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Abstract
Stepwise multiple testing procedures have attracted several statisticians for decades
and are also quite popular with statistics users because of their technical simplicity.
TheBonferroni procedure has been one of the earliest andmost prominent testing rules
for controlling the familywise error rate (FWER). A recent article established that the
FWER for the Bonferroni method asymptotically (i.e., when the number of hypothe-
ses becomes arbitrarily large) approaches zero under any positively equicorrelated
multivariate normal framework. However, similar results for the limiting behaviors of
FWER of general stepwise procedures are nonexistent. The present work addresses
this gap in a unified manner by elucidating that, under the multivariate normal setups
with some correlation structures, the probability of rejecting one ormore null hypothe-
ses approaches zero asymptotically for any step-down procedure. Consequently, the
FWER and power of the step-down procedures also tend to be asymptotically zero.
We also establish similar limiting zero results on FWER of other popular multiple
testing rules, e.g., Hochberg’s and Hommel’s procedures. It turns out that, within our
chosen asymptotic framework, the Benjamini–Hochberg method can hold the FWER
at a strictly positive level asymptotically under the equicorrelated normality.

Keywords Familywise error rate · Multiple testing under dependence · Stepwise
procedures · Benjamini–Hochberg method · Holm’s method · Hommel’s procedure

Mathematics Subject Classification 62J15 · 62F03

1 Introduction

Large-scale multiple testing problems arising in various scientific disciplines often
study correlated variables simultaneously. For example, inmicroRNA expression data,
several genes may cluster into groups through their transcription processes and pos-
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5692 M. Dey

sess high correlations (Goeman and Solari 2014). The data observed from different
locations and time periods in public health studies are generally spatially or serially
correlated (Chandra and Bhattacharya 2019). FMRI studies and multistage clinical
trials also involve variables with complex and unknown dependencies (Derado et al.
2010). Consequently, the study of the effect of correlation on dependent test statistics
in simultaneous inference problems has attracted considerable attention recently.

Benjamini and Yekutieli (2001) proved that the Benjamini–Hochberg procedure
(Benjamini and Hochberg 1995) controls the false discovery rate (FDR) at the desired
level under positive regression dependency. Sarkar (2002) established some general
results on FDR control under dependence. Storey and Tibshirani (2003) proposed
methodologies for estimating the FDR for dependent test statistics. Simultaneous
testing methods under dependence have also been studied by Sun and Cai (2007),
Efron (2007), Liu et al. (2016) among others. Efron (2010b) mentions that the corre-
lation penalty on the summary statistics depends on the root mean square (RMS) of
the correlations. Efron (2010a) contains an excellent review of the relevant literature.
Finner and Roters (2001a) discussed the behavior of expected type I errors of multiple
level-α single-step test procedures based on exchangeable test statistics. They also
studied (Finner and Roters 2001b) asymptotic (i.e., when the number of hypotheses
tends to infinity) properties of the supremum of the expected type I error rate (EER)
for some FDR-controlling stepwise procedures under independence. Fan et al. (2012)
proposed a method of dealing with correlated test statistics with a known covariance
structure. They capture the association between correlated statistics using the principal
eigenvalues of the covariance matrix. Fan and Han (2016) extended this work when
the underlying dependence structure is unknown. Qiu et al. (2005) demonstrated that
many FDR controlling procedures lose power significantly under dependence. Huang
and Hsu (2007) remark that stepwise decision rules based on modeling of the depen-
dence structure are in general superior to their counterparts that do not consider the
correlation.

There is relatively little literature on the performance of FWER controlling proce-
dures under dependence.Das andBhandari (2021) have established that theBonferroni
FWER is asymptotically a convex function in correlation ρ under the equicorrelated
normal framework. Consequently, they show that the Bonferroni FWER is bounded
above by α(1−ρ), α being the target level. Dey and Bhandari (2023a) have improved
this result by showing that the Bonferroni FWER asymptotically goes to zero for any
strictly positive ρ. They have also extended this to arbitrarily correlated setups where
the limiting infimum of the correlations is strictly positive. Dey (2022) has obtained
upper bounds on the Bonferroni FWER in the equicorrelated and general setups with
small and moderate dimensions. Finner and Roters (2002) derived explicit formulas
for the distribution of the number of falsely rejected hypotheses in single-step, step-
down and step-up methods under the assumption of independent p-values. However,
the role of correlation on the limiting behavior of the FWER for stepwise procedures
is much less explored.

The present work addresses this problem by theoretically investigating the limiting
FWER values of general step-down procedures under the correlated normal setup.
These results provide new insights into the behavior of step-down decision procedures.
By establishing the limiting performances of commonly used step-up methods, e.g.,
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On limiting behaviors of stepwise multiple testing procedures 5693

Table 1 Results on limiting behaviors of various FWER-controlling MTPs under correlated normal setup
(the theorem numbers are as in this paper)

MTP Limiting results on FWER Dependence

Bonferroni Theorem 2.1 (Das and Bhandari 2021) Equicorrelated

Theorem 2.2 (Dey and Bhandari 2023a) Equicorrelated

Theorem 2.3 (Dey and Bhandari 2023a) Non-negatively correlated

Holm Theorem 3.1 (Dey and Bhandari 2023a) Equicorrelated

Theorem 3.2 Non-negatively correlated

General step-down Theorem 3.3 Non-negatively correlated

Hochberg Theorems 4.1, 4.2 Equicorrelated

Benjamini–Hochberg Theorem 4.3 Equicorrelated

General step-up Theorem 4.5 Equicorrelated

Hommel Theorems 5.1, 5.2, 5.3 Equicorrelated

the Benjamini–Hochberg method and the Hochberg method, we have elucidated that
the class of step-up procedures does not possess a similar universal asymptotic zero
result as obtained in the case of step-down procedures. It is also noteworthy that
most of our results are quite general since they accommodate any combination of true
and false null hypotheses. We have also obtained the limiting powers of the stepwise
procedures. Table 1 summarizes all the limiting FWER Results of various FWER-
controlling MTPs in different correlated normal setups.

This paper is structured as follows. We first formally introduce the framework with
relevant notations and summarize some results on the limiting behavior of the Bonfer-
roni procedure in the next section. Section3 studies in detail the limiting behaviors of
the FWER of step-down procedures in equicorrelated and some general normal setups.
Section4 is dedicated to similar results on Hochberg’s and Benjamini–Hochberg pro-
cedures. Hommel’s stepwise procedure is studied in Sect. 5. We present simulation
studies in Sect. 6. We outline our contributions and discuss related problems briefly in
Sect. 7.

2 Preliminaries

2.1 Testing framework

Here we discuss the simultaneous inference problem through a Gaussian sequence
model framework (Das and Bhandari 2021; Dey and Bhandari 2023a; Dey 2022;
Finner and Roters 2001a; Finner et al. 2007):

Xi∼N (μi , 1), i ∈ {1, . . . , n}

where Xi ’s are dependent. Here the vector (X1, . . . , Xn) is assumed to follow the
multivariate normal distribution. The variances are taken to be unity since the literature
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5694 M. Dey

on the asymptotic multiple testing theory often assumes that the variances are known
[see, e.g., Abramovich et al. (2006); Bogdan et al. (2011); Das and Bhandari (2021);
Dey and Bhandari (2023a); Donoho and Jin (2004)].We are interested in the following
multiple testing problem:

H0i : μi = 0 vs H1i : μi > 0, 1 ≤ i ≤ n.

The intersection null hypothesis (also called the global null) H0 = ⋂n
i=1 H0i states

that each μi is zero. Let A denote the set of indices from {1, . . . , n} for which H0i is
true. So, under the global null, A is {1, . . . , n}. Throughout this work, �(·) denotes
the cumulative distribution function of N (0, 1) distribution and α ∈ (0, 1) denotes the
target level of FWER control.

Let Rn(T ), Sn(T ) and Vn(T ) respectively denote the number of rejected hypothe-
ses, the number of true rejections, and the number of type I errors of a multiple testing
procedure (MTP henceforth) T and α be the desired level of FWER control. So,
Rn(T ) = Sn(T ) + Vn(T ). The FWER of procedure T is given by

FWERT (n, α,�n) = P�n (Vn(T ) ≥ 1) (1)

where�n is the covariance matrix of (X1, . . . , Xn). It is noteworthy that FWER is not
the probability of making any type I errors when the global null hypothesis H0 is true.
A MTP is said to have weak control of the FWER if the FWER is less than or equal
to the test level under the global null hypothesis. It has strong control of the FWER if
the FWER is less than or equal to the level of the test under any configuration of true
and false null hypotheses. In many of our results, we shall consider the probability in
the r.h.s of (1) under the intersection null H0 at first (and take that as the definition of
FWER) for the sake of technical simplicity. Then we shall extend the results obtained
in this case to any combination of true and false null hypotheses.

The present work studies the limiting behaviors of FWERT for T belonging to a
broad class of MTPs under two dependent setups:

1. The equicorrelated setup: The covariance matrix of (X1, . . . , Xn) is �n . �n has
each off-diagonal entry equal to ρ ≥ 0.

2. The non-negatively correlated setup: The covariance matrix of (X1, . . . , Xn) is�n .
�n has non-negative off-diagonal entries. We denote the (i, j)’th entry of �n as
ρi j .

The equicorrelated setup (Cohen et al. 2009; Das and Bhandari 2021; Dey and Bhan-
dari 2023a; Dey 2022; Finner and Roters 2001a; Finner et al. 2007; Roy and Bhandari
2024) is the intraclass covariance matrix model, characterizing the exchangeable sit-
uation. Although this is a special case of the second one, we are considering them
separately since the proof of the result in the general case is based on the correspond-
ing results in the equicorrelated case. The equicorrelated setup also encompasses the
problem of comparing a control against several treatments. However, many scientific
disciplines involve variables with more complex dependence structure (e.g., fMRI
studies). These complex dependence scenarios need to be tackled with more gen-
eral covariance matrices (Dey and Bhandari 2023a; Dey 2022). The second setup
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On limiting behaviors of stepwise multiple testing procedures 5695

also includes the successive correlation covariance matrix, which covers change point
problems (Cohen et al. 2009).

As with the notions of type I and type II error rates, the concept of power can be
extended in various ways when moving from single to multiple hypothesis testing
(Dudoit and Laan 2008). One such notion of power is AnyPwr (Dudoit and Laan
2008), which is the probability of rejecting at least one false null hypothesis. So, for
a MTP T ,

AnyPwrT = P(Sn(T ) ≥ 1).

Throughout this work, �n denotes the n × n matrix with each diagonal entry equal
to 1 and each off-diagonal entry equal to ρ. Also, �n denotes the n × n correlation
matrix with (i, j)’th entry equal to ρi j , i �= j .

2.2 The Bonferroni procedure

The classicBonferroni procedure is the best-knownandoneof themost frequently used
MTP for controlling FWER. This single-step method sets the same cut-off for all the
hypotheses. In one-sided settings, it rejects H0i if Xi > �−1(1− α/n)(= cBon, say).
So the Bonferroni FWER (for the covariance matrix �n) is defined by

FWERBon(n, α,�n)=P�n (Xi > cBon for some i ∈ A)=P�n

(
⋃

i∈A
{Xi > cBon}

)

.

Wewrite FWERT (n, α, �n) as FWERT (n, α, ρ) for simpler notation.Das andBhan-
dari (2021) obtain the following in the equicorrelated case:

Theorem 2.1 (Das and Bhandari 2021) Given any α ∈ (0, 1) and ρ ∈ [0, 1],
FW ERBon(n, α, ρ) is asymptotically bounded by α(1 − ρ) under the global null
hypothesis.

Dey and Bhandari (2023a) improve this result as follows:

Theorem 2.2 (Dey and Bhandari 2023a) Given any α ∈ (0, 1) and ρ ∈ (0, 1], we
have

lim
n→∞ FWERBon(n, α, ρ) = 0

under any configuration of true and false null hypotheses.

The proofs of Theorems 2.1 and 2.2 exploit an well known result on equicorrelated
multivariate normal variables with equal marginal variances. Under the global null
hypothesis, the sequence {Xr }r≥1 is exchangeable in the equicorrelated normal set-
up. In other words,

(
Xi1 , . . . , Xik

) ∼ Nk (0k, (1 − ρ)Ik + ρ Jk))
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5696 M. Dey

where Jk is the k × k matrix of all ones. Thus, for each i ≥ 1, Xi = θ + Zi where
θ has a normal distribution with mean 0, independent of {Zn}n≥1 and Zi ’s are i.i.d
normal random variables. Cov

(
Xi , X j

) = ρ gives Var(θ) = ρ. Hence, θ ∼ N (0, ρ)

and Zi
iid∼ N (0, 1 − ρ) for each i ≥ 1.

The following result extends Theorem 2.2 to general correlated normal setups:

Theorem 2.3 (Dey and Bhandari 2023a) Let �n be the correlation matrix of
X1, . . . , Xn with (i, j)’th entry ρi j such that lim inf ρi j = δ > 0. Then, for any
α ∈ (0, 1), we have

lim
n→∞ FWERBon(n, α,�n) = 0

under any configuration of true and false null hypotheses.

Theorem 2.3, a much stronger result than Theorem 2.1, highlights the fundamental
problem of using Bonferroni method in a simultaneous testing problem. Dey and
Bhandari (2023a) establish Theorem 2.3 using a famous inequality due to Slepian:

Theorem 2.4 (Slepian 1962) Let X follow Nk(0, �), where � is a k × k correlation
matrix. Let a = (a1, . . . , ak)′ be an arbitrary but fixed real vector. Consider the
quadrant probability

g(k, a, �) = P�

[
k⋂

i=1

{Xi � ai }
]

.

Let R = (
ρi j
)
and T = (

τi j
)
be two positive semidefinite correlation matrices. If

ρi j � τi j holds for all i, j , then g(k, a, R) ≥ g(k, a, T ), i.e

PR

[
k⋂

i=1

{Xi � ai }
]

� PT

[
k⋂

i=1

{Xi � ai }
]

holds for all a = (a1, . . . , ak)′ . Moreover, the inequality is strict if R, T are positive
definite and if the strict inequality ρi j > τi j holds for some i, j .

Dey and Bhandari (2023a) showed the following regarding the asymptotic power
of Bonferroni’s method:

Theorem 2.5 (Dey and Bhandari 2023a) Consider the equicorrelated normal setup
with equicorrelation ρ ∈ (0, 1). Suppose supμi is finite. Then, for any α ∈ (0, 1),
AnyPwrBon goes to zero as n → ∞.

Throughout this work, Pi denotes the p-value corresponding to the i-th null hypoth-
esis H0i , 1 ≤ i ≤ n. Also, let P(1) � . . . � P(n) be the ordered p-values. Let the null
hypothesis corresponding to the p-value P(i) be denoted as H(0i), 1 ≤ i ≤ n.
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On limiting behaviors of stepwise multiple testing procedures 5697

2.3 Step-down and step-up procedures

Single-step MTPs (e.g., Bonferroni’s method, Sidak’s method) compare the individ-
ual test statistics to the corresponding cut-offs simultaneously, and they stop after
performing this simultaneous ‘joint’ comparison. Often stepwise methods possess
greater power than the single-step procedures, while still controlling FWER (or, in
general, the error rate under consideration) at the desired level.

Consider the set

Sn = {t = (t1, . . . , tn) ∈ R
n : 0 ≤ t1 ≤ . . . ≤ tn ≤ 1

}
.

A p-value based step-down MTP uses a vector of cutoffs u = (u1, . . . , un) ∈ Sn ,
and works as follows. The step-down method rejects a hypothesis H(i) if and only
if P( j) ≤ u j for all j ≤ i . In other words, the step-down MTP compares the most
significant p-value P(1) with the smallest u-value u1 at first and so on. One can also
formally describe a step-down MTP as follows. Let m1 = max

{
i : P( j) ≤ u j for

all j = 1, . . . , i}. Then the step-down procedure based on critical values u rejects
H(01), . . . , H(0m1).

Example 1 The Bonferroni method is a step-down procedure with ui = α/n, i =
1, . . . , n.

Example 2 The Sidak method is a step-down MTP with ui = 1 − (1 − α)1/n , i =
1, . . . , n.

Example 3 The Holm (1979) method is a popular step-down MTP with ui = α/(n −
i + 1), i = 1, . . . , n.

Example 4 Benjamini and Liu (1999a) introduced a step-down MTP with

ui = min

(

1,
nq

(n − i + 1)2

)

, 1 ≤ i ≤ n (0 < q < 1).

Example 5 Benjamini and Liu (1999b) studied another step-down MTP with

ui = 1 −
[

1 − min

(

1,
nq

n − i + 1

)]1/(n−i+1)

, 1 ≤ i ≤ n (0 < q < 1).

Example 6 Benjamini and Liu (1999b) mentioned a Holm-type procedure with the
critical values

ui = 1 − (1 − q)1/(n−i+1), 1 ≤ i ≤ n (0 < q < 1).

The step-up MTP also utilizes a set of critical values, say u = (u1, . . . , un) ∈ Sn .
But the step-up method is inherently different from the step-down method in the sense
that it starts by comparing the least significant p-value P(n) with the largest u-value
un and so on. Formally, the step-up method based on critical values u rejects the
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5698 M. Dey

hypotheses H(01), . . . , H(0m2), where m2 = max
{
i : P(i) ≤ ui

}
. If such a m2 does

not exist, then the procedure does not reject any null hypothesis.

Example 7 The Bonferroni correction is also a step-up MTP, where ui = α/n, i =
1, . . . , n.

Example 8 The Sidak method is also a step-up procedure with ui = 1 − (1 − α)1/n ,
i = 1, . . . , n.

Example 9 Hochberg (1988)method is a popular step-upMTPwithui = α/(n−i+1).

Example 10 The classic Benjamini and Hochberg (1995) method is a step-up proce-
dure with ui = iα/n.

3 Limiting FWER of step-down procedures

Holm method (1979) is a step-down MTP which uses adjusted p-values and utilizes
the Bonferroni inequality. It controls the FWER under any dependence of the test
statistics. The following result is known on the limiting FWER of Holm’s method
under the equicorrelated normal framework:

Theorem 3.1 (Dey and Bhandari 2023a) Suppose μ
 = supμi < ∞. Then, under
any configuration of true and false null hypotheses, we have

lim
n→∞ FWERHolm(n, α, ρ) = 0 for all α ∈ (0, 1) and ρ ∈ (0, 1].

We extend this result to some non-negatively correlated normal setups:

Theorem 3.2 Let �n be the correlation matrix of X1, . . . , Xn with (i, j)’th entry ρi j
such that lim inf ρi j = δ > 0. Suppose μ
 = supμi < ∞. Then, for any α ∈ (0, 1),

lim
n→∞P�n

(

Rn(Holm) ≥ 1

)

= 0

under any configuration of true and false null hypotheses. Consequently,

lim
n→∞ FWERHolm(n, α,�n) = 0 and lim

n→∞ AnyPwrHolm(n, α,�n) = 0.

We extend Theorem 3.2 to any step-down MTP below:

Theorem 3.3 Let �n be the correlation matrix of X1, . . . , Xn with (i, j)’th entry ρi j
such that lim inf ρi j = δ > 0. Suppose supμi is finite and T is any step-down MTP
controlling FWER at level α ∈ (0, 1). Then, for any α ∈ (0, 1),

lim
n→∞P�n

(

Rn(T ) ≥ 1

)

= 0
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On limiting behaviors of stepwise multiple testing procedures 5699

under any configuration of true and false null hypotheses. Consequently,

lim
n→∞ FWERT (n, α,�n) = 0 and lim

n→∞ AnyPwrT (n, α,�n) = 0.

Theorem 3.3 can be viewed as a universal asymptotic zero result since it encom-
passes all step-down FWER controlling procedures and also accommodates any
configuration of true and false null hypotheses.

4 Limiting FWER of some step-up procedures

Let us consider a step-down procedure T1 and a step-up procedure T2 having the iden-
tical vector of cutoffs u = (u1, . . . , un) ∈ Sn . We always havem(T1) ≤ m(T2) where
m(T1) = max

{
i : P( j) ≤ u j for all j = 1, . . . , i} and m(T2) = max

{
i : P(i) ≤ ui

}
.

This implies that the step-upMTP is at least as rejective as the step-downMTP (which
uses the same cutoffs). This observation steers that we might not get a similar uni-
versal asymptotic zero result for the class of step-up MTPs as obtained in the case of
step-down procedures (Theorem 3.3). This is indeed the case as we shall show in the
next two subsections the following:

1. Under the equicorrelatedGaussian sequencemodel, the FWERofHochberg (1988)
procedure asymptotically approaches zero as the number of tests becomes arbitrar-
ily large.

2. Under the equicorrelated Gaussian sequence model and under H0, the Benjamini
and Hochberg (1995) method with a pre-specified FDR level controls FDR at some
strictly positive quantity which is a function of the chosen FDR level and the
common correlation, even when the number of tests approaches infinity.

We have considered Hochberg’s MTP in particular because it uses the same vector of
cutoffs as Holm’s MTP (note that Holm’s MTP has the ‘optimal’ critical values in the
class of step-down procedures).

Benjamini–Hochberg method, on the other hand, has been one of the most emi-
nent MTPs proposed in the literature and also possesses some optimality properties
both in frequentist and Bayesian paradigms of simultaneous inference. Bogdan et al.
(2011) showed that the BH method is asymptotically Bayes optimal under sparsity
in the normal scale mixture model under certain conditions on sparsity. In the classi-
cal paradigm, Guo and Rao (2008) proved that among all FDR-controlling methods
belonging to a certain class, the BH method has the largest cut-offs for the p-values
is the most rejective (the formal statement is given in Theorem 4.4).

4.1 Hochberg’s procedure

Hochberg’s (1988) MTP and Holm’s sequentially rejective procedure use the same
set of cutoffs; and hence, as mentioned earlier, Hochberg’s method is sharper than
Holm’s MTP. Holm’s MTP rejects a hypothesis only if its p-value and each of the
smaller p-values are less than their corresponding cutoffs. Hochberg’s method rejects
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5700 M. Dey

all hypotheses with smaller or equal p-values to that of any one found less than its
cutoff.

The following result depicts the limiting behavior of the FWER of Hochberg’s
procedure under the correlated Gaussian sequence model:

Theorem 4.1 Consider the equicorrelated normal setup with correlation ρ ∈ [0, 1).
Then,

1. When ρ = 0 (i.e., the independent normal setup), we have

lim
n→∞ FWERHochberg(n, α, 0) ∈ [1 − e−α, α]

under the global null hypothesis.
2. When ρ ∈ (0, 1), we have

lim
n→∞ FWERHochberg(n, α, ρ) = 0

for any α ∈ (0, 1/2), under the global null hypothesis.

We now consider the free-combination condition (Holm 1979) under which any
combination of the true and false hypotheses is possible.

Theorem 4.2 Consider the multiple testing problem under the equicorrelated normal
setup with equicorrelation ρ ∈ (0, 1). Suppose supμi is finite. Then,

lim
n→∞P�n

(

Rn(Hochberg) ≥ 1

)

= 0

for any α ∈ (0, 1/2). Consequently, for any α ∈ (0, 1/2),

lim
n→∞ FWERHochberg(n, α, �n) = lim

n→∞ AnyPwrHochberg(n, α, �n) = 0.

4.2 Benjamini–Hochberg procedure

The Benjamini–Hochberg method is the first FDR controlling procedure (Finner et al.
2007). Originally shown to be a valid FDR controlling method for independent p-
values, it controls the FDR even if the test statistics exhibit some special dependence
structure (e.g., the positive regression dependent setup). Formal treatments of these
conditions and proofs can be found in Benjamini and Yekutieli (2001) and Sarkar
(2002). Let imax be the largest such i for which p(i) � iα/n. The BH procedure
rejects H0(i) if i � imax and accepts H0(i) otherwise. Dey and Bhandari (2023a)
evaluated the limiting FDR of Benjamini–Hochberg method. However, their proof had
a technical gap. In their paper, it was incorrectlymentioned that FWERBH (n, α, ρ) ≤
P�n (P(1) ≤ α/n) under the global null. The correct identity is given by

FWERBH (n, α, ρ) =P�n

[
n⋃

i=1

{

P(i) <
iα

n

}]
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under the global null. We derive this identity in the proof of the following theorem.
The revised statement on the limiting FDR of BH method along with its correct proof
is given below:

Theorem 4.3 Consider the multiple testing problem under the equicorrelated normal
setup with correlation ρ. Then, under the global null, for all α ∈ (0, 1) and for all
ρ ∈ (0, 1),

lim
n→∞ FDRBH (n, α, ρ) = 1 − �

[

inf
t∈(0,1)

�−1 (1 − tα) − √
1 − ρ · �−1(1 − t)√
ρ

]

> 0.

Also, lim
n→∞ FDRBH (n, α, 0) = lim

n→∞ FDRBH (n, α, 1) = α.

Proof of Theorem 4.3 We have

FDRBH = E

[
Vn(BH)

max {Rn(BH), 1}
]

= E

[
Vn(BH)

Rn(BH)
| Vn(BH) > 0

]

P (Vn(BH) > 0) .

Under the global null H0, all Rn rejected hypotheses are false rejections, hence
Vn(BH)/Rn(BH) = 1 and FDR equals FWER. We shall work with FWER for the
rest of this proof.

Suppose exactly n0 null hypotheses are true. Then, it is a well-known fact (Ben-
jamini and Hochberg 1995; Efron 2010a; Sarkar 2002) that, under the independent
setup,

FDRBH (n, α, ρ) = n0
n

α.

So, under the global null, FDRBH (n, α, 0) = FWERBH (n, α, 0) = α. Now,

p(i) � iα

n
⇐⇒ 1 − �

(
X(n−i+1)

)
� iα

n

⇐⇒ 1 − iα

n
� �

(
X(n−i+1)

)

⇐⇒X(n−i+1) � �−1
(

1 − iα

n

)

.

Consequently,

FWERBH (n, α, ρ) =P�n

[
n⋃

i=1

{

P(i) <
iα

n

}]

=P�n

[
n⋃

i=1

{

X(n−i+1) � �−1
(

1 − iα

n

)}]

.
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When ρ = 1, Xi = X j w.p 1. This implies

FWERBH (n, α, ρ) = P

[
n⋃

i=1

{

X � �−1
(

1 − iα

n

)}]

= P

[
X � �−1 (1 − α)

]
= α (X ∼ N (0, 1)).

Consider the case 0 < ρ < 1 now. Then, Xi = Uρ + Zi where Uρ ∼ N (0, ρ) is
independent of Zi ∼ N (0, 1 − ρ). Here Zi ’s are i.i.d. So, under the global null,

FWERBH (n, α, ρ) =P�n

⎡

⎣
n⋃

i=1

{

X(n−i+1) � �−1
(

1 − iα

n

)}
⎤

⎦

=P�n

⎡

⎣
n⋃

i=1

{

Uρ + Z(n−i+1) � �−1
(

1 − iα

n

)}
⎤

⎦

=P�n

⎡

⎣
n⋃

i=1

{
Uρ > �−1 (1 − tiα) − Z(n−nti+1)

}
⎤

⎦ where ti = i/n.

=P�n

⎡

⎣
n⋃

i=1

{

M >
�−1 (1 − tiα) − Z(n−nti+1)√

ρ

}⎤

⎦ (M = Uρ/
√

ρ ∼ N (0, 1))

=P�n

[

M > min
1≤i≤n

�−1 (1 − tiα) − Z(n−nti+1)√
ρ

]

=P�n

[

M > min
1≤i≤n

gn(ti )

]

(say).

For t ∈ (0, 1), Z(n−nt+1) = Z(
n
(
1−t+ 1

n

)) converges in probability to (1−t)’th quantile

of the distribution of Z1 (i.e.
√
1 − ρ · �−1(1 − t)) as n → ∞. Now, let

s(t) = �−1 (1 − tα) − √
1 − ρ · �−1(1 − t)√
ρ

.

Now, gn(t) converges to s(t) uniformly in any t ∈ [a, b] ⊂ (0, 1) and sample point
w ∈ A with P(A) > 1 − ε. Let

t0 := arg inf
t∈(0,1)

s(t).

We shall show that

min
1≤i≤n

gn(ti ) → s(t0).

Towards this, note that

lim
n→∞ min

a≤i/n≤b
gn
( i

n

)
≥ lim

n→∞ min
a≤t≤b

gn(t) ≥ g(t0).
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Also, gn(t) ≤ g(t0)+δ for each t ∈ (t0−δ1, t0+δ1). Thus,we havemin1≤i≤n gn(ti ) →
s(t0). Hence,

lim
n→∞ FWERBH (n, α, ρ) = P

[

M > inf
t∈(0,1)

s(t)

]

= 1 − �

[

inf
t∈(0,1)

s(t)

]

.

Now, inf
t∈(0,1)

s(t) ≤ s(.5) < ∞. So,�

[

inf
t∈(0,1)

s(t)

]

< 1. Thus, lim
n→∞ FWERBH (n, α,

ρ) > 0 for ρ ∈ (0, 1). ��
Remark 1 Since we are considering the infimum of the function s(·) and since s(0) =
∞ = s(1), the previous result still holds good if one considers the closed interval
[0, 1] in place of the open interval (0, 1).

Remark 2 Finner et al. (2007) studied the (limiting) empirical distribution function
of the p-values and used those to study limiting behaviors of FDR. Their results are
derived under general distributional setups and different values of ξn where ξn denotes
the proportion of the true nulls. Our elementary proof, in contrast, uses standard
analytic tools and provides a simple closed-form expression for the limiting FDR
under the global null.

4.3 Other step-up procedures

We have discussed the limiting FWER values of two step-up procedures so far. In this
subsection, we shall provide an upper bound on the limiting FWER of any step-up
procedure satisfying some properties. Towards this, we discuss a special dependency
property of test statistics introduced by Benjamini and Yekutieli (2001). They referred
to this property as positive regression dependency on each one from a subset A, or
PRDS on A. The notion of PRDS involves increasing sets.

Definition 1 A set D ⊂ R
k is called an increasing set if a ∈ D and b ≥ a imply that

b ∈ D.

Definition 2 Property PRDS LetX = (X1, X2, . . . , Xn) be the vector of test statistics.
We say that the PRDS property holds on A if for any increasing set D, and for each
i ∈ A, P {X ∈ D | Xi = x} is nondecreasing in x .

Benjamini and Yekutieli (2001) established that the Benjamini–Hochberg method
controls the FDR under the PRDS property. Let uT = (u1, . . . , un) ∈ Sn denote
the vector of critical values of the step-up MTP T . Guo and Rao (2008) showed the
following.

Lemma 4.1 (Guo and Rao 2008) Let T be any step-up MTP having vector of critical
values uT ∈ Sn. The following inequality holds under the PRDS property:

n∑

k=1

P (Rn(T ) = k | Pi ≤ uk) ≤ 1, for i ∈ A. (2)
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Moreover, the above inequality becomes an equality under the independence of the
test statistics.

They also constructed an example of the joint distribution of the p-values, under which
the PRDS property fails to hold although the inequality (2) holds. Thus, it turns out
that the inequality (2) is a strictly weaker property of the test statistics than the PRDS
property. They further showed the following optimality property of the BH procedure:

Theorem 4.4 (Guo and Rao 2008) Let T be the class of all step-up procedures with
vector of cutoffs belonging toSn and satisfying the inequality (2). Then, theBenjamini–
Hochberg procedure is optimal in the classT . That is, for any step-up procedure T ∈ T
with vector of critical values uT ∈ Sn, if it can control the FDR at α, then uk ≤ kα/n
for each k ∈ {1, . . . , n}.

Theorems 4.3 and 4.4 result in the following:

Theorem 4.5 Let T be the class of all step-up procedures with vector of cutoffs belong-
ing to Sn and satisfying the inequality (2). Let T ∈ T be such that it controls the FDR
at α ∈ (0, 1). Consider the equicorrelated normal setup with correlation ρ. Then,
under the global null, for all α ∈ (0, 1) and for all ρ ∈ (0, 1),

lim
n→∞ FDRT (n, α, ρ) ≤ 1 − �

[

inf
t∈(0,1)

�−1 (1 − tα) − √
1 − ρ · �−1(1 − t)√
ρ

]

.

Proof of Theorem 4.5 We have, under the global null,

FDRT (n, α, ρ) = FWERT (n, α, ρ)

= P�n

[
n⋃

i=1

{
P(i) < ui

}
]

≤ P�n

[
n⋃

i=1

{

P(i) <
iα

n

}]

(using Theorem4.4)

= FDRBH (n, α, ρ)

Taking limit as n → ∞ on both sides, we have

lim
n→∞ FDRT (n, α, ρ) ≤ lim

n→∞ FDRBH (n, α, ρ).

The rest follows from Theorem 4.3. ��

5 Hommel’s procedure

Wehave focused on step-down and step-up procedures so far. However,many powerful
MTPs proposed in the literature do not belong to the step-down or step-up categories.
The Hommel (1988) procedure is such a p-value based MTP that controls the FWER.
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The decisions for the individual hypotheses are performed in the following simple
way:

Step 1. Compute j = max
{
i ∈ {1, . . . , n} : P(n−i+k) > kα/i for k = 1, . . . , i}.

Step 2. If the maximum does not exist in Step 1, reject all the hypotheses.
Otherwise, reject all Hi with Pi � α/ j .

Hommel’s MTP is uniformly more powerful than the methods of Bonferroni, Holm,
and Hochberg (Gou et al. 2014). The following two results depict the asymptotic
behavior of the FWER of Hommel’s procedure under the independent normal setup
and under the positively equicorrelated normal setup, respectively.

Theorem 5.1 Consider the multiple testing problem under the independent normal
setup. Under the global null, we have

lim
n→∞ FWERHommel(n, α, 0) = 1 − e−α.

Theorem 5.2 Consider the multiple testing problem under the equicorrelated normal
framework with correlation ρ ∈ (0, 1). Then, for any α ∈ (0, 1),

lim
n→∞ FWERHommel(n, α, ρ) = 0

with probability one under the global null hypothesis.

Proof of Theorem 5.1 For 1 ≤ i ≤ n, we have P(i) = 1−�
(
X(n−i+1)

)
. Putting i = n−

j + k (here 1 ≤ j ≤ n and 1 ≤ k ≤ j) gives P(n− j+k) = 1−�
(
X( j−k+1)

)
, k � j .

Now,

P(n− j+k) >
kα

j
⇐⇒ 1 − �

(
X( j−k+1)

)
>

kα

j

⇐⇒ �−1
(

1 − kα

j

)

> X( j−k+1)

⇐⇒ �−1
(
1 − sα

t

)
> X(n(t−s)+1) where s = k/n and t = j/n.

For any r ∈ (0, 1), X(nr) converges in probability to r ’th quantile of the distribution
of X1 as n → ∞. This implies, X(n(t−s)+1) converges in probability to �−1(t − s) as
n → ∞. Thus, as n → ∞,

P(n− j+k) >
kα

j
⇐⇒ �−1

(
1 − sα

t

)
> �−1(t − s)

⇐⇒ 1 − sα

t
> t − s

⇐⇒ t − sα > t(t − s)

⇐⇒ t(1 − t) > s(α − t).

We have t ≥ s and 1 > α. So, t(1 − t) > s(α − t) always holds. This means that
the largest t for which t(1 − t) > s(α − t) holds for each s ∈ (0, t] is 1. This in turn
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implies that, as n → ∞, the largest integer j ≤ n satisfying P(n− j+k) > kα
j for all

k ∈ {1, . . . , j} is n with probability one. Thus, the Hommel’s procedure is same as
the Bonferroni’s procedure as n → ∞. Hence,

lim
n→∞ FWERHommel(n, α, 0) = 1 − e−α.

��
Proof of Theorem 5.2 For the equicorrelated normal framework with correlation ρ ∈
(0, 1), for each i ≥ 1, we have Xi = U + Zi . Here U ∼ N (0, ρ) is independent of
{Zn}n≥1 and Zi ’s are i.i.d N (0, 1 − ρ).

We establish Theorem 5.2 in the following steps:

1. Showing that as n → ∞,

P(n− j+k) >
kα

j
for all k = 1, . . . , j ⇐⇒ U < min

0<s<t
f (s)

where f (s) = �−1 (1 − sα/t) − √
1 − ρ · �−1(t − s).

2. Showing that

�

(−U − �−1(α)√
1 − p

)

> t implies U < min
0<s<t

f (s).

3. Showing that, for each positive integer m,

FWERHommel(n, α, ρ) ≤ P

[

P(1) � 1

t0
· α

n

]

+ P(U ≥ m)

where t0 = maxt {t ∈ (0, 1) : min0<s<t f (s) > U }.
We explicate the steps now.
Similar to the previous proof, we have

P(n− j+k) >
kα

j
⇐⇒ 1 − �

(
X( j−k+1)

)
>

kα

j

⇐⇒ �−1
(

1 − kα

j

)

> X( j−k+1)

⇐⇒ �−1
(

1 − kα

j

)

> U + Z( j−k+1)

⇐⇒ �−1
(
1 − sα

t

)
> U + Z(n(t−s)+1) where s = k/n and t = j/n.

For any r ∈ (0, 1), Z(nr) converges in probability to r ’th quantile of the distribution of
Z1 asn → ∞. This implies, Z(n(t−s)+1) converges in probability to

√
1 − ρ·�−1(t−s)

as n → ∞. Thus, as n → ∞,

P(n− j+k) >
kα

j
⇐⇒ U < �−1

(
1 − sα

t

)
−√1 − ρ · �−1(t − s).
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Proceeding in the same way as in the proof of Theorem 4.3, one may show that, as
n → ∞,

P(n− j+k) >
kα

j
for all k = 1, . . . , j ⇐⇒ U < min

0<s<t
f (s) (3)

completing the proof of step 1.
Now, t > t − s as s > 0. This implies �−1(t) > �−1(t − s). Consequently, for each
s > 0, f (s) > g(s) where g(s) = �−1

(
1 − sα

t

)− �−1(t). Thus,

g(s) > U �⇒ f (s) > U .

Now,

g(s) > U ⇐⇒ �−1
(
1 − sα

t

)
−√1 − ρ · �−1(t) > U

⇐⇒ �−1
(
1 − sα

t

)
> U +√1 − ρ · �−1(t)

⇐⇒ 1 − sα

t
> �

(
U +√1 − ρ · �−1(t)

)

⇐⇒ �
(−U − √

1 − ρ · �−1(t)
)

α
>

s

t
.

Therefore, if
�
(−U−√

1−ρ·�−1(t)
)

α
> 1 then ∀s ∈ (0, t), g(s) > U . Hence,

�
(−U−√

1−ρ·�−1(t)
)

α
> 1 implies f (s) > U for all s ∈ (0, t). Now,

�
(−U − √

1 − ρ · �−1(t)
)

α
> 1 ⇐⇒ −U −√1 − ρ · �−1(t) > �−1(α)

⇐⇒ �

(−U − �−1(α)√
1 − ρ

)

> t .

Therefore, we have established the following:

�

(−U − �−1(α)√
1 − p

)

> t implies U < min
0<s<t

f (s), (4)

completing step 2.
Thus,

t0 := max
t

{

t ∈ (0, 1) : min
0<s<t

f (s) � U

}

�max
t

{

t ∈ (0, 1) : �

(
−U − �−1(α)√

1 − ρ

)

> t

}

.
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Now, U < r implies t0 � εr where

εr = �

(−r − �−1(α)√
1 − p

)

.

So, for every m ∈ N, there exists εm > 0 such that t0 > εm ifU < m. In other words,
there is εm such that t0 > εm > 0 with probability at least P(U < m). This implies,
t0 is bounded away from zero with probability one. Now, let

j0 = max
1� j�n

{

P(n− j+k) >
kα

j
for all k = 1, . . . , j

}

.

Evidently, j0 � nt0. Consequently, under the global null,

FWERHommel(n, α, ρ) =P

[
n⋃

i=1

{

Pi � α

j0

}]

�P

[
n⋃

i=1

{

Pi � α

nt0

}]

+ P(U � m)

=P

[

P(1) � 1

t0
· α

n

]

+ P(U � m).

This completes the proof of Step 3. Now, P(U ≥ m) ≤ ε for all ε > 0 as m → ∞.
We claim now that

P

[

P(1) � 1

t0
· α

n

]

−→ 0 as n → ∞.

Its proof is precisely the same as the proof of Theorem 2 of Dey and Bhandari (2023a)
and we therefore omit it. The rest is obvious. ��
Remark 3 Suppose a > 0. The proof of Theorem 2 of Dey and Bhandari (2023a) also
culminates in the following:

P�n

[
P(1) � a · α

n

]
−→ 0 as n → ∞

for each ρ ∈ (0, 1). Then, invoking Slepian’s inequality, we have the following: Let�n

be the correlation matrix of X1, . . . , Xn having (i, j)’th entry ρi j with lim inf ρi j =
δ > 0. Suppose μ
 = supμi < ∞. Then, for any α ∈ (0, 1),

P�n

[
P(1) � a · α

n

]
−→ 0 as n → ∞.

Note that this is a much stronger result than Theorem 3.2.

If one replaces Xi by Xi + μi and U by U + μi in the proof of Theorem 5.2, one
would obtain the following result:
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Theorem 5.3 Consider the equicorrelated normal setup with equicorrelation ρ ∈
(0, 1). Suppose supμi is finite. Then, for any α ∈ (0, 1),

lim
n→∞P�n

(

Rn(Hommel) ≥ 1

)

= 0

with probability one under any configuration of true and false null hypotheses. Con-
sequently, FW ERHommel(n, α, ρ) and AnyPwrHommel(n, α, �n) tend to zero with
probability one as n → ∞.

6 Simulations and discussion

In this section we fix the desired level α at .05. We estimate the FWERs of Holm’s,
Hochberg’s, Hommel’s, and Benjamini–Hochberg method for the equicorrelated nor-
mal setup under the global null. For fixed values of (n, ρ), we adopt a simulation
scheme similar to the ones in Dey (2022) and Dey and Bhandari (2023b):

1. We generate 100,000 n-variate equicorrelated multivariate normal observations
(each of the n components has zeromean, unit variance and each pair of components
has common correlation ρ).

2. For each of the 100,000 replications, we obtain the n p-values from the n compo-
nents using the relation pi = 1 − �(Xi ).

3. For each of the four MTPs and for each of the replications, we check whether there
is at least one rejection. To do this for Hommel procedure, we have used the mtp
function from the R package elitism. For the other three procedures, we have used
the p.adjust function from the R package stats.

4. The FWER for a particular MTP is estimated as the number of times that MTP
makes at least one rejection (since we are considering global null), divided by
100,000.

We present the simulation results for the estimated FWER of Holm, Hochberg, Hom-
mel, and BH methods for different combinations of (n, ρ) in Fig. 1. The estimated
FWER values are mentioned in Table 2.

We observe from Fig. 1 that, for each ρ, the FWER values of Holm, Hochberg
and Hommel decrease with increasing n. The convergence to zero is much faster for
ρ = .9 compared to ρ = .1 for all these three procedures. Also, the simulation study
explicates that for small ρ and moderately large n, the Holm and Hochberg methods
have very similar performances.

For the BH FWER, we have also plotted the true limiting expression from Theorem
4.3 along with the simulation results to get an idea of the quality of asymptotic approx-
imation. In Fig. 1, the true limiting BH FWERs for ρ = .1, .5, .9 are represented by
the square sign, the plus sign, and the diamond sign respectively. For n =100,000
and ρ = .5, .9, the BH FWER at α = .05 are estimated as .01276 and .02022. These
values are close to the corresponding limiting values .0103 and .0194 respectively.
However, for ρ = .1, the BH FWER value at n =100,000 is still far off from the
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Fig. 1 Estimates of FWER(n, α = .05, ρ) of four procedures for ρ = .1, .5, .9 and n =100, 1000, 10,000,
1,000,00 under the global null. The solid, dashed and dotted lines correspond to the FWER values for
ρ = .1, .5 and .9 respectively

limiting value .0076. As mentioned in the preceding paragraph, this slow convergence
to the limit for small values of ρ is true for the other three procedures also.

One also observes from Fig. 1 and Table 2 that, for large n, the BH FDR tends
to decrease at first and then increases as ρ increases, as also mentioned by Das and
Bhandari (2020).

7 Concluding remarks

In recent years, substantial efforts have beenmade to understand the properties of mul-
tiple testing procedures under dependence. The work by Dey and Bhandari (2023a)
sheds light on the extent of the conservativeness of theBonferronimethod under depen-
dent setups. However, there is little literature on the effect of correlation on general
step-down or step-up procedures. This paper addresses this gap in a unified manner
by investigating the limiting behaviors of several testing rules under the correlated
Gaussian sequence model. We have proved asymptotic zero results for some popular
MTPs controlling FWER at a pre-specified level. Specifically, we have shown that the
limiting FWER approaches zero for any step-down rule provided the infimum of the
correlations is strictly positive.
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Table 2 Estimates of FWER(n, α = .05, ρ) of Holm, Hochberg, Hommel and BH Method under the
global null

Correlation Procedure Number of hypotheses (n)

(ρ) 100 1000 10,000 100,000

Holm .04645 .04531 .04352 .04285

.1 Hochberg .04645 .04531 .04352 .04285

Hommel .04653 .04533 .04353 .04285

BH .04942 .04855 .04749 .04721

Holm .02588 .01711 .01181 .00782

.5 Hochberg .02588 .01711 .01181 .00782

Hommel .02612 .01725 .01193 .00801

BH .03177 .02257 .01660 .01276

Holm .00482 .00134 .00037 .00008

.9 Hochberg .00639 .00276 .00130 .00069

Hommel .01149 .00701 .00446 .00310

BH .02168 .02035 .02024 .02022

Huang and Hsu (2007) show that both Holm’s and Hochberg’s methods are special
cases of partition testing. Holm’s MTP tests each partition hypothesis using the max-
imum order statistic, setting a cutoff utilizing the Bonferroni inequality. Hochberg’s
procedure, on the contrary, tests each partition hypothesis using each of the order
statistics, using a set of cutoffs utilizing Simes’ inequality. It is natural to expect parti-
tion testing utilizing the joint distribution of the test statistics is sharper than partition
testing based on probabilistic inequalities. Our results elucidate that, at least under the
correlated Gaussian sequence model setup with many hypotheses, Holm’s MTP and
Hochberg’s MTP do not have significantly different performances in that they both
have asymptotic zero FWER and asymptotic zero power.

The Benjamini–Hochberg procedure has been one of the most studiedMTP and has
several desirable optimality properties (Bogdan et al. 2011; Guo and Rao 2008). It is
astonishing to note that, among all the procedures studied in this paper, the BHmethod
is the only one which can hold the FWER at a strictly positive level asymptotically
under the equicorrelated normal setup. An interesting problem would be to study the
limiting power of the Benjamini–Hochberg method.

Hommel’s method is more rejective than Hochberg’s MTP (and consequently,
Holm’s and Bonferroni’s methods) (Gou et al. 2014). Yet, within our chosen asymp-
totic framework, this has asymptotic zero FWER and asymptotic zero power.

Finally, there are possible scopes of interesting extensions in several directions. One
extension is to considermore general distributional setups.Another is to study the (lim-
iting) behaviors of Hochberg, Hommel, and Benjamini–Hochberg procedures under
general dependent normality. The primary tool in establishing universal asymptotic
zero results for the step-downMTPs is Slepian’s inequality which compares the quad-
rant probabilities of two normal random vectors. However, for the step-up procedures,
the FWERs become functions of several order statistics. Hence we can not directly
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apply Slepian’s inequality in these scenarios. Indeed, Finner et al. (2007) remark that
it is challenging to deal with false discoveries in models with complicated dependence
structures, e.g., in amultivariate Gaussianmodel with a general covariancematrix. It is
also interesting to theoretically investigate whether similar asymptotic results hold for
other classes of MTPs, e.g., the class of consonant procedures (Westfall et al. 1999).

Appendix

This section contains the proofs of various results stated in the paper.

Proof of Theorem 3.2 We have,

P�n (Rn(Holm) ≥ 1) = P�n (P(1) ≤ α/n) =P�n (X(n) ≥ cBon).

Theorem 2.4 gives P�n (X(n) ≥ cBon) ≤ P�n (X(n) ≥ cBon). Without any loss of
generality, we may assume Xi ∼ N (μi , 1) (μi > 0) for 1 ≤ i ≤ n1 and for n1 < i ≤
n, Xi ∼ N (0, 1). Thus,

P�n (Rn(Holm) ≥ 1)

≤P�n (X(n) ≥ cBon)

=1 − P�n (X(n) ≤ cBon)

=1 − P�n (Xi � cBon ∀i = 1, 2, . . . , n)

=1 − P�n

[ n1⋂

i=1

{θ + Zi + μi � cBon}
⋂ n⋂

i=n1+1

{θ + Zi � cBon}
]

=1 − Eθ

[{ n1∏

i=1

�

(
cBon − θ − μi√

1 − ρ

)}

· �n−n1

(
cBon − θ√

1 − ρ

)]

≤1 − Eθ

[

�n
(
cBon − θ − μ


√
1 − ρ

)]

.

The last quantity above tends to zero asymptotically sinceμ
 < ∞ (its proof is exactly
similar to that of Theorem 2 of Dey and Bhandari (2023a). The rest follows by noting
that Rn(Holm) ≥ max{Vn(Holm), Sn(Holm)}. ��

We establish Theorem 3.3 using the following result:

Theorem 7.1 (Gordon and Salzman 2008) Let T be a step-down MTP based on the
set of cut-offs u ∈ Sn. If FW ERT ≤ α < 1, then ui ≤ α/(n − i + 1), i = 1, . . . , n.

Proof of Theorem 3.3 We have,

FWERT (n, α,�n) = P�n (Vn(T ) ≥ 1) ≤P�n (Rn(T ) ≥ 1)

=P�n (P(1) ≤ u1)

≤P�n (P(1) ≤ α/n).
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The last step above follows since we have u1 ≤ α/n from Theorem 7.1. The rest is
obvious from Theorem 3.2. ��

Proof of Theorem 4.1 We have, under the global null,

FWERHochberg(n, α, 0) =PIn

[
n⋃

i=1

{

P(i) � α

n − i + 1

}]

�PIn

[
P(1) � α

n

]

−→
n→∞1 − e−α.

Also, Hochberg’s procedure controls FWER at level α (Hochberg 1988). So,

1 − e−α � lim
n→∞ FWERHochberg(n, α, 0) � α.

Also, limα→0
1−e−α

α
= 1. Thus, we have, asα → 0, limn→∞

FWERHochberg(n,α,0)
α

= 1.
This completes the proof of the first part.
Consider the covariance matrix �n now, with ρ ∈ (0, 1). Under the global null, we
have

Xi = U + Zi

where U ∼ N (0, ρ), Zi
i .i .d∼ N (0, 1 − ρ). Here U and Zi are independent. Now,

P(i) � α

n − i + 1

⇐⇒ 1 − α

n − i + 1
≤ �

(
X(n−i+1)

)

⇐⇒ �−1
(

1 − α

n − i + 1

)

� U + Z(n−i+1)

⇐⇒ �−1
(

1 − α

n − i + 1

)

� U +√1 − ρ · �−1
(

1 − i

n

)

(for all sufficiently large values of n).

Therefore, for all sufficiently large values of n, we have
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P(i) � α

n − i + 1

⇐⇒ −U −√1 − ρ · �−1
(

1 − i

n

)

� −�−1
(

1 − α

n − i + 1

)

⇐⇒ −U +√1 − ρ · �−1
(
i

n

)

� �−1
(

α

n − i + 1

)

⇐⇒ −U

�−1
(

α
n−i+1

) +
√
1 − ρ · �−1

( i
n

)

�−1
(

α
n−i+1

) � 1 (sinceα ∈ (0, 1/2))

⇐⇒ lim
n→∞

�−1
( i
n

)

�−1
(

α
n−i+1

) ≥ 1√
1 − ρ

.

Thus, we have i/n < 1/2, because otherwise the limiting ratio of �−1
( i
n

)
and

�−1
(

α
n−i+1

)
can not be positive. So, we have

i

n
<

α

n − i + 1
< 1/2.

This implies i(n − i + 1) < α · n. But this is not valid for any value of i in {1, . . . , n}.
Consequently, the limiting FWER is zero. ��

Proof of Theorem 4.2 Let U and Zi be as in the preceding proof. We have,

P�n

(

Rn(Hochberg) ≥ 1

)

=P�n

[
n⋃

i=1

{

P(i) � α

n − i + 1

}]

=P�n

[
n⋃

i=1

{

�−1
(

1 − α

n − i + 1

)

≤ U + Z(n−i+1)

}]

=P�n

[
⋃

i∈A

{
cα,n−i+1 ≤ U + Z(n−i+1)

}⋃ ⋃

i∈Ac

{
cα,n−i+1 ≤ U + Z(n−i+1)

}
]

.

In the last step above, cα,n−i+1 denotes �−1
(
1 − α

n−i+1

)
.

Here, Zi = μi + Vi where Vi ’s are i.i.d N (0, 1− ρ) variables, μi is zero for i ∈ A
and is strictly positive otherwise. So, Zi always lies in [Vi , Vi + supμi ]. This implies,
for all i ∈ {1, . . . , n},

Z(n−i+1) ≤ V(n−i+1) + supμi .
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Hence, we have

P�n

(

Rn(Hochberg) ≥ 1

)

≤P�n

[
n⋃

i=1

{

�−1
(

1 − α

n − i + 1

)

≤ U + V(n−i+1) + supμi

}]

.

Proceeding exactly in the same way as in the earlier proof, one obtains that the upper
bound tends to zero asymptotically. Consequently, the probability of rejecting any null
hypothesis approaches zero. ��
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