affect bank insolvency risk.

In contrast, in regime 2 the relative deposit spread does depend on the policy rate.

Therefore

dκ2
di

= − 1

σL

DA

LA

1

(1 + i)2
< 0. (27)

Hence in regime 2, the total effect of the policy rate on the solvency threshold depends

on the sign of the risk effect:

dθ̂∗

di
=

dθ̂∗

dκ2︸︷︷︸
Risk Effect≷0

× dκ2
di︸︷︷︸
<0

≶ 0.

Result 3 (Non-Neutrality of Reserve Rate Policy in Regime 2). In regime 2,

there are two cases in equilibrium:

(3.1) If the risk effect is positive, then the total effect of the policy rate is negative.

Hence the solvency threshold depends negatively on the policy rate. Thus decreas-

ing the policy rate increases the probability of bank insolvency: The lower the

reserve rate, the higher the risk of bank failure.

(3.2) If the risk effect is negative, then the total effect of the policy rate is positive.

Hence the solvency threshold depends positively on the policy rate. Thus decreasing

the policy rate decreases the probability of bank insolvency: The lower the reserve

rate, the lower the risk of bank failure.

The intuition for this result is depicted in the Figure 4.
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0
θ̂

g(θ̂), v(θ̂)

g(θ̂) = E[θ|θ ≥ θ̂] · κ2
v(θ̂) = θ̂

θ̂∗I θ̂∗IIθ̂∗I θ̂∗II
1

1

45◦

κ2 ↑

Figure 4: Illustration of Result 3

Figure 4 illustrates how both the risk effect, dθ̂∗

dκ2
, as well as the direct effect of the

policy rate, dκ2
di , impact the equilibrium value of the solvency threshold in regime 2.

Both effects operate through the function g(θ̂) = E[θ|θ ≥ θ̂]κR. The risk effect is related

to the slope of this function, which is not determined within the model, whereas the

direct effect is related to the coefficient κR and shifts the graph upwards or downwards.

Suppose that the initial situation is given by the blue schedule in Figure 4 with the

corresponding two equilibria θ̂∗I and θ̂∗II . Now consider a decrease in the policy rate

∆i < 0. Since dκ2
di < 0, this increases κ2 and shifts the blue schedule up. The new

schedule is depicted in green with the new corresponding equilibrium values.29 Due

to this exogenous shift in the policy rate, the first solution θ̂∗I increases and thus the

probability of bank failure F (θ̂∗I ) increases as well. This is the case when the risk effect

is positive and corresponds to case (i) in Result 3. In contrast, the second solution

decreases and so does the probability of bank failure, which is the case when the risk

effect is negative. This demonstrates that the risk effect is solution specific.

4.3 Reversal Effect of the Policy Rate

Depending on the sign of the risk effect, the low or negative policy rate environment

prevailing in regime 2 can cause a reversal effect of the policy rate such that interest

29Note that if the decrease in the policy rate – and thus the change in κ2 – is large enough, the
equilibrium can become unique or even non-existent.
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rate cuts become contractionary.

Proposition 3. If the zero lower bound on the deposit rate is binding and if

1.) The risk effect is negative, i.e. dθ̂∗

dκ2
< 0,

2.) Central bank reserves holdings are strictly positive, i.e. H > 0,

3.) The bank lending channel is operative, i.e. dl
di ̸= 0,

then the loan rate depends negatively on the reserve rate in equilibrium, i.e. dl
di < 0.

Proof. See Appendix A.3.2.

Given Proposition 3 holds, a decrease in the policy rate (i.e. expansionary monetary

policy) increases the loan rate. Suppose we impose more structure on the aggregate

loan demand function:

Assumption 2. The Aggregate loan demand LA(lA) depends negatively on the aggre-

gate loan rate, i.e. ∂LA

∂lA
< 0.

In this simple model, only the bank lending channel of monetary policy is present

and a reversal effect occurs if the loan rate is negatively correlated with the policy

rate: If Proposition 3 holds, then lowering the policy rate increases the loan rate which

reduces the loan demand a bank faces. Additionally, if Assumption 2 holds, then this

translates into lower lending activity in the aggregate economy since in equilibrium

lA = l. Therefore there is a reversal effect of the policy rate: Decreasing the reserve

rate is contractionary and reduces lending activity in the economy.

This reversal effect is related to the bank lending channel of monetary policy and

this channel is closely related to market power in lending markets. See Appendix A.3

for more details on the bank lending channel.

4.4 Impact of Market Power

How does the market structure affect the equilibrium? After all, the deposit spread

only arises due to banks’ market power. Let us analyze what happens if we deviate

from the monopolistic competition assumption by considering the limiting cases of
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perfect competition and full monopoly. In the model, market power manifests through

the expected markup on the loan rate and the existence of a deposit spread. In the

limiting case of perfect competition, there is marginal cost pricing, which implies σL = 1

for the expected loan rate markup and σD = 1 for the deposit rate markdown.

Loans. By using the definition of κR in (21), we can analyze the impact of loan

market power as follows:

(i) Perfect Competition: lim
σL→1

κR =
(
LA−E
LA − φR · DA

LA

)
.

(ii) Monopoly: lim
σL→∞

κR = 0.

Result 4 (Competition in Loan Markets). If loan markets are perfectly competi-

tive, then the zero lower bound affects the solvency threshold through the relative deposit

spread φR in equilibrium. In contrast, if a bank has full market power, then the model

collapses to the corner solution κR = θ̂∗ = 0.

Under monopoly, the model converges to the corner solution κR = 0, which in equi-

librium is only consistent with θ̂∗ = 0 meaning that the bank is always solvent. This im-

plies that the conditional expectation attains its lowest value since E[θ|θ ≥ θ̂∗ = 0] = E[θ].

Notice from the optimal loan rate in (12) that the lower the conditional expectation,

the higher the gross loan rate: It makes sense that under monopoly the bank charges

the highest possible loan rate and hence the gross loan rate is maximized if σL → ∞.

Deposits. Assessing the market structure for deposits is more complex: Realize that

the degree of deposit market power, which is related to the elasticity of substitution

εd, only matters in regime 1 as it only affects φ1 but not φ2(i). Thus in regime 2

only the existence of a deposit spread due to market power matters, but the degree of

this market power is irrelevant (this is a result of the fact that in regime 2 the optimal

deposit rate is always zero). This emphasizes the role of market power, because if banks

operate in perfectly competitive deposit markets and have no market power at all, then

they cannot set deposit rates which implies that there is no (relative) deposit spread,
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i.e. φR = 0 and i = d. In regime 1, the limiting cases are as follows:30

(i) Perfect Competition: lim
εd→−∞

κ1 =
1
σL

(
LA−E
LA

)
.

(ii) Monopoly: lim
εd→−1

κ1 =
1
σL

(
LA−E
LA − 1

2
DA

LA

)
.

When there is no market power in regime 1, then the spread vanishes and all deposit

related variables become irrelevant. We also see immediately that under perfect com-

petition the coefficient κ1 is strictly larger.31

Result 5 (Competition in Deposit Markets).

(5.1) If the zero lower bound on the deposit rate is not binding, then the degree of deposit

market competition affects the equilibrium. The more competition, the higher the

coefficient κ1.

(5.2) If the zero lower bound on the deposit rate is binding, then only the existence

of market power is relevant, but the degree of competitions does not affect the

equilibrium.

30Recall from the optimal deposit rate given by expression (11) that the markdown σD is defined as

σD ≡ εd

εd − 1
=

1

1− 1
εd

∈ (0, 1).

The limiting values are lim
εd→−∞

σD = 1 and lim
εd→−1

σD = 1
2
. The limit σD = 1 corresponds to the case

of perfect competition, which implies marginal cost pricing and thus d = i.
31Therefore in regime 1, more competition in deposit markets is qualitatively isomorph to the analysis

in Figure 4, because in both cases the coefficient κR increases, even though R = 2 in Figure 4.
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5 Conclusion

This paper expands the canonical Monti-Klein model of banking by introducing credit

risk from stochastic loan repayments and a zero lower bound on deposit rates. I perform

a positive analysis to study the impact of this lower bound constraint and of the policy

rate on bank insolvency risk. Monopolistic competition in deposits markets implies the

existence of a deposit spread. When binding, the zero lower bound constraint makes the

solvency relevant deposit spread an increasing function of the policy rate and causes

an effect of the policy rate on bank solvency. This effect can be decomposed into

two separate effects: For a given realization of risk, a lower policy rate increases the

probability of bank default because of a lower deposit spread. This is the direct effect

of the policy rate. However, there is also a risk effect as banks endogenously adjust

their solvency threshold in response to a policy rate change – this alters the set of credit

risk realizations that trigger bank default. Depending on the sign of this risk effect,

which depends on the particular distribution of credit risk, the total effect of the policy

rate on the probability of bank insolvency can be positive or negative. The novel result

in this paper suggests that in a low interest rate environment, the link between the

market structure of banking, monetary policy and financial stability cannot be isolated

from the underlying credit risk distribution. The model retains generality because the

results are independent of distributional assumptions about credit risk.

The analytical clarity of the model comes with a cost: It is limited to a static, partial

equilibrium framework; however inter-temporal aspects and strategic interactions play

an important role in banking. For instance, adverse information in loan markets may

affect the risk effect because then loan repayments depend on loan rates and a richer

model could account for other channels of monetary policy not present in my model.

Further research could also embed the mechanism into a general equilibrium framework.

Lastly, my model does not provide any micro foundations for the zero lower bound on

deposit rates and thus formalizing such a foundation is a challenge for future research.
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A Appendix

A.1 Appendix to Section 2

Final Loan Producer. This paragraph clarifies that the final loan producer acts as

the borrowing counter-party to banks. The precise notion of borrowing is as follows:

With each bank j, at the beginning of the period the final loan producer engages

in a loan contract (1 + lj)Lj . That is, taking bank-individual loan rates lj as given

it chooses how much quantity Lj to borrow from each bank. Then using a CES-

technology, it aggregates these loan quantities into an aggregated quantity LA which

it lends to a representative firm at the gross loan rate (1 + lA). The representative

firm is not modeled explicitly and the final loan producer has no market power and

therefore takes lA as given. At the end of the period, uncertainty materializes and risk

exogenously affects the representative firm as it only can repay a share θ(1 + lA)LA of

its outstanding obligation to the aggregator. The final loan producer fully passes this

risk through and only repays a share θ(1+ lj)Lj to each bank. Formally, the final loan

producer solves the following optimization problem:

max
{Lj}

∫ 1

0
θ(1 + lA)LAf(θ) dθ −

∫ 1

0

(∫ 1

0
θ(1 + lj)Ljf(θ) dθ

)
dj

s.t. LA =

(∫ 1

0
L

εl−1

εl

j dj

) εl

εl−1

.

Given that the stochastic loan repayments do not depend on the loan rate, we can

rewrite the objective function of the final loan producer as

(1 + lA)LA

∫ 1

0
θf(θ) dθ︸ ︷︷ ︸
=E[θ]

−
∫ 1

0
(1 + lj)Lj

(∫ 1

0
θf(θ) dθ

)
︸ ︷︷ ︸

=E[θ]

dj

= E[θ]
(
(1 + lA)LA −

∫ 1

0
(1 + lj)Lj dj

)
,

which reveals that the unconditional expectation E[θ] multiplicatively scales the objec-

tive function and therefore will cancel out in the first-order condition.
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Final Deposit Producer. The final deposit producer takes bank-individual deposit

rates dj and the aggregate deposit rate dA as given and choose how much quantity of

depositsDj to place at each bank. It then aggregatesDj into the aggregate quantityDA

using a CES-technology. A representative household, which is not modeled explicitly,

holds the deposit volume DA at the final deposit producer and at the end of the period,

this household is reimbursed the aggregate deposit contract (1+ dA)DA. Formally, the

final deposit producer solves the following optimization problem:

max
{Dj}

∫ 1

0
(1 + dj)Dj dj − (1 + dA)DA

s.t. DA =

(∫ 1

0
D

εd−1

εd

j dj

) εd

εd−1

.

We can see how the implicit assumption about fully insured deposits simplifies the

model considerably: Since the deposit insurance guarantees that the deposit contracts

are safe and thus repaid in every state of the world (i.e. every draw of θ leads to full re-

imbursement of deposits even though the representative firm defaults on its outstanding

loan), the final deposit producers does not have to take into account any uncertainty

and therefore just aggregates bank-individual deposits over all banks.

A.2 Appendix to Section 3

First-Order Conditions. It is helpful to rewrite the objective function:

E[NVj ] = (1 + lj)Lj

∫ 1

θ̂j

θf(θ) dθ +
(
(i− dj)Dj + (1 + i)E − (1 + i)Lj

) ∫ 1

θ̂j

f(θ) dθ.

Realize that combining the balance sheet identity (1) with the solvency constraint (3)

yields −θ̂(1 + lj)Lj = (i− dj)Dj + (1 + i)E − (1 + i)Lj . Furthermore,

∫ 1

θ̂j

θf(θ) dθ ≡ E[θ, θ ≥ θ̂j ],∫ 1

θ̂j

f(θ) dθ = 1− F (θ̂j)
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and hence the objective function can be written as

E[NVj ] = (1 + lj)Lj

(
E[θ, θ ≥ θ̂j ]− θ̂

(
1− F (θ̂j)

))
. (28)

Next we rewrite E[θ, θ ≥ θ̂j ] using integration by parts:

E[θ, θ ≥ θ̂j ] ≡
∫ 1

θ̂j

θf(θ) dθ = 1− θ̂jF (θ̂j)−
∫ 1

θ̂j

F (θ) dθ.

Taking the derivative of this expression with respect to the solvency threshold yields

dE[θ, θ ≥ θ̂j ]

dθ̂j
= −θ̂jF

′(θ̂j).

Since the solvency threshold depends on the loan and the deposit rate, the previous

differential is helpful to get the optimality conditions. Using this information, from the

objective function in (28), we can derive the first-order conditions, which for the loan

rate is given by

(
(1 + lj)L

′
j + Lj

)
E[θ, θ ≥ θ̂j ]−

(
1− F (θ̂j)

)
(1 + i)L′

j = 0.

For the deposit rate, many terms cancel out and therefore the first-order condition is

given by the standard market power optimality condition:

(i− dj)D
′
j −Dj = 0.

Upper Threshold i. We see from equation (11) that the deposit rate is given by

dj =
εd

εd − 1
(1 + i)− 1.

Thus dj > 0 is equivalent to εd

εd−1
(1 + i)− 1 > 0 which can be solved for i to get

i = − 1

εd
≡ i.
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Lower Threshold i. Consider a bank j that deviates and sets dj < 0 while all other

banks still set d = 0. Taking the behavior of all other banks as given, a deviating

bank attracts zero deposits Dj = 0 and thus its balance sheet identity is given by

Hj + Lj = E. Therefore its maximal loan position is restricted by its equity and if

Lj = E, then Hj = 0. Suppose Lj = E. Such a deviating bank still has to satisfy the

loan demand it faces and lends out all of its available funds. Hence by solving the loan

demand function (5) for the gross loan rate of a deviating bank, denoted by (1 + ldevj ),

we get

(1 + ldevj ) = (1 + lA)

(
E

LA

)− 1

εl

. (29)

Due to monopolistic competition, a deviating bank is too small to have an effect on

aggregate variables and takes them as given. Therefore, given Assumption 1, we see

from equation (6) that the aggregate loan rate is still identical to the loan rate of non-

deviating banks, i.e. (1 + lA) = (1 + l). Using this result in equation (29) we get the

expression for the gross loan rate of a deviating bank as follows:

(1 + ldevj ) = (1 + l)

(
LA

E

) 1

εl

. (30)

Realize that LA > E is a sufficient condition such that the deviating bank charges a

higher loan rate compared to non-deviating banks. Since l > i, this condition also

implies ldev > i. Therefore such a deviating bank would indeed not hold any central

bank reserves and invests all its funds into loans.

The intuition for threshold i is to compare the expected return on equity (ROE) of

a deviating bank to the one of a non-deviating bank in regime 2. For any bank, the

expected end of period equity is equal to its expected net value. Therefore the expected

gross return on equity is given by E[1 +ROEj ] ≡ E[NVj ]
E .

(a) ROE of Non-deviating Bank: In regime 2 we have in equilibrium dj = 0, Dj = DA

and Lj = LA. The solution for the loan rate is characterized by equation (12) for a

given θ̂. Therefore the objective function (4) of a non-deviating bank in a symmetric
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equilibrium reads as

E[NVj ] = (1 + l)LA

∫ 1

θ̂
θf(θ) dθ +

(
(1 + i)E − (1 + i)LA + iDA

)
(1− F (θ̂)).

We rewrite the optimality condition of the loan rate (12) by using the definition of the

conditional expectation (13) as (1 + l)
∫ 1
θ̂ θf(θ) dθ = (1− F (θ̂)) εl

εl−1
(1 + i). Using this

expression, expected net value can be rewritten as

E[NVj ] = (1− F (θ̂))

[
(1 + i)E + (1 + i)

1

εl − 1
LA + iDA

]
.

Hence the expected net return on equity is given by

E[ROE] = (1− F (θ̂))

[
(1 + i)(1 +

1

εl − 1

LA

E
) + i

DA

E

]
− 1. (31)

(b) ROE of Deviating Bank: Since Lj = E and Dj = 0 the objective function (4) of a

deviating bank is

E[NVj ] = (1 + ldev)E

∫ 1

θ̂
θf(θ) dθ

and by using expression (30) for (1 + ldev) we find that the expected net return on

equity is given by

E[ROEdev] = (1 + l)

(
LA

E

) 1

εl
∫ 1

θ̂
θf(θ) dθ − 1. (32)

(c) Lower Threshold: Bank j is better-off by not deviating if a deviation is not prof-

itable:

E[ROEdev] ≤ E[ROE].

By plugging in expressions (31) and (32) for the expected return on equity and by using
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the definition of the conditional expectation in (13), we get

(1 + l)E[θ|θ ≥ θ̂]

(
LA

E

) 1

εl

≤ (1 + i)(1 +
1

εl − 1

LA

E
) + i

DA

E
.

We further use optimality condition (12) and rewrite the previous inequality as

εl

εl − 1
(1 + i)

(
LA

E

) 1

εl

≤ (1 + i)(1 +
1

εl − 1

LA

E
) + i

DA

E
,

which can be solved for i to yield the lower threshold for the policy rate:

i ≥
−
[
1 + 1

εl−1
LA

E − εl

εl−1

(
LA

E

) 1

εl

]
1 + 1

εl−1
LA

E − εl

εl−1

(
LA

E

) 1

εl + DA

E

≡ i.

See Appendix A.4 in Ulate (2021) for the proof that i < 0. The author uses a slightly

different notation, namely LA ≡ L,DA ≡ D,E ≡ F and the proof relies on some

assumptions; one of which is L > F .

Regime 3: dj < 0 This is a regime where banks do not want to attract deposits

anymore and it applies if i < i. Ulate (2021) describes this regime well and argues

that in this case fears of “disintermediation” become relevant as banks stop accepting

deposits which are not profitable anymore. Furthermore, the author shows that this is

no longer a symmetric equilibrium on the deposit side because there can be a fraction

of banks that accept deposits while the remaining banks do not. If the policy rate

becomes too low, it is too costly to hold reserves and bank behavior eventually becomes

independent of central bank policy. In the baseline calibration of Ulate (2021), i is

around -2.2 percent. This value is very low and to date such a low policy rate has

not been implemented. Therefore the author argues that regime 3 is ignored and not

discussed in his empirical analysis. Because the focus of my paper lies on regimes where

banks still administer their traditional role of accepting deposits from customers, I also

do not discuss this third regime in more detail.
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A.2.1 Proof of Proposition 1.

Realize that the key equation in (20) rewrites as

θ̂

E[θ|θ ≥ θ̂]
= κR. (33)

Statement (ii) of Lemma 1 implies that the left-hand side of equation (33) is equal

or smaller than one. For the equation to hold, this also has to be the case for the

right-hand side of this equation and therefore κR ≤ 1. Since E[θ|θ ≥ θ̂] and θ̂ are

non-negative, it follows κR ≥ 0. Therefore 0 ≤ κR ≤ 1. This concludes the proof of

Proposition 1.

Since κR differs across regimes, for each regime there is a set of restrictions such that

Proposition 1 holds.

Proposition 4. For regime R = 1, the conditions such that κR ∈ [0, 1) are:

(i) If LA−E
DA ≥ φ1 ≡ 1

1−εd
> 0, then κ1 ≥ 0.

(ii) It follows by assumption that κ1 < 1.

Proof.

(i) Suppose κ1 ≥ 0. Since σL > 0 and LA > 0, this is equivalent to LA−E
DA ≥ 1

1−εd
> 0.

Since εd < −1, this also implies LA ≥ E.

(ii) Suppose κ1 ≤ 1. This implies (1 − σL)L
A ≤ 1

1−εd
DA + E. Since LA, DA, E and

1
1−εd

are strictly positive and because σL > 1 this inequality holds. In fact, since

σL is strictly larger than 1, the inequality is strict.

Proposition 5. For regime R = 2, the conditions such that κR ∈ [0, 1] are:

(i) If LA−E
DA ≥ φ2 ≡ i

1+i , then κ2 ≥ 0.

(ii) (a) If i ≥ 0, then it follows by assumption that κ2 < 1.
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(b) If i < 0 and σL + E
LA + i

(1+i)
DA

L ≥ 1, then κ2 ≤ 1.

Proof.

(i) Suppose κ2 ≥ 0. Since σL > 0 and LA > 0, this is equivalent to LA−E
DA ≥ i

(1+i) .

(ii) Suppose κ2 ≤ 1. This implies (1− σL)L
A ≤ i

(1+i)D
A + E.

(a) If i ≥ 0, then this inequality holds and it is in fact strict.

(b) If i < 0, then it is a restriction on the parameters and exogenous variables.

It can be rewritten as σL + E
LA + i

(1+i)
DA

LA ≥ 1.

A.2.2 Proof of Lemma 1.

(i) For θ̂ ∈ [0, 1), the conditional expectation is defined by (13). Since θ̂ ∈ θ and

θ ∈ [0, 1], the solvency threshold θ̂ can attain a value between zero and one.

To find the lower bound of the conditional expectation, we evaluate it at θ̂ = 0,

because statement (iii) of Lemma 1 implies that there the conditional expectation

attains its lowest value. Since F (0) = 0 the lowest value is the unconditional

expectation of θ:

E[θ|θ ≥ 0] =

∫ 1

0
θf(θ) dθ = E[θ],

where the second equality follows from the conventional definition of the uncon-

ditional expectation. However, to find the value E[θ|θ ≥ 1] we cannot perform

the same procedure, because in this case F (1) = 1 and thus the denominator in

(13) is equal to zero, such that the conditional expectation is not well-defined.

We choose a different approach and develop a proof by contradiction.

Suppose E[θ|θ ≥ θ̂] > 1. Using definition (13) this inequality is equivalent to

∫ 1

θ̂
θf(θ) dθ > 1− F (θ̂)
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and by using integration by parts, we write the integral on the left-hand side as

∫ 1

θ̂
θf(θ) dθ = 1− θ̂F (θ̂)−

∫ 1

θ̂
F (θ) dθ.

Therefore the following equivalence holds:

E[θ|θ ≥ θ̂] > 1 ⇔ 1− θ̂F (θ̂)−
∫ 1

θ̂
F (θ) dθ > 1− F (θ̂)

⇔ F (θ̂)(1− θ̂) >

∫ 1

θ̂
F (θ) dθ. (34)

The last inequality in (34) is not a true statement, because
∫ 1
θ̂ F (θ) dθ is the area

under the CDF from θ̂ to 1. The rectangular area F (θ̂)(1− θ̂) is a subset of this

integral, that is F (θ̂)(1 − θ̂) ⊂
∫ 1
θ̂ F (θ) dθ. Therefore E[θ|θ ≥ θ̂] > 1 cannot be

true and thus E[θ|θ ≥ θ̂] ≤ 1. This contradiction concludes the proof of (i) in

Lemma 1.

(ii) Realize that if f(x) ≥ g(x) on an closed interval x ∈ [a, b], then∫ b
a f(x) dx ≥

∫ b
a g(x) dx. Since θf(θ) ≥ θ̂f(θ) on θ ∈ [θ̂, 1], it therefore follows

∫ 1

θ̂
θf(θ) dθ ≥

∫ 1

θ̂
θ̂f(θ) dθ. (35)

Because θ̂ is a constant and can be taken out of the integral and since∫ 1
θ̂ f(θ) dθ = 1− F (θ̂), we can rewrite equation (35), using the definition of the

conditional expectation in (13), as follows:

∫ 1

θ̂
θf(θ) dθ ≥ θ̂(1− F (θ̂)) ⇔ E[θ|θ ≥ θ̂] ≥ θ̂. (36)

Strictly speaking, this argument does not hold at θ̂ = 1, since then E[θ|θ ≥ θ̂] is

not well-defined, but this last inequality concludes the proof of (ii) in Lemma 1.

(iii) Using integration by parts, we can rewrite the definition of the conditional ex-
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pectation as

E[θ|θ ≥ θ̂] =
1

1− F (θ̂)

(
1− θ̂F (θ̂)−

∫ 1

θ̂
F (θ) dθ

)
.

Differentiating with respect to θ̂ yields

dE[θ|θ ≥ θ̂]

dθ̂
=

f(θ̂)

1− F (θ̂)

(
E[θ|θ ≥ θ̂]− θ̂

)
.

Realize that E[θ|θ ≥ θ̂] is non-decreasing in θ̂, if its first derivative is non-negative.

The hazard function is non-negative, i.e. h(θ̂) = f(θ̂)

1−F (θ̂)
≥ 0, because both its

nominator and denominator are non-negative. Moreover in (36) we have shown

that E[θ|θ ≥ θ̂] ≥ θ̂ and thus E[θ|θ ≥ θ̂] − θ̂ ≥ 0. Therefore dE[θ|θ≥θ̂]

dθ̂
≥ 0, which

implies that E[θ|θ ≥ θ̂] is a non-decreasing function of θ̂. This concludes the proof

of (iii) in Lemma 1.

Corner Solutions. Let me address the two possibilities of the corner solutions θ̂∗ = 0

and θ̂∗ = 1 for the solvency threshold. First notice from (28) that

dE[NVj ]

dθ̂
= −

(
1− F (θ̂)

)
< 0, i.e. expected net value is decreasing in the solvency

threshold. This is intuitive: The higher the solvency threshold (and thus the higher

the probability of bank failure), the lower expected net value. Realize that the bank

always has the option to either choose Lj = 0, by setting a very high loan rate or by

investing all its liabilities in central bank reserves, or to stop operating which implies

a net value of zero.32

(i) θ̂∗ = 0: In this case, the bank never declares insolvency. The key equilibrium

equation (20) boils down to 0 = E[θ]κR. Since the unconditional expectation E[θ]

is non-zero, this can only hold if κR = 0. From the definition of κR in (21) this

implies

LA = φRD
A + E. (37)

32A bank that optimizes with Lj = 0 still chooses the same deposit rate as derived in Section 3,
because the deposit side of the model is completely independent from the lending side. Hence the
solutions for deposit side variables are not affected.
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Recall that net value can be written as NVj = (θ − θ̂j)(1 + lj)Lj and hence if

θ̂∗ = 0, then NV = θ(1+ l)LA. Given the restriction on LA in (37), the bank has

non-negative net value and grants loans as long as

φR ≥ − E

DA
. (38)

This condition is always satisfied in regime 1 and it is satisfied in regime 2 as long

as

i ≥ − E

DA + E
. (39)

Hence choosing θ̂ = 0 is only consistent with an equilibrium in the very particular

knife-edge case that the exogenous variables LA, DA and E satisfy condition (37)

and as long as the policy rate satisfies condition (39). Furthermore, from Result 4

it follows that θ̂∗ = 0 is equivalent to the limiting case of loan market monopoly.

(ii) θ̂∗ = 1: In this case, as long as the bank grants loans, it defaults for every

realization of θ and thus always has negative net value. There are two potential

deviation strategies: First, the bank can deviate from choosing θ̂∗ = 1 by not

granting loans and set Lj = 0, which implies Hj = E +DA. By doing so, it has

non-negative net value as long as

NV = (1 + i)E + (i− d)DA ≥ 0,

which also implies the inequality in (38). (Again, a sufficient condition for this

inequality to hold is that the policy rate satisfies condition (39)). Second, the

bank can also stop operating and always achieve a net value of zero. Therefore

there always exist a profitable deviation and thus θ̂ = 1 cannot be optimal and

cannot constitute an equilibrium. Another way to see this is to realize that in

this case the key equilibrium equation (20) is indeterminate, because for θ̂ = 1

the conditional expectation is not well-defined.
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Unique or No Solution. The two other cases, when there is one unique (interior)

or no solution for θ̂, are depicted in the next figure. Since in theory there exists many

probability distributions, a priori we cannot exclude the possibility depicted in Figure

5b, where no solution exists.

0
θ̂

g(θ̂), v(θ̂)

g(θ̂) = E[θ|θ ≥ θ̂] · κR
v(θ̂) = θ̂

1

1

E[θ] · κR

θ̂∗
45◦

(a) Unique Solution

0
θ̂

g(θ̂), v(θ̂)

g(θ̂) = E[θ|θ ≥ θ̂] · κR
v(θ̂) = θ̂

1

1

E[θ] · κR

45◦

(b) No Solution

Figure 5: Unique and No Equilibrium for Solvency Threshold θ̂

Figure 5a qualitatively represents equation (20), when there exist a unique interior

solution for θ̂. For instance, this is the case if credit risk is uniformly distributed.

Figure 5b qualitatively depicts the case where no solution exists, in which case there

is also no solution for the gross loan rate (1 + l). This illustrates that 0 ≤ κR ≤ 1 is a

necessary, but not a sufficient condition for a solution to exist, because the functional

form of E[θ|θ ≥ θ̂], and thus the specific distribution of credit risk, is crucial as well.

A.3 Appendix to Section 4

The Deposit Spread Function φR ≡ (i−d)
(1+i) . Any effect from the policy rate on the

solvency threshold works through the relative deposit spread. In regime 1 the relative

deposit spread φ1 =
1

1−εd
is constant in the policy rate and therefore the policy rate does

not affect the solvency threshold. Hence in an unconstrained world, optimal behavior

prescribes that the bank keeps the relative deposit spread unchanged in response to

a change in the policy rate. Since φR is the deposit spread relative to the expected,

conditional loan rate, the bank can adjust the optimal deposit and loan rate to keep the

relative spread constant. In regime 2 this is not the case as the relative deposit spread
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is no longer constant in the policy rate, i.e. φ2(i) = i
(1+i) . This dependence on the

policy rate occurs because if the zero lower bound is binding, then d = 0 and hence the

bank looses one margin of adjustment: It can no longer vary the deposit rate in order

to keep the relative deposit spread constant, whenever the policy rate changes. To

contrast the relative deposit spread φR to the absolute deposit spread (i− d) depicted

in Figure 3, the next figure illustrates φR as a function of the policy rate.

i

ϕR ≡ (i−d)
(1+i)

i 1−1

(−0.5,−1)

(1, 0.5)

ϕ2(i) = i
1+i

ϕ1 = 1

1−εd

Figure 6: Relative Deposit Spread as Function of Policy Rate

Notes: This picture depicts the solution for the relative deposit spread φR ≡ (i−d)
(1+i)

as a function of

the policy rate i. The origin corresponds to (i = 0, φR = 0). In regime 1 the relative deposit spread

φ1 = 1
1−εd

is depicted in blue. In regime 2 the relative deposit spread φ2(i) =
i

1+i
is depicted in red.

From Figure 6 we see that if the zero lower bound is not binding, then the relative

deposit spread is a horizontal line because it is independent of the policy rate. The

exact position of this line depends on the value of εd, but since εd < −1 it can be bound

to the interval 1
1−εd

∈ (0, 0.5), which is indicated by the blue dashed line. Note that

for the sake of comparison, φ1 and φ2(i) are plotted over the entire interval i ∈ [−1, 1].

However the blue graph only applies if i ≥ i, whereas the red graph only applies if

i ≤ i < i. Also notice that at i = i both functions intersect, i.e. φ1 = φ2(i).
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Risk Effect and Hazard Function. The risk effect is characterized by expression

(23). The slope function S(θ̂) of the conditional expectation is an important object

that drives the risk effect. It is given by

S(θ̂) ≡ dE[θ|θ ≥ θ̂]

dθ̂
= h(θ̂)

(
E[θ|θ ≥ θ̂]− θ̂

)
≥ 0, (40)

where h(θ̂) = f(θ̂)

1−F (θ̂)
is the hazard function. Using this definition of the slope function,

the denominator of the risk effect can be written as

1− κR × dE[θ|θ ≥ θ̂]

dθ̂
|θ̂=θ̂∗ = 1− κR × h(θ̂∗)

(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
= 1− κRS(θ̂

∗) (41)

and hence the the risk effect rewrites as

dθ̂∗

dκR
=

E[θ|θ ≥ θ̂∗]

1−
(
κR × dE[θ|θ≥θ̂]

dθ̂
|θ̂=θ̂∗

) =
E[θ|θ ≥ θ̂∗]

1− κRS(θ̂∗)
.

This emphasizes that S(θ̂) is essential in determining the risk effect and that the slope

function of the conditional expectation is closely related to the hazard function h(θ̂).

The hazard function is a well known object in the statistical survival analysis literature.

However, there the standard argument of h(·) is time t (and not a variable like θ̂ in

our case). Thus the interpretation slightly differs here. To understand the relationship

between the slope of the conditional expectation and the hazard function, it is important

to understand the meaning of h(θ̂).

First consider the numerator in (25), which is the probability density of the solvency

threshold θ̂. If the probability density f(·) around the point θ̂ is large, then this means

that a draw of the random variable θ is likely to be close to θ̂. Second, the denominator

is the probability that the bank is solvent, i.e. the probability Pr(θ ≥ θ̂) = 1− F (θ̂).

Therefore the hazard function tells us how likely it is that θ will be close to the solvency

threshold – relative to the probability of being solvent. Loosely speaking, the hazard

function tells us something like “In the case of solvency, how close is the bank to being

insolvent?” which is a notion of insolvency-hazard in this model. The next figure

depicts the intuition behind the impact of the hazard function:
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f(θ̂)

0 θ̂ θ̃ 1
θ

f(θ)

1− F (θ̂)

(a) Positive Risk Effect

f(θ̂)

0 θ̂ θ̃ 1
θ

f(θ)

1− F (θ̂)

(b) Negative Risk Effect

Figure 7: The Hazard Function h(θ̂)

Notes: This figure qualitatively illustrates the hazard function h(θ̂) = f(θ̂)

1−F (θ̂)
for a generic

distribution of θ. We denote a particular realization of the random variable θ by θ̃ and the blue area

under the PDF is the probability of bank solvency 1− F (θ̂).

In Figure 7a the probability density f(θ̂) is small relative to the probability 1− F (θ̂).

Therefore it is likely that the realization θ̃ is not close to the solvency threshold θ̂ and

thus in case of solvency, the bank is likely to be “highly solvent”. In this sense the

hazard of bank insolvency is small. In equilibrium a positive change ∆κR > 0 therefore

increases a bank’s risk exposure by increasing θ̂ (indicated by the arrow pointing to

the right) and therefore the risk effect is positive, that is dθ̂∗

dκR
> 0, which will cause

the probability of bank failure F (θ̂∗) to increase. In Figure 7b the opposite case with

a negative risk effect is depicted.

Next I present some formal results related to the risk effect that we will use to proof

Proposition 2.
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Lemma 2. The risk effect exists and is well-defined if and only if

1 ̸= κR × h(θ̂∗)
(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
⇔ 1 ̸= κRS(θ̂

∗).

Proof. The risk effect in (23) is only defined if its denominator as given by (41) is

non-zero, which is the case if κR × h(θ̂∗)
(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
̸= 1.

Lemma 3.

(i) The risk effect is positive if 1 > κR × h(θ̂∗)
(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
⇔ S(θ̂∗) < 1

κR
.

(ii) The risk effect is negative if 1 < κR × h(θ̂∗)
(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
⇔ S(θ̂∗) > 1

κR
.

Proof. From statement (i) of Lemma 1 it follows that the conditional expectation

E[θ|θ ≥ θ̂∗] is strictly positive. Therefore the numerator of the risk effect in (23) is

strictly positive and hence the sign of the risk effect is determined by the sign of the de-

nominator given in (41), which is determined by 1 ≷ κR×h(θ̂∗)
(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
.

Lemma 4. κR

(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
∈ [0, 1].

Proof. This is implied by Proposition 1 and by statement (ii) of Lemma 1.

Lemma 5. If κR = 0 or κR = 1, then κR

(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
= 0.

Proof. If κR = 0, then the product is zero. If κR = 1, then equation (20) implies

E[θ|θ ≥ θ̂∗] = θ̂∗ ⇔ E[θ|θ ≥ θ̂∗]− θ̂∗ = 0. Therefore κR

(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
= 0.

A.3.1 Proof of Proposition 2.

Suppose κR ̸= 0 and κR ̸= 1. From Lemma 4 and 5 it follows

0 < κR

(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
≤ 1 ⇔ 1

κR

(
E[θ|θ ≥ θ̂∗]− θ̂∗

) ≥ 1. (42)

(i) Lemma 3 implies that the risk effect is positive if κR × h(θ̂∗)
(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
< 1,

which rewrites as

h(θ̂∗) <
1

κR

(
E[θ|θ ≥ θ̂∗]− θ̂∗

) .
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If the hazard function is sufficiently small such this inequality holds, then the risk

effect is positive. There are several possibilities for the hazard function to satisfy

this inequality. From the expression in (42) we realize that we have to distinguish

two cases:

(1) If 1
κR(E[θ|θ≥θ̂∗]−θ̂∗)

= 1, then h(θ̂∗) < 1 satisfies the inequality.

(2) If 1
κR(E[θ|θ≥θ̂∗]−θ̂∗)

> 1, then both

h(θ̂∗) ≤ 1 and 1 ≤ h(θ̂∗) <
1

κR

(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
satisfy the inequality.

Therefore h(θ̂∗) < 1 is a sufficient, but not a necessary condition for a positive

risk effect.33 This concludes the proof of (i) in Proposition 2.

(ii) Lemma 3 implies that the risk effect is negative if κR × h(θ̂∗)
(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
> 1.

Together with the result in (42) this implies h(θ̂∗) > 1
κR(E[θ|θ≥θ̂∗]−θ̂∗)

≥ 1. If the

hazard function is sufficiently large such this inequality holds, then the risk effect

is negative. Therefore h(θ̂∗) > 1 is a necessary condition for a negative risk effect.

This concludes the proof of (ii) in Proposition 2

Bank Lending Channel of Monetary Policy. In the model, there is only the

bank lending channel of monetary policy at work. The existence of this channel for

the transmission of monetary policy crucially depends on market power on the lending

side, because it operates through the loan spread. On page 3, Ulate (2021) explains

that “The policy rate also differs from the rate that borrowers pay commercial banks

for loans. This friction is essential for the bank lending channel, since banks are only

able to lower their lending rate (despite the fact that their funding costs are constant,

i.e., stuck at the ZLB) because of the existence of a profit margin.”

Given Assumption 2, the bank lending channel in my model corresponds to the notion

that since the loan demand function (5) is decreasing in the loan rate, lower loan rates

33A example is the case of the uniform distribution: There the hazard function is larger than one,
but the risk effect is still positive.
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are stimulative to the economy, because banks expand their lending volume. As estab-

lished, due to the risk effect, the solvency threshold can increase or decrease in response

to a change in the policy rate. Therefore, since the optimal loan rate, characterized by

(12), depends on the solvency threshold through the conditional expectation, the risk

effect matters for the bank lending channel. In equilibrium, the effect of the policy rate

on the loan rate is given by

dl

di
=

σL

E[θ|θ ≥ θ̂∗]

(
1− (1 + i)

E[θ|θ ≥ θ̂∗]
× dE[θ|θ ≥ θ̂∗]

di

)
, (43)

where

dE[θ|θ ≥ θ̂∗]

di
=

dE[θ|θ ≥ θ̂]

dθ̂
|θ̂=θ̂∗ ×

dθ̂∗

dκR
× dκR

di

= S(θ̂∗)× dθ̂∗

dκR︸︷︷︸
Risk Effect≷0

× dκR
di︸︷︷︸

Direct Effect

. (44)

The second equality follows from the definition of the slope function S(θ̂∗) in (40).

We see in equation (43) that the differential dE[θ|θ≥θ̂∗]
di governs the sign of the effect,

because all other objects in that equation are non-negative. As can be seen in (44),

this differential depends on the risk effect.

Since in regime 1 the direct effect of the policy rate is zero, i.e. dκ1
di = 0, the

differential in (44) is zero. Hence the loan rate depends positively on the policy rate

and equation (43) reduces to

dl

di
=

σL

E[θ|θ ≥ θ̂∗]
> 0.

Result 6 (Bank Lending Channel in Regime 1). If the zero lower bound on the

deposit rate is not binding, then the lending rate depends positively on the reserve rate

in equilibrium, i.e. dl
di > 0. A decrease in the policy rate (i.e. expansionary monetary

policy) decreases the loan rate.

In regime 2 the interaction is more complex, because the direct effect of the policy rate

is negative, i.e. dκ2
di < 0. Since S(θ̂∗) ≥ 0 the differential dE[θ|θ≥θ̂∗]

di , given by (44), can
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be either positive or negative, depending on the sign of the risk effect. If the risk effect

is positive, then dE[θ|θ≥θ̂∗]
di < 0 and thus the effect of the policy rate on the loan rate

in (43) is unambiguously positive, because of the negative sign in front of the second

term in brackets.

Result 7 (Bank Lending Channel in Regime 2). If the zero lower bound on the

deposit rate is binding, then dκ2
di < 0. If the risk effect is positive, then the lending rate

depends positively on the reserve rate in equilibrium, i.e. dl
di > 0. A decrease in the

policy rate (i.e. expansionary monetary policy) decreases the loan rate.

However, if the risk effect is negative such that dE[θ|θ≥θ̂∗]
di > 0, then one can show that

the term in brackets in equation (43) can be negative. As postulated in Proposition 3,

in combination with Assumption 2 this can give raise to a reversal effect of the policy

rate.

A.3.2 Proof of Proposition 3.

First let us rewrite the risk effect in (23) by using the definition of the slope function

in (40):

dθ̂∗

dκR
=

E[θ|θ ≥ θ̂∗]

1−
(
κR × S(θ̂∗)

) =
E[θ|θ ≥ θ̂∗]

S(θ̂∗)
(

1
S(θ̂∗)

− κR

) .
We use this formulation of the risk effect to rewrite equation (44):

dE[θ|θ ≥ θ̂∗]

di
=

E[θ|θ ≥ θ̂∗](
1

S(θ̂∗)
− κR

) × dκR
di

. (45)

Now consider the term in brackets in equation (43) for R = 2. We state the following

conjecture. Suppose

1 >
(1 + i)

E[θ|θ ≥ θ̂∗]
× dE[θ|θ ≥ θ̂∗]

di
. (46)
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Using the expression in (45) for dE[θ|θ≥θ̂∗]
di , this inequality rewrites as

1 >
(1 + i)dκ2

di(
1

S(θ̂∗)
− κ2

) . (47)

From (27) we know that dκ2
di < 0 and hence the numerator on the right-hand side of

the inequality is negative.

1.) Assume that the risk effect is negative. Lemma 3 implies

S(θ̂∗) >
1

κ2
⇔ 1

S(θ̂∗)
− κ2 < 0,

and hence also the denominator in (47) is negative. Therefore the inequality in (47)

writes as

1

S(θ̂∗)
< (1 + i)

dκ2
di

+ κ2.

We plug in for dκ2
di = − 1

σL

DA

LA
1

(1+i)2
and for κ2 =

1
σL

(
LA−E
LA − i

(1+i)
DA

LA

)
to get

1

S(θ̂∗)
<

1

σL

(
1− (DA + E)

LA

)
. (48)

2.) Assume that central bank reserves holdings are strictly positive, i.e.

H = DA + E − LA > 0, such that DA + E > LA. Then 1 − (DA+E)
LA < 0 and since

σL > 0, the right-hand side in (48) is negative. However, since S(θ̂∗) ≥ 0, the inequality

in (48) cannot be true because it is a contradiction. Thus our initial conjecture in (46)

and (47) respectively, cannot be true and therefore

1 ≤ (1 + i)

E[θ|θ ≥ θ̂∗]
× dE[θ|θ ≥ θ̂∗]

di
. (49)

3.) Assume that the bank lending channel is operative such that the effect dl
di in (43)

exists and is non-zero, i.e. dl
di ̸= 0. This is the case if 1 ̸= (1+i)

E[θ|θ≥θ̂∗]
× dE[θ|θ≥θ̂∗]

di , which
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implies that the inequality in (49) is strict. Thus

1 <
(1 + i)

E[θ|θ ≥ θ̂∗]
× dE[θ|θ ≥ θ̂∗]

di
⇔ 1− (1 + i)

E[θ|θ ≥ θ̂∗]
× dE[θ|θ ≥ θ̂∗]

di
< 0.

Hence the term in brackets in equation (43) is negative, which implies dl
di < 0. This

concludes the proof of Proposition 3.

B Distribution of Credit Risk

B.1 Uniform Distribution

In this section, we solve the model for the particular case of uniformly distributed credit

risk. Given this distributional assumption, there exist a unique equilibrium and we can

explicitly solve the key equilibrium equation in (20) and derive the solution for the

solvency threshold and the loan rate.34 Suppose f(θ) ∼ U [0, 1] such that

f(θ) =


1, θ ∈ [0, 1]

0, else

and F (θ) =


0, θ < 0

θ, θ ∈ [0, 1]

1, θ > 1.

Then the conditional expectation is given by

E[θ|θ ≥ θ̂] = 0.5(1 + θ̂).

In this case, the key equation in (20) writes as

θ̂ = 0.5(1 + θ̂)κR.

34For the deposit side of the model, credit risk and thus its distribution does not matter: Due to
the deposit insurance, deposits are fully covered for any realization of credit risk. Hence the solution
of the deposit side of the model is unaffected.
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Solving this equation for θ̂ yields the unique solution for the solvency threshold (as a

function of κR):

θ̂∗ =
0.5κR

1− 0.5κR
.

The hazard function is given by

h(θ̂∗) =
1

1− θ̂∗
=

1− 0.5κR
1− κR

> 1.

Under uniform credit risk, the risk effect is positive, because the solution for the sol-

vency threshold depends positively on κR:

dθ̂∗

dκR
=

0.5

(1− 0.5κR)2
> 0. (50)

Let us verify this risk effect using formula (23). The relevant ingredients of this formula

in the case of a uniform distribution are

E[θ|θ ≥ θ̂∗] =
0.5

1− 0.5κR
,

dE[θ|θ ≥ θ̂]

dθ̂
|θ̂=θ̂∗ = h(θ̂∗)

(
E[θ|θ ≥ θ̂∗]− θ̂∗

)
=

1− 0.5κR
1− κR

0.5(1− κR)

1− 0.5κR
= 0.5.

Therefore formula (23) yields

dθ̂∗

dκR
=

0.5
1−0.5κR

1− 0.5κR
=

0.5

(1− 0.5κR)2
,

which is identical to the result in (50).

Result 8 (Uniform Distribution: Positive Risk Effect). If the stochastic loan

repayments are uniformly distributed, then the risk effect is positive in each regime, i.e.

dθ̂∗

dκR
> 0.

Combining the solution for the solvency threshold with the conditional expectation and

plugging into the optimality condition for the gross loan rate given by (12), we get the
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solution for the gross loan rate, denoted by (1 + lR), as

(1 + lR) =
εl

εl − 1
(2− κR)(1 + i).

This loan rate depends positively on the policy rate:

dlR
di

=
εl

εl − 1
(2− κR) > 0.

Result 9 (Uniform Distribution: Unique Symmetric Equilibrium). If the

stochastic loan repayments are uniformly distributed, then for regime R = {1, 2} there

exist a unique solution for the solvency threshold given by θ̂∗ = 0.5κR
1−0.5κR

. The unique

solution for the gross loan rate is given by (1 + lR) =
εl

εl−1
(2 − κR)(1 + i). Therefore

the equilibrium is unique.

B.2 Other Distributions

Since the random variable θ is a share, this restricts the family of distribution to

ones with support (0, 1). But there still exist many distributions we can assume –

examples of such continuous probability distributions are the Triangular distribution,

the Truncated Normal distribution or the Beta distribution. However not all of these

distributions have (convenient) closed form expressions for their PDF and CDF, which

makes it difficult to use them analytically.

Technically, a possible family of distributions is the Kumaraswamy distribution

X ∼ Kumaraswamy(a, b), first described in Kumaraswamy (1980). It is a two-parameter

distribution defined on the interval (0, 1) and similar to the Beta distribution, but its

PDF and CDF can be expressed in closed form. It can take a variety of shapes and is

therefore very flexible. For example, it can be used to model prevalence and probabili-

ties of fractions and ratios. Its probability density function is

f(x) = abxa−1(1− xa)b−1,

for x ∈ (0, 1) and where a > 0 and b > 0 are shape parameters. The cumulative
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distribution function is

F (x) = 1− (1− xa)b.

Its hazard function is given by

h(x) =
f(x)

1− F (x)
=

abxa−1(1− xa)b−1

(1− xa)b
.

The hazard function is larger than one if

abxa−1(1− xa)b−1 > (1− xa)b ⇔ ab+ x > x1−a.

For instance a = 1 and b > 1 satisfy this inequality for any value of x. On the other

hand, the hazard function is smaller than one if ab+ x < x1−a. A necessary condition

for the latter inequality to hold is x < 1. This is not restrictive, as we only consider

interior solutions for θ̂. Finally, notice that the Kumaraswamy distribution is related

to other named distributions. Some examples of these relations are as follows:

(i) If X ∼ Kumaraswamy(1, 1), then X ∼ U(0, 1).

(ii) If X ∼ Beta(a, 1), then X ∼ Kumaraswamy(a, 1).

(iii) If X ∼ Beta(1, b), then X ∼ Kumaraswamy(1, b).

From an economic point of view, even if there exist a mathematical convenient dis-

tribution that satisfies the necessary properties to model the stochastic share of loan

repayments, the relevant follow up question is of course if such a distribution is indeed

appropriate to model credit risk.

C Risk-Independent Insurance

Suppose a bank has to pay a insurance premium for its deposit insurance and that this

premium payment Pj is proportional to total deposits:

Pj = cDj ,
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with c ∈ (0, 1). This captures a risk-independent deposit insurance scheme, because

the premium does not depend on a bank’s expected losses. The balance sheet identity

in this case is Hj + Lj + Pj = Dj + E and the objective function becomes

E[NVj ] =

∫ 1

θ̂j

[(θ(1 + lj)− (1 + i))Lj + (i− dj)Dj − (1 + i)Pj + (1 + i)E] f(θ) dθ.

Since
∂Pj

∂lj
= 0, the first-order condition for the loan rate is unaffected by the premium

payment. On the other hand, the first-order condition for the deposit rate is given by

(1 + dj) =
εd

εd − 1
(1− c)(1 + i).

Compared to the optimality condition in (11), the insurance premium payment just

scales down the optimal gross deposit rate. Therefore in its effect, the premium is

similar to more market power in the deposit markets (which implies a lower deposit

rate). The deposit spread is

(i− dj) =
1− cεd

1− εd
(1 + i),

which for a given policy rate is now larger as the deposit rate is smaller. The premium

also affects the upper threshold i:

i ≡ − 1− cεd

εd(1− c)
.

Note that this threshold is larger compared to the case c = 0 in the main section of

this paper. So in Figure 3 this risk-independent premium would shift i to the right and

thus the regime switch occurs at a higher policy rate. In regime 1, the coefficient κ1 is

now given by

κ1 ≡
εl − 1

εl

(
LA − E

LA
− 1− c

1− εd
DA

LA

)
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and in regime 2 as

κ2 ≡
εl − 1

εl

(
LA − E

LA
+

(
c− i

(1 + i)

)
DA

LA

)
.

We see that the insurance premium parameter c does not alter the effect of the policy

rate on κR, because in regime 1, there is still no effect of the policy rate on κ1 and

in regime 2, the parameter c and the policy rate i are additive and do not interact.

Therefore a risk-independent deposit insurance only affect the levels of the variables,

but not the main causal channel of the zero lower bound constraint and of the policy

rate on the probability of bank insolvency.

D Model Extensions

Reserve Requirement. Suppose there is a reserve requirement of the formHj = ϕDj ,

with ϕ ∈ (0, 1). Plugging into the balance sheet identity yields

Lj = (1− ϕ)Dj + E.

We see that such a reserve requirement distinctly connects the loan and deposit position

in the balance sheet. Therefore the independence result of the canonical Monti-Klein

model will no longer hold. It is important to realize that the collapse of the indepen-

dence result occurs even without introducing credit risk. Indeed, adding credit risk to

a setup with an reserve requirement makes solving the model less tractable. To see

this, note that in this case the first-order conditions for the loan rate and the deposit

rate respectively, can be written as follows:35

−E[θ|θ ≥ θ̂]

θ̂
=

h(θ̂)i(1 + ϕ)D

(1 + l)L
,

(
(i− d)− (1− ϕ)

)D′

D
− D

D
=

h(θ̂)i(1 + ϕ)D

(1 + l)L

((
(1 + d)− (1 + i)ϕ

)D′

D
+

D

D

)
.

35I omit the index j for the purpose of clarity. This should not give the impression that there is
necessarily a symmetric equilibrium.
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Solving this system of equations for (1 + l) and (1 + d) is relatively involved. But

we can see that both optimality conditions depend on the loan as well as the deposit

rate through the solvency threshold. A last interesting observation is revealed when

rewriting the solvency constraint:

θ̂ =

(
(1 + d)− (1 + i)ϕ

)
(1 + l)

D

L
.

Regarding balance sheet positions, notice that only the deposit-to-loan ratio D
L remains

relevant for the solvency threshold.

Adverse Selection in Credit Markets. Suppose we want to account for incentive

problems similar to Stiglitz and Weiss (1981). The idea is that the repayments of loans

may depend on the loan rate: A higher loan rate may cause more borrowers to default.

One way to capture such a setup is by making the stochastic share of loan repayments

a function of the loan rate: θ(l) with θ′(l) < 0, such that the higher the loan rate, the

smaller the share of loan repayments. Suppose further that a proper inverse function

l−1(θ) exists. The implications for the model in the main section of the paper are not

straight forward: For instance, the loan demand function in (5) is no longer consistent,

because in the final loan producer’s problem, the loan rate can no longer be taken out

of the integral (when integrating over θ) and therefore the equilibrium will certainly be

affected.

Towards General Equilibrium. The results in the paper are based on a partial

equilibrium analysis. This partial equilibrium setup is useful in order to clearly under-

stand the causal mechanism. However a valid objection is that in general equilibrium,

there may be additional channels at work. Let us for example focus on the policy rate.

Its mechanism works through the deposit spread, which is a price effect. But the ag-

gregate quantities DA and LA also may depend on the policy rate i, which is a quantity

effect of balance sheet positions. It is a shortfall of the partial equilibrium approach

that the model cannot account for such endogenous quantity effects.

To get an idea how general equilibrium effects could play a role, let us assume that
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in the aggregate, we have a loan demand function that depends on the policy rate

LA(i), with dLA

di < 0, and a deposit supply function that depends on the policy rate

DA(i), with dDA

di > 0. Suppose further that the aggregate quantities are no function

of θ̂ such that the only new element in the key equation (20) is the fact that aggregate

quantities are functions of the policy rate. This does not affect the risk effect, but the

effect of the policy rate is now given by

dκR
di

=
1

σL

[
E

(LA(i))2
dLA(i)

di
− dφR

di

DA(i)

LA(i)
− φR

1

LA(i)

(
dDA(i)

di
− DA(i)

LA(i)

dLA(i)

di

)]
.

(51)

This differential is a complicated expression and depends on many interactions; without

a fully fledged general equilibrium model, conclusions about the sign are nebulous. To

get a quantitative feeling for the economic relevance of these effects, let us apply the

annual calibration in Ulate (2021). The author estimates for his baseline calibration

that εd = −268
4 = −67 and thus i ≈ 0.015. Furthermore the author argues i ≈

−0.022. Of course, this is only one particular calibration but may give a feeling for the

quantitative relevance. The relevant objects across regimes are then as follows:

Regime φR
dφR
di

1 1
1−εd

≈ 0.0147 0

2 i
(1+i) ∈ [−0.022, 0.015] 1

(1+i)2
∈ [0.971, 1.045]

Table 2: Quantitative Comparison across Regimes

Notes: This table shows the numerical values of φR and dφR
di

using the baseline calibration in Ulate

(2021), where εd = −67 and thus i ≈ 0.015. The author argues i ≈ −0.022 and therefore in regime 2

we consider the interval −0.022 ≤ i ≤ 0.015 for the policy rate.

Since φR is reasonably small in both regimes, let us hypothesize that the fraction φR

LA(i)

is close to zero such that it does not matter quantitatively. The third term in (51) is
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then zero. In regime 1, we get

dκ1
di

≈ 1

σL

[
E

(LA(i))2
dLA(i)

di

]
< 0.

We can see that in this case, a portfolio effect for loans matters: Lower policy rates

make risky asset more attractive and thus the bank increases its risk exposure (in the

sense of increasing κ1) by holding more loans. Therefore Result 2, where the spread

effect is zero, would no longer hold. In regime 2, the differential is given by

dκ2
di

≈ 1

σL

[
E

(LA(i))2
dLA(i)

di
− dφ2(i)

di

DA(i)

LA(i)

]
< 0.

We see that in the second regime, the zero lower bound-effect dφ2(i)
di described in the

partial equilibrium model still plays a role in addition to a portfolio effect.36 Therefore

the partial equilibrium results can be interpreted as extreme cases that emphasize

one causal mechanism, namely the price effect or spread effect of the policy rate, and

abstract from quantity effects.

E The Independence Result of the Monti-Klein Model

and Credit Risk: A Commentary

Although not stated explicitly, the static banking model in Ulate (2021) is in fact just a

slightly modified version of the canonical Monti-Klein (M-K) model with monopolistic

competition rather than one monopolistic bank and an exogenous zero lower bound

constraint on the deposit rate. The canonical M-K model captures the industrial orga-

nization (IO) approach to banking: In this one period model, there is one monopolistic

bank that has market power in both the lending as well as the deposit market and

therefore the bank is able to set the loan and the deposit rate. It does so by choosing a

point on the downward-sloping loan demand and on the upward sloping-deposit supply

function. It observes both functions and the deposits attracted by the bank (they are

36Evaluating the size of the effects is challenging, because regimes 1 and 2 apply at different policy
rates such that DA(i), LA(i) and their corresponding differentials are evaluated at different values of i.
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on its liability side of the balance sheet) are invested in either loans or an safe asset.37

The safe asset pays a risk-free interest rate (in my model central bank reserves play

the role of safe assets). There is no uncertainty or risk regarding loans and deposits;

loans are always fully repaid, the bank never defaults and depositors always get all

of their funds back. The main outcome of the model is the well-known independence

result : The optimal choice of the loan rate and the optimal choice of the deposit rate

are completely independent from each other. That is, in the first-order condition for

the loan rate, the deposit rate does not show up and vice versa. These two rates are

set by a standard monopolistic behavior: For the optimal loan rate, the bank charges

a markup over the safe interest rate and for the optimal deposit rate, the bank charges

a markdown.

One may argue that the optimal behavior in the M-K model is too simplistic and

it is not an appropriate description of bank behavior, because it predicts that a bank

consists of two entities, a lending division and a deposit division, that act completely

independently from each other. It seems reasonable to think that a bank takes into

account its behavior on one market, when setting rates on the other market and that

these two decision are interconnected and not independent. From a modeling perspec-

tive however, the independence result is extremely useful: Because once we expand the

model by adding different characteristics of the banking sector and if those features

cause the independence result to no longer hold, then we can clearly understand and

identify the mechanism and causal links that make the loan and the deposit rate inter-

dependent. Therefore from a scientific standpoint, this simplistic and maybe unrealistic

feature of the M-K model is actually one of its advantages.

While market power of commercial banks is well documented in the literature,

due to its IO nature, the M-K model reduces banks to ordinary firms and does not

take into account the particular role a bank plays for the financial system. Financial

intermediaries are characterized by very specific peculiarities which do not apply to

ordinary firms such as maturity transformation, solvency- and liquidity-risk, monitoring

37Hence the model captures the loanable funds approach of banking rather than the money creation
view. The former states that banks attract deposits to fund their assets whereas the later states that
banks create deposits whenever they grant loans.
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and bank specific regulations. Additionally, they have access to central bank reserves

which makes them a key player in the transmission of monetary policy.

Hence a logical next step is to extend the M-K model by taking into account the

special role of commercial banks in modern economies. This is partially what Dermine

(1986) does: The author introduces bankruptcy risk and a deposit insurance into the

canonical M-K model. For the insurance premium, the author chooses a very gen-

eral formulation, where the premium depends on expected losses. Bankruptcy risk is

introduced by making the end of period loan repayments stochastic. This affects the in-

dependence result: With a fair deposit insurance scheme, the loan and deposit rate are

still independent. But when the deposit insurance is such that the insurance premium

is independent of a bank’s expected loss, or the premium is over- or under priced, then

the loan rate will depend on the deposit rate but the reverse is not true: Deposit rates

are still independent of loan rates. Intuitively, it is not surprising that the presence

of a deposit insurance does not affect the independence of the deposit rate from the

loan rate: A deposit insurance guarantees that deposit contracts are safe and hence

non-random (i.e. they are not not affected by the stochastic element in the model)

– therefore these contracts preserve their characteristic from the baseline M-K model.

Incorporating risk into the M-K model is in general not tied to a deposit insurance

scheme and abstracting from insurance may a priori appear to be the cleanest way

to study risk in this model environment.38 For the purpose of my research question

however, the implications of a deposit insurance are advantageous: Because my model

incorporates a zero lower bound on the deposit rate, at some point the lower bound

binds and the deposit rate is zero. To examine such a regime, we can start with the

choice of a deposit rate of zero and then track what this means for the loan rate, but

we do not have to worry about a potentially feedback loop from the loan rate back to

38In Dermine (1986) it is also described what happens when there is no deposit insurance. The
author argues that in this case, there are two deposit rates, namely the expected and the posted deposit
rate. The former matters for depositors and thus the supply function of deposits depends on the
expected deposit rate, while the latter is the one a bank sets at the beginning of the period. However,
the form of the deposit supply function is not affected – it is now just a function of the expected
rather than the posted deposit rate. But one may argue that with rational expectations, a bank takes
uncertainty into account and this may change also the deposit supply function and therefore the posted
deposit rate. Or stated differently: With rational expectations, there is still only one deposit rate that
matters and not two. Hence there may be a consistency problem with the argument in the paper for
the case without deposit insurance.

69



the deposit rate, as the deposit rate is still independent of the loan rate.39

To introduce credit risk into my model, I follow Taggart and Greenbaum (1978). At

first glance, this modeling approach differs from Dermine (1986): In the former paper,

the stochastic element is the share of performing loans whereas in the later, the size

of loan repayment is stochastic. From a reduced form perspective, both approaches

capture the same phenomena (and the implications are similar), but the approach in

Taggart and Greenbaum (1978) turns out to be more convenient in my case due to is

multiplicative nature.40

39Therefore this (partial) breakdown of the independence result creates a sequential decision process
for a bank: Since the loan rate depends on the deposit rate, but the reverse is not true, a bank has
first to decide upon the optimal deposit rate, because this variable must be known in order to choose
the optimal loan rate.

40It is much easier to derive a loan demand function that is consistent with monopolistic competition
in this case, because in essence the random share θ just acts as a scaling factor to credit contract.
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