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Abstract
In this paper we deal with parametric estimation of the copula in the case of missing
data. The data items with the same pattern of complete and missing data are combined
into a subset. This approach corresponds to the MCAR model for missing data. We
construct a specific Cramér–von Mises statistic as a sum of such statistics for the
several missing data patterns. The minimization of the statistic gives the estimators
for the parameters. We prove asymptotic normality of the parameter estimators and of
the Cramér–von Mises statistic.

Keywords Copula · Cramér–von Mises statistic · Minimum distance estimators ·
Missing data

1 Introduction

When dealing with data from applications, especially from ecology or reliability, one
can make the observation that missing values occur rather often. Unfortunately, there
is no simple rule for handling missing data in the context of multivariate distribu-
tions. General strategies for statistical inference in the presence of missing data are
discussed in the popular book by Little and Rubin (2019), see also Graham (2009). In
the maximum-likelihood methodology, the EM-algorithm is the method of choice and
provides good results inmany cases.Many approaches dealing withmissing data work
by replacing missing data values with plausible values. These imputation methods are
discussed in a survey paper by Van Buuren et al. (2006). Imputation is typically based
on the idea of calculating the missing components by using its conditional distribution
given the observed components.

As is well known, the copula model together with the (one-dimensional) marginal
distribution functions define the multivariate distribution functions. A vast number
of papers deal with the estimation of one-dimensional distributions. In this paper,
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3682 E. Liebscher

the focus is on the parametric estimation of the copula. Here we do not consider
imputation methods. We regard the data as given in a special structure, where the
set of multivariate data is divided into a certain number of subsets of data with the
same pattern of missingness. This approach corresponds to theMCARmodel (missing
completely at randommodel) in which the missingness of data items is independent of
the data values. The several models for datasets including missing data are explained
in Van Buuren et al. (2006) and Little and Rubin (2019), among others. For the data
structure under consideration, an adapted Cramér–von Mises statistic is constructed
which serves as an approximation measure and describes the discrepancy between
the model and the data. Each pattern of missing data leads to a certain Cramér–von
Mises statistic. The final statistic is then established as a linear combination of these
partial statistics. The Cramér–von Mises statistic has numerical advantages over the
Kullback–Leibler statistic (maximum-likelihood estimation) since the computation of
the density is not required. The aim of the paper is to prove theorems on the almost
sure convergence and on the asymptotic normality of theminimum distance estimators
for the copula.

Because of the complexity of the multivariate distribution, we cannot expect that
the underlying distribution of the sample vectors coincides with the hypothesis distri-
bution. Thus, it makes sense to assume that the underlying copula does not belong to
the parametric family under consideration. The reader finds an extensive discussion
about goodness-of-approximation in the one-dimensional case in Liebscher (2014).
Considering approximate estimators is another aspect of this paper. Since as a rule
there is no explicit formula for the estimators, we have to evaluate the estimator for the
copula parameters by a numerical algorithm and receive the estimator as a solution of
an optimization problem only at a certain (small) error. These approximate estimators
are the subject of the considerations in Sect. 5.

Concerning the estimation of the parameters of the copula, two types of estimators
are studied mostly in the literature: maximum pseudo-likelihood estimators and mini-
mum distance estimators. In our approach, minimum distance estimators on the basis
of Cramér–von Mises divergence are the appropriate choice. In the case of complete
data, minimum distance estimators for the parameters of copulas were examined in the
papers by Tsukahara (2005) and by the author (2009). The asymptotic behaviour of
likelihood estimators was investigated in papers by Genest and Rivest (1993), Genest
et al. (1995), Chen and Fan (2005), and Hofert et al. (2012), among others. Joe (2005)
published results on the asymptotic behaviour of two-stage estimation procedures. An
application of the EM-algorithm to fitting Gaussian copulas in the presence of missing
data can be found in the paper by Kertel and Pauly (2022). Rather few papers deal
with estimation of copula parameters in the context of missing data. In the paper by Di
Lascio et al. (2015), the authors studied the imputation method for parametric copula
estimation. Hamori et al. (2019) considered the estimation of copula parameters in the
missing at random model using only complete cases to estimate the actual parameter.
In Wang et al. (2014), the estimation of the parameter of Gaussian copulas was exam-
ined under the missing completely at random assumption applying a special method
tailored only for Gaussian copulas.

The paper is organized as follows: In Sect. 2 we introduce the data structure and the
distribution functions of the subsets. The following Sect. 3 introduces the empirical
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Fitting copulas in the case of missing data 3683

marginal distribution functions appropriate for the data structure and provides a law
of iterated logarithm for them. The Cramér–von Mises divergence and its estimator
are considered in Sect. 4. Section5 provides the definition of approximate minimum
distance estimators in our context. Moreover, we give the results on almost sure con-
vergence and on asymptotic normality of the estimators of the copula parameters. The
problem of goodness of approximation is discussed there, too. Section6 contains a
small simulation study. Section7 provides the computational results of a data example.
The asymptotic normality result of the Cramér–von Mises divergence can be found in
Sect. 8. The proofs of the results are located in Sect. 9.

2 Data structure

Let X = (X (1), . . . , X (d))T be a d-dimensional random vector representing the data
without missing values. In the case of a complete observation, we denote the joint dis-
tribution function by H and the marginal distribution functions of X ( j) by F1, . . . , Fd .
Assume that Fj is continuous ( j = 1, . . . , d). According to Sklar’s theorem (Sklar
1959), we have

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for xi ∈ R,

where C : [0, 1]d → [0, 1] is the uniquely determined d-dimensional copula. The
reader can find the theory of copulas in the popular monographs by Joe (1997) and by
Nelsen (2006).

Next we describe the structure of the data, including missing values. The sample
breaks down into m subsets of data items with the same pattern of missing data,
where m does not depend on the sample size n. Every pattern is modeled as a binary
nonrandom vector b = (b1, . . . , bd)T ∈ {0, 1}d , called the missing indicator vector,
which has at least two components equal to 1. b j = 1 means that the j-th component
is observed whereas b j = 0 means that the j-th component is missing. Now let

b(1), . . . ,b(m) ∈ {0, 1}d be the pattern vectors of the data subsets. Jμ = {l : b(μ)
l = 1}

denotes the set of numbers of observed non-missing components. To give an example,
the pattern b(μ) = (0, 1, 0, 1)T of data subset μ means that the data items of this
subset have a non-missing second component and a non-missing fourth one, whereas
components 1 and 3 are missing (Jμ = {2, 4}). Let 1 = (1, . . . , 1)T ∈ R

d .
nμ = nμ(n) is the non-randomnumber of sample items in the subsetμ. In this paper

the crucial assumption is that for all data subsets, the distribution function of the data
items coincides with the corresponding multivariate marginal distribution functions
resulting from H . More precisely, we assume that H is the underlying distribution
function of the data, and therefore, the distribution function of data subsetμ is given by

Hμ(y j , j ∈ Jμ) = H(ȳ) for ȳ ∈ R
d , (1)

where ȳl = yl for l ∈ Jμ, and ȳl = ∞ for l /∈ Jμ. (y j , j ∈ Jμ) denotes a vector of
components of y ∈ R

d with ascending indices from Jμ. The data structure and the
subset distribution functions are then as follows:
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3684 E. Liebscher

Table 1 Structure of the data

Subset Data Pattern Distribution fcn.

1 Y11, . . . , Y1n1 ∈ R
d b(1) = 1 H1 = H

complete data

2 Y21, . . . , Y2n2 ∈ R
d2 b(2) H2

…

m Ym1, . . . , Ymnm ∈ R
dm b(m) Hm

dμ is the dimension of the data in the subset μ. Let C be the copula of distribution
function H . The copulas of the subsets are determined by

Cμ(u j , j ∈ Jμ) = C(u � b(μ) + 1 − b(μ)) (μ = 1, . . . ,m)

for u = (u1, . . . , ud)T ∈ [0, 1]d , where a � b = diag(a) b is the Hadamard product
of vectors a,b ∈ R

d . Define F̄(x) = (F1(x1), . . . , Fd(xd))T for x = (x1, . . . , xd)T .
Then we have

Hμ(y j , j ∈ Jμ) = C(F̄(y) � b(μ) + 1 − b(μ))

= Cμ(Fj (y j ), j ∈ Jμ) (μ = 1, . . . ,m). (2)

In the case b(μ) ≥ b(ν), i.e. b(μ)
j ≥ b(ν)

j for j = 1, . . . , d, the function ψνμ selects
the components of subset μ, which are also present in subset ν: ψνμ(y j , j ∈ Jμ) =
(y j , j ∈ Jν). The function ψ̄lμ selects the component l of the corresponding full data
vector from data of subset μ: ψ̄lμ(y j , j ∈ Jμ) = yl .

The usage of the missing indicators and the sets Jμ is shown in an example.

Example We consider d = 5 and b(μ) = (1, 0, 1, 1, 0)T ⇒

Cμ(u1, u3, u4) = C(u1, 1, u3, u4, 1).

Further let ν = 2, μ = 3, J2 = {2, 4}, J3 = {2, 3, 4}. Then ψ23((y2, y3, y4)T ) =
(y2, y4)T , ψ̄43((y2, y3, y4)T ) = y4.

The requirements on the data following the MCAR model for missing data are
summarized in Assumption AMCAR:

Assumption AMCAR : The data structure of Table 1 is given. Moreover (1) is valid
where Jμ = {l : b(μ)

l = 1}.

This data structure is present also in the situation, wherem samples having the same
underlying distribution are given. These samples may originate from several sources.
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Fitting copulas in the case of missing data 3685

3 Empirical distribution functions

In this section we consider the empirical marginal distribution functions and their
convergence properties. Let ñ j be the number of data items where the j-th component
is present:

ñ j =
∑

μ:1≤μ≤m, j∈Jμ

nμ.

We introduce n̄ν to be the number of data items where at least the non-missing com-
ponents of data subset ν are present

n̄ν =
∑

μ:1≤μ≤m,b(μ)≥b(ν)

nμ

The inequality b(μ) ≥ b(ν) means that data subset μ has at least the non-missing
components of data subset ν.

Notice that ψ̄ jμ(Yμi ) and ψνμ(Yμi ) have the distribution functions Fj and Hν ,
respectively. Next we consider estimators for the marginal distributions and the joint
distribution functions:

F̂n j (z) = 1

ñ j

∑

μ:1≤μ≤m, j∈Jμ

nμ∑

i=1

1
{
ψ̄ jμ(Yμi ) ≤ z

}
,

Ĥnν(y) = 1

n̄ν

∑

μ:1≤μ≤m,b(μ)≥b(ν)

nμ∑

i=1

1
{
ψνμ(Yμi ) ≤ y

}

for z ∈ R, y ∈ R
dν , ν = 1, . . . ,m. We pose the following assumption on nμ.

Assumption An : For μ = 1, . . . ,m,

lim
n→∞

nμ(n)

n
= γμ

with constants γμ ∈ (0, 1]. 	

For empirical distribution functions, the following law of iterated logarithm holds

true (cf. Kiefer 1961, for example).

Proposition 3.1 Suppose that Assumptions AMCAR and An are fulfilled.

(a) Then we have

max
j=1,...,d

sup
t∈R

∣∣Fnj (t) − Fj (t)
∣∣ = O

(√
ln ln n

n

)
a.s.

123



3686 E. Liebscher

(b) Moreover,

max
μ=1,...,m

sup
y∈Rdμ

∣∣∣Ĥnμ(y) − Hμ(y)
∣∣∣ = O

(√
ln ln n

n

)
a.s.

for n → ∞.

4 Cramér–vonMises divergence

Let F = {C(· | θ)}θ∈� be a parametric family of copulas. � ⊂ R
q is the parameter

space. In this paper we want to approximate the sample copula C by the family F .
For this purpose, we consider the Cramér–von Mises divergence as a measure for the
discrepancy between the copula C and F . Define the model copula for subset μ:

Cμ(u j , j ∈ Jμ | θ) = C(u � b(μ) + 1 − b(μ) | θ)

for u ∈ [0, 1]d , θ ∈ �,μ = 1, . . . ,m. Let F̄∗
μ(y j , j ∈ Jμ) = (Fj (y j )) j∈Jμ , and

F̌∗
nμ(y j , j ∈ Jμ) = (F̂n j (y j )) j∈Jμ . F̄

∗
μ is the vector of the marginal distribution

functions in subset μ, F̌∗
nμ is its empirical counter-part. We introduce the population

version of the divergence as

D(C, C(· | θ)) =
m∑

μ=1

∫

[0,1]dμ
(
Cμ(ū) − Cμ(ū | θ)

)2
wμ(ū) dCμ(ū)

=
m∑

μ=1

∫

R
dμ

(
Hμ(y) − Cμ(F̄∗

μ(y) | θ)
)2

wμ(F̄∗
μ(y)) dHμ(y), (3)

where Hμ is as in (2). We pose the following assumption on wμ:

Assumption AW : Assume that wμ : [0, 1]dμ → [0,+∞), μ = 1, . . . ,m are
Lipschitz-continuous weight functions for data subsets μ. 	


By assumption AW , the functions wμ are bounded. An example of such a weight
function is given by

wμ(u) = w̄μ

a + ∏dμ

j=1 u j (1 − u j )
for u ∈ R

dμ, (4)

where a, w̄μ > 0 are constants. The divergenceD is the weighted sum of the squared
discrepancies between the sample copula and the parametric model copula within the
concerning data subsets. In general, smaller values of the divergence D show a better
approximation by F . Observe that Cμ(ū) − Cμ(ū | θ) = 0 for ū ∈ B := {u : u j = 0
for at least one j , or u j = 1 for all j except one }. To put more emphasis on the fit in
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Fitting copulas in the case of missing data 3687

the boundary regions in the neighbourhood of B, the weight functions can be defined
in a suitable way similarly to (4).

The concept of a weighted divergence has already been applied by some authors.
For instance, Rodriguez and Viollaz (1995) studied the asymptotic distribution of
the weighted Cramér–von Mises divergence in the one-dimensional case. Medovikov
(2016) examined weighted Cramér–von Mises tests for independence employing the
weighted Cramér–von Mises statistic with independence copula as the model cop-
ula. We refer to the thorough discussion about weights in Medovikov’s paper where
also further references can be found. The L p-distance and the Kolmogorov–Smirnov
distance are alternatives to D, see Liebscher (2015), for example.

Next, we construct an estimator for D(C, C(· | θ)) in the situation where the data
structure is as introduced in Sect. 2:

D̂n(θ) =
m∑

μ=1

1

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ)
)2

wμ(F̌∗
nμ(Yμi )) (5)

for θ ∈ �, where Ĥnμ is defined in Sect. 3. This estimator has the advantage of being
just a sum and does not require to compute an integral. Genest et al. (2009) found
that the use of the Cramér–von Mises statistic leads to more powerful goodness-of-fit
tests in comparison to other test statistics like the Kolmogorov–Smirnov one. The next
section is devoted to the estimation of the parameter θ using the divergence (5).

5 Parameter estimation by theminimum distancemethod

Let the data structure be as in Sect. 2. Consider the family F = (C(· | θ))θ∈� of
copulas with the parameter set� ⊂ R

q . Throughout the paper, we assume thatC /∈ F .
Many authors call this case the misspecification one. In our opinion, this term is not
appropriate for the situation here. If we consider multivariate data, then typically, C
does not belong to any parametric family. In this section the aim is to estimate the
parameter θ0 which gives the best approximation for the copula in the case of a unique
minimizer of D defined in (3):

θ0 = argmin
θ∈�

D(C, C(· | θ)),

D(C, C(· | θ)) as in the previous section. It should be highlighted that in general,
θ0 depends on the choice of the discrepancy measure. There is no “true parameter”.
Considering D(C, C(· | θ)), θ0 depends on the weight functions wμ, and these func-
tions should be chosen prior to the analysis. In the case of constant weight functions,
it seems to be reasonable to choose the weights wμ such that the summands in (3) for
the estimator of θ0 are roughly equal.

The estimator θ̂n is referred to as an approximate minimum distance estimator
(AMDE) if

D̂n(θ̂n) ≤ min
θ∈�

D̂n(θ) + εn
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3688 E. Liebscher

holds true (D̂n as in the previous section), where {εn} is a sequence of random variables
with εn → 0 a.s.Note that θ̂n is an approximate minimizer of θ 
→ D̂n(θ). We refer to
Liebscher (2009), where the estimator was introduced. In the case of unique θ0, θ̂n is an
estimator for θ0. Tsukahara (2005) examined properties of a similar (non-approximate)
minimum distance estimator.

Let ‖ · ‖ be the Euclidean norm, and d(x, A) = inf y∈A ‖x − y‖ for x ∈ R
q and

subsets A ⊂ R
q . The following theorem provides the result about the consistency of

the AMDE including the case of sets of minimizers of D.

Theorem 5.1 Assume that Assumptions AMCAR, An and AW are satisfied. Let θ 
→
C(u | θ)) be continuous on � for every u ∈ [0, 1]d . Suppose that � is compact.

(a) Then

lim
n→∞ d(θ̂n, �) = 0 a.s.,

where � = argminθ∈� D(C, C(· | θ)) ⊂ R
q .

(b) If in addition, the condition

D(C, C(· | θ)) > D(C, C(· | θ0)) for all θ ∈ �\{θ0} (6)

(i.e. � = {θ0}) is satisfied, then

lim
n→∞ θ̂n = θ0 a.s.

Part (a) of Theorem 5.1 gives sufficient conditions for the almost sure convergence
of AMDE θ̂n to the set of minimizers of D w.r.t. θ whereas part b) is the ordinary
consistency result. The proof is based on a result from Lachout et al. (1994). The
assumption that � is compact is not as problematic as it seems. In many cases with
infinite�, a continuous bijective function can be used to transform the parameter onto
a finite interval. Then it can be verified that the consistency holds for the transformed
parameter, and hence for the original parameter on suitable intervals. The assumption
on compactness of � is posed to reduce the technical efforts in the proofs.

The next Theorem 5.2 states that θ̂n is asymptotically normally distributed in the
case � = {θ0} under appropriate assumptions. The following assumption on partial
derivatives of the copula is needed in this theorem.
Assumption AC : C̄k(· | θ), C̄kl(· | θ), C̃ j (u | ·), C̃ jk(u | θ) denote the partial deriva-

tives ∂
∂θk

C(· | θ), ∂2

∂θk∂θl
C(· | θ), ∂

∂u j
C(u | ·), ∂2

∂θk∂u j
C(u | θ), respectively. We assume

that these derivatives exist, and for k, l = 1, . . . , q, j = 1, . . . , d, the functions
(u, t) 
−→ C̄kl(u | t), (u, t) 
−→ C̃ jk(u | t) are continuous on [0, 1]d ×U (θ0), where
U (θ0) ⊂ � is a neighbourhood of θ0. θ0 is an interior point of�. Moreover, the partial
derivatives of wμ : [0, 1]dμ → [0,+∞) are denoted by wμl , l ∈ Jμ, and assumed to
exist and be continuous. 	


If Assumption AC is satisfied, then we use the notations

C̄◦
μk(uλ, λ ∈ Jμ | ·) = C̄k(ũμ | ·), C̄◦

μkl(uλ, λ ∈ Jμ | ·) = C̄kl(ũμ | ·),
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Fitting copulas in the case of missing data 3689

C̃◦
μ j (uλ, λ ∈ Jμ | ·) = C̃ j (ũμ | ·), C̃◦

μ jk(uλ, λ ∈ Jμ | ·) = C̃ jk(ũμ | ·)

for k, l = 1, . . . , q, j ∈ Jμ, where ũμ = u � b(μ) + 1 − b(μ),u ∈ [0, 1]d . Define
H = (Hkl)k,l=1,...,q as the Hessian matrix of θ 
−→ D(C, C(· | θ)) at θ = θ0:

Hkl = −2
m∑

μ=1

∫

R
dμ

((
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
) C̄◦

μkl(F̄
∗
μ(y) | θ0)

−C̄◦
μk(F̄

∗
μ(y) | θ0)C̄◦

μl(F̄
∗
μ(y) | θ0)

)
wμ(F̄∗

μ(y)) dHμ(y).

Now we give the theorem:

Theorem 5.2 Assume that εn = oP(n−1), and thematrixH is positive definite. Suppose
that Assumptions AC and the assumptions of Theorem 5.1b) are satisfied. Then

√
n(θ̂n − θ0)

D−→ N (0, �).

Here � = H−1�DH−1,

Zμν = (
Hμ(Yμ1) − Cμ(F̄∗

μ(Yμ1) | θ0)
) ∇θCμ(F̄∗

μ(Yμ1) | θ0)wμ(F̄∗
μ(Yμ1))

+1
(
b(ν) ≥ b(μ)

)

γ̄μ

∫

R
dμ

1
{
ψμν(Yμ1) ≤ z

} ∇θCμ(F̄∗
μ(z) | θ0)wμ(F̄∗

μ(z)) dHμ(z)

+
d∑

l=1

1

γ̃l
b(μ)
l b(ν)

l

∫

R
dμ

(
−C̃◦

μl(F̄μ(z) | θ0)∇θCμ(F̄∗
μ(z) | θ0)wμ(F̄∗

μ(z))

+ (
Hμ(z) − Cμ(F̄μ(z) | θ0)

) ·
·
(
C̃◦

μlk(F̄
∗
μ(z) | θ0)wμ(F̄∗

μ(z)) + C̄◦
μk(F̄

∗
μ(z) | θ0)wμl(F̄

∗
μ(z))

)

k=1,...,q

)

1
{
ψ̄lν(Yμ1) ≤ ψ̄lμ(z)

}
dHμ(z),

�D = 4
m∑

ν=1

γν

m∑

μ=1

m∑

μ̄=1

cov(Zμν,Zμ̄ν).

Here cov(·, ·) is the cross-covariance matrix.
In Liebscher (2009) this result was proved in the casem = 1 and for complete data.

Theorem 5.2 corrects some typos in the formula for � in the author’s 2009 paper.
Tsukahara (2005) proved consistency and asymptotic normality for his minimum dis-
tance estimator in the case where the copulaC of Xi belongs to a small neighbourhood
of a member of the parametric family. The covariance structure of the estimator θ̂n is
rather complicated.One potential approach is to estimate� by substituting distribution
functions with their empirical counterparts, and θ0 by θ̂n . In view of the sophisticated
structure of this estimator, one may use alternative techniques like bootstrap to get
approximate values for the covariances.
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3690 E. Liebscher

To compare the various fitting results, we introduce the approximation coefficient

ρ̂ = 1 − D̂n(θ̂n)

D̂0
n

,

where

D̂0
n =

m∑

μ=1

1

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − 
(F̌∗

nμ(Yμi ))
)2

wμ(F̌∗
nμ(Yμi )).

D̂0
n(θ) is the Cramér–von Mises divergence when the independence copula 
 is used

for fitting. 
 is the reference copula in the definition of ρ̂. The approximation coeffi-
cient is defined in analogy to the regression coefficient of determination and describes
the grade of improvement of the fit using modelF in comparison to the independence
copula. Obviously, we have ρ̂ ≤ 1. In the case where the independence copula is
included in the model family F , the inequality 0 ≤ ρ̂ ≤ 1 is fulfilled. Values ρ̂ close
to 1 indicate that the approximation is good. In case of models with very small depen-
dencies, the value of ρ̂ could be close to zero. Then it is recommended to use another
reference copula instead of 
.

6 A small simulation study

A simulation study should show that the estimation method studied in this paper lead
to a reasonable performance of the estimators. Here we simulated the following data
with 100,000 repetitions of it:

three-dimensional data vectors Yμ j having copula C and marginal normal distri-
butions N (1, 0.6), N (2, 0.3), N (3, 0.8), respectively. Copula C is determined by

C(u) = 0.5 · C (1)(u) + 0.5 · C (2)(u) (u ∈ R
3),

where C (1) is the Clayton (3) copula and C (2) is the Frank (2) one (for formulas, see
Nelsen (2006)).

b(1) = (1, 1, 1)T , b(2) = (1, 1, 0), n1 = n2 = n/2

Half of the data are complete and the remaining data vectors have a missing third
component. In the place of C , we considered the Frank, Clayton, Joe and Gumbel-
Hougaard copula. Since the second summand in D̂n (μ = 2) is expected to be smaller
than the first one (smaller dimension!), we chose w1 = 0.3 and w2 = 0.7. The results
are summarized in Table 2.

The values θ0 were computed using the computer algebra systemMathematica. The
results of Table 2 indicate that the optimization leads to a reasonable approximation
of copula C in the case of the considered copula families F . The approximation
becomes more precise when n increases; i.e. the average lies closer to θ0 and the
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Table 2 Simulation results (sd…standard deviation, mse…mean square error)

family F n θ0 Average SD MSE

Clayton 600 1.33492 1.3469 0.16735 0.028149

1000 1.33492 1.3420 0.12911 0.016719

2000 1.33492 1.3382 0.090843 0.0082630

Frank 600 4.08106 4.1019 0.39340 0.15520

1000 4.08106 4.0924 0.30114 0.090814

2000 4.08106 4.0878 0.21244 0.045175

Joe 600 2.20757 2.2227 0.17972 0.032527

1000 2.20757 2.2168 0.13787 0.019095

2000 2.20757 2.2119 0.097225 0.0094712

Gumbel-Hougaard 600 1.69526 1.7013 0.089772 0.0080960

1000 1.69526 1.6987 0.069151 0.0047938

2000 1.69526 1.6972 0.048827 0.0023879

Table 3 Used variables Trait Description

RCNC Carbon–nitrogen ratio of roots

LCNC Carbon–nitrogen ratio of leaves

HW Height–width ratio of plant

standard deviation is smaller. Unfortunately, comparisons with results for other data
structures are not very useful, since the divergence is constructed in accordance to the
data scheme of Sect. 2. Note that θ0 depends on the choice of the divergence. Further
computations have revealed that the summands in D̂n for the several subsets differ
only slightly when the weights w j selected as above.

7 A data example

Here we consider a dataset from the TRY plant trait database, see Kattge et al. (2020).
This dataset was already used for modelling and fitting in Liebscher et al. (2022). See
this paper for a detailed description of the dataset. Here we restrict the considerations
to three variables according to Table 2 and to 9 herb species: ‘Ac.mi’, ‘Be.pe’, ‘Ce.ja’,
‘Ga.mo’, ‘Ga.ve’, ‘Pl.la’, ‘Ra.ac’, ‘Ra.bu’, ‘Ve.ch’ (Table 3).
A first analysis of the dataset shows the various frequencies of themissing data patterns
provided in Table 4.
Two patterns are sorted out because of too few data items. Therefore, we consider
only two missing data patterns (m = 2) with equal weights wμ = 0.5. Now we want
to fit product copulas to the ecological dataset (variables RCNC, LCNC, HW). Let
C (1),C (2),C (3) be given copulas taken from parametric Archimedean copula families
like the Frank, Clayton, Gumbel families (for formulas, see Nelsen 2006). The product
copulas are defined by

123



3692 E. Liebscher

Table 4 Missing data pattern
b( j) Count

(1,0,0) 52 Not usable

(1,1,0) 4 Sorted out

(0,0,1) 14 Not usable

(1,0,1) 353

(0,1,1) 6 Sorted out

(1,1,1) 197

Table 5 Fitting results (abbreviations for copula families: C…Clayton, F…Frank, N…Nelsen #13)

Model Estimated parameters ρ̂

C(1) ∗ C(2) =C*C (4.22483,−0.250466, 0.941397, 0.640162, 0) 0.8263

C(1) ∗ C(2) =C*N (4.34463, 0.559406, 0.964540, 0.635338, 0) 0.8262

C(1) ∗ C(2) =C*F (4.33694,−0.693147, 0.959506, 0.610715, 0) 0.8240

C(1) ∗ C(2) ∗ C(3) = C ∗ C ∗ N (3.76189, 69.4387, 0.0176261, 0.857769, 0.8453

0.617536, 0, 0.25155, 0.27837, 0.36183)

C(1) ∗ C(2) ∗ C(3) = C ∗ N ∗ N (4.03917, 0.01, 28.1875, 0.847152, 0.622940, 0.8418

0, 0.762127, 0.736797, 0.584249)

C(u) = C (1)(uα1
1 , . . . , uαd

d | t1)C (2)(u1−α1
1 , . . . , u1−αd

d | t2),
in short C (1) ∗ C (2) with parameter vector (t1, t2, α1, . . . , αd)

T ,

C(u) = C (1)(uα1
1 , . . . , uαd

d | t1)C (2)(u(1−α1)β1
1 , . . . , u(1−αd )βd

d | t2)
C (3)(u(1−α1)(1−β1)

1 , . . . , u(1−αd )(1−βd )
d | t3), in short C (1) ∗ C (2) ∗ C (3)

with parameter vector (t1, t2, t3, α1, . . . , αd , β1, . . . , βd)
T .

In these formulas t j is the parameter of C ( j), and α j , β j ∈ [0, 1]. Product copulas
were studied in Liebscher (2008) in detail. Table 5 summarizes the fitting results.

From Table 5 and further computational results, we see that the approximation is
fairly good for model C*F in the case of the product of 2 copulas, and for model
C*N*N in the case of the product of 3 copulas. In the latter case, a slightly better
approximation coefficient is obtained in comparison to the product of 2 copulas.

8 Convergence of the CvM-divergence

In this section we give the theorem on asymptotic normality of the CvM-divergence
D̂n(θ̂n).

Theorem 8.1 Assume that the assumptions of Theorem 5.2 are satisfied. Then

√
n(D̂n(θ̂n) − D(C, C(· | θ0))

D−→ N (0, �0).
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The formula for �0 is given in the proof.

In the case m = 1 and for complete data, this theorem was already proven in
Liebscher (2015). Theorem 8.1 can be used to construct tests about the divergence
D(C, C(· | θ)). We refer to the discussion in the author’s paper (2015).

9 Proofs

9.1 Proof of Theorem 5.1

Let �n : � → R be a random function, and θ̂n be an estimator satisfying

�n(θ̂n) ≤ min
θ∈�

�n(θ) + εn .

Here {εn} is a sequence of random variables with εn → 0 a.s. Theorem 2.2 of the
paper Lachout et al. (2005) leads to the following proposition.

Proposition 9.1 Assume that � is compact, and limn→∞ supt∈� |�n(t) − �(t)| = 0
a.s. holds for a continuous function �.

(a) Then

lim
n→∞ d(θ̂n, �) = 0 a.s.,

where � = argmint∈��(t) ⊂ R
q , d(·, ·) as above.

(b) Moreover, if in addition, �(θ) > �(θ0) holds for all θ ∈ �\{θ0}, then

lim
n→∞ θ̂n = θ0 a.s.

Let �n(θ) = D̂n(θ) and �(θ) = D(C, C(· | θ)). In this section, the aim is to apply
Proposition 9.1 in order to prove the strong consistency result for θ̂n . The following
lemma justifies the strong uniform consistency assumption in Proposition 9.1.

Lemma 9.2 Assume that assumptions of Theorem 5.1 are fulfilled. Then

lim
n→∞ sup

θ∈�

∣∣D̂n(θ) − D(C, C(· | θ))
∣∣ = 0 a.s.

Proof Notice that
∣∣∣a2 − b2

∣∣∣ ≤ 2 |a − b| for a, b ∈ [0, 1].

Utilizing the Lipschitz continuity of copulas with Lipschitz constant 1 and the triangle
inequality, we obtain

sup
θ∈�

∣∣D̂n(θ) − D(C, C(· | θ))
∣∣
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= sup
θ∈�

∣∣∣∣∣∣

m∑

μ=1

1

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ)
)2

wμ(F̌∗
nμ(Yμi ))

−
∫

R
dμ

(
Hμ(y) − Cμ(F̄∗

μ(y) | θ)
)2

wμ(F̄∗
μ(y)) dHμ(y)

∣∣∣∣

≤ 2m max
μ:1≤μ≤m

((
sup

y∈Rdμ

∣∣∣Ĥnμ(y) − Hμ(y)
∣∣∣ + sup

θ∈�

sup
x∈Rdμ

∣∣∣Cμ(F̌∗
nμ(x) | θ) − Cμ(F̄∗

μ(x) | θ)

∣∣∣

)

· sup
x∈[0,1]dμ

wμ(x)

)
+ Qn + 2Rn

≤ 2m max
μ:1≤μ≤m

⎛

⎝

⎛

⎝ sup
y∈Rdμ

∣∣∣Ĥnμ(y) − Hμ(y)
∣∣∣ +

d∑

j=1

sup
x∈R

∣∣Fnj (x) − Fj (x)
∣∣

⎞

⎠ · sup
x∈[0,1]dμ

wμ(x)

⎞

⎠

+Qn + 2Rn, (7)

where

Qn =
m∑

μ=1

sup
θ∈�

1

nμ

∣∣∣∣∣

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ)
)2 (

wμ(F̌∗
nμ(Yμi )) − wμ(F̄∗

μ(Yμi ))
)∣∣∣∣∣ ,

Rn =
m∑

μ=1

sup
θ∈�

∣∣∣∣∣
1

nμ

nμ∑

i=1

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ)
)2

wμ(F̄∗
μ(Yμi ))

−
∫

R
dμ

(
Hμ(y) − Cμ(F̄∗

μ(y) | θ)
)2

wμ(F̄∗
μ(y)) dHμ(y)

∣∣∣∣ .

Since θ 
−→ (
Hμ(y) − Cμ(F̄∗

μ(y) | θ)
)2

wμ(F̄∗
μ(y)) is continuous for y ∈ R

dμ by
assumptions, and the envelope functionwμ(F̄∗

μ(.)) is integrable, the strong Glivenko–
Cantelli theorem (see Van der Vaart (1998), Theorem 19.4 and Example 19.8) implies

Rn → 0 a.s.

as n → ∞. Further, by Assumption AW (L is the Lipschitz-constant of wμ),

Qn ≤
m∑

μ=1

1

nμ

nμ∑

i=1

∣∣∣wμ(F̌∗
nμ(Yμi )) − wμ(F̄∗

μ(Yμi ))

∣∣∣

≤ L
m∑

μ=1

1

nμ

nμ∑

i=1

∥∥∥F̌∗
nμ(Yμi )) − F̄∗

μ(Yμi ))

∥∥∥

≤ Lm
d∑

j=1

sup
x∈R

∣∣Fnj (x) − Fj (x)
∣∣ → 0 a.s.

An application of Proposition 3.1 leads to the lemma. 	

Proof of Theorem 5.1 Theorem 5.1 is a direct consequence of Proposition 9.1 and
Lemma 9.2. 	
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9.2 Auxiliary statements

The following lemma about the convergence of the marginal empirical distribution
functions can be stated.

Lemma 9.3

max
j=1,...,d

sup
z∈R

∣∣∣F̂jn(z) − Fj (z)
∣∣∣ = OP

(
1√
n

)

Proof The assertion follows from the Dvoretzky–Kiefer–Wolfowitz inequality, see
van der Vaart (1998, p. 268).

In the following we derive central limit theorems. First we consider

Wn =
m∑

μ=1

√
nμ

n
W (μ)

n , W (μ)
n = 1√

nμ

nμ∑

i=1

(
gμ(Yμi ) − Egμ(Yμi )

)

with functions gμ : Rdμ → R
κ and provide a central limit theorem for Wn . 	


Proposition 9.4 Suppose that assumptionAn is fulfilled, and E
∥∥gμ(Yμ1)

∥∥2 < ∞ for
μ = 1, . . . ,m. Then we have

Wn
D−→ N (0, �W ),

where �W = ∑m
μ=1 γμcov(gμ(Yμ1)), and cov(Z) is covariance matrix of random

vector Z.

Proof Applying the multivariate central limit theorem (see Serfling 1980, Theorem
1.9.1B), we obtain thatW (1)

n , . . . ,W (m)
n are asymptotically normally distributed. Since

these summands W (μ)
n of Wn are independent, we can conclude the asymptotic nor-

mality of Wn . For the covariance matrix of Wn , we obtain

1

n

m∑

μ=1

nμ∑

i=1

cov(gμ(Yμi )) = 1

n

m∑

μ=1

nμcov(gμ(Yμ1)) →
m∑

μ=1

γμcov(gμ(Yμ1))

as n → ∞. 	

Let �μν : R

dμ × R
dν → R

κ be measurable functions for μ, ν = 1, . . . ,m,

�μν = (�
(1)
μν , . . . , �

(κ)
μν )T . Next we derive a central limit theorem for the U -statistic

Un = 1

n
√
n

m∑

μ=1

nμ∑

i=1

m∑

ν=1

nν∑

j=1

(
�μν(Yμi ,Yν j ) − E�μν(Yμi ,Yν j )

)
.
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Let θμν = E�μν(Yμ1,Yν2) for all μ, ν. We introduce

h̃μν(y) = E�μν(Yμ1, y) + E�νμ(y,Yμ1) − θμν − θνμ for y ∈ R
dν ,

h̃μν = (h̃(1)
μν , . . . , h̃

(κ)
μν )T . Note that Eh̃μν(Yν1) = Eh̃νμ(Yμ1) = 0 for all μ, ν.

Proposition 9.5 provides the central limit theorem forUn . In the proof we use Hájek’s
projection principle.

Proposition 9.5 Suppose that E�
(L)
μν (Yμ1,Yν j )

2 < +∞ for all μ, ν, L = 1, . . . , κ,

j = 1, 2. We have

Un
D−→ N (0, �U ),

where �U = ∑m
ν=1 γν

∑m
μ=1

∑m
μ̄=1 γμγμ̄Eh̃μν(Yν1)h̃Tμ̄ν(Yν1).

Proof Define

U
◦
n = 1

n
√
n

m∑

μ=1

nμ∑

i=1

(
�μμ(Yμi ,Yμi ) − E�μμ(Yμi ,Yμi )

)
.

We obtain (V denotes the variance)

E

∥∥∥U
◦
n

∥∥∥
2 = n−3

κ∑

l=1

E

⎛

⎝
m∑

μ=1

nμ∑

i=1

(
�(l)

μμ(Yμi ,Yμi ) − E�(l)
μμ(Yμi ,Yμi )

)
⎞

⎠
2

≤ n−3
κ∑

l=1

m∑

μ=1

nμ∑

i=1

V

(
�(l)

μμ(Yμi ,Yμi )
)

= O(n−2).

Hence U
◦
n

P−→ 0 holds, and

Un = n−3/2
m∑

μ=1

nμ∑

i=1

m∑

ν=μ

nν∑

j=1+δνμi

(
�μν(Yμi ,Yν j ) + �νμ(Yν j ,Yμi ) − θμν − θνμ

)

+oP(1), (8)

where δμμ = 1 and δνμ = 0 for ν �= μ. Now we split the sum in (8) into two parts.
Define

Ũnμν = n−3/2
nμ∑

i=1

nν∑

j=1+δνμi

�̃μν(Yμi ,Yν j ), and

�̃μν(Yμi ,Yν j ) = �μν(Yμi ,Yν j ) + �νμ(Yν j ,Yμi ) − h̃μν(Yν j )
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−h̃νμ(Yμi ) − θμν − θνμ.

Notice that E�̃μν(Yμi ,Yν j ) = 0. Then we have

Un = Ũn + Ūn + oP(1), where (9)

Ũn =
m∑

μ=1

m∑

ν=μ

Ũnμν, Ūn = n−3/2
m∑

μ=1

nμ∑

i=1

m∑

ν=μ

nν∑

j=1+δνμi

(
h̃μν(Yν j ) + h̃νμ(Yμi )

)
.

The next step is to show Ũn = oP(1). Later we prove asymptotic normality of Ūn .
Observe that

E

(
�̃μν(Yμi ,Yν j ) | Yμi

)
= h̃νμ(Yμi ) − h̃νμ(Yμi ) = 0, E

(
�̃μν(Yμi ,Yν j )

)
= 0,

E

(
�̃μν(Yμi ,Yν j ) | Yν j

)
= h̃μν(Yν j ) − h̃μν(Yν j ) = 0, E

(
�̃μν(Yμi ,Yν j )

)
= 0

for i �= j or μ �= ν. Therefore, identity

E�̃(L)
μν (Yμi ,Yν j )�̃

(L)
μν (Yμi ,Yνl)

= E

(
E

(
�̃(L)

μν (Yμi ,Yν j ) | Yμi

)
E

(
�̃(L)

μν (Yμi ,Yνl) | Yμi

))
= 0

holds for l �= j . Thus, by this equation and similar identities, we have

E�̃(L)
μν (Yμi ,Yν j )�̃

(L)
μν (Yμk,Yνl) = 0

for (i = k, j �= l) ∨ ( j = l, i �= k) ∨ (μ = ν, i = l, j �= k) ∨ (μ = ν, j = k, i �= l).
Obviously, this equation holds for different indices i, j, k, l. On the other hand, we
have

Eh̃(L)
μν (Yν1)

2 = E

(
E

(
�(L)

μν (Yμ1,Yν1) + �(L)
νμ (Yν1,Yμ1) − θμν − θνμ | Yν1

)2)

≤ E

(
E

((
�(L)

μν (Yμ1,Yν1) + �(L)
νμ (Yν1,Yμ1) − θμν − θνμ

)2 | Yν1

))

≤ 2
(
E�(L)

μν (Yμ1,Yν1)
2 + E�(L)

νμ (Yν1,Yμ1)
2
)

.

Consequently, for μ �= ν, it can be derived

E

∥∥∥Ũnμν

∥∥∥
2 = n−3

κ∑

L=1

nμ∑

i=1

nν∑

j=1

nμ∑

k=1

nν∑

l=1

E�̃(L)
μν (Yμi ,Yν j )�̃

(L)
μν (Yμk,Yνl)

= n−3
κ∑

L=1

nμ∑

i=1

nν∑

j=1

E�̃(L)
μν (Yμi ,Yν j )

2
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≤ 4n−1

κ∑

L=1

(
E�(L)

μν (Yμ1,Yν1)
2 + E�(L)

νμ (Yν1,Yμ1)
2 + Eh̃(L)

μν (Yν1)
2

+Eh̃(L)
νμ (Yμ1)

2
)

= O(n−1).

In a similar way, we obtain

E

∥∥∥Ũnμμ

∥∥∥
2 = n−3

κ∑

L=1

⎛

⎝
nμ∑

i=1

nν∑

j=1+i

E�̃(L)
μμ(Yμi ,Yμ j )

2

+
nμ∑

i=1

nν∑

j=1+i

E�̃(L)
μμ(Yμi ,Yμ j )�̃

(L)
μμ(Yμ j ,Yμi )

⎞

⎠

≤ 8n−1
κ∑

L=1

(
E�(L)

μμ(Yμ1,Yμ2)
2 + Eh̃(L)

μμ(Yμ1)
2
)

= O(n−1).

Hence Ũn
P−→ 0 holds true. Notice that

E

∥∥∥∥∥∥
n−3/2

m∑

μ=1

nμ∑

i=1

h̃μμ(Yμi )

∥∥∥∥∥∥

2

= n−3
κ∑

L=1

E

⎛

⎝
m∑

μ=1

nμ∑

i=1

h̃(L)
μμ(Yμi )

⎞

⎠
2

= n−3
κ∑

L=1

m∑

μ=1

nμ∑

i=1

Eh̃(L)
μμ(Yμi )

2

≤ 4n−2
κ∑

L=1

m∑

μ=1

E�(L)
μμ(Yμ1,Yμ2)

2

= O(n−1).

On the other hand, it follows that

Ūn = n−3/2
m∑

μ=1

nμ∑

i=1

m∑

ν=1

nν∑

j=1

h̃μν(Yν j )1 (ν �= μ ∨ i �= j)

= n−3/2

⎛

⎝
m∑

μ=1

nμ

m∑

ν=1

nν∑

j=1

h̃μν(Yν j ) −
m∑

μ=1

nμ∑

i=1

h̃μμ(Yμi )

⎞

⎠

= U (1)
n +U (2)

n + oP(1),
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where

U (1)
n = n−1/2

m∑

ν=1

nν∑

j=1

gν(Yν j ), gν(y) =
m∑

μ=1

γμh̃μν(y),

U (2)
n = n−1/2

m∑

μ=1

(nμ

n
− γμ

) m∑

ν=1

nν∑

j=1

h̃μν(Yν j ).

An application of Proposition 9.4 to the sumU (1)
n leads toU (1)

n
d−→ N (0, �U ), where

�U =
m∑

ν=1

γνEgν(Yν1)gν(Yν1)
T

=
m∑

ν=1

γν

m∑

μ=1

m∑

μ̄=1

γμγμ̄Eh̃μν(Yν1)h̃
T
μ̄ν(Yν1).

Analogously, one shows that

m∑

ν=1

nν∑

j=1

h̃μν(Yν j )
D−→ N (0, �0)

for μ = 1, . . . ,m with an appropriate �0, which implies U (2)
n

P−→ 0. Therefore, we

have Ūn
D−→ N (0, �U ). By (9) and Ũn

P−→ 0, the proof is complete. 	


9.3 Proof of Theorem 5.2

Throughout this section we suppose that the assumptions of Theorem 5.1b), and
AssumptionAC are satisfied. Here θ0 is the unique minimizer ofD defined in (3). We
introduce Hn(θ) = (Hnkl(θ))k,l=1,...,q as the Hessian of D̂n(θ):

Hnkl(θ) =
m∑

μ=1

2

nμ

nμ∑

i=1

(
−

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ)
)
C̄◦

μkl(F̌
∗
nμ(Yμi ) | θ)

+C̄◦
μk(F̌

∗
nμ(Yμi ) | θ)C̄◦

μl(F̌
∗
nμ(Yμi ) | θ)

)
wμ(F̌∗

nμ(Yμi )).

∇θψ(θ) denotes the gradient of function ψ w.r.t. θ , and ∇θψ(θ0) is the abbreviation
for ∇θψ(θ)|θ=θ0

. Observe that

∇θ D̂n(θ) = −
m∑

μ=1

2

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ)
)

∇θCμ(F̌∗
nμ(Yμi ) | θ)wμ(F̌∗

nμ(Yμi )).
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Let θ̃n be a minimizer of D̂n(·). Since ∇θ D̂n(θ̃n) = 0, we can use the Taylor formula
to derive (note that θ0 is an interior point of �)

∇θ D̂n(θ0) = ∇θ D̂n(θ0) − ∇θ D̂n(θ̃n) = −H∗
n

(
θ̃n − θ0

)
, (10)

where t∗nk = θ0 + ηnk

(
θ̃n − θ0

)
andH∗

n = (Hnkl(t∗nk))k,l=1,...,q . Here ηnk ∈ (0, 1) is

a random variable, k = 1, . . . , q.
Taking identity (10) into account, Theorem 5.2 is proven in three steps: we show

the asymptotic normality of∇θ D̂n(θ0), we prove thatH∗
n converges in probability to a

certain matrix, and we show that θ̃n − θ̂n is oP(n−1/2). The following lemma includes
the first step.

Lemma 9.6 We have

√
n∇θ D̂n(θ0)

D−→ N (0, �D),

with �D as in Theorem 5.2.

Proof We decompose −∇θ D̂n(θ0) and obtain

− ∇θ D̂n(θ0) = A1n + A2n + A3n + A4n, (11)

A1n =
m∑

μ=1

2

nμ

nμ∑

i=1

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
) ∇θCμ(F̄∗

μ(Yμi ) | θ0)wμ(F̄∗
μ(Yμi )),

A2n =
m∑

μ=1

2

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ0) − Hμ(Yμi ) + Cμ(F̄∗
μ(Yμi ) | θ0)

)

(
∇θCμ(F̌∗

nμ(Yμi ) | θ0)wμ(F̌∗
nμ(Yμi )) − ∇θCμ(F̄∗

μ(Yμi ) | θ0)wμ(F̄∗
μ(Yμi ))

)
,

A3n =
m∑

μ=1

2

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ0) − Hμ(Yμi ) + Cμ(F̄∗
μ(Yμi ) | θ0)

)

∇θCμ(F̄∗
μ(Yμi ) | θ0)wμ(F̄∗

μ(Yμi )),

A4n =
m∑

μ=1

2

nμ

nμ∑

i=1

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)

(
∇θCμ(F̌∗

nμ(Yμi ) | θ0)wμ(F̌∗
nμ(Yμi )) − ∇θCμ(F̄∗

μ(Yμi ) | θ0)wμ(F̄∗
μ(Yμi ))

)
.

Further we define

A∗
3n =

m∑

μ=1

2

nμ

nμ∑

i=1

∇θCμ(F̄∗
μ(Yμi ) | θ0)wμ(F̄∗

μ(Yμi ))
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⎛

⎝Ĥnμ(Yμi ) − Hμ(Yμi ) −
∑

l∈Jμ

C̃◦
μl(F̄

∗
μ(Yμi ) | θ0)

(
F̂nl(ψ̄lμ(Yμi )) − Fl(ψ̄lμ(Yμi ))

))
,

A∗
4nk =

m∑

μ=1

2

nμ

nμ∑

i=1

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)

∑

l∈Jμ

(
C̃◦

μlk(F̄
∗
μ(Yμi ) | θ0)wμ(F̄∗

μ(Yμi )) + C̄◦
μk(F̄

∗
μ(Yμi ) | θ0)wμl(F̄

∗
μ(Yμi ))

)

(F̂l(ψ̄lμ(Yμi )) − Fl(ψ̄lμ(Yμi ))),

and A∗
4n = (

A∗
4nk

)
k=1,...,q , A4n = (A4nk)k=1,...,q . Obviously, ∇θD(C, C(· | θ0)) = 0

such thatEA1n = 0. The next step is to show that A2n+
(
A3n − A∗

3n

)+(
A4n − A∗

4n

) =
oP(n−1/2). Note that copulas are Lipschitz continuous. Since the partial derivatives
C̄◦

μl(· | θ0) are Lipschitz continuous by assumption AC and the weight functions wμ

are Lipschitz continuous by assumption AW , we obtain

‖A2n‖ ≤ O(1) max
μ=1,...,m

sup
y∈Rdμ

(∣∣∣Ĥnμ(y) − Hμ(y)
∣∣∣ +

∥∥∥F̌∗
nμ(y) − F̄∗

μ(y)
∥∥∥
)

max
μ=1,...,m

sup
y∈Rdμ

∥∥∥F̌∗
nμ(y) − F̄∗

μ(y)
∥∥∥

=
⎛

⎝O

(√
ln ln n

n

)
+

d∑

j=1

sup
z∈R

∣∣∣F̂jn(z) − Fj (z)
∣∣∣

⎞

⎠
d∑

j=1

sup
z∈R

∣∣∣F̂jn(z) − Fj (z)
∣∣∣

= O

(
ln ln n

n

)
a.s. (12)

by applying Proposition 3.1. Let τn := max j=1,...,d supz∈R
∣∣∣F̂jn(z) − Fj (z)

∣∣∣. Observe
that C̃◦

μl(· | θ) is uniformly continuous on [0, 1]dμ for θ ∈ U (θ0) in view of the Heine-
Cantor theorem. Further by Lemma 9.3 and the mean value theorem, we obtain

∥∥A3n − A∗
3n

∥∥ ≤
m∑

μ=1

2

nμ

nμ∑

i=1

∑

l∈Jμ

∣∣∣F̂nl(ψ̄lμ(Yμi )) − Fl(ψ̄lμ(Yμi ))

∣∣∣

sup
0≤η≤1

∣∣∣C̃◦
μl(F̄

∗
μ(Yμi ) | θ0) − C̃◦

μl(F̄
∗
μ(Yμi )

+η
(
F̌∗
nμ(Yμi ) − F̄∗

μ(Yμi )
)

| θ0)

∣∣∣

sup
u∈[0,1]dμ

(∥∥∇θCμ(u | θ0)
∥∥ ∣∣wμ(u)

∣∣)
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≤ O (τn) ·
m∑

μ=1

∑

l∈Jμ

sup
u∈[0,1]dμ

sup
η̄:‖η̄‖≤dτn

∣∣∣C̃◦
μl(u | θ0) − C̃◦

μl(u + η̄ | θ0)

∣∣∣

= oP(n−1/2). (13)

On the other hand by Lemma 9.3 and the mean value theorem, we derive (F̌∗∗
nμη(y) :=

F̄∗
μ(y) + η

(
F̌∗
nμ(y) − F̄∗

μ(y)
)
for y ∈ R

dμ)

∣∣A4nk − A∗
4nk

∣∣

≤
m∑

μ=1

2

nμ

nμ∑

i=1

∑

l∈Jμ

(
sup

η:0≤η≤1

∣∣∣C̃◦
μlk(F̄

∗
μ(Yμi ) | θ0)wμ(F̄∗

μ(Yμi )) − C̃◦
μlk(F̌

∗∗
nμη(Yμi ) | θ0))wμ(F̌∗∗

nμη(Yμi ))

∣∣∣∣∣

+ sup
η:0≤η≤1

∣∣∣C̄◦
μk(F̄

∗
μ(Yμi ) | θ0)wμl(F̄

∗
μ(Yμi )) −C̄◦

μk(F̌
∗∗
nμη(Yμi ) | θ0)wμl(F̌

∗∗
nμη(Yμi ))

∣∣∣
)

∣∣∣F̂l(ψ̄lμ(Yμi )) − Fl (ψ̄lμ(Yμi ))

∣∣∣

≤ O (τn)

m∑

μ=1

max
l∈Jμ

(
sup

u∈[0,1]dμ
sup

η̄:‖η̄‖≤dτn

(∣∣∣C̃◦
μlk(u | θ0) − C̃◦

μlk(u + η̄ | θ0)

∣∣∣ + ∣∣wμ(u) − wμ(u + η̄)
∣∣
)

+ sup
u∈[0,1]dμ

sup
η̄:‖η̄‖≤dτn

(∣∣∣C̄◦
μk(u | θ0) − C̄◦

μk(u + η̄ | θ0)

∣∣∣ + ∣∣wμl(u) − wμl(u + η̄)
∣∣)

)

= oP(n−1/2) (k = 1, . . . , q) (14)

since wμ, wμl , C̃◦
μlk(· | θ0) and C̃◦

μk(· | θ0) are uniformly continuous on [0, 1]dμ .
Identities (12)-(14) imply

A2n + (
A3n − A∗

3n

) + (
A4n − A∗

4n

) = oP(n−1/2). (15)

In the remaining part of the proof, we show the asymptotic normality of
√
nAn , where

An = A1n + A∗
3n + A∗

4n . We have

An = A1n

+
m∑

μ=1

2

nμ

nμ∑

i=1

∇θCμ(F̄∗
μ(Yμi ) | θ0)wμ(F̄∗

μ(Yμi ))

⎛

⎝ 1

n̄μ

∑

ν:1≤ν≤m,b(ν)≥b(μ)

nμ∑

j=1

(
1

{
ψμν(Yν j ) ≤ Yμi

} − Hμ(Yμi )
)

−
∑

l∈Jμ

C̃◦
μl(F̄

∗
μ(Yμi ) | θ0)
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1

ñl

∑

ν:1≤ν≤m,l∈Jν

nν∑

j=1

(
1

{
ψ̄lν(Yν j ) ≤ ψ̄lμ(Yμi )

} − Fl(ψ̄lμ(Yμi ))
)
⎞

⎠

+
m∑

μ=1

2

nμ

nμ∑

i=1

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)

∑

l∈Jμ

(
C̃◦

μlk(F̄
∗
μ(Yμi ) | θ0)wμ(F̄∗

μ(Yμi )) + C̄◦
μk(F̄

∗
μ(Yμi ) | θ0)wμl(F̄

∗
μ(Yμi ))

)

k=1,...,q

1

ñl

∑

ν:1≤ν≤m,l∈Jν

nν∑

j=1

(
1

{
ψ̄lν(Yν j ) ≤ ψ̄lμ(Yμi )

} − Fl(ψ̄lμ(Yμi ))
)

= 2
m∑

μ=1

nμ∑

i=1

m∑

ν=1

nν∑

j=1
⎛

⎝ 1

n nμ

�(1)
μ (Yμi ) + 1

nμ n̄μ

�(2)
μν (Yμi ,Yν j ) +

∑

l∈Jμ∩Jν

1

nμ ñl
�

(3)
μνl(Yμi ,Yν j )

⎞

⎠ ,

where

�
(1)
μ (y) =

(
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
)

∇θCμ(F̄∗
μ(y) | θ0)wμ(F̄∗

μ(y)),

�
(2)
μν (y, z) =

{ (
1

(
ψμν(z) ≤ y

) − Hμ(y)
) ∇θCμ(F̄∗

μ(y) | θ0)wμ(F̄∗
μ(y)) for ν : b(ν) ≥ b(μ),

0 otherwise,

�
(3)
μνl (y, z) =

(
−C̃◦

μl (F̄
∗
μ(y) | θ0)∇θCμ(F̄∗

μ(y) | θ0)wμ(F̄∗
μ(y))

+
(
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
)

(
C̃◦
μlk (F̄

∗
μ(y) | θ0)wμ(F̄∗

μ(y)) + C̄◦
μk (F̄

∗
μ(y) | θ0)wμl (F̄

∗
μ(y))

)

k=1,...,q

)

(
1

{
ψ̄lν(z) ≤ ψ̄lμ(y)

} − Fl (ψ̄lμ(y))
)
.

Now we decompose
√
nAn such that we obtain

√
nAn = n−3/2

m∑

μ=1

nμ∑

i=1

m∑

ν=1

nν∑

j=1

�μν(Yμi ,Yν j ) + √
n Ān, (16)

where

�μν(y, z) = 2

γμ

(
�(1)

μν (y) + 1

γ̄μ

�(2)
μν (y, z) +

d∑

l=1

b(μ)
l b(ν)

l

γ̃l
�

(3)
μνl(y, z)

)
,

and

Ān = n−3/2
m∑

μ=1

nμ∑

i=1

m∑

ν=1

nν∑

j=1

((
n

nμ

− 1

γμ

)
�(1)

μ (Yμi )
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+
(

n2

nμ n̄μ

− 1

γμ γ̄μ

)
�(2)

μν (Yμi ,Yν j )

+
∑

l∈Jμ∩Jν

(
n2

nμ ñl
− 1

γμ γ̃l

)
�

(3)
μνl(Yμi ,Yν j )

⎞

⎠ .

In the following we prove that Ān = oP(n−1/2). Note that E�
(1)
μ (Yμi ) = 0. We have

V

(
1

n1/2

nμ∑

i=1

(
�(1)

μ (Yμi )
)

k

)
= nμ

n
V

((
�(1)

μ (Yμi )
)

k

)
= O(1) (k = 1, . . . , q).

Moreover, in view of Proposition 9.5,

1

n3/2

nμ∑

i=1

nν∑

j=1

(
�(2)

μν (Yμi ,Yν j )
)

k

d−→ N (0, �μνk), and

1

n3/2

nμ∑

i=1

nν∑

j=1

(
�

(3)
μνl(Yμi ,Yν j )

)

k

d−→ N (0, �μνkl)

with certain (finite) covariance matrices �μνk, �μνkl (k = 1, . . . , q, l ∈ Jμ ∩
Jν, μ, ν = 1, . . . ,m). Hence by Assumption An ,

Ān = oP(n−1/2),

and by equations (11), (15), (16),

√
n∇θ D̂n(θ0) = −n−3/2

m∑

μ=1

nμ∑

i=1

m∑

ν=1

nν∑

j=1

�μν(Yμi ,Yν j ) + oP(1). (17)

An application of the central limit theorem in Proposition 9.5 gives the asymptotic
normality of

√
n∇θ D̂n(θ0). To derive a formula for the covariance matrix, we consider

h̃μν(y) := E�μν(Yμ1, y) + E�νμ(y,Yμ1) − E�μν(Yμ1,Yν2) − E�νμ(Yν1,Yμ2)

= 2

γμ

(((
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
)∇θCμ(F̄∗

μ(y) | θ0)wμ(F̄∗
μ(y)) − eμ

)

+ 1

γ̄μ

1
(
b(ν) ≥ b(μ)

)

∫

R
dμ

(
1
(
ψμν(y) ≤ z

) − Hμ(z)
) ∇θCμ(F̄∗

μ(z) | θ0)wμ(F̄∗
μ(z)) dHμ(z)

+
d∑

l=1

1

γ̃l
b(μ)
l b(ν)

l

∫

R
dμ

(
−C̃◦

μl(F̄
∗
μ(z) | θ0)∇θCμ(F̄∗

μ(z) | θ0)wμ(F̄∗
μ(z))
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+ (
Hμ(z) − Cμ(F̄∗

μ(z) | θ0)
) ·

·
(
C̃◦

μlk(F̄
∗
μ(z) | θ0)wμ(F̄∗

μ(z)) + C̄◦
μk(F̄

∗
μ(z) | θ0)wμl(F̄

∗
μ(z))

)

k=1,...,q

)

(
1
{
ψ̄lν(y) ≤ ψ̄lμ(z)

} − Fl(ψ̄lμ(z))
)
dHμ(z)

)
,

where

eμ = 2

γμ

∫

R
dμ

(
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
)∇θCμ(F̄∗

μ(y) | θ0)wμ(F̄∗
μ(y))dHμ(y).

By Proposition 9.5 we obtain the formula for the covariance matrix �D . 	

Next we deal with the convergence of H∗

n and prove the following lemma.

Lemma 9.7 Suppose that t∗nk → θ0 for k = 1, . . . , q. Then we have

Hnkl(t
∗
nk) −→ Hkl a.s.

for k, l = 1, . . . , q.

Proof Notice that τ̄n := supy∈Rdμ

∥∥∥F̌∗
nμ(y) − F̄∗

μ(y)
∥∥∥ → 0 a.s. Moreover, Cμ, C̄μk ,

and C̄μkl are uniformly continuous on [0, 1]dμ × U (θ0) in view of the Heine-Cantor
theorem, and we obtain

ζnk := max
μ=1,...,m

sup
y1,y2:‖y1−y2‖≤τ̄n

∣∣Cμ(y1 | t∗nk) − Cμ(y2 | θ0)
∣∣ → 0 a.s.,

ζ̄nk := max
μ=1,...,m

sup
y1,y2:‖y1−y2‖≤τ̄n

∣∣∣C̄◦
μk(y1 | t∗nk) − C̄◦

μk(y2 | θ0)

∣∣∣ → 0 a.s.,

ζ̄nkl := max
μ=1,...,m

sup
y1,y2:‖y1−y2‖≤τ̄n

∣∣∣C̄◦
μkl(y1 | t∗nk) − C̄◦

μkl(y2 | θ0)

∣∣∣ → 0 a.s.,

ζ̄n := max
μ=1,...,m

sup
y1,y2:‖y1−y2‖≤τ̄n

∣∣wμ(y1) − wμ(y2)
∣∣ → 0 a.s.

for k, l = 1, . . . , q. We define

H̆nkl =
m∑

μ=1

2

nμ

nμ∑

i=1

(
− (

Hμ(Yμi ) − Cμ(F̄∗
μ(Yμi ) | θ0)

) C̄◦
μkl(F̄

∗
μ(Yμi ) | θ0)

+C̄◦
μk(F̄

∗
μ(Yμi ) | θ0)C̄◦

μl(F̄
∗
μ(Yμi ) | θ0)

)
wμ(F̄∗

μ(Yμi )).

Therefore, and by Theorem 3.1, we have

max
k,l=1,...,q

∣∣∣Hnkl(t
∗
nk) − H̆nkl

∣∣∣
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≤ O(1)
m∑

μ=1

1

nμ

nμ∑

i=1

max
k,l=1,...,q

(∣∣∣Ĥnμ(Yμi ) − Cμ(F̌∗
nμ(Yμi ) | t∗nk)

−Hμ(Yμi ) + Cμ(F̄∗
μ(Yμi ) | θ0)

∣∣

+
∣∣∣C̄◦

μkl(F̌
∗
nμ(Yμi ) | t∗nk) − C̄◦

μkl(F̄
∗
μ(Yμi ) | θ0)

∣∣∣

+
∣∣∣wμ(F̌∗

nμ(Yμi )) − wμ(F̄∗
μ(Yμi ))

∣∣∣

+
∣∣∣C̄◦

μk(F̌
∗
nμ(Yμi ) | t∗nk) − C̄◦

μk(F̄
∗
μ(Yμi ) | θ0)

∣∣∣

+
∣∣∣C̄◦

μl(F̌
∗
nμ(Yμi ) | t∗nk) − C̄◦

μl(F̄
∗
μ(Yμi ) | θ0)

∣∣∣
)

≤ O(1)

(
O

(√
ln ln n

n

)
+ max

k,l=1,...,q

(
ζnk + ζ̄nkl + ζ̄nk + ζ̄nl

) + ζ̄n

)

= o(1) a.s.

In view of the law of large numbers, we have

H̆nkl −→ Hkl := 2
m∑

μ=1

∫

R
dμ

(
− (

Hμ(y) − Cμ(F̄∗
μ(y) | θ0)

) C̄◦
μkl(F̄

∗
μ(y) | θ0)

+C̄◦
μk(F̄

∗
μ(y) | θ0)C̄◦

μl(F̄
∗
μ(y) | θ0)

)
wμ(F̄∗

μ(y)) dHμ(y)

a.s. for k, l = 1, . . . , q. This completes the proof. 	

Now we are in a position to prove Theorem 5.2.

Proof of Theorem 5.2 First we derive the convergence rate of θ̃n − θ̂n . Note that
∇θ D̂n(θ̃n) = 0, and θ0 is an interior point of �. Then the Taylor formula leads to

D̂n(θ̃n) − D̂n(θ̂n) =
(
θ̃n − θ̂n

)T H∗∗
n

(
θ̃n − θ̂n

)
,

where t∗∗
nk = θ̃n + ηnk

(
θ̂n − θ̃n

)
, 0 ≤ ηnk ≤ 1 and H∗∗

n = (Hnkl(t∗∗
nk ))k,l=1,...,q .

In view of Theorem 5.1, the estimators θ̃n and θ̂n are strongly consistent such that
t∗∗
nk → θ0 a.s. Using Lemma 9.7, we obtain H∗∗

n → H a.s.. Hence

εn ≥
∣∣∣∣
(
θ̃n − θ̂n

)T H∗∗
n

(
θ̃n − θ̂n

)∣∣∣∣ ≥ λmin(H∗∗
n )

∥∥∥θ̃n − θ̂n

∥∥∥
2

= (λmin(H) + oP(1))
∥∥∥θ̃n − θ̂n

∥∥∥
2
,

where λmin(A) is the smallest absolute eigenvalue of the matrix A. λmin(H) is positive
by assumption. Therefore, it follows that

θ̃n − θ̂n = oP(n−1/2). (18)
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Using (10) and Lemmas 9.6, 9.7, an application of Slutsky’s theorem leads to

√
n

(
θ̃n − θ0

)
= −√

nH∗−1
n ∇θ D̂n(θ0)

D−→ N (0,H−1�DH−1).

In view of (18), the proof of Theorem 5.2 is complete. 	


9.4 Proof of Theorem 8.1

First we prove a lemma on asymptotic normality of
√
n

(D̂n(θ0) − D(C, C(· | θ0))
)
,

which is crucial for the proof of asymptotic normality of
√
n
(
D̂n(θ̂n)−D(C, C(· | θ0))

)

in Theorem 8.1.

Lemma 9.8 Let the assumptions of Theorem 5.2 be satisfied. Then

√
n

(D̂n(θ0) − D(C, C(· | θ0))
) D−→ N (0, �0). (19)

Proof Define

ēμ :=
∫

R
dμ

(
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
)2

wμ(F̄∗
μ(y)) dHμ(y).

We obtain

D̂n(θ0) − D(C, C(· | θ0))

=
m∑

μ=1

(
1

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ0)
)2

wμ(F̌∗
nμ(Yμi )) − ēμ

)

= B1n + B2n + B3n + B̄3n + B4n,

where

B1n =
m∑

μ=1

1

nμ

nμ∑

i=1

((
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)2

wμ(F̄∗
μ(Yμi )) − ēμ

)
,

B2n =
m∑

μ=1

1

nμ

nμ∑

i=1

((
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ0)
)2

− (
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)2)

(
wμ(F̌∗

nμ(Yμi )) − wμ(F̄∗
μ(Yμi ))

)
,

B3n =
m∑

μ=1

1

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ0) − Hμ(Yμi ) + Cμ(F̄∗
μ(Yμi ) | θ0)

)2

wμ(F̄∗
μ(Yμi )),
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B̄3n =
m∑

μ=1

2

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Cμ(F̌∗

nμ(Yμi ) | θ0) − Hμ(Yμi ) + Cμ(F̄∗
μ(Yμi ) | θ0)

)

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)
wμ(F̄∗

μ(Yμi )),

B4n =
m∑

μ=1

1

nμ

nμ∑

i=1

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)2 (

wμ(F̌∗
nμ(Yμi )) − wμ(F̄∗

μ(Yμi ))
)

.

Analogously to the proof of Lemma 9.6, we can derive

B2n = oP(n−1/2), B3n = oP(n−1/2),

B̄3n = B∗
3n + oP(n−1/2), B4n = B∗

4n + oP(n−1/2),

where

B∗
3n =

m∑

μ=1

2

nμ

nμ∑

i=1

(
Ĥnμ(Yμi ) − Hμ(Yμi )

−
∑

l∈Jμ

C̃◦
μl(F̄

∗
μ(Yμi ) | θ0)

(
F̂nl(ψ̄lμ(Yμi )) − Fl(ψ̄lμ(Yμi ))

)
⎞

⎠

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)
wμ(F̄∗

μ(Yμi )),

B∗
4n =

m∑

μ=1

1

nμ

nμ∑

i=1

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)2

∑

l∈Jμ

wμl(F̄
∗
μ(Yμi ))(F̂l(ψ̄lμ(Yμi )) − Fl(ψ̄lμ(Yμi ))).

Further,

√
n

(D̂n(θ0) − D(C, C(· | θ0))
) = n−3/2

m∑

μ=1

nμ∑

i=1

m∑

ν=1

nν∑

j=1

�μν(Yμi ,Yν j ) + oP(1),

where

�μν(y, z) =
⎛

⎝ 1

γμ
�

(1)
μν (y) + 2

γμ γ̄μ
�

(2)
μν (y, z) +

d∑

l=1

b(μ)
l b(ν)

l
γμ γ̃l

�
(3)
μνl (y, z)

⎞

⎠ ,

�
(1)
μ (y) =

(
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
)2

wμ(F̄∗
μ(y)) − ēμ,

�
(2)
μν (y, z) =

{ (
1

(
ψμν(z) ≤ y

) − Hμ(y)
) (

Hμ(Yμi ) − Cμ(F̄∗
μ(Yμi ) | θ0)

)
wμ(F̄∗

μ(y)) for ν : b(ν) ≥ b(μ),

0 otherwise,

�
(3)
μνl (y, z) =

(
−2C̃◦

μl (F̄
∗
μ(Yμi ) | θ0)

(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)

wμ(F̄∗
μ(y))
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+
(
Hμ(Yμi ) − Cμ(F̄∗

μ(Yμi ) | θ0)
)2

wμl (F̄
∗
μ(y))

)

(
1

{
ψ̄lν(z) ≤ ψ̄lμ(y)

} − Fl (ψ̄lμ(y))
)
.

The convergence of the "oP(1)"-term is again proven analogously to the proof of
Lemma 9.6. An application of the central limit theorem in Proposition 9.5 gives
the asymptotic normality of

√
n∇θ D̂n(θ0). Eventually, we derive the formula for the

covariance matrix as follows

h̃μν(y) := E�μν(Yμ1, y) + E�νμ(y,Yμ1) − E�μν(Yμ1,Yν2) − E�νμ(Yν1,Yμ2)

= 1

γμ

((
Hμ(y) − Cμ(F̄∗

μ(y) | θ0)
)2

wμ(F̄∗
μ(y)) − ēμ

)

+ 2

γμγ̄μ

1
(
b(ν) ≥ b(μ)

)

∫

R
dμ

(
1
(
ψμν(y) ≤ z

) − Hμ(z)
) (

Hμ(z) − Cμ(F̄∗
μ(z) | θ0)

)

wμ(F̄∗
μ(z)) dHμ(z)

+
d∑

l=1

1

γμγ̃l
b(μ)
l b(ν)

l

∫

R
dμ

(
−2C̃◦

μl(F̄
∗
μ(z) | θ0)

(
Hμ(z) − Cμ(F̄∗

μ(z) | θ0)
)

wμ(F̄∗
μ(z))

+ (
Hμ(z) − Cμ(F̄∗

μ(z) | θ0)
)2

wμl(F̄
∗
μ(z))

)

(
1
{
ψ̄lν(y) ≤ ψ̄lμ(z)

} − Fl(ψ̄lμ(z))
)
dHμ(z).

Moreover, we have

�0 =
m∑

ν=1

γν

m∑

μ=1

m∑

μ̄=1

γμγμ̄Eh̃μν(Yν1)h̃
T
μ̄ν(Yν1).

	

Proof of Theorem 8.1 Analogously to (18), we have

D̂n(θ̃n) − D̂n(θ0) =
(
θ̃n − θ0

)T H#
n

(
θ̃n − θ0

)
,

where t#nk = θ̃n + ηnk

(
θ0 − θ̃n

)
, 0 ≤ ηnk ≤ 1 and H#

n = (Hnkl(t#nk))k,l=1,...,q . An

application of Theorem 5.2 leads to

D̂n(θ̃n) − D̂n(θ0) = OP(n−1).

An application of Lemma 9.8 completes the proof. 	
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