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Abstract
Many estimators of the variance of the well-known unbiased and uniform most pow-
erful estimator of the Mann–Whitney effect, are considered in the literature. Some of
these estimators are only valid in cases of no ties or are biased in small sample sizes
where the amount of bias is not discussed. Here, we derive an unbiased estimator based
on different rankings, the so-called ’placements’ (Orban and Wolfe in Commun Stat
TheoryMethods 9:883–904, 1980), which is therefore easy to compute. This estimator
does not require the assumption of continuous distribution functions and is also valid
in the case of ties. Moreover, it is shown that this estimator is non-negative and has a
sharp upper bound, which may be considered an empirical version of the well-known
Birnbaum–Klose inequality. The derivation of this estimator provides an option to
compute the biases of some commonly used estimators in the literature. Simulations
demonstrate that, for small sample sizes, the biases of these estimators depend on the
underlying distribution functions and thus are not under control. This means that in
the case of a biased estimator, simulation results for the type-I error of a test or the
coverage probability of a confidence interval do not only depend on the quality of the
approximation of by a normal distribution but also an additional unknown bias caused
by the variance estimator. Finally, it is shown that this estimator is L2-consistent.
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1 Introduction

The Mann–Whitney effect θ = P(X1 ≤ X2) is a common nonparametric effect that
is used to describe a treatment effect in a nonparametric setting for two independent
random variables X1 ∼ F1(x) and X2 ∼ F2(x) involving continuous distribution
functions. This effect was introduced by Mann and Whitney (1947) for testing the
hypothesis HF

0 : F1 = F2. A few years later, Putter (1955) considered the case of ties
in some nonparametric tests and derived the consistency region for theMann–Whitney
test in the general case as θ = P(X1 < X2) + 1

2 P(X1 = X2) �= 1
2 . An unbiased

and L2-consistent estimator ̂θ of the Mann–Whitney effect θ can be obtained from
U -statistics theory, and it is well known (see, e.g., Lehmann 1951) that this estimator
is the uniform most powerful unbiased estimator of θ . Moreover, it can be represented
by ranks. To compute confidence intervals for θ , the variance σ 2

N of this estimator ̂θ
is required, and it seems to be less straightforward to provide an unbiased estimator
of σ 2

N which is also valid in case of ties.
Under the assumption of continuous distribution functions Sen (1967) and Govin-

darajulu (1968) provided unbiased estimators of σ 2
N but did not discuss whether these

estimators could become negative. Hilgers (1981) derived a rank representation of
Sen’s estimator but did not discuss whether this estimator could become negative.
Shirahata (1993) derived an unbiased estimator of the Mann–Whitney variance based
on U-statistics, which is only valid if there are no ties. Shirahata mentioned that his
estimator is equivalent to Sen’s estimator, but he also mentioned that there is a possi-
bility that it might become negative. In his simulations, however, he did not observe
negative values. In Sect. 4, it will be shown that this estimator is non-negative in case
of no ties - disproving Shirahata’s conjecture. But, when in the case of ties, the ranks in
Hilgers’ estimator are replacedwithmid-ranks, it turns out by simple counterexamples
that this estimator can become negative. This shows that it is not trivial to derive an
unbiased and non-negative estimator of the Mann–Whitney variance.

It seems that Bamber (1975) was the first to provide (without detailed proof) an
unbiased estimator, which is also valid in the case of ties. On the one hand, the rep-
resentation of this estimator is quite involved. It is a linear combination of several
positive and negative terms; thus, it is unclear whether this estimator will become
negative. This is not discussed in Bamber’s paper. Moreover, this estimator is not well
recognized in the statistical literature and recent publications (see, e.g., Brunner and
Munzel (2000), Perme and Manevski (2019), Gasparyan et al. (2021) mainly use the
so-called DeLong-estimator, σ̂ 2

DL (DeLong et al. 1988) which can conveniently be
represented using ranks and is also valid in case of ties. DeLong’s estimator is non-
negative since it can be written as a weighted sum of quadratic forms involving only
non-negative weights and specific rankings. However, σ̂ 2

DL can be biased for small
sample sizes. Some details on variance estimators from the literature are discussed in
Sect. 4.

Therefore, it shall be one of the aims of this paper to provide a simple representation
of an unbiased estimator of σ 2

N , which is also valid in the case of ties. Moreover, this
estimator’s basic properties, such as non-negativity, L2-consistency, and an empirical
version of the Birnbaum–Klose inequality (1957), will be investigated.
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The paper is organized as follows. The statistical model and some basic notations
are stated in Sect. 2, where the exact (finite) variance of the Mann–Whitney statistic
involving the case of ties is briefly considered to provide the necessary notations. An
unbiased estimator of the Mann–Whitney variance is derived in Sect. 3 by deriving
the covariance matrix of the placements in both samples, which provides the key to
computing the bias of an estimator using Lancaster’s theorem. In Sect. 4, some well-
known estimators from the literature and their properties are investigated. The proofs
of the main results are deferred to the Appendix.

2 Statistical model and notations

2.1 Mann–Whitney estimator and placements

Let Xik ∼ Fi , k = 1, . . . , ni ; i = 1, 2, be independent and identically distributed
random variables. Let further θ = P(X1k < X2r ) + 1

2 P(X1k = X2r ) = ∫

F1dF2
denote the Mann–Whitney effect which can equivalently be written as

θ =
∫

F1dF2 and 1 − θ =
∫

F2dF1 (2.1)

where Fi (x) = 1
2

[

F+
i (x) + F−

i (x)
]

denotes the so-called normalized version of
the distribution function in the sense of Lévy (1925). Here, F−

i (x) denotes the
left-continuous and F+

i (x) the right-continuous version of the distribution function
(Ruymgaart 1980). For further explanations regarding this version of the distribution
function we refer to Brunner and Puri (2001, Sects.1.2.2 and 1.3.1), Brunner and Puri
(2002, Sect.2 and Appendix, Lemma A.1), and Kruskal (1952, Sect.9).

A simple plug-in estimator of θ is given by

̂θ =
∫

̂F1d̂F2 = 1

n2

n2
∑

k=1

̂F1(X2k)

= 1

n1

(

R2· − n2 + 1

2

)

= 1

N

(

R2· − R1·
) + 1

2
(2.2)

where ̂Fi (x) denotes the normalized version of the empirical distribution function (see
Def.2.1.3 in Brunner et al. 2019) and Ri · = 1

ni

∑ni
k=1 Rik , i = 1, 2, denotes the mean

of the ranks Rik of Xik in sample i among all N = n1 + n2 observations (overall
rank). Note that the last step in (2.2) follows from R1· + R2· = N (N + 1)/2 (see also
Result 3.1 and Exercise/Problem 3.7 in Brunner et al. 2019). It is well-known that̂θ is
an unbiased and L2-consistent estimator of

∫

F1dF2, which can immediately be seen
from Theorem 2.1.

123
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Let

c(x, y) =
⎧

⎨

⎩

0 , x > y
1/2 , x = y
1 , x < y

(2.3)

denote the indicator function, called ’counting statistic’ (Randles and Wolfe 1979).
Then,

E(̂θ) = E

(∫

̂F1d̂F2

)

= E

(

1

n2

n2
∑

k=1

̂F1(X2k)

)

= 1

n1n2

n1
∑

r=1

n2
∑

k=1

E[c(X1r , X2k)] =
∫

F1dF2

(for details, we refer, e.g., to Brunner et al. 2019, Sect. 7.2.3). We note that in most
textbooks,̂θ is defined as

̂θ = 1

n1n2

n1
∑

r=1

n2
∑

k=1

c(X1r , X2k) (2.4)

which is identical to (2.2). We prefer the approach of using the empirical functions, for
convenience. The results are identical to those obtained using the indicator function
c(x, y). The relation of ̂θ in (2.4) to (2.2) follows immediately from the definition
of the empirical distribution function ̂F1(x) = 1

n1

∑n1
r=1 c(X1r , x) and the relation

n1̂F1(X2k) = R2k − R(2)
2k , where R(2)

2k is the rank of X2k among all n2 observations
within sample 2. In general, the overall rank Rik of an observation Xik , k = 1, . . . , ni ,
i = 1, 2, is defined as Rik = 1

2 + ∑2
j=1

∑n j
r=1 c(X jr , Xik) and the internal rank of

Xik within sample i is defined as R(i)
ik = 1

2 + ∑ni
r=1 c(Xir , Xik). Note that 1/2 must

be added to the sum of the indicator functions to obtain the intuitive meaning of ranks
as place numbers of the observations in the order statistic in case of no ties since the
comparison c(Xik, Xik) of the observation Xik with itself equals 1/2.

The quantities

R∗
1k = R1k − R(1)

1k = n2̂F2(X1k) =
n2
∑

�=1

c(X2�, X1k) (2.5)

R∗
2� = R2� − R(2)

2� = n1̂F1(X2�) =
n1
∑

k=1

c(X1k, X2�) (2.6)

are called ’placements’ (Orban and Wolfe 1980, 1982). The placements R∗
1k and R∗

2�
are basically the place numbers (ranks) of X1k within sample 2 and of X2� within
sample 1. The formal representations in (2.5) and (2.6) are immediately obvious from
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the following considerations. Let ̂H(x) = 1
N [n1̂F1(x)+n2̂F2(x)] denote theweighted

mean of the empirical distribution functions ̂F1(x) and ̂F2(x). Then

N ̂H(X1k)
︸ ︷︷ ︸

R1k− 1
2

=
2
∑

j=1

n j
∑

s=1

c(X js, X1k) = n1̂F1(X1k) + n2̂F2(X1k)

=
n1
∑

s=1

c(X1s, X1k)

︸ ︷︷ ︸

R(1)
1k − 1

2

+
n2
∑

s=1

c(X2s, X1k)

︸ ︷︷ ︸

R∗
1k

and the expression for R∗
2� follows in the same way. Then the mean 1

n1n2

∑n2
�=1 R

∗
2� =

1
n1
R

∗
2· = 1

n1
(R2· − n2+1

2 ) yields the representation of̂θ in (2.2).

2.2 The variance of theMann–Whitney estimator

First, we briefly derive the variance σ 2
N of ̂θ , including the case of discrete distribu-

tions since some quantities appearing in this derivation will be used later to derive
an unbiased estimator of σ 2

N . We note that the representation of the Mann–Whitney
variance σ 2

N presented below is identical to that in Bamber (1975), which extends the
representation for continuous distribution functions by Van Dantzig (1951) to the case
of ties.

Since E(̂θ) = θ , the variance is given by Var(̂θ) = E
(

̂θ − θ
)2

and it follows that

(̂θ − θ)2 =
(

1

n2

n2
∑

k=1

̂F1(X2k) − θ

)2

=
(

1

n2

n2
∑

k=1

[

̂F1(X2k) − θ
]

)2

= 1

n21n
2
2

n2
∑

k=1

n2
∑

�=1

n1
∑

r=1

n1
∑

s=1

[c(X1r , X2k) − θ ] [c(X1s, X2�) − θ ] . (2.7)

When taking the expectation of (̂θ − θ)2, four cases in (2.7) must be distinguished.
They are given in the following table, where the expectations of the products of the
indicator function in (2.7) are listed in the right column and are obtained by computing
conditional expectations using routine computations. The numbers of combination
cases (left column) are in the middle column.

Combination Number of Cases E
([

c(X1r , X2k ) − θ
] [

c(X1s , X2�) − θ
])

k = �, r = s n1n2 = θ(1 − θ) − 1
4

∫

(F+
1 − F−

1 )dF2
k = �, r �= s n1n2(n1 − 1) = ∫

F2
1 dF2 − θ2 = σ 2

2
k �= �, r = s (n2 − 1)n1n2 = ∫

F2
2 dF1 − (1 − θ)2 = σ 2

1
k �= �, r �= s (n1 − 1)n1(n2 − 1)n2 = 0

123
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The result of the summation over all combinations is given in the following theorem.

Theorem 2.1 The variance σ 2
N of̂θ is given by

σ 2
N = 1

n1n2

[

(n2 − 1)σ 2
1 + (n1 − 1)σ 2

2 + θ(1 − θ) − 1

4
τ

]

, (2.8)

where

σ 2
1 = Var (F2(X11)) =

∫

F2
2 dF1 − (1 − θ)2 , (2.9)

σ 2
2 = Var (F1(X21)) =

∫

F2
1 dF2 − θ2 , (2.10)

τ =
∫

(F+
1 − F−

1 )dF2 =
∫

(F+
2 − F−

2 )dF1 = P(X11 = X21). (2.11)

Remark 2.1 The quantity τ in (2.11) can easily be interpreted as the probability of ties
in the overlap region of F1 and F2.

3 Derivation of an unbiased estimator of �2
N

In this section, we derive an estimator of σ 2
N , which is unbiased and non-negative for

all sample sizes n1, n2 ≥ 2 and valid in case of ties. Moreover, we give some essential
properties of this estimator in Theorem3.1. First, some notations and relations between
sums of count functions and different rankings are considered.

3.1 Notations and basic results

First, we note that

c2(x, y) = c(x, y) − 1
4 [c+(x, y) − c−(x, y)], (3.12)

where c+(·) denotes the right-continuous version and c−(·) the left -continuous version
of the indicator function. In particular,

E
[

c2(X2�, X1k)
]

=
∫

F2dF1 − 1
4τ = 1 − θ − 1

4τ, (3.13)

where τ is defined in (2.11).
Since ̂θ in (2.1) is the mean of the placements R∗

2� as considered in Sect. 2.1, the
placements R∗

1k and R∗
2� shall be considered in more detail. They are the empirical

counterparts of the quantities n2F2(X1k) and n1F1(X2�) and will be used to estimate
the variances σ 2

1 and σ 2
2 in (2.9) and (2.10).

To compute the variance of̂θ = 1
n2

∑n2
�=1

̂F1(X2�), the covariance matrices of the

scaled placement vectors 1
N−ni

R∗
i = 1

N−ni
(R∗

i1, . . . , R
∗
ini

)′, i = 1, 2, shall be derived.
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Since E[c(X2�, X1r )] = ∫

F2dF1 = 1 − θ and E[c(X1k, X2r )] = ∫

F1dF2 = θ ,
it follows from (2.5) and (2.6) that the expectations of the placement vectors are
E(R∗

1) = n2(1 − θ)1n1 and E(R∗
2) = n1θ1n2 .

The structure of the covariance matrices V i = Cov(R∗
i ), i = 1, 2 follows from

the relations in (2.5) and (2.6) by noting that the Xik are independent and identically
distributedwithin eachgroup i , by assumption.Thus, the commondistribution function
of the Xi1, . . . , Xini is invariant under all permutations and the variances of R∗

ik =
nr ̂Fr (Xik), i �= r = 1, 2 are all the same, s2i , say. Moreover, all covariances ρi =
Cov(R∗

ik, R
∗
i�) are identical for k �= � = 1, . . . , ni , i = 1, 2, and it follows that V i

has a compound symmetry structure,

V i = Cov(R∗
i ) = (s2i − ρi )Ini + ρi Jni , i = 1, 2, (3.14)

where Ini denotes the unit matrix of dimension ni and Jni = 1ni 1
′
ni denotes the

(ni × ni )-matrix of 1 s.
By the same arguments, the covariances Cov(R∗

1k, R
∗
2�) are all identical, ρ3, say,

and the total covariance matrix V is given by

V = Cov

⎛

⎝

R∗
1· · ·

R∗
2

⎞

⎠ =
⎛

⎜

⎝

(s21 − ρ1)In1 + ρ1 Jn1
... ρ3 Jn1×n2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ρ3 Jn2×n1

... (s22 − ρ2)In2 + ρ2 Jn2

⎞

⎟

⎠

=

⎛

⎜

⎜

⎝

V 1
... ρ3 Jn1×n2

· · · · · · · · · · · · · · · · · · · · · · · ·
ρ3 Jn2×n1

... V 2

⎞

⎟

⎟

⎠

. (3.15)

To derive an unbiased estimator of σ 2
N in (2.8), we consider the quadratic forms

Q2
i =

ni
∑

k=1

(

R∗
ik − R

∗
i ·
)2

, i = 1, 2 (3.16)

of the centered placements R∗
ik − R

∗
i · = Rik − R(i)

ik −
(

Ri · − ni+1
2

)

.

Remark 3.1 1. Many estimators of σ 2
N from the literature can be written as a function

of Q2
1 and Q2

2 (for details see Sect. 4, Table 1).

2. In this case, the representation of the covariance matrix of R∗ =
⎛

⎝

R∗
1· · ·

R∗
2

⎞

⎠ enables

a simple computation of the expectation of an estimator of σ 2
N .

123
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Let Pni = Ini − 1
ni
Jni denote the ni -dimensional centering matrix. Then, Q2

i can

be written as Q2
i = (R∗

i )
′Pni R

∗
i and by Lancaster’s theorem,

E(Q2
i ) = tr(PniV i ) + E

[

(R∗
i )

′] Pni E
[

R∗
i

]

= tr(PniV i ) (3.17)

since n22(1 − θ)21′
n1 Pn11n1 = 0 and n21θ

21′
n2 Pn21n2 = 0.

Note that from (3.14), PniV i = [s2i − ρi ]Pni , since Pni Jni = 0. Then, from
tr(Pni ) = ni − 1, it follows from (3.14) that

tr(PniV i ) = (ni − 1)[s2i − ρi ]; i = 1, 2. (3.18)

Only the coefficients s21 , s
2
2 andρ1, ρ2, andρ3 have to be determined. They are obtained

from

s21 = Var
(

R1k − R(1)
1k

)

= Var

(

n2
∑

�=1

c(X2�, X1k)

)

= E

[

n2
∑

�=1

n2
∑

r=1

[c(X2�, X1k) − (1 − θ)][c(X2r , X1k) − (1 − θ)]
]

(3.19)

s22 = Var
(

R2k − R(2)
2k

)

= Var

(

n1
∑

�=1

c(X1�, X2k)

)

= E

[

n1
∑

�=1

n1
∑

r=1

[c(X1�, X2k) − θ ][c(X1r , X2k) − θ ]
]

(3.20)

ρ1 = Cov
(

R11 − R(1)
11 , R12 − R(1)

12

)

= E

[

n2
∑

�=1

n2
∑

r=1

[c(X2�, X11) − θ ][c(X2r , X12) − θ ]
]

(3.21)

ρ2 = Cov
(

R21 − R(2)
21 , R22 − R(2)

22

)

= E

[

n1
∑

�=1

n1
∑

r=1

[c(X1�, X21) − (1 − θ)][c(X1r , X22) − (1 − θ)]
]

. (3.22)
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The expectations are obtained from Sect. 2.2 by some routine computations and
using (3.12). This leads to

s21 = n2

[

(n2 − 1)σ 2
1 + θ(1 − θ) − 1

4
τ

]

and ρ1 = n2σ
2
2 (3.23)

s22 = n1

[

(n1 − 1)σ 2
2 + θ(1 − θ) − 1

4
τ

]

and ρ2 = n1σ
2
1 (3.24)

where τ is defined in (2.11). Finally, the expectations of Q2
1 and Q2

2 are

E(Q2
1) = (n1 − 1)n2

[

(n2 − 1)σ 2
1 − σ 2

2 + θ(1 − θ) − 1

4
τ

]

, (3.25)

E(Q2
2) = (n2 − 1)n1

[

(n1 − 1)σ 2
2 − σ 2

1 + θ(1 − θ) − 1

4
τ

]

. (3.26)

Since the expectations of Q2
1 and Q2

2 are mixtures of all the quantities s21 , s
2
2 , ρ1,

and ρ2, it is preferable to consider the expectation of the sum Q2
1 + Q2

2.
Now let K (θ, τ ) = θ(1 − θ) − 1

4τ , for convenience, and let ⊕ denote the direct
sum of matrices and let 	 denote the Hadamard product of matrices. Then it follows
from (3.14) and (3.15) and from V = V ′ that

E(Q2
1 + Q2

2) = tr
[(

Pn1 ⊕ Pn2

)

V
] = 1′

N

[(

Pn1 ⊕ Pn2

) 	 V
]

1N

=
2
∑

i=1

1′
ni (Pni 	 V i )1ni =

2
∑

i=1

(ni − 1)[s2i − ρi ]

= (n1 − 1)n2
[

(n2 − 1)σ 2
1 − σ 2

2 + K (θ, τ )
]

+(n2 − 1)n1
[

(n1 − 1)σ 2
2 − σ 2

1 + K (θ, τ )
]

= (n2 − 1)[n1n2 − N ]σ 2
1 + (n1 − 1)[n1n2 − N ]σ 2

2

+[n1n2 − N + n1n2]K (θ, τ )

= (n1n2 − N )
[

(n2 − 1)σ 2
1 + (n1 − 1)σ 2

2 + K (θ, τ )
]

︸ ︷︷ ︸

n1n2σ 2
N

+n1n2K (θ, τ )

which simplifies to

E

(

1

n1n2
(Q2

1 + Q2
2) − [θ(1 − θ) − 1

4τ ]
)

= (n1n2 − N )σ 2
N . (3.27)
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Now replacing θ(1 − θ) by E[̂θ(1 −̂θ) + σ 2
N ] = θ(1 − θ) finally leads to

E

(

1

n1n2
(Q2

1 + Q2
2) − [

̂θ(1 −̂θ) − 1
4τ
]

)

= (n1n2 − N + 1)σ 2
N

= (n1 − 1)(n2 − 1)σ 2
N . (3.28)

It remains to find an unbiased estimator of τ = P(X11 = X21). To this end let
F+
1 (x) = P(X11 ≤ x) and F−

1 (x) = P(X11 < x). Then it holds that E[F+
1 (X21)] =

P(X11 ≤ X21) and E[F−
1 (X21)] = P(X11 < X21). Thus,

E
[

F+
1 (X21) − F−

1 (X21)
] = P(X11 ≤ X21) − P(X11 < X21)

= P(X11 = X21) .

To estimate these quantities let c+(y, x) =
{

1, y ≤ x,
0, y > x

and c−(y, x) =
{

1, y < x,
0, y ≥ x

denote the indicator function’s right- and left-continuous versions, respectively. Fur-
ther let ̂F+

1 (x) = 1
n1

∑n1
r=1 c

+(X1r , x) denote the right-continuous version and
̂F−
1 (x) = 1

n1

∑n1
r=1 c

−(X1r , x) the left-continuous version, respectively, of the empiri-
cal distribution function of F1.UsingRelation (2.6) it follows that the plug-in estimator

τ̂N = 1

n2

n2
∑

�=1

[

̂F+
1 (X2�) − ̂F−

1 (X2�)
]

= 1

n2

n2
∑

�=1

1

n1

[

(

R+
2� − R−

2�

) −
(

R
(2)+
2� − R

(2)−
2�

)]

= 1

n1

[

R
+
2· − R

−
2· −

(

R
(2)+
2· − R

(2)−
2·

)]

. (3.29)

is an unbiased estimator of τ . Here, R+
2� and R−

2� denote the maximal and mini-

mal overall ranks of X2�, respectively, and R(2)+
2� and R(2)−

2� denote the maximal
and minimal internal ranks of X2� within sample 2. We refer to Brunner et al.
(2019), Sect. 2.3.2, Def. 2.19, for details regarding maximal and minimal ranks.
Unbiasedness of τ̂N follows by noting that E

[

̂F+
1 (X21)

] = P(X11 ≤ X21) and
E
[

̂F−
1 (X21)

] = P(X11 < X21) and in turn E
[

̂F+
1 (X21) − ̂F−

1 (X21)
] = τ .

Replacing τ in (3.28) with the unbiased estimator τ̂ leads to the final result stated in
Theorem 3.1where the preceding derivations are summarized and some other essential
properties of the estimator σ̂ 2

N in (3.30) are stated.

Theorem 3.1 Let Xik ∼ Fi , k = 1, . . . , ni ; i = 1, 2, be independent and identically
distributed random variables, where Fi (x) = 1

2

[

F+
i (x) + F−

i (x)
]

and assume that

(X1k)
n1
k=1 is independent from (X2�)

n2
�=1. Further let UN = √

N [(Y 2· −Y 1·)+1−2θ ],
where Y i · = 1

ni

∑ni
k=1 Yik and Y1k = F2(X1k) and Y2� = F1(X2�) and let

s2N = Var(UN ) = N

n1n2
(n2σ

2
1 + n1σ

2
2 ), (3.30)
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where the variances σ 2
1 and σ 2

2 are defined in (2.9) and (2.10), respectively. Further let

R∗
ik = Rik − R(i)

ik denote the placements in (2.5) and (2.6) and let R
∗
i · = 1

ni

∑ni
k=1 R

∗
ik ,

i = 1, 2 denote theirmeans. Finally, let τ̂N denote the unbiased estimator of τ in (3.29).
Then, the variance estimator

σ̂ 2
N = 1

(n1 − 1)(n2 − 1)

(

1

n1n2
(Q2

1 + Q2
2) − [

̂θ(1 −̂θ) − 1
4 τ̂N

]

)

(3.31)

has the following properties

1. If σ 2
1 , σ 2

2 > 0 and if N/ni ≤ N0 < ∞, i = 1, 2, then N σ̂ 2
N is L2-consistent for

s2N in (3.30) in the sense that E(N σ̂ 2
N/s2N − 1)2 → 0.

2. For all samples sizes n1, n2 ≥ 2 it holds that

(a) E (̂σ 2
N ) = σ 2

N ,
(b) 0 ≤ σ̂ 2

N ≤ ̂θ(1 −̂θ)/(m − 1), where m = min{n1, n2}. Both these limits are
sharp in the sense that there exist samples Xi1, . . . , Xini , i = 1, 2, such that
either σ̂ 2

N = 0, or σ̂ 2
N = ̂θ(1 −̂θ)/(m − 1).

These results are true for data involving ties and for data without ties.

The derivation of Statement 2a is given before Theorem 3.1 while the proofs of the
other statements are given in the Appendix. �
Remark 3.2 1. Note that

√
N (̂θ − θ) is asymptotically equivalent to UN =√

N
[

(Y 2· − Y 1·) + 1 − 2θ
]

. This means the asymptotic variances of
√
N ̂θ and

UN are equal. For a formal proof, see, e.g., Brunner et al. (2019), Proposition 7.19,
p. 386.

2. The result that σ̂ 2
N ≤ ̂θ(1−̂θ)/(m−1) may be considered as an empirical version

of the Birnbaum–Klose inequality (Birnbaum 1956; Birnbaum and Klose 1957).
It is essential, however, to note that this result does not state that it is valid for
all estimators of σ 2

N in (2.8). The statement is that it holds for the estimator σ̂ 2
N

in (3.31). Thus, this may be considered a particular (noteworthy) property of this
estimator. Moreover, it is easily seen that σ̂ 2

N ≤ 1/[4(m − 1)].
3. For continuous distributions it follows that τ = τ̂N = 0 and σ̂ 2

N in (3.31) is
equivalent to Hilgers’ (1981) estimator using ranks or to Shirahata’s (1993) esti-
mator using indicator functions. In the case of ties, however, these estimators are
negatively biased if the ranks are replaced with the mid-ranks. Moreover, they
may become negative in extreme cases. More details regarding comparisons with
different variance estimators from the literature are given in the next Section.

4. The assumption σ 2
1 , σ 2

2 > 0 implies that s2N > 0 in (3.30) which is needed to
derive the L2-consistency of σ̂ 2

N .

4 Comparison with estimators from the literature

There exist several estimators of σ 2
N in the literature. Some are only valid in the case

of no ties or are only asymptotically unbiased. The representation of σ 2
N = Var(̂θ)
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in case of no ties is known since Van Dantzig (1951) and in case of ties since Bamber
(1975).

Here, we review some variance estimators from the literature and discuss their prop-
erties. Throughout this section, we will use the following notations for convenience:

1. dN = n1(n1 − 1)n2(n2 − 1) and m = min{n1, n2}
2. Q2

i =
∑ni

k=1

(

R∗
ik − R

∗
i ·
)2

as given in (3.16) and Q2
i /(ni − 1) are the empirical

variances of the placements R∗
ik, i = 1, 2.

3. ̂θ : Mann–Whitney estimator given in (2.2) and (2.4)
4. τ̂N : estimator of the probability of ties in the overlap region of the distributions as

given in (3.29).

A brief overview of the following estimators is composed in Table 1 at the end of
this section.

4.1 Sen–Hilgers–Shirahata estimator

Estimators of σ 2
N were already suggested by Sen (1967) and Govindarajulu (1968),

assuming continuous distribution functions. Later, Hilgers (1981) provided the esti-
mator σ̂ 2

SHS in Table 1 using ranks also assuming continuous distribution functions
and he showed that his estimator is identical to Sen’s estimator corrected by 1/n2i .
Halperin et al. (1987) also mentioned this typo in Sen’s estimator in their paper.

Neither Sen nor Hilgers discussed whether this estimator could become negative.
Shirahata (1993) briefly discussed this and developed the same estimator based on
indicator functions also assuming continuous distribution functions. He mentioned
that this estimator, σ̂ 2

U in his notation, could become negative while in his simu-
lations, however, this did not happen. Since the estimators of Sen (1967), Hilgers
(1981), and Shirahata (1993) are identical and are special cases of the estimator σ̂ 2

N
in (3.31), Theorem 3.1, Statement 2b, shows that Shirahata’s conjecture is incorrect
and thus, σ̂ 2

U ≥ 0. If, however, in the case of ties, the ranks in Hilgers’ estimator σ̂ 2
SHS

are replaced with mid-ranks, then the resulting estimator (without adding the term
n1n2τ̂N/4) is no longer unbiased, and it can become negative as demonstrated by the
following counter-example.

Let X1k = {1, 1, 2, 2, 3} and let X2� = {3, 4, 4, 4, 5}. Then σ̂ 2
N = 0.0004 while

σ̂ 2
SHS = −0.000225. Note that σ̂ 2

N in (3.31) contains the term n1n2τ̂N/4.
This shows that providing an unbiased and non-negative estimator, which is also

valid in the case of ties, is not trivial.

4.2 Cliff estimator

Cliff (1993) provides an unbiased estimator of σ 2
N , including the case of ties, similar to

Hilgers’ estimator. However, this estimator may become negative, as discussed in his
paper. He suggested to limit this estimator by (1−̂θ2)/(n1n2). But then he mentions
that this substitution introduces a bias. Therefore, we do not consider this estimator in
detail.
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4.3 Bamber estimator

Allowing for ties, Bamber (1975) presented an estimator using some involved expla-
nations without formal proof, stating that his estimator is unbiased. He did not discuss,
however, whether this estimator may become negative. Also, formal proof of the con-
sistency is not given. It turns out (for a formal derivation, see Nowak et al. 2022)
that Bamber’s estimator is equivalent to σ̂ 2

N in (3.31). This means that σ̂ 2
N in (3.31)

provides a convenient rank representation of Bamber’s estimator.
It may be noted that none of the subsequent papers by Halperin et al. (1987), Mee

(1990), or Shirahata (1993) refers to Bambers’s (1975) paper. Hanley and McNeil
(1982) refer to Bamber’s estimator but assume no ties. Astonishingly, Bamber’s unbi-
ased estimator of theMann–Whitney variance is not broadly perceived in the statistical
literature. One reason may be that its representation is quite involved. In this paper,
we provide an unbiased estimator in (3.31), which is based on ranks, or more pre-
cisely on the placements R∗

1k and R∗
2� in (2.5) and (2.6) and thus, has a convenient

representation.

4.4 DeLong estimator

(DeLong et al. 1988) refer to Bamber’s estimator. But in their paper, they develop
an estimator of the covariance matrix in a multivariate model, which reduces to the
variance estimator σ̂ 2

DL in Table 1 in a univariate model.
This estimator is identical to σ̂ 2

BF derived by Brunner and Munzel (2000) in the
nonparametric Behrens–Fisher situation. Brunner and Munzel showed that σ̂ 2

BF (and
in turn σ̂ 2

DL ) is L2-consistent for s2N in the sense that E (̂σ 2
BF/s2N − 1)2 → 0, if

N/ni ≤ N0 < ∞, i = 1, 2.
DeLong’s estimator σ̂ 2

DL in Table 1 may be biased for small sample sizes. This can
be easily seen from (3.25) and (3.26) and one obtains

E (̂σ 2
DL) = σ 2

N + 1

n1n2

[

θ(1 − θ) − (σ 2
1 + σ 2

2 )
︸ ︷︷ ︸

≥0

− 1
4τ
]

. (4.32)

Then, from van Dantzig’s inequality (1951), σ 2
1 + σ 2

2 ≤ θ(1 − θ), it follows that
σ̂ 2
DL may be unbiased or biased in both directions depending on ties and whether

θ(1 − θ) �= σ 2
1 + σ 2

2 .

4.5 Perme–Manevski estimator

In a quite recent paper, Perme and Manevski (2019) state that the DeLong estimator
σ̂ 2
DL is not ’exact’ and that (DeLong et al. 1988) and Bamber (1975) propose an

asymptotic non-parametric estimator. They do not mention, however, that Bamber
(1975) stated that his estimator is unbiased for all sample sizes ni ≥ 2. Instead, they
propose an alternative estimator σ̂ 2

PM which they call ’exact.’ This estimator is also
listed in Table 1. From (3.25) and (3.26) it follows that
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E (̂σ 2
PM ) = σ 2

N + 1

n1n2

[

2[θ(1 − θ) − (σ 2
1 + σ 2

2 )]
︸ ︷︷ ︸

≥0

− 1
4τ + O( 1

N )
]

.

By van Dantzig’s inequality, it follows that in case of no ties, the bias may be larger
than the one of the DeLong estimator since the non-negative expression θ(1 − θ) −
(σ 2

1 +σ 2
2 ) is multiplied by 2. It may be unbiased or biased in both directions depending

on ties and whether θ(1 − θ) �= σ 2
1 + σ 2

2 . Perme and Manevski (2019) only consider
the case of no ties.

4.6 Hanley–McNeil estimator

Hanley and McNeil (1982) discuss two estimators of ̂θ in their paper. Regarding the
first estimator, they refer to Bamber (1975). However, the estimator given in Eq.(1)
in their paper is not Bamber’s estimator. It is similar to σ̂ 2

PM in Table 1 but using
different weights for Q2

i . Unfortunately, Bamber did neither discuss nor derive the
properties of his estimator. Hanley and McNeil intended to provide a conservative
estimator when presenting their second estimator. They observed that in the case of
exponential distributions the variance of̂θ was larger than for other distributions. As
in the case of exponential distributions, the variance of̂θ is a function only of θ and the
sample sizes, they suggested an estimator σ̂ 2

HM by plugging in̂θ for θ in the variance
representation for̂θ assuming of exponential distributions

Varexp(̂θ ) = 1

n1n2
θ(1 − θ)

[

1 + (n2 − 1)
1 − θ

2 − θ
+ (n1 − 1)

θ

1 + θ

]

.

Perme andManevski (2019)mention that ’there is no theoretical reason for consistency
(of this estimator) in case of other distributions’. Moreover, the variance of ̂θ in the
case of exponential distributions is not the maximum possible variance of ̂θ . In fact,
σ 2
max = θ(1 − θ)/m, as shown by the Birnbaum and Klose (1957). Because of these

flaws, we will not consider σ̂ 2
HM in more detail. It is somewhat unfortunate that later,

Newcombe (2006) recommended amodification of this estimator as a basis for deriving
a confidence interval for θ .

Some more estimators are considered in the literature for particular models where
mainly continuous distribution functions are assumed. As they are more or less similar
to the DeLong estimator and are restricted to specific models, we do not consider them
here in detail.

There is an uncertainty in the statistical literature as to which variance estimator of
̂θ should be used.
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5 Simulations

5.1 Simulated biases of the estimatorŝ�2
N,̂�

2
DL, and̂�2

PM

To demonstrate the amount of the different biases and the dependency on the underly-
ing distributions, a simulation study was performed where the following distributions
were selected:

1. Normal distributions N (0, σ 2
1 ), N (δ, σ 2

2 )

2. Dmax-distributions generating the maximal variance σ 2
max = θ(1 − θ)/m of ̂θ ,

where, θ = ∫

F1dF2 and

F1(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, x ≤ 0,
θx, 0 < x ≤ 1,
θ, 1 < x ≤ 2,
(1 − θ)x + 3θ − 2, 2 < x ≤ 3,
1, x > 3

F2(x) =
⎧

⎨

⎩

0, x ≤ 0,
x − 1, 1 < x ≤ 2,
1, x > 1 .

3. Poisson distributions Xi ∼ Po(λi ), i = 1, 2, with parameters λ1 = 1 and λ2 =
1, . . . , 13

4. 5-points ordinal scale distributions for ordered categorical datawhich are generated
by discretizing the observations XB

i ∼ Beta(x |ai , bi ), i = 1, 2 from the Beta dis-
tributions Beta(x |ai , bi ) such that Xord

i = INT(5XB
i |ai , bi ) + 1. Here we have

selected the Beta(2, 15)-distribution and the Beta(a2, 15)-distribution for a2 =
2, . . . , 8.

Since all estimators σ̂ 2
N , σ̂ 2

DL , and σ̂ 2
PM are asymptotically unbiased, we performed

the simulations for the small sample sizes n1 = n2 = 10 as an example. Figure1
shows the biases of the estimators mentioned above. The data were generated by the
above listed distribution functions, normal, Dmax, Poisson, and a 5-points ordinal scale
distributions. These graphs demonstrate that in a practical data example, the actual
type-I error α∗ of a test and for a confidence interval the actual coverage probability
1 − α∗ do not only depend on the quality of the approximation of ̂θ by a normal
distribution but also depend on an unknown bias of the variance estimator of̂θ . Thus,
removing this uncertainty by using an estimator with only a small or even no bias
appears advisable.

It shall be noted here that these considerations only matter in small sample sizes
where ’small’ is a vague expression that depends on the underlying distribution func-
tions and the effect θ . For sample sizes n1 = n2 = 50, for example, the ratio
σ̂ 2
PM/σ 2

N ≥ 1.1 for θ ≥ 0.98 in case of normal distributions or ordinal data on a
5−points scale. Sample sizes of about n1 = n2 = 500 are necessary to obtain a
similar graph for the same ratio as for n1 = n2 = 10 in the case of the Dmax-distribu-
tions in Fig. 1 (upper row, right). For discrete distributions, e.g., in case of a 5-points
ordinal scale, also for quite a small effect close to θ = 1/2, it is possible that the ratio
σ̂ 2
PM/σ 2

N ≈ 1.3 for n1 = n2 = 10 while a samples size of about 100 per group
reduces this bias to ≈ 1.02.
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Table 1 List of some estimators of σ 2
N = Var(̂θ) discussed in the literature

The estimators as functions of dN ,m,̂θ, Q2
1, Q

2
2, and τ̂N are listed in the left column, and some properties

of the estimators in the right column

This motivates using the unbiased estimator σ̂ 2
N in (3.31) first derived by Bamber

(1975) and studied in more detail in this paper.

5.2 MSE of the estimatorŝ�2
N,̂�

2
DL, and̂�2

PM

A summary measure for the quality of an estimator, which includes the bias as well
as the variance of the estimator, is the so-called ’means-squared-error’ (MSE),

MSE(̂λ, λ) = Var(̂λ) + [

E(̂λ) − λ
]2

,

where λ denotes the parameter to be estimated,̂λ an estimator of λ, and Var(̂λ) the
variance of this estimator. As seen from Fig. 1 the biases of the estimators σ̂ 2

N , σ̂
2
DL ,

and σ̂ 2
PM depend on θ . Thus, we consider these biases relative to the quantity it should

estimate. Here, the variance σ 2
N in (2.8) shall be estimated, and the relative MSEs are

given by

q − MSE(̂σ 2
N , σ 2

N ) = 1

σ 2
N

(

Var(̂σ 2
N ) +

[

E (̂σ 2
N ) − σ 2

N

]2
)

= 1

σ 2
N

Var(̂σ 2
N )

q − MSE(̂σ 2
DL , σ 2

N ) = 1

σ 2
N

(

Var(̂σ 2
DL) +

[

E (̂σ 2
DL) − σ 2

N

]2
)

q − MSE(̂σ 2
PM , σ 2

N ) = 1

σ 2
N

(

Var(̂σ 2
PM ) +

[

E (̂σ 2
PM ) − σ 2

N

]2
)

.
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Fig. 1 Biases of the variance estimators σ̂ 2
N (solid), σ̂ 2

DL (dashed), and σ̂ 2
PM (dotted) displayed in Table 1

for the samples sizes n1 = n2 = 10. The data were generated from normal distributions (upper row, left),
Dmax-distributions (upper row, right), Poisson-distributions (lower row, left), and a 5-point ordinal scale
(lower row, right)

Basically, σ 2
N is a scaling factor. In our simulations, σ̂ 2

N has the smallest q-MSE in
all cases. As examples, we display the results for normal distributions, 5-points ordinal
scale distributions, exponential distributions, and Dmax-distributions in Fig. 2.

This simulation study concludes that the unbiased estimator σ̂ 2
N (Bamber’s esti-

mator) can be recommended as a ’good variance estimator’ for the Mann–Whitney
variance. It outperforms the DeLong- and Perme–Manevski estimators.

6 Discussion

We intended to derive an unbiased variance estimator of the well-known Mann–
Whitney variance σ 2

N in (2.8). In the case of continuous distribution functions F1(x)
and F2(x), the variance representation has been known since Van Dantzig (1951). But
it seems that Bamber (1975) was the first to provide a representation of σ 2

N , which
is also valid in the case of ties. The representation of Bamber’s estimator, however,
is quite involved. Moreover, this estimator’s basic properties - except unbiasedness
- are not discussed in Bamber’s paper. In particular, it is necessary that an unbiased
variance estimator cannot become negative since, in many applications, the standard
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Fig. 2 Relative q-MSEs of the estimators σ̂ 2
N (solid), σ̂ 2

DL (dashed), and σ̂ 2
PM (dotted) in [105] simulations

runs for each setting for the sample sizes n1 = n2 = 10. The alternatives θ ∈ [0.5, 0.999] are generated from
normal distributions (upper row, left), 5-points ordinal scale distributions (upper row, right), exponential
distributions (lower row, left), and Dmax-distributions (lower row, right). Note that the scales of the ordinate
are different in the upper and lower rows to better demonstrate the differences between the estimators

deviation of this estimator is used. If the estimator is set equal to 0 or negative, then it
is no longer unbiased.

To the best of our knowledge, it has not been shown for any unbiased variance
estimator of the Mann–Whitney variance, which is also valid for ties that cannot
become negative. Bamber (1975) does not discuss this topic, and Cliff (1993) states
that the estimator given in Equation (9) in his paper may become negative.

Neither Sen (1967) nor Hilgers (1981) discuss whether their estimators can become
negative. Moreover, these estimators are only valid if there are no ties. However, the
proposed estimator σ̂ 2

N in (3.31) is also valid for ties, and it is shown in the appendix
that σ̂ 2

N ≥ 0. In addition, the covariance matrices of the placements R∗
1k in (2.5) and

R∗
2� in (2.6) are derived. Since many variance estimators provided in the literature are

based on the quadratic forms Q2
i in (3.16) of the centered placements, this derivation

enables a simple computation of the bias of the different estimators.
The key point in the derivation of σ̂ 2

N is that the covariancematrices of the placement
vectors R∗

1 and R∗
2 in (3.14) have compound symmetry structures. The expectations

of the quadratic forms Q2
i in (3.16) based on R∗

1 and R∗
2 are not unbiased estimators

of s21 = Var(R∗
11) or s

2
2 = Var(R∗

21). Computing the bias by Lancaster’s theorem and
then appropriately estimating the bias leads to the unbiased estimator σ̂ 2

N .
Finally, the behavior of σ̂ 2

N comparedwith competing estimators, themean-squared-
error (MSE), is commonly used. Note that the variance σ 2

N depends on θ . However, a
’uniform’ superiority of an estimator requires that the MSE of this estimator should
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be uniformly larger than that of a competing estimator. Then, graphing the MSE over
θ scaled by σ 2

N can show whether this estimator is uniformly preferable.
The simulation study in Sect. 5.2 shows that σ̂ 2

N is preferable to σ̂ 2
DL and σ̂ 2

PM
for some important classes of distribution functions such as a normal distribution,
exponential distribution, and 5-points ordinal distributions. For the extreme case of
Dmax-distributions it turns out that σ̂ 2

N , σ̂
2
DL , and σ̂ 2

PM are comparable. We have also
investigated somemore distributions, such as Laplace-, γ -, and Beta-distributions (not
shown here). Also, these examples show that σ̂ 2

N is always superior to σ̂ 2
DL and σ̂ 2

PM
regarding the scaled MSE.

In this paper, Bamber’s estimator σ 2
N of the Mann-Whitney variance is studied in

detail. On the other hand, a convenient representation using some simple rankings is
given. In addtion, it is shown that this estimator cannot become negative (disproving
Shirahata’s conjecture). Moreover, a sharp upper bound of σ̂ 2

N is derived, which can
be regarded as an empirical version of the well-known Birnbaum–Klose inequality, a
noteworthy property of this estimator. Finally, it is demonstrated in a simulation study
that this estimator outperforms the commonly used variance estimators σ̂ 2

DL and σ̂ 2
PM

by a uniformly smaller MSE relative to σ 2
N as graphically shown in Fig. 2.

Unfortunately, the statistical literature poorly perceives Bamber’s estimator σ̂ 2
N .

We hope the properties derived from this paper will contribute to its more consid-
erable popularity and more frequent use. It is easy to compute and has an intuitive
representation using rankings; it is unbiased and cannot become negative, and finally
outperforms commonly used estimators by a smaller MSE.

Apendix A: Proof of Theorem 3.1

A.1 L2-consistency of the variance estimator̂�2
N

To show L2-consistency of σ̂ 2
N it suffices to show that E

[

N σ̂ 2
N − s2N

]2 → 0 since
s2N > 0 by the assumption that σ 2

1 , σ 2
2 > 0. Note that s2N = N (σ 2

1 /n1 + σ 2
2 /n2) and

let

σ̂ 2
1 = Q2

1

n22(n1 − 1)
, and σ̂ 2

2 = Q2
2

n21(n2 − 1)
.

Then straightforward computations show that

N

[

σ̂ 2
N −

(

σ 2
1
n1

+ σ 2
2
21

)]

= N

[

n2
n1

(

σ̂ 2
1

n2 − 1
− σ 2

1

n2

)

+ n1
n2

(

σ̂ 2
2

n1 − 1
− σ 2

2

n1

)

− 1

(n1 − 1)(n2 − 1)

[

̂θ(1 −̂θ) − 1
4 τ̂N

]

]

.

Now note that 0 < σ 2
i ≤ 1, 0 ≤ σ̂ 2

i ≤ 1, i = 1, 2, and that 0 ≤ ̂θ(1−̂θ) ≤ 1/4 and
0 ≤ τ̂N ≤ 1. Then, using Jensen’s inequality and taking expectations, it follows from
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the assumption N/ni ≤ N0 that

E

(

N

[

σ̂ 2
N −

(

σ 2
1
n1

+ σ 2
2
21

)])2

≤ 6N 2
0 E (̂σ 2

1 − σ 2
1 )2 + O

(

N2
0

n22

)

+6N 2
0 E (̂σ 2

2 − σ 2
2 )2 + O

(

N2
0

n21

)

+ O

(

N2
0

n1n2

)

.

Then the result follows by noting that E (̂σ 2
i − σ 2

i )2 → 0 for N → ∞, i = 1, 2,
such that N/ni ≤ N0 and if σ 2

1 , σ 2
2 > 0 (for details see Brunner and Munzel 2000). �

A.2 Non-negativity of the variance estimator̂�2
N

It is not straightforward to show that σ̂ 2
N ≥ 0 using its rank representation in (3.31).

Therefore, we re-write σ̂ 2
N as sums of squares and products of count functions which,

of course, are all non-negative as defined in Sect. 2.1. Let

A =
n2
∑

k=1

n1
∑

r=1

c(X1r , X2k)
2, B =

n2
∑

k=1

∑

r �=r ′
c(X1r , X2k)c(X1r ′ , X2k),

C =
∑

k �=k′

n1
∑

r=1

c(X1r , X2k)c(X1r , X2k′), D =
∑

k �=k′

∑

r �=r ′
c(X1r , X2k)c(X1r ′ , X2k′),

(A1)

and for convenience let S = A + B + C + D and note that S ≥ 0. Further, note that
R∗
2k = ∑n1

r=1 c(X1r , X2k) by (2.6), R∗
1r = ∑n2

k=1 c(X2k, X1r ) by (2.5), and

̂θ2 = 1

n21n
2
2

n1
∑

r=1

n1
∑

r ′=1

n2
∑

k=1

n2
∑

k′=1

c(X1r , X2k)c(X1r ′ , X2k′) = 1

n21n
2
2

S (A2)

by (2.4). Then,

Q2
2 =

n2
∑

k=1

(

R∗
2k − R

∗
2·
)2 =

n2
∑

k=1

(

R∗
2k

)2 − n2
(

R
∗
2·
)2

=
n2
∑

k=1

n1
∑

r �=r ′
c(X1r , X2k)c(X1r ′ , X2k) +

n2
∑

k=1

n1
∑

r=1

c(X1r , X2k)
2 − n21n2̂θ

2

= A + B − 1

n2
S, (A3)
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by (A2) and noting that
(

R
∗
2·
)2 = n21n2̂θ

2. Furthermore, by using the relation

c(X2k, X1r ) = 1 − c(X1r , X2k), it follows in a similar way that

Q2
1 =

n1
∑

r=1

(

R∗
1r − R1·

)2 =
n1
∑

r=1

n2
∑

k=1

n2
∑

k′=1

c(X2k, X1r )c(X2k′ , X1r ) − n1n
2
2(1 −̂θ)2

=
n1
∑

r=1

n2
∑

k=1

n2
∑

k′=1

c(X1r , X2k)c(X1r ′ , X2k′) − n1n
2
2
̂θ2

=
n1
∑

r=1

∑

k �=k′
c(X1r , X2k)c(X1r ′ , X2k′) +

n1
∑

r=1

n2
∑

k=1

c(X1r , X2k)
2 − n1n

2
2
̂θ2

= C + A − 1

n1
S. (A4)

Finally let Q2
3 = n1n2

[

(̂θ(1 −̂θ) − 1
4 τ̂N

]

. Then, by noting that c2(X1r , X2k) =
c(X1r , X2k) − 1

4 τ̂N by (3.12), the quantity Q2
3 can be written as

Q2
3 =

n2
∑

k=1

n1
∑

r=1

(

c(X1r , X2k) −̂θ
)2 =

n2
∑

k=1

n1
∑

r=1

c2(X1r , X2k) − n1n2̂θ
2

= A − 1

n1n2
S (A5)

by using (A2).
Now let ˜N = n1(n1−1)n2(n2−1). Then ˜N σ̂ 2

N = Q2
1+Q2

2−Q2
3 and by combining

the results in (A1), (A2), (A4), (A3), and (A5) it follows that

˜N σ̂ 2
N = A + B − 1

n2
S + A + C − 1

n1
S − A + 1

n1n2
S

= S − D −
(

1

n1
+ 1

n2
− 1

n1n2

)

S, respectively

σ̂ 2
N = 1

n21n
2
2

S − 1
˜N
D = ̂θ2 − 1

˜N
D

= 1

n21n
2
2

(

A + B + C − N − 1

(n1 − 1)(n2 − 1)
D
)

. (A6)

Hence, the non-negativity of σ̂ 2
N follows from the relationship between the sums of two

count functionsA,B, C andD, respectively. For convenience, we define the additional
sums of count functions

E =
n2
∑

k=1

n1
∑

r=1

c(X1r , X2k) and F =
n2
∑

k=1

n1
∑

r=1

[c+(X1r , X2k) − c−(X1r , X2k)],
(A7)

123



   20 Page 22 of 24 E. Brunner, F. Konietschke

and note that n1n2̂θ = E and n1n2τ̂N = F . By (A2) it follows that

A + B + C = n21n
2
2
̂θ2 − D.

Equivalently, it follows from (A7), that

n21n
2
2
̂θ2 = E2 = (A + 1

4F
)2

and therefore,

A + B + C = (A + 1
4F

)2 − D. (A8)

The latter implies D ≤ (A + 1
4F

)2 = A + B + C + D. Indeed, if D > 0, then
there exist at least two pairs (X1r , X2k) and (X1r ′ , X2k′), r �= r ′ and k �= k′, such
that c(X1r , X2k) · c(X1r ′ , X2k′) > 0. This implies, however, that at least three pairs
c(X1r , X2k) > 0, c(X1r ′ , X2k′) > 0, and either c(X1r , X2k′) > 0 or c(X1r ′ , X2k) > 0
exist. Hence, wheneverD > 0, thenA > 0 andB > 0 or C > 0 (or both). In particular,
theremust exist at least one pair c(X1r , X2k) = 1, otherwiseDwould be 0. Since there
are n1n2 terms inA, n2n1(n1 − 1) in B, n1n2(n2 − 1) in C and n1(n1 − 1)n2(n2 − 1)
terms in D, it follows from (A8)

A + B + C ≥ n1n2 + n1n2(n2 − 1) + n2n1(n1 − 1)

n1(n1 − 1)n2(n2 − 1)
D,

= N − 1

(n1 − 1)(n2 − 1)
D . (A9)

Hence, plugging-in (A9) into (A6), σ̂ 2
N ≥ 0. Note that σ̂ 2

N = 0, if̂θ = 0, sinceA =
B = C = D = 0. If̂θ = 1, thenD = n1(n1−1)n2(n2−1),A = n1n2,B = n2n1(n1−
1) and C = n1n2(n2 − 1) and hence σ̂ 2

N = 1
n21n

2
2

(

A + B + C − N−1
(n1−1)(n2−1)D

)

= 0.
�

A.3 Verification of the upper bound

The computation of the upper bound
̂θ(1−̂θ)

min(n1,n2)−1 of σ̂ 2
N is – as the verification of the

non-negativity of σ̂ 2
N – a very challenging task using its rank-based version. We there-

fore use its representation with the sums of products of the count functions A,B, C,
and D, given in (A1), respectively. In particular, we use the representation

σ̂ 2
N = ̂θ2 − 1

˜N
D
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as given in the line above (A6). In the following, let m = min(n1, n2) − 1 and let
w.l.o.g. be n1 ≤ n2. The upper bound can now be verified in a few steps:

̂θ(1 −̂θ)

m
− σ̂ 2

N = ̂θ(1 −̂θ)

m
−̂θ2 + 1

˜N
D = 1

m
̂θ − m + 1

m
̂θ2 + 1

˜N
D

= 1

n1 − 1
̂θ − n1

n1 − 1
̂θ2 + 1

˜N
D = 1

n1 − 1

(

̂θ − n1̂θ
2
)

+ 1

n1(n1 − 1)n2(n2 − 1)
D

= 1

n1 − 1

[

1

n1n2

n2
∑

k=1

n1
∑

r=1

c(X1r , X2k)

︸ ︷︷ ︸

E

−n1̂θ
2
]

+ 1

n1(n1 − 1)n2(n2 − 1)
D

= 1

(n1 − 1)n1n2

[

E − 1

n2
(A + B + C + D) + 1

(n2 − 1)
D

︸ ︷︷ ︸

≥0

]

≥ 0
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