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The future spatial distribution of onshore wind energy capacity based on a probabilistic invest-

ment calculus by Yannik Pflugfelder and Christoph Weber 

 

Abstract 

The spatial distribution of future renewable capacities is a key determinant for developing appro-

priate grid expansion plans. This is particularly relevant for onshore wind energy. Existing studies 

mostly extrapolate future installations based on existing capacities and available sites. As wind 

farm projects are developed mainly by private investors, the economic rationale of investing at 

specific sites deserves more attention. Therefore, the present contribution develops a model of 

economic choice for wind investments based on site-specific computations of the achievable net 

present value, taking into consideration the land availability at the regional level. Therefore, site-

specific investment decisions are modeled as (partly aggregated) discrete choices. The net present 

value is computed from investment costs and expected yields, which can be estimated based on 

wind speed time series and power curves. Available land can be identified by excluding settle-

ment, infrastructure, and nature conservation areas with appropriate buffers, as well as sites with 

topographically unsuitable profiles. The model is formulated as a nested logit model that captures 

the interdependencies between choices on two levels: the probability of investment in a particu-

lar region on the first level and the probability of installing a specific turbine type on the second 

level. In an application for Germany with the target capacities of the German Renewable Energy 

Act, the model delivers a spatial distribution of the capacities at the NUTS 3 level. The model 

also enables the derivation of the necessary compensation level and the most frequently installed 

turbine types. 
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Abbreviations and symbols 

𝑎𝑛0  Relative area per region which is not used for wind energy 

𝛼𝑛𝑖   Estimation parameters for the benefit of a turbine i in region n 

𝑎𝑛𝑖
𝑢𝑠𝑒𝑑,𝐷𝐶 , 𝑎𝑛𝑖    Relative used wind energy area in the Discrete Choice Model 

𝛽  Estimation parameter – utility increase of an explanatory variable at lower level 

𝐵𝑘   Subset of all alternatives within nest k 

𝛾  
Estimation parameter – utility increase of an explanatory variable for nest at up-
per level 

𝐶𝑖
𝑖𝑛𝑣  Investment costs of turbine type 

𝐶𝑎𝑝𝑏𝑎𝑠𝑒  (total) installed capacity in the base year 

𝐶𝑎𝑝𝐷𝐶  Capacity installed in the relevant Discrete Choice Model timespan 

𝐶𝑎𝑝𝑠𝑖𝑚  Remaining capacity in simulation year of actual plants 

𝐶𝑎𝑝𝑡𝑎𝑟𝑔𝑒𝑡  Target capacity for the simulation year 

𝑐𝑜𝑟𝑟𝑟𝑒𝑚  Correction factor of remuneration 

𝜀𝑛𝑖  Unobservable utility of a group/region for alternative i 

EEG German Renewable Energy Act (Erneuerbare-Energien-Gesetz) 

𝑖  Specific alternative i 

𝐼𝐶  (total) installed wind capacity (as model result) 

𝐼𝑛𝑘   Inclusive Value for a group/region n for a nest k 

𝑗  General index for an alternative j (turbine type) 

𝑘  Index of a specific nest k 

𝜆𝑘   Independence measure of unobservable utility 

LCOE Levelizd costs of electricity 

𝐿𝐿  Log-likelihood function 

𝐿𝑇  Turbine lifetime 

𝑛  Decision maker / region n 

𝑁𝑃𝑉  Net Present Value 

NUTS 3 Nomenclature of territorial units for statistics, level 3 

𝑃𝑛𝑖  Probability of choosing alternative i by user/region n; predicted market share 

𝑃𝑛𝑖|𝐵𝑘
  Probability of choosing specific alternative in the chosen nest (lower level) 

𝑃𝑛𝑘  
Probability of choosing a nest (upper level) 

 

𝑃𝑃  Power potential: are consumption per capacity wind energy 

𝜋𝑛𝑗   Probability of a group/region n deciding for alternative j 

𝑟  Interest rate 

𝑟𝑒𝑚  Remuneration for a produced energy quantity 

RES Renewable Energy Sources 

𝑇𝑃𝑖  Installed capacity/power of turbine type 

𝑈𝑛𝑗   total utility of a group/region n for alternative j  



 

V 

𝑉𝑛𝑗   Total observable utility of a group/region n for an alternative j 

  

𝑊𝑛𝑘  Observable utility of a group/region n for a nest k 

WindBG Wind Energy Area Requirement Act (Windenergieflächenbedarfsgesetz) 

𝑊𝑃𝑛𝑖  Wind energy production  

𝑥  General notation of an explanatory variable on the lower level 

𝑌𝑛𝑗   Observable utility of a group/region n for an alternative j 

𝑍𝑛𝑖  Infeed profit 
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1 Introduction 

The ambitious goals of the European Union and its member states regarding climate neutrality in 

2050 or even earlier require massive investments in renewable generation technologies. The 

power supply sector, where onshore wind energy plays a crucial role, is especially subject to a 

rapid and far-reaching transformation. To accelerate the renewable expansion, planning and ap-

proval processes have to be streamlined, and at the same time, sufficient areas have to be cleared 

for installation, cf. e.g. (Deutsche Bundesregierung, 2023).  

The future regional distribution of renewable energy installations has, in turn, important implica-

tions, notably regarding the necessary expansion of the electricity grid to avoid bottlenecks. As 

such grid developments require long planning and construction times, an appropriate anticipa-

tion of the future renewable electricity infeed is required. Particularly relevant is the spatial dis-

tribution of onshore wind energy installations. The realization of capacity targets (e.g., in Ger-

many defined by the Renewable Energy Act (EEG) (BMWK, 2023)) faces significant technical and 

socioeconomic obstacles, including land availability issues. Different decision-makers, such as 

private investors and grid operators under regulatory oversight, use various pragmatic methods 

to forecast renewable energy source (RES) investments. Yet, these often lack a robust economic 

foundation. We therefore propose a novel method that accounts for investors' choices mainly 

driven by expected profitability. Besides observable characteristics, unobservable factors such as 

credit restrictions or site-specific cost components influence profitability. Additionally, profitabil-

ity is typically enhanced by selecting the turbine type best suited to the specific site. 

In this paper, the spatial distribution of onshore wind energy investments is modeled as a set of 

site-specific discrete choices from which expansion probabilities are determined. Discrete choice 

models pioneered notably by (McFadden, 1974) have found widespread application in various 

fields since they provide a valuable and empirically testable framework for analyzing individual 

choices. E.g., in transportation demand analysis, individuals‘ travel behavior can be studied, in-

cluding the selection of transport mode and route selection (Train, 2009) (Ben-Akiva & Lerman, 

1985) (Vovsha & Bekhor, 1998) (Koppelman & Bhat, 2006). In the field of product marketing, 

nested logit models as an extension can help to understand consumer behavior and their choices 

among different brands or products. These are often organized in different nests based on their 

attributes (Ansari, et al., 1995). Also, energy-related choices have been addressed repeatedly, 

including electrical appliance holdings (Dublin & McFadden, 1984) (Weber, 1999) or heating 

system choice (Michelsen & Madlener, 2012) (Bauermann, 2016). 
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In the analysis at hand, the model approach is extended and adapted to investigate the probability 

of turbine installations on available sites. Therefore, a detailed data basis of wind turbine instal-

lations in Germany is used along with spatially disaggregated wind speed time series, and an 

engineering-economic cost model is applied to analyze investments and expected yields at each 

location. On the other hand, information on available areas for future investments is derived from 

a land use and spatial restriction analysis. This is combined with the obligations imposed by the 

federal government on the federal states regarding minimum wind investment areas to identify 

the expected future distribution of onshore wind investments.  

Accordingly, this paper provides a novel approach (i) to analyze empirically the impact of eco-

nomic profitability considerations and spatial restrictions on the allocation of wind power capac-

ities, (ii) to investigate how regional and turbine characteristics are impacting jointly investment 

choices based on a nested logit model, and (iii) to assess the future deployment of wind turbines 

and how it is affected by regulatory settings both regarding land use and support mechanisms. 

The remainder of this paper is structured as follows: Section 2 presents material and methods, 

contrasting conventional regionalization models on the one hand with discrete choice models 

on the other hand that form the basis of our investment modeling approach. It delves into the 

modeling steps of parameter estimation, wind yield modeling, profitability assessment, determi-

nation of suitable areas, and investment decision simulation. A case study is performed in Section 

3, including the presentation of data sources, the parameter estimates, and the simulation out-

comes. Section 4 provides a discussion, emphasizing key issues like land availability, profitabil-

ity, and data quality. Finally, Section 5 concludes the paper. 

2 Material and methods 

In view of putting the newly developed method into context, Section 2.1 discusses the procedure 

used in typical “regionalization models”, which are frequently applied for a spatial allocation of 

future wind energy capacities in the context of network development plans. The principles of 

discrete choice and nested logit models, which are at the heart of the novel methodology are 

reviewed in Section 2.2, and their application to an empirical analysis of wind energy investments 

is discussed in Section 2.3. Section 2.4 delves into the profitability of wind power plants, which 

is a key driver for investments, including the details of the underlying computation of wind yields. 

Section 2.5 describes the methodology used to identify suitable areas for wind energy installation, 

while Section 2.6 summarizes how these elements are brought together given the simulation of 

future wind energy investments. 
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2.1 Conventional and novel modeling for future wind capacity deployment 

Most governmental capacity targets are initially established at higher planning levels, e.g., within 

national action plans (cf. (European Union, 2009)) or national renewable legislation (e.g. EEG 

2023 (BMWK, 2023)). Regionalization models facilitate the breakdown of national or regional 

targets into smaller spatial areas, allowing for detailed planning and implementation. Such mod-

els are especially needed in the context of network expansion planning since required line ca-

pacities are strongly dependent on future grid usage – which in turn depends on the siting deci-

sions for new plants broken down to the level of transmission grid nodes. Regionalization models, 

therefore, build on assessments of generation potentials such as (de Vries, et al., 2007), (Teske, 

et al., 2019), or (Miyake, et al., 2024). Yet beyond assessing regional potentials and constraints, 

regionalization models support the strategic development of energy infrastructure by estimating 

at a high spatial granularity which fraction of the identified potentials will be actually used. 

As Germany is a frontrunner in the expansion of renewable energies and also pursues ambitious 

grid expansion plans (NEP 2023, (BNetzA & ÜNB, 2023a), (BNetzA & ÜNB, 2023b)), we subse-

quently take a closer look at existing studies on the regionalization of wind energy in Germany. 

These are typically divided into two main phases.  

The first phase starts with an analysis of the existing power plants. This is followed by identifying 

suitable land areas, which involves assessing land areas using suitability indicators or more 

straightforward approaches dividing areas into suitable or non-suitable. The decision on which 

areas to consider or exclude is influenced to a certain extent by political considerations. Aspects 

like social acceptance may already be indirectly factored into the spatial analysis by incorporat-

ing buffers around exclusion areas – which may eventually be adjusted to state-specific legisla-

tion (Stede & May, 2019). The studies follow very similar approaches in this phase but differ in 

their level of detail. While (Matthes, et al., 2018) subtract identified exclusion areas on a more 

aggregated spatial level, (Bons, et al., 2023) combine designated areas from a regional planning 

level with a detailed white area analysis considering local specifications. A brief description of 

the methodology used in various studies is presented in Table 1. 

In the second phase, the wind farm siting process determines the installed capacity and, depend-

ing on the spatial granularity level, even the precise geolocation of turbines. This is where the 

approaches of the various studies differ. (Schmid, et al., 2021) and (Pape & Geiger, 2023) follow 

a binary decision-making process where suitable land is converted into cells, and an algorithm 

decides whether a turbine can be built based on criteria such as collision with other turbines or 

minimizing the occupied area. Another approach is the proportional distribution of capacity 

based on the expected infeed, e.g., used by (Matthes, et al., 2018). (Moser, et al., 2020) utilizes 
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a multi-criteria optimization approach to assign capacity and land targets to administrative re-

gions without detailed turbine placement. 

Table 1: Overview of relevant regionalization studies for Germany 

Study Identification of suitable areas Windfarm siting 

(B
o
n
s,

 e
t 

al
.,
 2

0
2
3
) 

Use of a comprehensive database of area 

designations at the level of regional plan-

ning considering uncertain factors such as 

minimum distance regulations. Establish-

ment of a binary coding on an area grid in-

dicating the suitability of each grid element. 

Based on (Thiele, et al., 2021): Computation of 

the maximum number of turbines while adher-

ing to elliptical minimum distances (5 rotor di-

ameters in the main and 3 in the secondary 

wind direction) and considering existing instal-

lations. 

(P
ap

e 
&

 G
ei

ge
r,

 2
0
2
3
) Identification of areas in principle suitable 

for expansion and evaluation based on the 

probability of expansion derived from pre-

vailing wind conditions. Geodata-based 

modeling considering restriction criteria 

and corresponding distance requirements. 

Site-specific placement considering elliptical 

minimum distances. Method to calculate the 

maximum number of WEA per available area. 

(S
ch

m
id

, 
et

 a
l.
, 
2
0

2
1
) 

Analysis of currently designated areas for 

wind farms, including already installed tur-

bines. Determination of available area using 

typical distance ellipses and derivation of 

corresponding electrical expansion poten-

tial. Evaluation of restriction classes to de-

termine the rated potential.   

Placement follows typical distance ellipses to 

determine available areas for new installations. 

The order of development follows site classes 

and develops areas according to their ranking 

based on potential wind energy yield. 

(M
at

th
es

, 
et

 

al
.,
 2

0
1

8
) 

Analysis of area availabilities and re-

strictions to determine utilization potential. 

Identification of exclusion areas on a more 

aggregated spatial level. 

Placement of installations considering both 

technological and spatial differentiation of ar-

eas and optimizing land-use w.r.t. area re-

strictions and conservation interests. 

(M
o
se

r,
 
et

 
al

.,
 

2
0
2
0
) 

Identification of land suitability of grid cells. 

Consideration of a range of exclusion crite-

ria. 

Use multi-criteria optimization with various 

drivers, including economic viability, land suit-

ability, societal factors, and regulatory instru-

ments. 

 

These regionalization studies include detailed analyses of area potentials and employ methods 

to place turbines according to expected yields and compliance with regulations. However, for 

reliable and realistic future scenarios in onshore wind expansion, it is crucial also to conduct 

consistent economic analyses. Only (Moser, et al., 2020) consider economic criteria explicitly, 
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including the Levelized Costs of Electricity (LCOE) as one of the criteria in the developed multi-

criteria optimization approach. LCOE provides an estimate of the costs of electricity generation 

per unit but does not consider the revenue side nor take into account potential unobserved het-

erogeneity of both investment opportunities and investors. As described in detail below, our ap-

proach addresses the first point by utilizing the Net Present Value (NPV), offering a financial 

picture that includes all cash flows over a turbine’s lifetime. Additionally, our model incorporates 

potential unobserved heterogeneity in a consistent way through discrete choice models and a 

hierarchical decision-making process. By considering both observable and unobservable utility 

components, the novel approach enables economically more consistent and realistic modeling 

of investment decisions, accounting for regional economic viability more effectively.  

The novel approach is summarized in Figure 1, and the description of the different parts of the 

methodology is given in the next sections following the sequence indicated in the figure. 

 

Figure 1: Novel modeling approach for wind energy investments 
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2.2 Modeling wind energy investments using discrete choice models 

Discrete choice models have been developed by Daniel McFadden and others (e.g. (McFadden, 

1974)) to empirically investigate cases where decision-makers choose a particular alternative out 

of a limited number of alternatives. Discrete choice models examine the relationship between a 

discrete or categorical dependent variable and explanatory variables, which may be scaled met-

rically or categorically. (Train, 2009) 

The decision regarding an investment in wind power plants at a potential location corresponds 

basically to the binary choice between “invest” and “not invest” and may, hence, be modeled 

using a standard binary logit model. This model allows assessing the probability of each alterna-

tive based on key explanatory variables. The logit specification has the advantage that explicit 

formulas for the choice probabilities may be given.  

At a more detailed level, investing in wind farms requires the choice of an appropriate turbine 

type, and this may be considered in a discrete choice model through a second decision stage – 

as included notably in the so-called nested logit models (Train, 2009). This model class may 

account for the dependency of the turbine choice on the prior investment decision – and vice 

versa, as well as the dependency of the investment decision on the availability of an appropriate 

turbine type. This follows from the principles of rational choice underlying discrete choice mod-

els – a rational decision-maker will take into account the consequences of her choice - including 

the implications of subsequent choices. Accordingly, various studies, including those by (Daly & 

Zachary, 1987), (McFadden, 1978) and (Williams, 1977), have demonstrated that the nested logit 

model aligns with the principles of utility maximization.  

The nested logit model can be structured with the upper level representing the decision to invest 

or not and the lower level representing the choice of turbine type if the investment is made (cf. 

Figure 2). The decision structure is divided into nests, with one nest corresponding to the choice 

not to invest and the other nest representing the choice to invest, which includes sub-alternatives 

of different turbine types. The probability of choosing a specific alternative within this nest de-

pends on both the attributes of the alternatives and the attributes of the nest. For any (two) alter-

natives in the same nest, the ratio of probabilities is independent of the attributes or existence of 

all other alternatives. This property of “independence of irrelevant alternatives” or in short IIA 

holds within each nest. For any (two) alternatives in different nests, the ratio of probabilities can 

depend on the attributes of other alternatives in the nests. IIA does not hold in general for alter-

natives in different nests (Train, 2009).  
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Figure 2: Nested structure of an investment decision in wind energy 

In the vein of discrete choice models, the selection of an alternative primarily depends on the 

decision maker’s utility, which is not directly observable and comprises both observable and 

unobservable components (cf. Section 2.3). In the case of wind energy investments, the utility for 

the investor basically corresponds to the economic profits obtained. According to standard fi-

nance theory, the net present value (NPV) is an adequate measure of profitability, with initial 

investment costs being subtracted from discounted future cash flows (cf. Section 2.4).  

In the general case, the probability of decision maker 𝑛 selecting one discrete alternative 𝑗 over 

another is determined by comparing their utilities 𝑈𝑛𝑗 = 𝑉𝑛𝑗 + 𝜀𝑛𝑗. This utility is additively com-

posed of an observable part 𝑉𝑛𝑗 and an unobservable part 𝜀𝑛𝑗 for which an extreme value distri-

bution is assumed in the case of the logit model. The choice probability is then derived based on 

the cumulative distribution function of the error terms. For the logit model, a closed-form expres-

sion for the choice probability may be derived, cf. (Train, 2009) and (Ben-Akiva & Lerman, 1985). 

Writing the observable utility 𝑉𝑛𝑗 = 𝛽′𝑥𝑛𝑗 as a linear function of the vector 𝑥𝑛𝑗 of observable 

variables, we obtain: 

𝑃𝑛𝑖 =
𝑒𝛽′𝑥𝑛𝑖

∑ 𝑒𝛽′𝑥𝑛𝑗
𝑗

  (1) 

For the nested logit model, the probability 𝑃𝑛𝑖 (cf. Eq. (2)) of choosing alternative 𝑖 𝜖 𝐵𝑘 in region 

𝑛 is the product of the probability 𝑃𝑛𝐵𝑘
 (cf. Eq. (3)) that an alternative within nest 𝐵𝑘 is chosen 

(upper level) and the probability 𝑃𝑛𝑖|𝐵𝑘
  (cf. Eq. (4)) that the alternative 𝑖 is chosen on the lower 

level, given that the alternative 𝐵𝑘 has been chosen. 

𝑃𝑛𝑖 = 𝑃𝑛𝑖|𝐵𝑘
𝑃𝑛𝐵𝑘

  (2) 
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𝑃𝑛𝐵𝑘
= 𝜋𝑛𝑘 =

𝑒𝑊𝑛𝑘+𝜆𝑘𝐼𝑛𝑘

∑ 𝑒𝑊𝑛𝑙+𝜆𝑙𝐼𝑛𝑙𝐾
𝑙=1

 (3) 

𝑃𝑛𝑖|𝐵𝑘
=   𝜋𝑛𝑖 =

𝑒
𝑌𝑛𝑖
𝜆𝑘

∑ 𝑒

𝑌𝑛𝑗

𝜆𝑘𝑗∈𝐵𝑘

 (4) 

The total utility 𝑈𝑛𝑗 is thereby divided into two observable parts 𝑊𝑛𝑘 and 𝑌𝑛𝑖 plus the unobserv-

able part, where 𝑊𝑛𝑘 is the nest specific utility that depends only on variables that describe nest 

𝑘. These differ between nests but not across alternatives within each nest. The other component 

𝑌𝑛𝑗, the utility of alternative 𝑗 in nest 𝑘, depends on variables that describe alternative 𝑗 and vary 

across the alternatives within nest 𝑘. The parameter 𝜆𝑘  (𝜆𝑘 ∈ [0, 1]) thereby serves as a measure 

of the degree of independence in unobserved utility among the alternatives within a nest 𝐵𝑘. A 

value of one indicates complete independence, and the nested logit model reduces, in this case, 

to a standard multinomial logit model. The nested logit model is thus a generalization of the logit 

model that allows for specific patterns of correlation in the unobserved utility. The inclusive value 

𝐼𝑛𝑘 (cf. Eq. (5)) links the levels by transferring information from the lower to the upper model. It 

corresponds to the logarithm of the denominator in the lower model and 𝜆𝑘𝐼𝑛𝑘 is the expected 

utility that the decision maker obtains when choosing among the alternatives in nest 𝐵𝑘. 

𝐼𝑛𝑘 = ln (∑ 𝑒

𝑌𝑛𝑗

𝜆𝑘

𝑗∈𝐵𝑘

) (5) 

2.3 Choice model specification and parameter estimation 

Based on the previous considerations, a nested logit model is set up to explain the observed 

investments in wind turbines of types 𝑖 in locations 𝑛 based on the net present value NPV of the 

different investment alternatives (cf. Section 2.4) . Thereby the logarithm of the NPV is used as 

the explanatory variable, both to prevent numerical issues related to large exponents and to re-

flect that the marginal NPV impact may be decreasing. The impact strength is given by the pa-

rameter 𝛽. Additionally, some idiosyncratic utility 𝛼𝑖 associated with the different turbine types 

is included in the specification of equation (6) – this may, e.g., reflect limitations in allowable 

hub heights in some locations. The observable utility 𝑌𝑛𝑖 associated with alternative 𝑖 in location 

𝑛 is thus written: 

𝑌𝑛𝑖 = 𝛼𝑖 + 𝛽 ⋅ ln (𝑁𝑃𝑉𝑛𝑖) (6) 

For investment decisions, often detailed data is available on the invested wind turbines. However, 

information is scarce on those areas that are, in principle, suitable for investment yet have not 

been retained. Therefore, estimation is only feasible based on semi-aggregated data, i.e. using 
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observations at the regional scale regarding the share of suitable area that has been actually used 

for investment. 𝑎𝑛𝑖 is the area share used in region 𝑛 for investments in turbine type 𝑖. Corre-

spondingly, we define 𝑎𝑛0 = 1 − ∑ 𝑎𝑛𝑖𝑖  as the share of suitable areas in region 𝑛 which is not 

used for wind energy investment. 

Applying a nested logit model with the binary choice between the alternatives of investing or not 

investing at the upper level, we obtain the following log-likelihood function: 

𝐿𝐿(𝛽, 𝛾, 𝜆) = ∑ ∑ (𝑎𝑛𝑖 ⋅ (ln(𝑃𝑛𝑖|𝐵1
) + ln(𝑃𝑛1))) + 𝑎𝑛0 ⋅ ln (𝑃𝑛0)   .

𝑖𝑛

 (7) 

Inserting the choice probabilities from Eq. (3) and Eq. (4) as well as the expression for the observ-

able utility from Eq. (6), leads to : 

𝐿𝐿(𝛽, 𝛾, 𝜆) =  ∑ (∑ 𝑎𝑛𝑖 ⋅ (ln (
𝑒

𝛼𝑖+𝛽⋅ln (𝑁𝑃𝑉𝑛𝑖)
𝜆

∑ 𝑒
𝛼𝑗+𝛽⋅ln (𝑁𝑃𝑉𝑛𝑗)

𝜆𝑗∈𝐵𝑘

) + ln (
𝑒𝛾+𝜆𝐼𝑛

1 +  𝑒𝛾+𝜆𝐼𝑛
))

 

𝑖

 

𝑛

+ 𝑎𝑛0  ln (
1

1 +  𝑒𝛾+𝜆𝐼𝑛
)) 

(8) 

The parameter values can be estimated by minimizing the negative log-likelihood function from 

an arbitrary starting point. 𝛼𝑖 then represents the idiosyncratic utility of turbine 𝑖 – which de-

scribes a natural preference for that turbine type. This idiosyncratic utility is not driven by eco-

nomic viability but can be inferred from past installation practice. 𝛽 indicates the utility increase 

related to an increase in profitability on the lower level, and 𝛾 is the idiosyncratic utility of in-

vestment at the upper level. 𝜆 is a measure of independence for the unobservable utility of the 

different turbine types.  

2.4 Investment profitability assessment and wind yield modeling 

Given that we expect wind energy investments to be driven by their expected profitability, we 

must calculate the net present value (NPV) per turbine type 𝑖 for each region 𝑛. Therefore, we 

compute the wind yield based on wind speed data from weather databases for representative 

locations within each region. The wind speed data must be adjusted to depict the wind speed at 

the hub height of turbine type 𝑖, which in turn drives the wind energy yield.  

For the extrapolation to the hub height, the so-called Power Law (Brower, 2012) is implemented. 

Based on the wind speed at hub height, the corresponding wind production 𝑊𝑃𝑛𝑖 can be derived 

from the specific power curve of turbine type 𝑖. The modeling must additionally consider losses 

caused by both wake effects (shading) as well as technical and regulatory unavailability. The 

availability of the turbines is set to a blanket value of 0.97 (Conroy, et al., 2011) (Pfaffel, et al., 
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2017). Wake effects are approximated based on (Knorr, 2016), who determines an average wind 

efficiency characteristic curve for wind turbines in Germany, which can be used to estimate the 

wind speed reductions due to shading. The wake effect depends on the wind speed; losses are 

typically in the range between 4 and 15 ms-1. 

For an appropriate assessment of the economic profitability, the link between wind energy yield 

and revenues has also to be considered. In Germany, wind energy investors receive a guaranteed 

feed-in remuneration 𝑟𝑒𝑚, which is under the current legislation determined via auctions, cf. 

§ 28 EEG (BMWK, 2023). Yet the German Renewable Energy Law (EEG) also includes some pro-

visions to make the installation and operation of wind turbines economically viable at locations 

with weaker winds. The intention is to avoid overinvestment in regions with good wind condi-

tions, which would exacerbate further the need for grid expansion. The law, therefore, foresees 

a compensation correction factor 𝑐𝑜𝑟𝑟𝑛𝑖
𝑟𝑒𝑚 derived from a so-called reference yield model. It is 

determined based on the simulated energy output for the turbine type at the envisaged location 

in relation to the reference yield for the turbine type at a reference location. Plant operators in 

less windy locations receive a higher payment per kilowatt hour of electricity generated, while 

those in windy locations receive a lower payment. (cf. § 36 et seq. EEG 2023 (BMWK, 2023))   

Correspondingly, the infeed revenue 𝑍𝑛𝑖 may be calculated for each region and turbine type 

according to: 

𝑍𝑛𝑖 = 𝑟𝑒𝑚 ⋅ 𝑐𝑜𝑟𝑟𝑛𝑖
𝑟𝑒𝑚 ⋅ 𝑊𝑃𝑛𝑖   ∀ 𝑛, 𝑖 (9) 

Finally, the 𝑁𝑃𝑉𝑛𝑖 per region and turbine type is obtained under consideration of the investment 

cost 𝐶𝑖
𝑖𝑛𝑣, interest rate 𝑟 and lifetime 𝐿𝑇 as: 

𝑁𝑃𝑉𝑛𝑖 = −𝐶𝑖
𝑖𝑛𝑣 + 𝑍𝑛𝑖 ⋅

(1 + 𝑟)𝐿𝑇 − 1

(1 + 𝑟)𝐿𝑇 ⋅ 𝑟
     ∀ 𝑛, 𝑖 (10) 

Given that wind energy investments are analyzed in the context of limited land resources, it is 

essential to account for land use efficiencies. To achieve this, we adjust the explanatory variable 

NPV by dividing it by the used area, which is determined as the installed capacity of the respec-

tive turbine type (cf. Table 3) divided by the power potential (cf. Section 3.2). 

2.5 Determination of suitable and used wind areas 

A GIS-based area restriction analysis is implemented to identify the maximum possible installed 

capacity for each region. Starting from the total regional surface area, areas unsuitable for in-

stalling wind energy plants are subtracted, like forest, traffic, and water areas, as well as areas 

with strong slopes. State-level legislation in Germany imposes minimum distances of wind tur-

bines from settlement areas which leads to an exclusion of these areas from the suitable area. 

Furthermore, nature conservation areas and airport grounds, including the corresponding landing 
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paths, are excluded. Figure 3 shows the identification of possible areas for wind energy for two 

exemplary NUTS 3 regions, DEA33 (Münster) and DEA38 (Warendorf). 

 

Figure 3: Identification of exclusion and wind areas 

This analysis provides an upper limit for the areas suitable for wind energy investments. In fact, 

not all suitable areas have been declared by the regional authorities as designated areas or suita-

ble areas for wind energy (cf. (Bons, et al., 2023) and Table 2). Therefore, some adjustments 

concerning the suitable areas must be implemented for the parameter estimation to consider the 

actual circumstances for past investments as realistically as possible. The suitable areas identified 

through the GIS analysis have hence to be calibrated to match the area target at the federal-state 

level for 2021, as indicated by (Bons, et al., 2023).  

For future investments, different rules may be applicable. Notably, the German government de-

cided to set aside 2 % of the total land area for wind energy by 2032 (Deutsche Bundesregierung, 

2023) to reach its climate targets. To achieve a fair burden sharing among federal states while 

taking into account the specificities of the states (notably little suitable areas in urban regions), 

binding area targets (area contribution values) for every federal state until 2032 have been defined 

by law (cf. WindBG §3 Abs. 1). In Table 2, the corresponding shares of the total areas of the 

federal states and the whole country are shown along with those determined from the own GIS 

analysis and the designated areas in 2021. At the NUTS 3 level, the WindBG is interpreted as a 

lower bound for land allocation. In cases where a region has already developed a larger area 

share for wind energy installations in the base year than the area determined through scaling with 
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the state-specific contribution targets, the existing share is retained, along with an additional 

buffer. This ensures that the model maintains flexibility and enables advantageous regions to 

invest in additional capacities for economic reasons. 

Table 2: Area for wind energy by federal state 

NUTS 

Code 

Federal State Total area 

[km2] 

Percentage 

 suitable areas for 

wind energy ac-

cording to GIS-

analysis 

Percentage of desig-

nated  

areas in 2021 (Bons, 

et al., 2023) 

Percentage of desig-

nated areas for 

wind energy ac-

cording to (WindBG 

§3 Abs. 1) 

DE1 Baden-Württem-

berg 

35 747.82 16.08 % 0.5 % 1.8 % 

DE2 Bavaria 70 541.57 2.43 % 0.7 % 1.8 % 

DE3 Berlin 891,12 0.11 % 0.0 % 0.5 % 

DE4 Brandenburg 29 654.35 14.62 % 0.8 %1 2.2 % 

DE5 Bremen 419.62 1.08 % 0.8 % 0.5 % 

DE6 Hamburg 755.09 3.37 % 0.2 % 0.5 % 

DE7 Hesse 21 115.64 6.99 % 1.8 % 2.2 % 

DE8 Mecklenburg- 

Western Pomera-

nia 

23 295.45 20.01 % 0.2 % 2.1 % 

DE9 Lower Saxony 47 709.82 34.21 % 1.0 % 2.2 % 

DEA North Rhine-West-

phalia 

34 112.44 3.91 % 1.0 % 1.8 % 

DEB Rhineland-Palati-

nate 

19 858.00 8.06 % 1.5 % 2.2 % 

DEC Saarland 2 571.11 4.17 % 1.8 % 1.8 % 

DED Saxony 18 449.93 6.90 % 0.2 % 2.0 % 

DEE Saxony-Anhalt 20 459.12 16.60 % 0.8 % 2.2 % 

DEF Schleswig-Holstein 15 804.30 25.96 % 2.0 % 2.0 % 

DEG Thuringia 16 202.39 14.70 % 0.3 % 2.2 % 

 
1 Assumed value for Brandenburg, as all plans here have been declared invalid by the courts and therefore 
there are currently no legally designated areas. 
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DE Germany 357 

587.77 

13.56 % 0.79 % 2.0 % 

 

To link the investment decisions to land use, the average power potential 𝑃𝑃 expressed in 

MW/km2 is used. For parameter estimation and investment simulation (cf. Section 2.6), the suit-

able area from the GIS-analysis must be corrected for the area already occupied by existing wind 

turbines in the corresponding time period. For a realistic parameter estimation, the suitable area 

is scaled with the historical designated areas from (Bons, et al., 2023), resulting in 𝐴𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑. 

The area 𝐴𝑛𝑖
𝐷𝐶 =

𝐶𝑎𝑝𝑛𝑖
𝐷𝐶

𝑃𝑃
 used for wind turbines of type 𝑖 in region 𝑛 in the period relevant for the 

discrete choice model is then put in relation to the designated area 𝐴𝑛 
𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑

 to derive the 

(historical) area investment probability 𝑎𝑛𝑖 =
𝐴𝑛𝑖

𝐷𝐶

𝐴𝑛 
𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑, which is the explained variable in the 

discrete choice model.  

2.6 Simulation of future investment decisions 

Making use of the estimated parameters from the empirical analysis, future investment decisions 

on a regional level may be determined if remuneration rules are fixed or capacity targets are 

preset. Based on a predetermined compensation, the NPV for each turbine type and region may 

be calculated according to equation (10). In a next step, the predicted investment probability 𝑃𝑛𝑖 

is determined as a product of the probability of choosing a nest 𝑃𝑛𝑘 and the probability of choos-

ing the specific alternative given the choice of the nest 𝑃𝑛𝑖|𝐵𝑘
 (cf. Section 2.3): 

𝑃𝑛𝑖 =
𝑒

𝛼𝑖+𝛽⋅ln (𝑁𝑃𝑉𝑛𝑖)
𝜆

∑ 𝑒
𝛼𝑗+𝛽⋅ln (𝑁𝑃𝑉𝑛𝑗)

𝜆𝑗∈𝐵𝑘

⋅
𝑒𝛾+𝜆⋅𝐼𝑛𝑘

1 + 𝑒𝛾+𝜆⋅𝐼𝑛𝑘
 (11) 

The total installed capacity 𝐼𝐶 may then be computed based on the designated area for wind 

energy in the simulation year 𝐴𝑛
𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑,𝑠𝑖𝑚, the power potential 𝑃𝑃 and the choice probabilities 

𝑃𝑛𝑖:  

𝐼𝐶 = ∑  

𝑖

∑ 𝐴𝑛
𝑑𝑒𝑠𝑖𝑔𝑛𝑎𝑡𝑒𝑑,𝑠𝑖𝑚

⋅ 𝑃𝑃 ⋅ 𝑃𝑛𝑖

𝑛

+ 𝐶𝑎𝑝𝑛𝑖
𝑠𝑖𝑚 (12) 

The total capacity is thereby adjusted by 𝐶𝑎𝑝𝑛𝑖
𝑠𝑖𝑚, the capacities of the current fleet that are still 

active in the simulation year. To determine the designated area in the simulation year, the iden-

tified suitable area is scaled based on the federal states’ contribution targets (BMWK, 2022). 
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In case a target capacity is given for the simulation year, an iterative approach may be used (cf. 

Figure 4). If the installed capacity is lower than the target capacity, the remuneration (initial price) 

is increased and vice versa until the target is fulfilled.  

 

Figure 4: Flowchart of the iterative approach for matching a capacity target in the simulation year 
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3 Application and results 

In this section, an exemplary application of the novel methodology to wind energy investments 

in Germany is presented. The used data are discussed in Section 3.1. Section 3.2 outlines several 

general settings that are crucial for further calculations in the nested logit framework. The results 

of the model application are presented in two parts. Section 3.3 focuses on the estimation of the 

parameters, including a discussion of the key parameters in terms of their interpretation and sig-

nificance in decision-making. Section 3.4 delves into investment decisions based on the calcu-

lated parameters. Results for various simulation years are presented, accompanied by visualiza-

tions illustrating trends over time. 

3.1 Data 

The dataset on the current German onshore wind power fleet originates from the 

Marktstammdatenregister, the official register published by the German Federal Network Agency 

(BNetzA, 2022). Data from Thewindpower.net are used for power curves and turbine data 

(thewindpower, 2022). The turbines are aggregated to 8 turbine types based on (Pöstges & Weber, 

2023). For each type, hub height, rotor diameter, net power, and CAPEX are given in Table 3. 

For future years, we follow (IRENA, 2024) and (Kost, et al., 2024) and assume an annual cost 

reduction by approximately 2.4 %, resulting in cost reductions of 17.5 % b 2030, 26.9 % in 2035 

and 35.2 % in 2040. Regarding, the targets for areas and future capacities of installed onshore 

wind energy, the official targets set by the German federal government (BMWK, 2022). 

Table 3: Technology data of representative onshore wind turbines (Pöstges & Weber, 2023) 

Turbine Type Hub height [m] Rotor diameter [m] Net power [kW] CAPEX [EUR/kW] 

1 72 53 800 1,047 

2 139 121 2530 1,571 

3 109 92 2350 1,155 

4 142 114 3170 1,290 

5 110 109 3000 1,169 

6 150 140 4000 1,573 

7 120 124 4500 1,363 

8 120 140 6000 1,483 
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For weather information, we use ERA5 reanalysis data from the ECMWF Copernicus Store 

(Hersbach, et al., 2023), where wind speed data are given for 10 and 100 meters above the 

ground.  

Data on exclusion areas due to settlement, forestation, traffic, water, airports, and slope gradient 

are provided by the Copernicus Land Monitoring Service (European Union, 2018) and the WMS 

Digitales Geländemodell (BKG, 2023). The EU has databases of nature conservation areas – in 

particular, Nationally designated areas (European Union, 2022). As regions, NUTS 3-regions are 

considered, defined after the European classification of territorial units for statistics (EU, 2015). 

In Germany, they correspond to the districts and district-free cities. 

3.2 General settings 

To apply the discrete choice framework to wind power plant investment decisions in Germany, 

certain parameters and assumptions must be established initially. 

For the empirical application, the base year 2022 is chosen and the considered simulation years 

are 2030, 2035, and 2040 – years with legally fixed capacity targets 𝐶𝑎𝑝𝑡𝑎𝑟𝑔𝑒𝑡 (cf. § 4 EEG 2023 

(BMWK, 2023)). For the parameter estimation of the discrete choice model, investments from the 

ten preceding years are considered, i.e. from 2013 to 2022, to cover a sufficient number of in-

stallations. Over these years, there has been some variation in the remuneration levels, yet to 

assess the site-specific economic viability, a fixed remuneration level 𝑟𝑒𝑚 of 0.08 EUR/kWh is 

used, along with a constant interest rate 𝑟 of 3.5 %. The turbine lifetime 𝐿𝑇 is set to 22 years 

(Pape & Geiger, 2023) (Schmid, et al., 2021) and for the power potential 𝑃𝑃, the capacity that 

can be installed in a certain area, a value of 22.5 MW/km2 is assumed based on (Matthes, et al., 

2018) (discussed in Section 4). In the calculations for future investment decisions, we assume 

technological progress, which leads to an increase in power potential to 25 MW/km². 

The weather year 2021 is used to simulate wind speed time series for further modeling. Results 

for a collection of several weather years yield similar outcomes, and corresponding parameters 

and target remuneration levels are provided in Appendix A. For the base year, the input dataset 

of turbines is initiated, with the capacities 𝐶𝑎𝑝𝑏𝑎𝑠𝑒 containing all turbines installed in the preced-

ing 𝐿𝑇 years. The capacities of the current fleet that are still active in the simulation year 𝐶𝑎𝑝𝑠𝑖𝑚 

are the capacities installed in the 𝐿𝑇 years preceding the simulation year.  

3.3 Parameter estimates 

We implemented the introduced model with the corresponding data and parameters in MATLAB. 

The log-likelihood function is maximized using the quasi-Newton algorithm. The results of the 

parameter estimation regarding existing wind turbines are presented in Table 4. Since turbine 

type 4 is the most common turbine, it is designated as the reference type. For the other seven 
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turbine types, the idiosyncratic preferences compared to the reference type are indicated by the 

parameters 𝛼𝑖 given in the table. 

Table 4: Parameter estimation results 

Parameter Estimate Standard Error t Statistic  

𝜷 4.4392 1.1950 3.7149 *** 

𝜸 -79.0614 21.287 -3.7141 *** 

𝝀 0.9521 0.2534 3.7567 *** 

𝜶𝟏 1.1350 0.4670 2.4304 * 

𝜶𝟐 -0.5687 0.2395 -2.3744 * 

𝜶𝟑 0.6747 0.2558 2.6380 ** 

𝜶𝟓 -0.5082 0.2812 -1.8076  

𝜶𝟔 -0.7927 0.3122 -2.5394 ** 

𝜶𝟕 -0.3829 0.4290 -0.8925  

𝜶𝟖 -0.4597 0.6425 -0.7155  

R2 0.1896 

* p<0.05, ** p<0.01, *** p<0.001  

It should be noted that, e.g., a negative 𝛼8 indicates that the large, high-capacity type 8 was often 

not chosen despite a high NPV, which may attributed to height restrictions in land use regulations 

or expected disamenity costs (Ruhnau, et al., 2022). 𝛽 describes the utility increase per unit in-

crease in the explanatory variable ln(NPV) at the lower level. The parameter 𝛾 describes a cor-

rection term for the inclusive value 𝐼𝑛𝑘 in the upper nest. A strongly negative value indicates that 

the aggregated utility 𝐼𝑛𝑘 (cf. Eq. (5)) derived for the investment alternatives in the lower nest has 

to be adjusted downwards when comparing it with the (zero) utility of the non-investment alter-

native (cf. Eq. (11)). All parameters, apart from three 𝛼𝑖, are significantly different from zero at 

least at the 5 % level. Yet the independence measure 𝜆𝑘 of the unobservable utility is not signif-

icantly different from 1, indicating that the error terms in the lower nest are also independent of 

those of the zero-investment alternative. 

Following (Train, 2009), we report as a measure of determination R² a log-likelihood ratio, de-

fined as one minus the log-likelihood value at the estimated parameters divided by the log-like-

lihood value at zero parameters. Unlike the conventional R² used in linear models, it has no 
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intuitive interpretation for values between the extremes of zero and one. The value of 0.1896 

indicates clearly that the model is better than a null model. 

3.4 Simulation results 

Inserting the obtained parameters into the equations indicated in Section 2.6, the total installed 

wind power capacity for every region and every turbine type in the area under consideration can 

be computed. Given the prespecified target capacities (cf. Table 5), the remuneration level is 

iteratively adjusted until these target capacities are reached (cf. Figure 4). The results for the dif-

ferent simulation years are given in Table 5. For the targets of 115 (until 2030), 157 (2035), and 

160 GW (2040), compensation levels of 6.09, 7.21, and 8.10 ct/kWh, respectively, are necessary.  

Table 5: Capacities and compensations for simulation years 

 2030 2035 2040 

Total target installed capacity 115 GW 157 GW 160 GW 

Needed compensation for wind en-

ergy plants 

6.09 ct/kWh 7.21 ct/kWh 8.10 ct/kWh 

 

Figure 5 shows the total installed capacities per turbine type for the simulation year 2040, with 

Type 4 having the highest share, followed by turbine types 3 and 2. Hence turbines with a ca-

pacity of about 3 MW are the most frequently installed. The distribution pattern for the other 

target years is rather similar. 

 

Figure 5: Allocation of installed capacity in the target year 2040 by turbine type 
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Figure 6 depicts the spatial distribution of the installed capacities per NUTS 3 region in relation 

to the total area for the base year 2022 and the simulation years 2030, 2035, and 2040. Regions 

with favorable wind conditions are predominantly situated in the Northern half of the country. 

The dark blue shading indicates that the expansion of wind energy will continue to be concen-

trated in these regions according to our model. Densely populated and hilly areas contribute little 

to the ambitious wind energy expansion. Compared to the base year figures, development in the 

south yet also accelerates. Over time, the number of regions without installed capacity decreases. 

Table 6Fehler! Verweisquelle konnte nicht gefunden werden. lists the top 10 regions regarding  

the toal capacity installed in 2040.. The capacity to add indicates the additional capacity that 

needs to be installed considering a lifespan of 22 years for the turbines in the base year fleet. The 

exploitation probability of suitable areas for wind energy utilization is determined by dividing the 

absolute installed capacity by the power potential applied to the suitable area. Results regarding  

the exploitation probability are illustrated in detail in Figure 7.  

Table 6: Top 10 regions regarding installed capacity in 2040 

nutsID city/ district name Total 
area 

[km²] 

Capacity 
total 

[MW] 

Capacity to 
add [MW] 

Capacity per 
area 

[MW/km2] 

Capacity per 
available 

area 
[MW/km2] 

Exploi-
tation 

proba-
bility 

DE40I Uckermark                                                              3077 3164 2739 1.03 4.13 0.18 

DEF07 Nordfriesland                                                          2083 2994 2662 1.44 5.47 0.24 

DE80O Ludwigslust-Parchim                                                    4768 2914 2741 0.61 2.59 0.12 

DEA34 Borken                                                                 1423 2709 2553 1.90 11.50 0.51 

DE949 Emsland                                                                2884 2420 2085 0.84 1.77 0.08 

DEF05 Dithmarschen                                                           1442 2402 2229 1.67 5.43 0.24 

DE80J Mecklenburgische Seen-
platte                                            

5496 2390 2362 0.43 2.52 0.11 

DEA37 Steinfurt                                                              1796 2082 1974 1.16 11.44 0.51 

DEE0D Stendal                                                                2436 1855 1764 0.76 3.16 0.14 

DE40D Ostprignitz-Ruppin                                                     2526 1822 1820 0.72 3.49 0.16 
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Figure 6: Capacities per total area [kW/km²] per NUTS3 region for the base year, 2030, 2035 and 2040 
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Figure 7: Usage probability of suitable areas per NTUS3 region for the base year, 2030, 2035 and 2040 

In Figure 7, regions are colored in dark green if suitable areas are almost fully utilized – either 

since suitable areas are rare (e.g. in the large cities like Berlin or in the Rhine and Ruhr area in 

the west) or since a significant portion of the suitable area has already been developed. This 

seems to be notably the case in important parts of Bavaria (southeast of Germany) as of today – 

yet this at least partly due to particularly severe state-level regulations regarding minimum dis-

tances from wind turbines to settlements.  

In Northern and Central Germany, a substantial increase in the utilization probability is observ-

able over the years, but due to high area potentials, the coloration remains in the light green 

range. In some regions, there is even a decline in relative usage over the course of the years as 
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existing facilities are decommissioned and capacities are relocated based on economic consid-

erations in the context of the incentives set by German regulations.  

4 Discussion 

The simulation results heavily rely on the area analyses, where determining suitable areas using 

a consistent method and data is particularly challenging. Spatial planning documents at local and 

regional levels are neither uniformly available nor based on a comparable time horizon. (Bons, 

et al., 2023) investigate the availability and usability of designated areas at the municipal and 

regional planning levels, along with the requirements arising from the planned wind energy ex-

pansion. Their findings indicate that legally binding areas, including current proposals and re-

powering potential, offer less than 30 GW of capacity potential until 2030, which is insufficient 

to meet the targeted expansion in the upcoming years. They collected and processed data from 

regional planning and municipal development plans but found that ensuring consistent data qual-

ity and completeness is challenging due to the absence of central registries. 

Given these challenges, we employed a methodology that enables consistent area determination 

across the entire country using publicly available data. One backdrop of the approach is that this 

occasionally results in wind energy facilities installed in identified non-feasible areas in the base 

year – especially in urban areas. Furthermore, this so-called white area analysis also yields dif-

ferent results depending on the degree of consideration of nature conservation areas and state-

specific buffer zone rules. Many studies using a similar method determine significantly more than 

2 % of the federal area as non-exclusion areas. The GIS analysis conducted for this paper yields 

a potential area of 13.5 % of the federal land area; (Lütkehus, et al., 2013) calculate 13.8 % and 

(Pape & Geiger, 2023) 19.7 %. In order to replicate the actual situation for the wind investors, 

these areas are scaled to the available area both in the estimation (cf. Section 2.3) and the simu-

lation (cf. Section 2.6) phases based on existing evidence regarding available areas.  

We implement different land availabilities in the parameter estimation and investment simulation 

phases to consider the evolving regulatory landscape. This allows for more tailored predictions 

for investors taking into account the development of specific areas. While historical analysis pro-

vides a useful basis for extrapolating future decisions, it's essential to acknowledge the broader 

factors that influence new construction dynamics. These include manufacturers' production ca-

pacities, project planners' capabilities, current incentive structures, and autoregressive trends. 

Moreover, a landowner's decision to proceed with a wind power project is contingent upon the 

land being officially designated as a suitable wind site. 
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Nested Logit models offer advantages over multinomial models by allowing for the modeling of 

correlations among similar decision alternatives and accommodating hierarchical decision-mak-

ing processes. This flexibility leads to better-fitting models, especially when decisions are not 

independent. In contrast to many conventional models that use simple distribution factors, the 

economic benefits from the investors' perspective are considered in the proposed methodology. 

The parameter describing the power potential per area represents one significant lever regarding 

wind energy yields and land use. We use here a uniform value of 22.5 MW/km2, which is a 

simplifying generalization based on (Matthes, et al., 2018), where a land use of 45 m2/kW up-

wards is expected. Their assumed land usage of 8318 km2 for 178 GW in 2050 and an expected 

output of 390 TWh with 2200 FLH lead to a very similar average power potential. (LANUV NRW, 

2012) points in a similar direction by estimating 10 ha for power plants below 2000 kW and 15 

ha for power plants above 2000 kW. It is also noteworthy that energy yields strongly vary between 

locations, given they depend on the wind speed distribution. By contrast, the power potential is 

primarily driven by the distances between the turbines as well as the turbine type. Given techno-

logical advancements and an accelerated wind energy expansion, we anticipate a future power 

potential of 25 MW/km² (cf. Section 3.2).  

5 Conclusion 

For planning purposes, notably in grid planning, future investments in onshore wind capacities 

must be estimated at a fine regional granularity. The main factors in the location choice for wind 

power plants are the expected revenues, depending on prevailing wind conditions, and the avail-

able area in the considered region. The allocation of future wind power capacities is significantly 

influenced by economic considerations and spatial restrictions. In our novel approach, the eco-

nomic rationality behind investment decisions is captured by calculating the NPV of potential 

sites, considering investment costs and expected yields derived from wind speed data and power 

curves. Suitable sites are determined with a GIS-based area analysis, where infeasible areas like 

settlement, infrastructure, forest, airport, and nature conservation areas, as well as corresponding 

buffer zones, are excluded. Suitable land areas are identified at the NUTS 3 level in the present 

study and are scaled according to federal states' legally required contribution targets. Existing 

wind power plants are thereby accounted for based on published registry data. 

The investment decisions for wind power plants are then modeled using a nested logit model. 

The hierarchical structure of such models is used to determine (i) the probability of turbine in-

stallations in a particular region at the first level and (ii) the probability of installing a specific 

turbine type at the second level. The model application encompasses a parameter estimation 

phase and an investment simulation phase. Based on observed investments of the last 10 years, 

the impact of key drivers like profitability or turbine type on decisions at the upper and the lower 
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level of nested logit models are estimated empirically. For this purpose, a maximum likelihood 

estimation is performed.  

The expected investment decisions for future simulation years are then determined in an iterative 

process. The relative investment probabilities for each region are multiplied by the available re-

maining area and the power potential before being added to the existing plant capacities. Each 

iteration adjusts the offered remuneration rate, resulting in changed regional capacities. This pro-

cess is repeated until the national expansion target is met.  

In an application for the German onshore wind energy expansion targets, the average compen-

sation for the required 115 GW in 2030 is found to be 6.1 ct/kWh. The 160 GW target for 2040 

results in a compensation of 8.1 ct/kWh. Due to the prevailing wind conditions, favorable sites 

are especially located in the northern part of Germany, while urban and hilly areas are found to 

be less attractive for investments. 

This study concludes that a combination of economic efficiency considerations and spatial re-

strictions critically shapes Germany's future spatial distribution of onshore wind energy capacity. 

By accounting for historical expansion trends and hierarchical decision-making processes, the 

nested logit model offers a powerful tool for understanding and predicting regional and turbine-

type selection probabilities. These insights are essential for policymakers and investors to strate-

gically plan and implement wind energy projects, contributing to the achievement of Germany's 

renewable energy targets. 
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Appendix A 

To assess the robustness of the empirical parameter estimates and the simulation results presented 

in Section 3, we use weather data from the five years preceding the base year 2022. Hourly wind 

speed data for each region were extracted and converted into duration curves for each year, 

which were then averaged. This approach ensures a broader representation of longer-term char-

acteristics of wind availability and variability. Importantly, simply averaging the wind speed cor-

responding to identical timestamps without prior sorting would yield unrealistic results since such 

an approach would effectively smooth out periods of high and low wind speeds, misrepresenting 

the true distribution of wind intensity over time. The results given in Table 7 demonstrate that the 

derived parameters are consistent with those obtained in the application Section 3. In the simu-

lations, the obtained target remunerations are 6.23 ct/kWh for 2030, 7.20 ct/kWh for 2035, and 

7.99 ct/kWh for 2040. These values closely align with the previously derived estimates, confirm-

ing the robustness of the developed methodology. 

Table 7: Parameter estimation results based on five years of weather data 

Parameter Estimate Standard Error t Statistic  

𝜷 5.3365 0.8203 6.5051 *** 

𝜸 -95.4181 14.6575 -6.5098 *** 

𝝀 1.0137 0.2211 4.5858 *** 

𝜶𝟏 0.8467 0.3807 2.2239 * 

𝜶𝟐 -0.4007 0.2581 -1.5525  

𝜶𝟑 0.5289 0.2156 2.4535 * 

𝜶𝟓 -0.8228 0.3085 -2.6668 ** 

𝜶𝟔 -0.6629 0.3295 -2.0120 * 

𝜶𝟕 -0.4988 0.4956 -1.0064  

𝜶𝟖 -0.4826 0.7418 -0.6506  

R2 0.1774 

* p<0.05, ** p<0.01, *** p<0.001  
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