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Abstract
Equivalence tests are statistical hypothesis testing procedures that aim to establish
practical equivalence rather than the usual statistical significant difference. These test-
ing procedures are frequent in “bioequivalence studies," where one would wish to
show that, for example, an existing drug and a new one under development have
comparable therapeutic effects. In this article, we propose a two-stage randomized
(RAND2) p-value that depends on a uniformly most powerful (UMP) p-value and an
arbitrary tuning parameter c ∈ [0, 1] for testing an interval composite null hypothesis.
We investigate the behavior of the distribution function of the two p-values under the
null hypothesis and alternative hypothesis for a fixed significance level t ∈ (0, 1) and
varying sample sizes. We evaluate the performance of the two p-values in estimating
the proportion of true null hypotheses in multiple testing. We conduct a family-wise
error rate control using an adaptive Bonferroni procedure with a plug-in estimator to
account for the multiplicity that arises from our multiple hypotheses under consider-
ation. The various claims in this research are verified using a simulation study and
real-world data analysis.

Keywords COVID-19 · Equivalence studies · Familywise error · Randomized
p-values Two One-Sided Test (TOST)

Mathematics Subject Classification 62J15

1 Introduction

Equivalence tests are testing procedures for establishing practical equivalence rather
than the usual statistical significant difference. Within the frequentist framework, this
test uses the fact that failing to reject a given null hypothesis of no difference is
not logically equivalent to accepting the said null hypothesis (cf. (Fogarty and Small
2014)). Equivalence studies are common in the medical field, for example, where one
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would wish to show that an existing drug and a new one under development have
comparable therapeutic effects. We refer to such studies as “bioequivalence studies."
Another area of application is in genetics, where they can be used to identify non-DE
(differentially expressed) genes (cf. (Qiu and Cui 2010)) or to test for the Hardy-
Weinberg equilibrium (HWE) when we have multiple alleles as in Ostrovski (2020).
One can also use these tests to compare the similarity between two Kaplan-Meier
curves, which estimate the survival functions in two populations. See Sect. 1.3 of
Wellek (2010) for an in-depth discussion of these applications.

Some studies on equivalence testing include (Romano 2005), which provides
bounds for the asymptotic power of equivalence tests and constructs efficient tests
that attain those bounds. The same author also gives an asymptotically UMP test
based on Le Cam’s notion of convergence of experiments for testing the mean of a
multivariate normal. Equivalence tests can be conducted using the Two One-Sided
Test (TOST) procedure. The TOST procedure is an example of an intersection–union
test (cf. (Berger and Hsu 1996)) with the null hypothesis as a union of the null for
the lower- and upper-sided tests and the alternative as an intersection of the rejection
regions for the lower- and upper-sided tests.

Berger and Hsu (1996) consider an intersection–union test for the simultaneous
assessment of equivalence on multiple endpoints. This test requires that all the (1 −
2α)100% simultaneous intervals fall within the equivalence bounds for an overall α

level test. This approach can be conservative depending on the correlation structure
among the endpoints and the study power. Due to these difficulties, they propose a
100(1 − α)% confidence interval corresponding to a size α test.

Munk (1996) considered equivalence tests for Lehmann’s alternative, which are
unbiased for equal sample sizes within the two groups. An extension of the expected
p-value of a test (EPV) to univariate equivalence tests was considered by Pflüger
and Hothorn (2002). Since this procedure is independent of the distribution of the test
statistic under the null hypothesis, it avoids the problem of looking for this distribution
for the test statistic. Furthermore, the EPV is independent of the nominal level α.

Conducting multiple equivalence tests without multiplicity adjustments increases
the probability of making false claims of equivalence (type I errors). Leday et al (2023)
proposed a familywise error rate (FWER) control based on Hochberg’s method. The
same authors also showed that Hommel’s method performs as well as Hochberg’s and
that an “adaptive” version of Bonferroni’s method is more powerful than Hommel’s
for equivalence testing. Giani and Finner (1991) and Giani and Straßburger (1994) on
the other hand considered simultaneous equivalence tests in the k−sample case and
proposed tests based on the range statistic. Qiu and Cui (2010) and Qiu et al (2014)
consider multiple equivalence tests based on the average equivalence criterion to iden-
tify non-DE genes. Both articles investigate the power and false discovery rate (FDR)
of the TOST. Since the variance estimator in the TOST procedure can become unstable
and lead to low power for small sample sizes, the latter article proposes a shrinkage
variance estimator to improve the power. Huang et al (2006) also applied an aver-
age equivalence test criterion but adjusted for the multiplicity using the simultaneous
confidence interval approach.

Multiple test procedures that utilize p-values are only valid if the p-value statistics
follow the Uniform (0, 1) distribution under the null hypothesis. Since we use the
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p-values many times, any non-uniformity in their distribution quickly accumulates
and reduces the power of the overall procedure. We can decompose the equivalence
hypothesis into two one-sided hypotheses, each leading to a composite null hypothesis.
When dealing with a composite null hypothesis, the p- value can fail to follow the
Uniform (0, 1) distribution under the null hypothesis if the true parameter used is
not the least favorable parameter configuration (LFC). Furthermore, we can have
categorical data, for example, in genetic association studies that generate discrete data
in counts, leading to test statistics with discrete distributions. Since the p-value is a
deterministic transformation of the test statistic, this leads to discretely distributed
p-values that are also nonuniform under the null hypothesis.

The problems of composite nulls and discrete test statistics can lead to conserva-
tive p-values, which implies that the p-value is stochastically larger than UN I (0, 1)
distribution under the null hypothesis. To our knowledge, no research has previously
considered a two-stage randomized p-value in testing for the interval composite null
hypothesis.Wepropose a two-stage randomized p-value formultiple testing of interval
composite null hypotheses when dealing with discrete data. The two-stage procedure
uses the UMP p-value in the first stage to remove the discreteness of the test statistic.
The randomized p-value proposed in Hoang and Dickhaus (2022) for a continuous
test statistic is then used in the second stage to deal with the composite null hypothesis.

When utilizing the non-randomized version of the Two One-Sided Test (TOST)
UMP p-value in discrete models, Finner and Strassburger (2001) showed that it is
possible for the power function based on a sample of size n to coincide on the entire
parameter space with the corresponding power function based on size n + i for small
i ∈ N.We illustrate that the power function of a test based on the two-stage randomized
(RAND2) p-value for discrete models, just like the one for the UMP randomized p-
value, is strictly increasing with an increase in the sample size. We further illustrate
that for small sample sizes, it is possible that the power functions of the UMP and
RAND2 p-values do not strictly increase with an increase in the sample size.

We also investigate the behavior of the distribution function for the UMP and
RAND2 p-values under the null hypothesis and alternative hypothesis. Three objec-
tives are of interest: First, to find if the power and level of conservativity of the p-values
depend on the size of the equivalence limit. Second, to investigate the behavior of the
CDFs of the p-values when the parameter used to compute the p-values is close to
or far from the midpoint of the equivalence interval. We are interested in finding the
parameter value under the null hypothesis for which the p-values are least conserva-
tive or the parameter value that maximizes the power of a test based on our p-values
under the alternative hypothesis. Third, to find out if the level of conservativity of the
p-values depends on the sample sizes.

Finally, we consider multiple testing of equivalence hypotheses where we assess
the performance of our p-values in estimating the proportion of true null hypotheses
using an empirical-CDF-based estimator. An adaptive version of the Bonferroni that
utilizes the plug-in estimator of Finner and Gontscharuk (2009) is used for familywise
error control.

The rest of this paper is organized as follows. General preliminaries are provided
in Sect. 2. The definitions, CDFs, and investigations of the behaviors of those CDFs
under the null and alternative hypothesis for the UMP and the two-stage randomized
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p-values are considered in Sect. 3. We also investigate if the power function of the
p-values is monotonically increasing with an increase in the sample size in the same
section. Furthermore, we give the parameter value that maximizes the power of a test
based on the p-values in the same section. We defer all matters concerning multiple
testing until Sect. 4, where we consider a real-world data analysis and a simulation
study to assess the performance of the p-values in estimating the proportion of true
null hypotheses. Finally, we discuss our results and give recommendations for future
research in Sect. 5.

2 General preliminaries

Let XXX = (X1, . . . , Xn)
� denote our random data where each Xr is a real-valued,

observable random variable, 1 ≤ r ≤ n with the support of XXX denoted by X . We
assume all Xr are stochastically independent and identically distributed (i.i.d.) with a
known parametric distribution. The marginal distribution of X1 is assumed to be Pθ ,
where θ ∈ � ⊆ R is the model parameter. The distribution of XXX under θ is as a result
given by P⊗n

θ =: Pθ . We will be concerned with an interval hypothesis test problem
of the form

H : θ /∈ (θ1, θ2) versus K : θ ∈ (θ1, θ2), (1)

for given numbers θ1, θ2 ∈ � such that θ1 < θ2. When k hypotheses are of interest,
then they will be expressed as Hj : θ j /∈ � j versus K j : θ j ∈ � j where � j denotes

the range of values in the j th interval between θ
( j)
1 and θ

( j)
2 for j ∈ {1, . . . , k} and k

is the multiplicity of the problem. Denote the resulting k p-values by p1, . . . , pk . We
consider the case k = 1 in Sect. 3 and defer the multiple test problem till Sect. 4. When
thedifferencebetween the j th true parameter θ( j) and θ

( j)
1 or θ( j)

2 ( j = 1, . . . , k) is kept
constant for all the k hypotheses, then this is referred to as the “average equivalence"
criterion.We can sometimesmake the interval in (1) symmetric to achieve equivariance
to the permutation of groups, for example, the choice θ2 = θ−1

1 in Pflüger and Hothorn
(2002) and Munk (1996).

As mentioned before, one method for testing this hypothesis is the Two One-Sided
Test (TOST) procedure, where one tests for the alternatives θ < θ1 and θ > θ2
separately at size α and in no particular order. The TOST procedure is a special case
of the intersection–union test proposed by Berger (1982) where the null hypothesis
is a union of disjoint sets, and the alternative hypothesis is an intersection of the
complements of those sets. For this reason, we conduct the separate individual tests at
size α without a multiplicity adjustment like α/2. Practical equivalence is declared if
one rejects both tests and otherwise non-equivalence. These procedures suffer from a
lack of power, and an alternative that is more powerful but too complicated has been
suggested in the literature by Berger and Hsu (1996) and Brown et al (1997). Since
alternative tests are difficult to implement, we use the TOST procedure in this research.

We consider test statistics T (XXX), where T : X → R is a measurable mapping.
Furthermore, the test statistics Tr for r = 1, . . . , n are also assumed to be mutually
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independent. The marginal p-value p(XXX) resulting from T (XXX) is assumed to be valid,
meaning that Pθ (p(XXX) ≤ t) ≤ t holds for all significance levels t ∈ (0, 1) and for
any parameter value θ in the null hypothesis. Valid p-values are stochastically larger
than UNI (0, 1), as investigated by, among many others, Habiger and Pena (2011)
and Dickhaus et al (2012). On the same note, we call a p-value conservative if it
is valid and Pθ (p(XXX) ≤ t) < t holds for some fixed significance level t ∈ (0, 1).
Throughout the article, we refer to the cumulative distribution function (CDF) of a
p-value under the alternative hypothesis as a power function because we reject the null
hypothesis for small p-values. Finally, we also make use of the (generalized) inverses
of certain non-decreasing functionsmapping fromR to [0, 1]. In this regard, we follow
Appendix 1 in Reiss (1989): If F is a real-valued, non-decreasing, right-continuous
function, and similarly G is a real-valued, non-decreasing, left-continuous function
where we define both F and G on R, then F−1(y) = inf{x ∈ R : F(x) ≥ y} and
G−1(y) = sup{x ∈ R : G(x) ≤ y}, respectively.

3 Interval composite hypothesis

3.1 Introduction

In this article, we are interested in the (interval) composite null hypothesis of the form
in (1). We test this hypothesis using two different p-values whose definitions and the
CDFs are as follows.

Definition 1 (First stage randomization) Let U be a UNI(0, 1)-distributed random
variable independent of the data XXX . Further assume that T (XXX) is our test statistic
whose distribution has monotone likelihood ratio (MLR), the UMP-based p-value
PUMP (XXX ,U ) is

PUMP (XXX ,U ) = Pθi (Cn < T (XXX) < Dn) +UPθi (T (XXX) = Cn) +UPθi (T (XXX) = Dn),

(2)

for i = 1, 2 where θ1, θ2 such that θ1 < θ2 are the LFC parameters and Cn , Dn ∈ R

such that Cn ≤ Dn are the critical constants. The CDF of PUMP (XXX ,U ) is

Pθ {PUMP (XXX) ≤ t} = Pθ (Cn < T (XXX) < Dn) + γnPθ (T (XXX) = Cn) + δnPθ (T (XXX) = Dn),

(3)

where θ is the chosen true parameter while γn and δn are the randomization constants.
The critical constants Cn, Dn ∈ R and the randomization constants γn, δn ∈ [0, 1]
are found by solving the equation Eθi [T (XXX)] = α for i = 1, 2 where T (XXX) =∑n

r=1 T (Xr ). For large sample sizes, the critical and the randomization constants are
Cn = F−1

θ1
(1 − t), Dn = F−1

θ2
(t),

γn = Pθ1(T (XXX) ≤ Cn) − (1 − c)

Pθ1(T (XXX) = Cn)
, and δn = c − Pθ2(T (XXX) ≤ Dn − 1)

Pθ2(T (XXX) = Dn)
.
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We can use the p-value defined in Equation (2) with models possessing monotone
likelihood ratio (MLR), for example, any one-dimensional exponential family and
the location family of folded normal distribution. For continuous models, the critical
constantsCn and Dn are slightly modified, for example, by introducing the variance in
the case of a normal distribution.Moreover, the randomization constants in (3) are such
that γn = δn = 0 for such continuous models. Next, we give a lemma whose proof is
in the Appendix to show that the UMP p-value in Definition (1) is the maximum of
the p-values for a lower- and an upper-tailed test.

Lemma 1 For a fixed but arbitrary significance level t ∈ (0, 1) and a chosen true
parameter under the null hypothesis θ0 = θ1 or θ0 = θ2, the UMP p-value in Equation
(2) is the maximum of the p-values for a lower- and an upper-tailed test.

In calculating the UMP p-value in (2), using either θ1 or θ2 leads to the same result
for the p-value. The UMP p-value is used in the first stage of randomization to deal
with the discreteness of the test statistics. We conduct a second randomization to deal
with the composite null hypothesis. The second stage randomized p-value (RAND2)
(cf. (Hoang and Dickhaus 2022)) is defined as follows.

Definition 2 (Second stage randomization) Let U and Ũ be two different UNI(0, 1)-
distributed random variables both stochastically independent of the data XXX and are also
independent of each other. Assume also that we have an arbitrary constant c ∈ [0, 1].
The two-stage randomized p-value Prand2(XXX ,U , Ũ , c) is

Prand2(XXX ,U , Ũ , c) = Ũ111{PUMP (XXX ,U ) ≥ c} + PUMP (XXX ,U )(c)−1111{PUMP (XXX ,U ) < c}.
(4)

where PUMP (X ,U ) is the UMP p-value in the first stage as defined in Equation
(2). Furthermore, we define Prand2(XXX ,U , Ũ , 0) = Ũ and Prand2(XXX ,U , Ũ , 1) =
PUMP (XXX). The CDF of Prand2(XXX ,U , Ũ , c) is

Pθ {Prand2(XXX ,U , Ũ , c) ≤ t} = tPθ {PUMP (XXX ,U ) > c} + Pθ {PUMP (XXX ,U ) ≤ tc}.
(5)

With our p-values so defined, we are now ready to use them to test our hypothesis.
Wefirst describe an example of a discretemodel thatweuse to illustrate our randomized
p-values in practice.

Example 1 (Binomial distribution) Assume that our (random) data is given by XXX =
(X1, . . . , Xn)

�, where each Xr is a real-valued, observable random variable, 1 ≤
r ≤ n, and all Xr are stochastically independent and identically distributed (i.i.d.)
Bernoulli variables with parameter θi ∈ (0, 1) for i = 1, 2, Bernouli(θi ) for short.
A sufficient test statistic for testing the hypothesis in (1) is T (XXX) = ∑n

r=1 Xr which
is distributed as a Binomial random variable with parameters n and θi , i = 1, 2
and we shall denote this by Bin(n, θi ). The respective p-values with their CDFs are
calculated using Equations (2), (3), (4), and (5). The critical constants Cn and Dn are
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given by Cn = F−1
Bin(n,θ1)

(1 − t) and Dn = F−1
Bin(n,θ2)

(t) for a fixed significance level

t ∈ (0, 1) where F−1(•) denotes the quantile of a binomial random variable with
parameters n and θ. The randomization constants γn and δn for large sample sizes and
for arbitrary t ∈ (0, 1) are given by γn = {FBin(n,θ1)(Cn)− (1− t)}{ fBin(n,θ1)(Cn)}−1

and δn = {t − FBin(n,θ2)(Dn − 1)}{ fBin(n,θ2)(Dn)}−1, where FBin(n,θ) denotes the
CDF and fBin(n,θ) the probability mass function of binomial variable with parameters
n and θ .

In this section, as mentioned before, we consider the individual test problem where
k = 1.We are interested in finding if randomization is beneficial when the equivalence
limit� increases or decreases and if the power functions for the p-values aremonotonic
in sample size. Furthermore, we seek to find if the level of conservativity of the p-
values depends on the sample sizes.

3.2 Sample size versus power

We expect that the power function for a test would be strictly increasing with an
increase in sample size. A power function that is strictly increasing with an increase
in the sample size is ideal for sample size planning since an additional observation
cannot lower the power. In the case of discrete models, Finner and Strassburger (2001)
showed that it is possible for the power of the (least favorable configuration) LFC-
based p-value at a sample of size n to coincide over the entire parameter space with
that of size n + i , for small i ∈ N. We illustrate in the second panel of Fig. 1 and
for the model in Example (1) that this paradoxical behavior can also occur for the
UMP p-value and cannot be corrected even by use of randomization. The problem
occurs for small samples with the chosen true parameter θ too close to the boundary
of the alternative hypothesis. To generate Fig. 1, we set the tuning parameter c = 0.5,
t = 0.05, θ1 = 0.25, and θ2 = 0.75 in both panels. Furthermore, we choose θ = 0.5
as the true parameter under the alternative hypothesis in the left panel and θ = 0.4 in
the right.

On the left panel in Fig. 1, both power functions are strictly increasing with an
increase in the sample size. On the right panel, both power functions are not strictly
increasing with an increasing sample size. We further illustrate in Fig. 2 that this
paradoxical behavior of the power function of the UMP p-value in the right panel of
Fig. 1 does not occur for small equivalence limit �. To generate Fig. 2, we maintain
the parameter settings as in the right panel of Fig. 1 but only change θ1 to 0.35 so that
the resulting � is decreased compared to the initial one.

FromFig. 2, the power functions for theUMP andRAND2 p-values are now strictly
increasing with an increase in the sample size for most n. The problem of the power
function failing to be strictly increasing with an increase in the sample size is partially
dealt with, though not completely removed. Shrinking � from both sides, however,
worsens the problem in the right panel of Fig. 1. Finally, we provide Theorem (1) with
a proof in the appendix to further justify the claims in the left panel of Figure (1).

Theorem 1 (Monotonicity of the power functions) The CDFs of the UMP and RAND2
p-values are strictly increasing with an increase in the sample size n for any fixed
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Fig. 1 The power function for the UMP and RAND2 p-values against different sample sizes for c = 0.5,
t = 0.05, θ1 = 0.25, and θ2 = 0.75. Furthermore, we set θ = 0.5 in the left panel and θ = 0.4 in the right

Fig. 2 The power function for
the UMP and RAND2 p-values
against different sample sizes for
c = 0.5, θ1 = 0.35, and
θ2 = 0.75. We maintain the true
parameter under the alternative
hypothesis at θ = 0.4

parameter value θ under the alternative hypothesis. Consequently, for any significance
level and a fixed parameter value θ under the alternative hypothesis, the power of the
corresponding test is monotonically increasing with an increase in the sample size n.

3.3 Conservativity of the p-values

We expect that the distribution of a p-value under the null hypothesis is close to that
of a UN I (0, 1) distribution. A p-value can fail to meet this requirement and hence
be conservative, meaning it is stochastically greater than the Uniform distribution. We
compare the CDFs of RAND2 and the UMP p-values under the null and alternative
hypothesis for two equivalence limits �1 and �2 such that �1 < �2 and sample
sizes n1 and n2 such that n1 < n2. We plot Fig. 3 to compare the conservativity and
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Fig. 3 The CDFs of the UMP and RAND2 p-values against t for n = 50 and c = 0.5. We choose the true
parameter θ = 0.2 under the null hypothesis and θ = 0.35 under the alternative hypothesis. Furthermore,
we set θ1 = 0.25, and θ2 = 0.75 in the first case (I) and θ1 = 0.3, and θ2 = 0.75 in the second case (II)

power functions of the two p-values for the model in Example 1 using two different
equivalence limits �.

From Fig. 3, the CDF of the UMP p-value under the null hypothesis is far from the
UN I (0, 1) line compared to the one for RAND2 p-value in both cases. Therefore,
the UMP p-value is more conservative than RAND2 p-value. Under the alternative
hypothesis, the CDF of theUMP p-value is also far from theUN I (0, 1) line compared
to the one for RAND2 p-value in both cases. Therefore, as expected, the power of the
UMP p-value exceeds that of RAND2 p-value.

Under the same parameter configurations and only shrinking the equivalence limit
�, the UMP p-value becomes less powerful and more conservative. The two-stage
randomized p-value also becomes less powerful, but the conservativeness of the p-
value reduces even further. Next, we give Fig. 4 to illustrate the behavior of the CDFs
for the two p-values under the null hypothesis using the same parameter configurations
as in Fig. 3 except that the sample size n is not constant. Again, we consider two cases
but with n = 50 in the first case (I) and n = 100 in the second case (II).

From Fig. 4, the CDF of the UMP p-value moves away while the one for RAND2
p-value moves closer to the UN I (0, 1) line as the sample size increases. Therefore,
the UMP p value becomes more conservative while the RAND2 p value becomes less
conservative as the sample size increases.

3.4 Maximum power

In this section, we are interested in finding a parameter value θmax under the alter-
native hypothesis that maximizes the power of a test based on our p-values. If such
a parameter exists, choosing it as our true parameter under the alternative hypothesis
will always guarantee that we have the maximum power. Also, we investigate if the
value of θmax is affected by the size of the equivalence limit �. We generate Fig. 5 to
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Fig. 4 The CDFs of the UMP
and RAND2 p-values against
different values of t with
c = 0.5, θ1 = 0.25, θ2 = 0.75,
and with θ = 0.2 as the chosen
parameter under the null
hypothesis. Furthermore, we use
n = 50 in the first case (I) and
n = 100 in the second case (II)

Fig. 5 The CDFs for the UMP and RAND2 p-values against the chosen parameter θ for c = 0.5 and
n = 50. We set θ1 = 0.15 and θ2 = 0.45 in the left panel and θ1 = 0.25 and θ2 = 0.45 in the right one. The
vertical lines intersect the respective CDF curves at their maximum and the x axis at the parameter value
θmax that maximizes those CDFs. The bold vertical line is for the UMP p-value while the thin dotted line
is for RAND2 p-value. Furthermore, the thin dotted horizontal lines intersect the y axis at the value of α

address these questions for Example 1, where we have set c = 0.5 and used n = 50
as our sample size. Furthermore, we use θ1 = 0.15 and θ2 = 0.45 in the left panel of
Fig. 5 and θ1 = 0.25 and θ2 = 0.45 in the right one.

From Fig. 5 and for a large equivalence limit �, the parameter θmax for the two
p-values always occur at the midpoint of the interval �. For a small �, the parameter
θmax for RAND2 p-value can occur at a point too close to θ1 or θ2. The one for the
UMP p-value occurs at the midpoint throughout, and it does not matter how small
� becomes. Also, for both p-values, only a single θmax exists under the alternative
hypothesis. Moreover, the behavior of the CDFs in the right panel further confirms that
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Fig. 6 The CDF under the alternative hypothesis for the UMP and RAND2 p-values against the equiv-
alence limit � for c = 0.5 and n = 50. The chosen parameters under the alternative hypothesis are
θ = 0.2, 0.3, 0.4, and 0.48, respectively, from left to right. The vertical lines intersect the respective CDF
curves at their maximum and the x axis at the � value, which maximizes those CDFs. The bold vertical
line is for the UMP p-value while the thin dotted line is for RAND2 p-value. Furthermore, the thin dotted
horizontal lines intersect the y axis at the value of α

RAND2 p-value, unlike the UMP p-value, is not unbiased. To conclude this section,
we give a figure illustrating the power for the two p-values against the equivalence
limit�. To generate Figure (6), we set c = 0.5, n = 50, and choose θ = 0.2, 0.3, 0.4,
and 0.48 as the true parameters under the alternative hypothesis. Moreover, we use
different values of θ1 and θ2 to get different equivalence limits since � = θ2 − θ1.

FromFig. 6, as is expected, the range of� in each panel is from the chosen parameter
value θ under the alternative hypothesis to 1 − θ . For example, in the first panel, the
parameter is θ = 0.2 and � ranges from θ = 0.2 to 1 − θ = 0.8. The value of θmax

moves closer to 0.5 as the chosen parameter under the alternative hypothesis moves
closer to 0.5.

4 Estimation of the proportion of true null hypotheses

4.1 Introduction

In this section, we extend our discussions from Sect. 3 to the case when k > 1 hypothe-
ses are of interest. According to Section 4.3 of Wellek (2010), it is possible to have a
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case of univariate equivalence tests for a parameter of interest. Comparison of a single
proportion to a fixed reference success probabilitywas the subject of Sect. 3.We extend
this idea and compare multiple proportions to a fixed reference success probability.
We do this to identify the proportion of true null hypotheses (an estimation problem)
and not which particular null hypotheses are true (a selection problem).

Recall that for the multiple testing problem, our hypothesis in Eq. (1) can be
expressed as

Hj : θ j /∈ � j versus K j : θ j ∈ � j , for j = 1, . . . , k,

where � j denotes the range of values in the j th interval between θ
( j)
1 and θ

( j)
2 for

j ∈ {1, . . . , k}, k is the multiplicity of the problem, and p1, . . . , pk are the resulting
k p-values. For example, assume we have a data set from k = 1,000 small regions of
a country showing the number of individuals suffering from a certain disease. We are
interested in testing the hypotheses that the proportion of infected individuals from all
the regions lie in a certain interval [θ1, θ2] when the equivalence limit is constant. We
do this to find if the infection rate is at dangerously high levels in a particular region.

Conducting these hypotheses at level α increases the probability of type I errors
since we do not account for the multiplicity of the problem. It is crucial to account
for this multiplicity by doing, for example, a familywise error rate (FWER) control.
One commonly used method for familywise error control at level α is the Bonferroni
adjustment (cf. (Bonferroni 1936)). TheBonferroni procedure adjusts the raw p-values
p1, . . . , pk by multiplying them by the number of hypotheses k. We reject the null
hypothesis if an adjusted p-value is less than or equal to α. The Bonferroni procedure
guarantees that the FWER is at most α regardless of the ordering or the dependence
structure of the p-values.

The Bonferroni procedure can be conservative when large proportions of null
hypotheses are false. The adjustment alsomaintains FWERat levels belowπ0α instead
of α where π0 = k0/k is the proportion of true null hypotheses. When the number of
true null hypotheses k0 < k, the individual tests are conducted at a higher level α/k0
instead of α/k, leading to a higher power for the testing procedure. We refer to this
as the adaptive Bonferroni procedure, ABON for short. Since in practice we never
really know the number (proportion) k0 (π0), we make use of ABON combined with
the plug-in (ABON+plug-in) procedure of Finner and Gontscharuk (2009) to estimate
π0. The ABON+plug-in procedure, unlike closed testing procedures (like (Hommel
1988) and Hochberg (1988)), provides a theoretical guarantee to control the type I
error rate at the desired level.

One classical but still commonly used estimator for k0 is the Schweder and Spjøtvoll
(1982) estimator. It is given by

k̂0 ≡ k̂0(λ) = k · 1 − F̂k(λ)

1 − λ
, (6)

where λ ∈ [0, 1) is a tuning parameter and F̂k is the empirical CDF (ecdf) of the k
marginal p-values. It is often suggested in practice to choose λ = 0.5. One crucial pre-
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requisite for the applicability of this estimator is that the marginal p-values p1, . . . , pk
are (approximately) uniformly distributed on (0, 1) under the null hypothesis; see, e.
g., Dickhaus (2013); Hoang andDickhaus (2022) and the references therein for details.
The randomized p-values considered in this work are close to meeting the uniformity
assumption, whereas the non-randomized p-values are over-conservative when testing
two one-sided composite null hypotheses, especially in discrete models. Typically, the
estimated value of k0 becomes too large if many null p-values are conservative and
the estimator from (6) is employed.

4.2 Empirical distributions

To illustrate the implication of using our proposed two-stage randomized p-value in
multiple testing, we employ a graphical algorithm in computing π0. This algorithm
connects the points (λ, F̂k(λ)), λ ∈ [0, 1) with the point (1, 1). We draw a straight
line to connect the two points and extend this line to intersect the y axis at the point
1− π̂0. The best p-value for use in the estimation of π0 is that for which the resulting
straight line meets the y axis at a point that is close to the actual 1 − π0. We require
the empirical CDF of the p-value not to lie below the UN I (0, 1) line for this to be
actualized. We summarize our steps in Algorithm 1 below.

Algorithm 1 Graphical procedure for the estimation of the proportion of true null
hypotheses
(1) Choose a tuning parameter λ ∈ (0, 1).
(2) Compute and plot the empirical CDFs Fk (t) of the p-values where Fk (t) := 1

k
∑k

j=1 III p j≤t and
t ∈ (0, 1).

(3) Draw a vertical line (the dashed line in Figure 7) that intersects the x axis at the point λ. The intersection
of this vertical line and the empirical CDFs of the p-values gives the point F̂k (λ).

(4) Draw a diagonal line from the point (1, 1) to the y-axis through the point (λ, F̂k (λ)). The intersection
of this diagonal line with the y-axis gives 1 − π̂0.

To generate Fig. 7, we let the number of hypotheses to be k = 1,000, the tuning
parameters c and λ are both set at 0.5 and use a sample of size n = 50. We take the
proportion of true null hypotheses to be π0 = 0.7 and set θ1 = 0.25 and θ2 = 0.75.
Furthermore, to calculate the UMP-based p-value, the parameter θ under the null and
alternative hypothesis are chosen as 0.18 and 0.37, respectively.

From Fig. 7, RAND2 p-value outperforms the UMP p-value since its ECDF lies
above the UN I (0, 1) line for all values of t ∈ (0, 1). Furthermore, an extension of a
straight line from the points (1, 1) to (λ, FRAND2

k ) as earlier mentioned, meets the y
axis at a point which is close to 1 − π0.

4.3 Simulation study

We now conduct a simulation study based on real-world data to support the claim
in Sect. 4.2 that RAND2 p-value outperforms the UMP p-value in estimating the
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Fig. 7 Empirical CDF of the
UMP p-value (black curve) and
the two-stage randomized
(RAND2) p-value (grey curve)
for k = 1,000, λ = 0.5, c = 0.5,
and π0 = 0.7. We set θ1 = 0.25
and θ2 = 0.75. Furthermore, we
choose the true parameter under
the null as θ = 0.18 and
otherwise θ = 0.37. The dashed
vertical line intersects the x axis
at λ while the thin diagonal lines
intersect the y-axis at 1 − π̂0

proportion of true null hypotheses in multiple testing. We use the publicly avail-
able Coronavirus Disease 2019 (COVID-19) data taken from https://github.com/
CSSEGISandData/COVID-19 (cf. (Dong et al 2020)). The data set consists of con-
firmed COVID-19 cases and recoveries for k = 58 regions of the United States of
America as of 12th May 2020. The regions include all fifty states and eight others:
American Samoa, Diamond Princess, District of Columbia, Grand Princess, Guam,
Northern Mariana Islands, Puerto Rico, and the Virgin Islands.

After cleaning the data by removing all the missing values, we have k = 47 regions
for our analysis. We select an interval of recovery rates θ1 and θ2 and conduct a TOST
to find if the true rates from the data set belong to these intervals. We use a Monte
Carlo simulation to assess the (average) performance of the UMP and RAND2 p-
values in estimating k0. We set the constant c and the tuning parameter λ in (6) to 0.5
for all the simulations. The recovery rates from the data set are assumed to be the true
proportions. The recovery rates are defined as θi = ri/ni where ri are the number of
recoveries out of the ni infected individuals from the i th region for i ∈ {1, . . . , 47}.

Using these rates and the number of confirmed cases, we generate a new data set
on the computer for calculating the p-values. For simulation purposes, we choose
different values for θ1 and θ2 in our null hypothesis leading to different equivalence
limits �. For each equivalence limit �, define k0 as the number of true proportions,
that is, k0 is the number of proportions θi , i ∈ {1, . . . , k} such that θi ≤ θ1 or θi ≥ θ2.
For example, with the k = 47 regions, k0 can take any random value between 0 and
47. Since we are utilizing randomized p-values in (6), we average the estimated value
of k0 over the 10,000 Monte Carlo repetitions.

For exemplary purposes, we present ten choices of θ1 and θ2 in Table 1. A detailed
description of the simulation is provided in Algorithm 2. The results from our sim-
ulation study based on the Algorithm 2 are presented in Table 1. From Table 1, for
whatever value of �, RAND2 p-value outperforms the UMP p-value by giving esti-
mates which are on average close to the actual value of k0. Also, as is expected, the
number of true null hypotheses k0 decreases with an increase in the interval �.
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Algorithm 2 Computation of the proportion of true null hypotheses
(1) For each of the k = 47 regions in the COVID-19 data set, find the proportions of recoveries θi , i =

{1, . . . , 47} and use these as the assumed true proportions (i. e., as the assumed ground truth) in the
simulations.

(2) For each θi from step 1.) and for each of the sample sizes ni for i = {1, . . . , 47}, simulate a single
data point xi from Bin(ni , θi ).

(3) Select two proportions θ1, θ2 ∈ [0, 1] such that θ1 < θ2 as the null values to be tested against. Take k0
as the number of values i ∈ {1, . . . , k} fulfilling that θi ≤ θ1 or θi ≥ θ2. We use the selected θ1, θ2 as
well as the numbers xi , and ni from step 2.) in the computation of the p-values, where i ∈ {1, . . . , k}.
This step generates a pair of p-values for the UMP p-value since we decompose the null hypothesis
in (1) into a lower- and an upper-sided test. Denote these p-values by pl and pu , respectively. In each
case, pick max (pl , pu) which is the maximum of the two p-values.

(4) Compute the statistic in Equation (6) r = 10,000 times for the UMP and RAND2 p-values and take
the mean.

Table 1 Estimates of the
number of true null hypotheses θ1 θ2 � k0 k̂UMP

0 k̂ RAND2
0

0.4791 0.5413 0.0622 45 90.0050 44.3586

0.4509 0.5681 0.1173 43 86.0006 43.1554

0.4444 0.5946 0.1502 40 80.0034 39.4800

0.4066 0.6800 0.2734 34 67.9996 33.5392

0.3389 0.7219 0.3830 31 60.0002 33.7460

0.3188 0.7478 0.4290 29 55.9958 28.2846

0.3076 0.7566 0.4491 28 55.9958 28.6418

0.2963 0.9029 0.6065 16 32.0070 15.2562

0.2725 0.9319 0.6594 12 26.0192 12.9908

0.2456 0.9399 0.6942 12 24.6468 13.9496

4.4 Role of the tuning parameter �

In this section, we investigate the role of the tuning parameter λ in the estimator given
in (6) when using the two p-values. Proper choice of this parameter is crucial since a
smaller λ will lead to high bias and low variance while a larger one leads to low bias
and high variance of the proportion estimator. Based on this bias-variance trade-off,
we take the optimal λ to be the one that minimizes the mean square error (MSE).

Other research in this direction includes the use of change-point concepts for choos-
ing λ in the Storey (2002) estimator. In this approach, first approximate the p-value
plot by a piecewise linear function that has a single change-point. Select the p-value
at this change-point location as the value of λ. Another approach is to choose λ = α.
Hoang and Dickhaus (2022) noted that the default choice of λ = 0.5 works well with
randomized p-values since the sensitivity of the estimator in (6) with respect to λ is
least pronounced for the case of randomized p-values. The default common choice of
λ = 0.5 is unstable, especially when dealing with dependent p-values. We plot Fig. 8
to illustrate how the estimator based on the UMP and RAND2 p-value is affected by
different choices of λ. In this plot, we have used the same COVID-19 data and set
c = 0.5, θ1 = 0.2963, and θ2 = 0.7566.
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Fig. 8 An illustration of the number of true null hypotheses versus λ for the UMP and the two-stage
randomized (RAND2) p-values for θ1 = 0.2963, θ2 = 0.7566, and c = 0.5

From Fig. 8, the estimate of k0 based on the UMP p-value moves away from the
number of true null hypotheses k0 as the value of λ increases. The estimate based on
RAND2 p-value stays close to k0 and only oscillates wildly around k0 when λ is close
to 1.

5 Discussion

In this research, we have considered the use of UMP and randomized p-values
(RAND2) in the problem of interval composite null hypothesis. Using large sample
sizes, we have illustrated that the power functions for the UMP and RAND2 p-values
are both monotonically increasing with an increase in the sample size. We have also
found that it is possible for the power function of the UMP and the two-stage random-
ized p-value for a sample of size n and that of n + i for small i ∈ N to coincide on
the entire parameter space. This problem occurs when dealing with relatively small
samples and the equivalence limit � is too wide while the chosen parameter θ under
the alternative is too far from θ1 or θ2. This problem does not occur when � is too
narrow while the chosen parameter θ is too close to θ1 or θ2 under the alternative
hypothesis (see Fig. 2). This problem only occurs if the interval � gets smaller from
one end while the other one is kept constant, for example, by holding θ2 constant and
increasing θ1.

The problem of nonmonotonicity of the power functions gets worse if the equiva-
lence limit decreases from both ends. A similar observation in Qiu and Cui (2010) is
that when the equivalence limit is too narrow, the ROC curve of the TOST procedure
is nonmonotonic for small sample sizes. A complete characterization of this paradox
will be considered in future research following the ideas in Finner and Strassburger
(2001) and Finner and Roters (1993). Of course, in practical problems, the equiva-
lence limits are determined before the data collection and remain fixed throughout the
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experiment. The adjustments made here are to illustrate the behavior of the p-values
and their CDFs under different equivalence limits.

A plot of the CDFs for theUMP andRAND2 p-values under the null and alternative
hypothesis illustrates that the UMP p-value is more conservative and more powerful
compared to RAND2 p-value. The conservativeness of the UMP p-value increases
while the one for RAND2 reduces with a further decrease in the equivalence limit
�. Furthermore, the power functions for the p-values decrease with a decrease in
�. A similar trend for the CDFs occurs when � is kept constant, and the chosen
parameter under the null (alternative) is too far from (close to) the boundary of the
null (alternative).

Increasing both the parameters θ1 and θ2 by ε1 and θ by ε2 leads to an increase in
power for both the p-values, a decrease in conservativity of the UMP p-value, and no
change in the level of conservativity of RAND2 p-value. A similar trend occurs for a
large equivalence limit, provided ε2 > ε1. The power increases for a large equivalence
limit since θ moves closer to the midpoint of �, which is the parameter that gives the
maximum power for both UMP and RAND2 p-values under this condition. We were
also interested in finding the parameter value that maximizes the CDFs under the
alternative hypothesis for the two p-values. We found that for large �, the parameter
value that maximizes the CDFs of both p-values occurs at themidpoint of�. For small
�, however, this parameter value can be too close to θ1 or θ2 for RAND2 p-value while
the one for the UMP p-value is always at the midpoint.

Concerning the level of conservativity of the p-values to the sample size, we found
that the CDF for the UMP p-value moves further away while the one for RAND2 p-
valuemoves closer to theUN I (0, 1) linewith an increase in the sample size.Therefore,
the UMP p-value becomes more conservative while the level of conservativity for
RAND2 p-value remains the same with an increase in the sample size. Furthermore,
Munk (1996) and Wellek (2010) Sect. 1.2 (p. 5) argues that equivalence tests require
much larger sample sizes to achieve a reasonable power compared to the one- or two-
sided tests; unless � is chosen too wide that even “nonequivalent” hypotheses would
be declared “equivalent.” Therefore, it would be better to consider RAND2 p-value
for multiple equivalence tests since they are less conservative even for large sample
sizes.

A plot of the empirical CDFs of the p-values evaluates their performance when
used with the estimator in (6). The ECDF of RAND2 p-value, unlike the one for the
UMP p-value, is above the UN I (0, 1) throughout. Furthermore, the slope between
the points (1, 1) and (λ, FRAND2

k ) for RAND2 p-value is close to π0 compared to the
one for the UMP p-value. Therefore, RAND2 p-value outperforms the UMP p-value
in the estimation of the proportion of true null hypotheses. To further justify this claim,
we have given a real example and provided a simulation study showing that RAND2
p-value outperforms the UMP p-value for all values of � by giving estimates that are
closer on average to the true proportions.

The choice of the tuning parameter λ for the estimator in (6) has also been of
great concern in the recent literature. The sensitivity of this estimator to λ is more
pronounced for conservative p-values than for non-conservative ones. Since the UMP
p-value is more conservative than RAND2 p-value, the choice of λ is critical for
obtaining estimates that are close to the actual number of true null hypotheses when
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using the UMP p-value. Based on the results from our simulation study, we recom-
mend a small value of λ when using the UMP p-value. Assuming we are using a
small α, this choice is similar to the recommended choice of λ = α in the previous
literature. When using RAND2 p-value, any choice of λ which is not close to one is
recommended. We recommend this choice since the estimate of k0 based on RAND2
p-value oscillates wildly around the value of k0 as λ −→ 1. The recommendation
in Dickhaus (2013); Habiger and Pena (2011), and Habiger (2015) that randomized
p-values are nonsensical for a single hypothesis also applies to our RAND2 p-value
and in that case the usage of the UMP p-value is advocated for. Furthermore, we
caution the practitioner against using randomized p-values in bioequivalence studies.
Some general extensions of this research include using randomized test procedures to
achieve unbiased tests for Lehmann’s alternative. Also, one could extend these pro-
cedures to consider multiple endpoints while accounting for the correlations among
those endpoints. Finally, randomized p-values can be extended to stepwise regression
since we use the p-values in these procedures several times, leading to multiple test
problems.
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Appendix A Appendix: Mathematical proofs

Proof of Lemma 1 Recall that our (random) data is given by XXX , U is a UN I (0, 1)-
distributed random variable which is independent of our data, and t ∈ (0, 1) is an
arbitrary significance level. Define φ(X ,U ; t) to be a decision function for a test
procedure such that we reject the null when φ(X ,U ; t) = 1 and otherwise fail to
reject when φ(X ,U ; t) = 0. A p-value based on this decision function is

P(X ,U ) = inf{t ∈ (0, 1) : φ(X ,U ; t) = 1}. (A1)

Consider a test of H : θ ≤ θ0 versus K : θ > θ0 where θ0 is a prespecified constant.
The size of this test for an arbitrary t ∈ (0, 1) is

Eθ0{φu(X ,U ; t)} = Pθ0(T (XXX) > Cn) + γnPθ0(T (XXX) = Cn) = t, (A2)
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where Cn = F−1
θ0

(1− t) and γn = {Pθ0(T (XXX) ≤ Cn)− (1− t)}{Pθ0(T (XXX) = Cn)}−1

are the critical and randomization constants, respectively as given in Definition 1. The
p-value for this test based on the definition in Equation (A1) is

Pu(X ,U ) = inf{t ∈ (0, 1) : t ≥ Pθ0(T (xxx) > cn) + uPθ0(T (xxx) = cn)},
= Pθ0(T (XXX) > Cn) +UPθ0(T (XXX) = Cn).

Similarly, consider a test of the form H : θ ≥ θ0 versus K : θ < θ0 where again θ0 is
a prespecified constant. The size of this test for an arbitrary t ∈ (0, 1) is

Eθ0{φl(X ,U ; t)} = Pθ0(T (XXX) ≤ Dn − 1) + δnPθ0(T (XXX) = Dn) = t, (A3)

where again Dn = F−1
θ0

(t) and δn = {t−Pθ0(T (XXX) ≤ Dn −1)}{Pθ0(T (XXX) = Dn)}−1

are the critical and randomization constants, respectively as given in Definition 1. The
p-value for this test based on the definition in Equation (A1) is

Pl(X ,U ) = inf{t ∈ (0, 1) : t ≥ Pθ0(T (xxx) ≤ dn − 1) + uPθ0(T (xxx) = dn)},
= Pθ0(T (XXX) ≤ Dn − 1) +UPθ0(T (XXX) = Dn).

Assume now that the hypothesis is as given in Equation (1), then the overall test
statistic for this problem is

φm(X ,U ; t) = min{φl(X ,U ; t), φu(X ,U ; t)},
= φl(X ,U ; t)

⋂
φu(X ,U ; t).

The overall p-value is

Pm(X ,U ) = max{Pl(X ,U ), Pu(X ,U )}, (A4)

since

{t : φm(X ,U ; t) = 1} = {t : min[φl(X ,U ; t), φu(X ,U ; t)] = 1},
= {[t : φl(X ,U ; t) = 1]

⋂
[t : φu(X ,U ; t) = 1]},

= {t : t ≥ Pθ0(T (xxx) ≤ dn − 1) + uPθ0(T (xxx) = dn)}
⋂

{t : t ≥ Pθ0(T (xxx) > cn) + uPθ0(T (xxx) = cn)},
= {t : t ≥ Pl(X ,U )}

⋂
{t : t ≥ Pu(X ,U )},

= {t : t ≥ max[Pl(X ,U ), Pu(X ,U )]},

which gives the overall p-value in (A4) using the definition in (A1). We can express
this further as

{t : φm(X ,U ; t) = 1}
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= {t : t ≥ Pθ0(cn < T (xxx) < dn) + uPθ0(T (xxx) = cn) + uPθ0(T (xxx) = d2)},

which gives the p-value

Pm(X ,U ) = Pθ0(Cn < T (XXX) < Dn) +UPθ0(T (XXX) = Cn) +UPθ0(T (XXX) = D2)},

again based on the definition of a p-value in Equation (A1). However, this is equivalent
to the UMP p-value in Definition 1 since θ0 is the LFC parameter, which can be θ1 or
θ2. 
�
Proof of Theorem 1 To verify that the CDFs of the UMP and the two-stage randomized
p-values are point-wise monotonically increasing with an increase in the sample size
for any parameter value θ belonging to the alternative hypothesis, it suffices to prove
that these CDFs for a sample of size n + 1 are greater than those for size n. Recall
from Equation (5) that

Pθ {Prand2(XXX ,U , Ũ , c) ≤ t} = tPθ {PUMP (XXX ,U ) > c} + Pθ {PUMP
T (XXX ,U ) ≤ tc},

= t − tPθ {PUMP (XXX ,U ) ≤ c} + Pθ {PUMP (XXX ,U ) ≤ tc}.

For an arbitrary, but fixed c ∈ [0, 1], further recall that Cn = F−1
Bin(n,θ1)

(1 − c) and

Dn = F−1
Bin(n,θ2)

(c)denotes the quantile of a binomial randomvariablewith parameters
n and θi for i = 1, 2. Again recall that the randomization constants are given by

γn = Pθ1(T (XXX) ≤ Cn) − (1 − c)

Pθ1(T (XXX) = Cn)
and δn = c − Pθ2(T (XXX) ≤ Dn − 1)

Pθ2(T (XXX) = Dn)
.

Define

βn ≡ βn(c, θ, θ1, θ2) = Pθ {PUMP (XXX) ≤ c},
= Pθ (Cn < T (XXX) < Dn) + γnPθ (T (XXX) = Cn) + δnPθ (T (XXX) = Dn). (A5)

Since X is a random variable that follows a binomial distribution with parameters n
and θ , the above power function can be expressed as

βn = (1 + )−n
{ n∑

x=cn+1

(
n

x

)

x + γn

(
n

cn

)

cn −
n∑

x=dn

(
n

x

)

x + δn

(
n

dn

)

dn

}

,

(A6)

where  =
(

θ
1−θ

)

and it is such that  ∈ (0,∞). For a sample of size n+1, Equation

(A6) becomes

βn+1 = (1 + )−n−1
{ n+1∑

x=cn+1+1

(
n + 1

x

)

x + γn+1

(
n + 1

cn+1

)

cn+1
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−
n+1∑

x=dn+1

(
n + 1

x

)

x + δn+1

(
n + 1

dn+1

)

dn+1

}

. (A7)

Since γn, γn+1, δn, δn+1 ∈ (0, 1), to verify that βn+1 > βn , we compare the coeffi-
cients of x in Equations (A6) and (A7). To do this for the coefficients of x in the
first terms in Equations (A6) and (A7), we have

(1 + )

[ n∑

x=cn+1

(
n

x

)

x
]

<

[ n+1∑

x=cn+1+1

(
n + 1

x

)

x
]

,

provided cn = cn+1. The proof for the other case when cn + 1 = cn+1 can be shown
similarly. Next, comparing the other coefficients of x in Equations (A6) and (A7),
we have

(1 + )

[ n∑

x=dn

(
n

x

)

x
]

>

[ n+1∑

x=dn+1

(
n + 1

x

)

x
]

,

provided dn + 1 = dn+1. Again proving the other case when dn = dn+1 will follow
similar steps.With this, it is evident that βn+1 > βn . The proof for Pθ {Prand

T (XXX ,U ) ≤
tc}, which yields the same result, can be carried out similarly.With this, theCDF for the
two-stage randomized p-value RAND2 is, under the stated conditions, monotonically
increasing with an increase in n, which we needed to prove. Repeating the above
calculations for βn with t ∈ (0, 1) in place of c provides the proof that the CDF of the
UMP p-value is monotonically increasing with an increase in the sample size (under
the stated conditions). 
�
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