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Abstract
In this article we introduce an algorithm that approximates the nondominated sets of
multiobjectivemixed-integer convex optimization problems. The algorithm constructs
an inner and outer approximation of the front exploiting the convexity of the patches
for problems with an arbitrary number of criteria. In the algorithm, the problem is
decomposed into patches, which are multiobjective convex problems, by fixing the
integer assignments. The patch problems are solved using (simplicial) Sandwiching.
We identify parts of patches that are dominated by other patches and ensure that these
patch parts are not refined further. We prove that the algorithm converges and show a
bound on the reduction of the approximation error in the course of the algorithm. We
illustrate the behaviour of our algorithm using some numerical examples and compare
its performance to an algorithm from literature.

Keywords Multiobjective optimization · Mixed-integer optimization ·
Approximation algorithm · Convex optimization

1 Introduction

Multiobjective optimization deals with problems in which several objective functions
are optimised simultaneously. If such a problem depends on both continuous and
integer variables, we call it a multiobjective mixed-integer optimization problem. In
this paper, we present a novel algorithm for the approximation of the nondominated
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sets of multiobjective mixed-integer convex optimization problems of the form

min f (x) = ( f1(x), . . . , fd(x))

s.t. x = (xC , xI )

xI ∈ XI , xC ∈ XC (xI ) (1)

where f (x) denotes the vector of d convex objective functions fi : R
k+m → R and

the decision vectors x have continuous and integer components. We assume that the
set of feasible integer assignments XI ⊂ Z

m is finite and known exactly. For every
feasible integer assignment xI , the set of corresponding feasible continuous variables
XC (xI ) ⊂ R

k is convex. We note that the algorithm proposed in this article can also
be applied to problems of the form (1) with linear objective functions and feasible sets
defined by linear constraints.

We can decompose problem (1) into purely continuous multiobjective convex
problems by fixing the integer assignments. Let q be the number of feasible inte-
ger assignments and let x̄ p

I ∈ XI be the p’th feasible integer assignment. We define
the p’th patch problem

min f (x) := f (x, x̄ p
I )

s.t. x ∈ XC (x̄ p
I ).

The nondominated set of a patch problem is called a patch. This term is also used in
Diessel (2022), Eichfelder andWarnow (2023) and Serna Hernandez (2011), although
the definitions differ slightly.

We additionally assume that the extreme compromise solutions, i.e. the solu-
tions of the lexicographic optimization problems, are finite (see Section 5.1 of Ulus
(2018)). This requirement is necessary for the construction of the inner and outer
approximations.

In our algorithm, we will approximate the nondominated set of (1) by computing
nondominated points of patches. Since the integer feasible set XI is finite and known,
we can enumerate the patch problems. While this approach is not efficient for large
numbers of patches, we argue that for small numbers of patches, enumerating them is
more efficient than to apply algorithms that search the integer feasible set.Additionally,
as discussed in Cabrera-Guerrero et al. (2021), problem-specific knowledgemay allow
to exclude a large number of patches from the start.

Many strategies for the approximation of nondominated sets of continuous linear,
convex and nonconvex multiobjective optimization problems have been developed in
the last decades, see the survey Ruzika andWiecek (2005). A survey of algorithms for
multiobjective linear optimization problems with integer variables has recently been
presented in Halffmann et al. (2022).

In recent years, the first algorithms for solving multiobjective mixed-integer non-
linear problems have been introduced. Burachik et al. demonstrate in Burachik et al.
(2022) that their algorithms developed in Burachik et al. (2017) for the approxima-
tion of nondominated sets of problems with disconnected feasible sets can also be
applied to the approximation of nondominated sets of multiobjective mixed-integer
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problems. They compute points of the nondominated set using a specialized scalar-
ization method. The parameters of the scalarization problem are determined using a
fixed grid. The algorithms presented by Ceyhan et al. (2019) compute a representation
of the nondominated set of a multiobjective mixed-integer convex problem and aim
at reducing the coverage gap of the representation set. This approach differs from our
approximation approach where the convex hull of the computed points is used as a
representative set.

There is a group of algorithms using a branch-and-bound approach to solvemultiob-
jective mixed-integer convex problems. A branch-and-bound approach in the decision
space where bounds are computed using relaxations was introduced by Serna Hernan-
dez (2011). The algorithm presented by Cacchiani and D’Ambrosio (2017) constructs
an initial approximation by solving single-objective mixed-integer convex problems
in epsilon constraint problems. Leaf nodes, i.e. patches, are solved by varying the
weights of weighted sum problems. The ideal point of nodes is used as a lower bound.
Two other algorithms based on a branch-and-bound approach in the decision space
are De Santis et al. (2020) and Eichfelder et al. (2022) which use stronger bounds
than Cacchiani and D’Ambrosio (2017). While De Santis et al. (2020) operates only
in the decision space and obtains bounds from piecewise linear approximations, Eich-
felder et al. (2022) combines information from the decision space and the image
space: branching steps are performed in the decision space while the node selection
and specialized cuttings are performed in the image space. These algorithms have the
disadvantage that they are not well suited for problems with many decision variables.

The HyPaD algorithm introduced in Eichfelder and Warnow (2023) constructs a
lower bound of the front of themixed-integer problem and lower bounds of the patches.
Using an upper bound set, boxes are constructed that enclose the nondominated set
and that are used to compute new nondominated points. The algorithm does not rely
on a given set of feasible integer assignments but constructs them in the course of
the algorithm. This approach is especially useful if the number of feasible integer
assignments is large.

Amethod for the solution of biobjectivemixed-integer convex problems introduced
by Diessel (2022) iteratively constructs line segments, in order to approximate the
nondominated set. The algorithm can not be easily extended to solve problems with
more than two criteria.

Another algorithm for biobjective patch problems with convex patches was pre-
sented inCabrera-Guerrero et al. (2021). Inner and outer approximations of the patches
are constructed using tangents and the convex hull of the nondominated points. Then,
an inner and outer approximation of the nondominated set of themultiobjectivemixed-
integer convex problem can be defined as the nondominated set of the union of the
patch approximations. A fixed grid defines values for epsilon constraint scalarization
problems for every patch. The selection of the next epsilon value does not use infor-
mation on the distance between the inner and outer approximation. When an epsilon
value has been fixed, the patch for the next nondominated point is determined by
evaluating the outer approximation for every patch and choosing the smallest value.

In this article, we will present an algorithm that is designed for multiobjective
mixed-integer convex optimization problems of the form (1).
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324 I. Lammel et al.

To the best of our knowledge, it is the first algorithm that exploits the convexity
of the patches to construct an inner and outer approximation of the nondominated
sett of multiobjective mixed-integer convex problems with any number of criteria. We
will approximate the nondominated set of (1) by iteratively computing nondominated
points of its patch problems. The algorithm does not use the structure of the original
mixed-integer problem. Therefore, the patch problems can also arise from different
optimization problems each.

While approximating the nondominated set of a multiobjective mixed-integer con-
vex problem using boxes as in Eichfelder and Warnow (2023) is convenient, it is not
the best-possible approximation of convex parts of the nondominated set. We define
the inner and outer approximation of the patches and the nondominated set of (1)
exploiting the convexity of the patches as in Cabrera-Guerrero et al. (2021). We use
a simplicial Sandwiching approximation approach for each patch but only add new
points to a patch when necessary. We detect parts of patches that are dominated and
make sure to avoid generating more points in these areas. We also add an interactive
step. After an initial coarse approximation of the nondominated set has been com-
puted, the decision maker can explore the approximated front in a patch navigation
tool (e.g. using the approach presented in Collicott et al. (2021)) and mark parts of
the objective space that they are not interested in. These parts of the nondominated set
will then not be refined in following steps of the algorithm.

2 Constructing a Sandwich approximation of the nondominated set

When approximating the nondominated set of a multiobjective mixed-integer convex
optimization problem, it suffices to approximate the patches. Every nondominated
point of (1) is a nondominated point of one of the patch problems. The nondominated
set of (1) is just the nondominated set of all patches (Cabrera-Guerrero et al. (2021),
Proposition 1).

2.1 Lower and upper bounds on the patches

We construct inner and outer approximations of the convex patches.
We compute a new point of patch p by solving the weighted sum scalarization

problem with weights λ = (λ1, . . . , λd)
T ∈ R

d≥.

min
d∑

j=1

(λ j )
T f j (x, x̄

p
I )

s.t. x ∈ XC (x̄ p
I ). (2)

Every solution of the weighted sum scalarization problem is a weakly efficient point.
Since the patch problems are convex, every efficient point can be obtained by solving
weighted sum scalarization problems Ehrgott (2005).
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Let {z1p, . . . , znp} be the computed points of patch p. The inner approximation of
the patch is given by the convex hull of the nondominated points, extended by the
standard domination cone

I np := conv {z1p, . . . , znp} + R
d≥.

When a nondominated point zn+1
p is added to the patch, the inner approximation can

be updated by I n+1
p = conv {zn+1

p , I np }.
The outer approximation of the patch is defined as the intersection of the half-spaces

containing the nondominated set that support the patch points. Such a supporting
hyperplane can be given by the nondominated point and using the negative weight
of the weighted sum scalarization problem that was used to compute it as its outer
normal. Let H(wi , bi ) := {z : (wi )T z = bi } be the supporting hyperplane of the
patch in zip. Then the half-space HS(wi , bi ) := {z : (wi )T z ≤ bi } contains the patch
due to convexity. The outer approximation is defined as

On
p := ∩{HS(wi , bi ), i = 1, . . . , n}.

When a new nondominated point zn+1
p has been computed, the outer approximation

can be updated by On+1
p := HS(wn+1, bn+1) ∩ On

p.
Since the true nondominated set of the patch problem lies between the inner and the

outer approximation, this kind of approximation is known as a Sandwiching approxi-
mation. It is used in the well-known Sandwiching algorithm for convex nondominated
sets (e.g. Bokrantz and Forsgren (2013), Dörfler et al. (2021), Nowak et al. (2021))
and it is an extension of the patch approximation used in the biobjective case by
Cabrera-Guerrero et al. (2021).

2.2 Lower and upper bounds on the nondominated set of theMOMIC problem

The nondominated set of theMOMICproblem (1) is the nondominated set of the union
of the patches. Let the nondominated set of a set M ⊂ R

d be defined as (M)N :=
{m ∈ M : �n ∈ M, n dominates m}. Using the inner and outer approximations of the
q patches I1, . . . , Iq and O1, . . . , Oq we define the inner and outer approximation of
the front as the nondominated set of the union of the inner and outer approximations
of the patches.

I :=
(
I union

)

N
= (

I1 ∪ . . . ∪ Iq
)
N

O :=
(
Ounion

)

N
= (

O1 ∪ . . . ∪ Oq
)
N .

We illustrate this definition in Fig. 1. These sets will never need to be computed in
practice. They can be seen as a Sandwich approximation of the nondominated set of
(1). The same definition is used in Cabrera-Guerrero et al. (2021).
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326 I. Lammel et al.

Fig. 1 A MOMIC problem consisting of two patches. The patches are approximated by three points each.
The boundaries of the inner and outer approximations of the patches are marked with thin lines. The
boundary of the inner approximation of the MOMIC problem is marked with a bold line, the boundary of
the outer MOMIC approximation with a dashed bold line

2.3 Measuring the approximation quality

In Sandwiching algorithm variants, a variety of quality indicators are used to assess
the approximation quality, e.g. the epsilon indicator in Bokrantz and Forsgren (2013)
and Rennen et al. (2011), the Hausdorff metric in Löhne et al. (2014) and Dörfler et al.
(2021) or the polyhedral gauge in Klamroth et al. (2003) and Serna Hernandez (2011).
In this work we will present all results for the epsilon indicator (Definition 1 and 2 of
Diessel (2021)). Similar results for the other quality metrics can be derived, but are
not shown here.

Definition 1 The epsilon-indicator δε(I , O) of a Sandwiching approximation I , O is
the smallest number ε ≥ 0 such that for every o ∈ O there exists a point in the inner
approximation ι ∈ I such that ι ≤ o + ε · e where e = (1, . . . , 1) ∈ R

d .

The approximation quality of the approximation of the nondominated set of (1) can
be determined by obtaining the patch approximation qualities.

Lemma 1 Let problem (1) have q patches and let δε(Ip, Op) ≤ ε for every patch p,
p ∈ {1, . . . , q} with inner and outer approximation Ip, Op.

Then, the nondominated set of (1) is also approximatedwith quality ε: δε(I,O) ≤ ε.

Proof We use the maximum metric ‖ι, o‖∞ := max
{|o j − ι j |, j ∈ {1, . . . , d}} for

ι, o ∈ R
d and use the notation ‖o, I‖∞ := min {‖ι − o‖∞, ι ∈ I} for I ⊂ R

d . We first
show that

δε(I,O) = max {min {‖ι, o‖∞, ι ∈ I} , o ∈ O} ,

using a similar argument as in Lemma 1 of Diessel (2021).
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If δε(I,O) = ε, then for everyo ∈ O there exists an ι ∈ I such that ι ≤ o+εe. Due to
the definition of the inner approximation, it holds o+εe ∈ I. Since ‖o+εe−o‖∞ = ε,
it holds max {min {‖ι, o‖∞, ι ∈ I} , o ∈ O} ≤ ε.

If, on the other hand, it holds max {min {‖ι, o‖∞, ι ∈ I} , o ∈ O} ≤ ε, then for
every o ∈ O there exists a ι ∈ I fulfilling ‖ι, o‖∞ ≤ ε since I is closed as a finite
union of closed sets. Therefore, we can choose an ι ∈ I such that ι ≤ o + εe. Thus,
δε(I,O) ≤ ε.

Let o ∈ Ol , l ∈ {1, . . . , q}, o ∈ O and let ῑ ∈ Il such that

‖o, Il‖∞ := min {‖ι − o‖∞, ι ∈ Il} = ‖o, ῑ‖∞.

Then

‖o, I union‖∞ =‖o, I1 ∪ . . . ∪ Iq‖∞
≤‖o, Il‖∞ = ‖o, ῑ‖∞ ≤ ε.

This implies that either ῑ ∈ I and therefore ‖o, I‖∞ = ‖o, I union‖∞ ≤ ε or ῑ ∈ I l ⊂
I union but ῑ /∈ I since ῑ is dominated by some z̄ ∈ I. Then, since z̄ j ≤ ῑ j ∀ j = 1, . . . , d,
it holds |z̄ j − o j | ≤ |ῑ j − o j | ∀ j = 1, . . . , d and therefore ‖z̄ − o‖∞ ≤ ‖ῑ − o‖∞.
Thus,

‖o, I‖∞ ≤ ‖z̄ − o‖∞ ≤ ‖ῑ − o‖∞ ≤ ε.

The same reasoning can be applied to ‖ι,O‖∞, ι ∈ I. �

In the algorithm, we will use the maximum of the patch qualities as an estimate of

the approximation quality of the nondominated set of (1) since it is much easier to
compute.

The epsilon indicator value of a Sandwiching approximation can be computed
by solving a small linear program for every vertex of the outer approximation. The
vertices of the outer approximation can be determined using a convex hull algorithm
like qhull Barber et al. (1996) and the dual polyhedron, as described e.g. in Section 4.4
of Bokrantz and Forsgren (2013).

Although the number of vertices of the outer approximation of a patch can be
very high, the computation of the epsilon indicator is still fast because solving most
of the linear programs can be avoided while still computing the epsilon indicator
approximation quality exactly as shown in Lammel et al. (2023). However, computing
the epsilon indicator for every patch becomes inefficient for large numbers of patches.

Due to Lemma 1, the epsilon indicator values of the patches can be used to obtain
a bound on the error of the approximation of the nondominated set of (1).

3 A new patch approximation algorithm

The general idea of the algorithm is to use a simplicial Sandwiching approximation
approach for every patch to increase the approximation quality of the nondominated
set of (1). We detect parts of patches that are dominated and avoid generating more
points in these areas.
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Often, only a small part of the nondominated set is of interest to the decision maker.
Therefore, we propose to include an interactive step. After an initial approximation
of the patches has been computed, the decision maker can explore the approximated
front in a patch navigation tool (e.g. using the approach presented in Collicott et al.
(2021)) and mark parts of the objective space that they are not interested in. We make
sure that these parts of the nondominated set will not be refined in following steps
of the algorithm. When the approximation process is completed, the approximation
of the nondominated set can be presented to the decision maker again for the final
decision-making process.

In the following sections, we will first develop the most important aspects of the
algorithm. We summarize the simplicial Sandwiching method that we use to approx-
imate the patch problems. We introduce methods that identify dominated parts of
patches andmethods that ensure that dominated areas are excluded from further refine-
ments. Finally, we use these elements to present the patch approximation algorithm
scheme.

3.1 Approximating the convex patches: Sandwiching

In the patch approximation algorithm, we use the well-known Sandwiching algorithm
to add new nondominated points to patches so that the approximation quality of the
nondominated set of (1) is improved. There exist several variants of the (simplicial)
Sandwiching algorithm which are widely used, e.g. in Dörfler et al. (2021), Klamroth
et al. (2003), Löhne et al. (2014), Rennen et al. (2011), Ehrgott et al. (2011), SernaHer-
nandez (2011) and have been applied to intensity-modulated radiotherapy Craft et al.
(2006), Rennen et al. (2011), Bokrantz and Forsgren (2013), product development
Süss et al. (2022), chemical process design Bortz et al. (2014) and industrial processes
Nowak et al. (2021).

The general idea of the algorithm is as follows. After an initial approximation has
been computed, the inner and outer Sandwiching approximation is constructed as
presented in Sect. 2.1: the inner approximation is the convex hull of the nondominated
points, extended by the domination cone. The outer approximation is given by the cut
of the supporting half-spaces in the nondominated points. Then, the approximation
quality, e.g. the epsilon-indicator value (cf. Sect. 2.3) is computed. To improve the
approximation, a newnondominated point is computed so that its tangential hyperplane
is parallel to the inner approximation facet where the worst quality value was attained.

While the algorithm introduced in Cabrera-Guerrero et al. (2021) for biobjective
problems also computes an initial approximation for every patch and constructs the
same inner and outer approximations as in our algorithm, it is not used to determine
the location of the next nondominated point. Instead, the distance between unsolved
scalarization parameters within a fixed grid of scalarization parameters is used.

We do not want to add points to a patch approximation using Sandwiching if this
part of the patch is dominated by a different patch. In the next section we will discuss
how dominated parts of patches can be identified.
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3.2 Determining�-dominated parts of a nondominated set

We want to identify dominated patch parts to avoid refining parts of patches that do
not contribute to the nondominated set of (1). However, we relax the nondomination
requirement a bit: in our algorithm it is enough if a point z is εdom−nondominated for
some εdom ≥ 0 to be kept for refinement, i.e. if z−εdom := (z1−εdom, . . . , zd −εdom)

is nondominated.
If εdom = 0 is chosen, then εdom-nondominance is just classical nondominance. If a

value εdom > 0 is chosen, then parts of patches are added to the approximation which
do not contribute to the overall nondominated set but which are slightly dominated
by it. This is useful in practical applications to present more solutions than just the
nondominated set to the user as long as these solutions are marked as such. This allows
the decision maker to incorporate goals in the decision-making process that are not
objective functions.

After computing an initial approximation for every patch, we apply a two-phase
approach.

First, we try to identify as many fully εdom-dominated patches as possible by look-
ing only at the patch points. We successively obtain patches whose ideal points are
nondominated with respect to the ideal points of the other patches. Then we remove
all patches whose ideal point is εdom-dominated by a point of such a patch.

Then, we move on to another procedure that is guaranteed to identify any εdom-
dominated patch and that can detect εdom-dominated parts of patches. We propose to
check for every new patch point z whether there is a point in the inner approximation
of a different patch that εdom-dominates z. To do this, we solve a small linear program
for those other patches that are not marked as fully εdom-dominated until a dominating
patch is found.

Although this approach is sufficient in our applications where the computational
effort of computing a new nondominated point clearly outweighs the effort of solving
the linear programs, the proposed method does not scale well with the number of
patches. This effect is mitigated (at the cost of having calculated at least d points
for each of these dominated patches in the first phase) when a significant number of
the patches is already discarded in the first phase. If problem (1) can be formulated
as a multiobjective mixed-integer convex program where every patch has the same
feasible set, for large numbers of patches the algorithm presented in Eichfelder and
Warnow (2023) may be the better choice since it avoids computing a small initial
approximation for every integer assignment. In Sect. 5 we will compare the behaviour
of the two algorithms for some exemplary cases.

We propose two variants of determining whether a patch point is εdom-dominated
by the inner approximation of a different patch. Let the matrix Z ∈ R

d×n contain
the nondominated points of a patch as column vectors. The term Zξ + μ,

∑
ξ =

1, ξ ≥ 0, μ ≥ 0 then represents the inner approximation of the patch, where ξ ∈ R
n

describes the convex combination of the patch points and μ ∈ R
d≥0 adds the standard

domination cone R
d≥.
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To check whether the patch εdom-dominates the point z, the problem

min − eT · δ

s.t. Zξ + δ = z − εdom

eT ξ = 1

δ, ξ ≥ 0 (3)

can be solved. The vector e is the vector of ones. If (3) has an optimal solution (δ, ξ),
with some δi > 0, i ∈ {1, . . . , d}, a dominating point is given by zdom = Zξ .

If the computational effort for generating a nondominated point is very high, it may
be worthwhile to solve a linear program for each coordinate direction in the objective
space. This way, several dominating points are found and even larger εdom-dominated
areas can be identified. To check whether a point z is εdom-dominated by some patch
in coordinate direction j , we solve the linear program

min − δ

s.t. (Zξ) j + μ j + δ = z j − εdom

(Zξ)i + μi = zi − εdom ∀i �= j

eT ξ = 1

δ, ξ, μ ≥ 0 (4)

where Z , ξ , μ, e are defined as above. If (4) has an optimal solution (δ, ξ, μ), δ > 0,
a dominating point is then given by zdom = Zξ + μ.

We first establish that if a patch dominates z, then a dominating point is found and
that zdom actually dominates z.

Lemma 2 1. Let z′ ∈ I np for some patch p, z′ εdom-dominating z. Then the program

(3) has a solution (δ, ξ) where zdom = Zξ εdom-dominates z.
2. Let z′ ∈ I np for some patch p, z′ εdom-dominating z with (z′) j < z j . Then (4) has

a solution (δ, ξ, μ) and zdom = Zξ + μ εdom-dominates z.

Proof 1. Since z′ ∈ I np , there exist ξ ∈ R
n ,

∑
ξ = 1 and μ ∈ R

d , ξ, μ ≥ 0 with
z′ = Zξ+μ. Since z′ εdom-dominates z, it holds (z′)i = (Zξ)i+μi ≤ zi−εdom and
therefore also (Zξ)i ≤ zi −εdom for all i ∈ {1, . . . , d} and for some j ∈ {1, . . . , d}
it holds (z′) j = (Zξ) j + μ j ≤ z j − εdom and therefore also (Zξ) j ≤ z j − εdom.
For δ = z − εdom − (Zξ) it holds δi ≥ 0 ∀i ∈ {1, . . . , d} and δ j < 0. Therefore,
(δ, ξ) is a feasible point of (3) and Zξ εdom-dominates z.

2. Since z′ ∈ I np , there exist ξ ∈ R
n ,

∑
ξ = 1 and μ ∈ R

d , ξ, μ ≥ 0 with
z′ = Zξ + μ. Since z′ εdom-dominates z in direction j , z′ = Zξ + μ ≤ z − εdom
and (z′) j = (Zξ) j +μ j < z j −εdom.We choose δ = z j −εdom−(Zξ) j −μ j with
δ > 0. For μ̄, ν ∈ R

d and μ̄ = μ + ν with ν j = 0, νi = zi − εdom − (Zξ)i − μi

for i ∈ {1, . . . , d}, i �= j , it holds ν ≥ 0. Therefore, (δ, ξ, μ̄) is feasible for (4).
Since δ > 0, Zξ + μ̄ εdom-dominates z.

�
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Fig. 2 AMOMICproblemconsisting of two patches.We checkwhether the second patch is εdom-dominated
by solving (4) with εdom = 0 for the patch point z in the first coordinate direction. The solution Zξ + μ

dominates z, as well as the dominating point zdom := Zξ . The whole second patch is contained in the cone
zdom + R

2≥, so that it can be marked as fully dominated

If there is a coordinate i with μi > 0, then the point Zξ also dominates z and
Zξ + R

d≥ ⊃ (Zξ + μ) + R
d≥.

Lemma 3 If the solution (δ, ξ, μ) of (4) fulfils δ > 0 and μi > 0 for some i ∈
{1, . . . , d}, then z̃dom = Zξ εdom-dominates z.

Proof Since δ > 0, from the first two equality constraints of (4) we obtain that Zξ +μ

εdom-dominates z. Sinceμ ≥ 0, it also holds (Zξ) j < z j−εdom and (Zξ)i ≤ zi−εdom.

The method is illustrated in Fig. 2. In a run of the patch approximation algorithm,
however, patch 2 would have already been marked as fully εdom-dominated in the first
phase without solving a linear program.

The task of checkingwhether the initial approximation of a patch is εdom-dominated
is summarized in Algorithm 1.

A common fathoming rule in branch-and-bound based approximation algorithms
for mixed-integer multiobjective problems (e.g. used in Cacchiani and D’Ambrosio
(2017), Adelgren and Gupte (2022)) is to check whether the ideal point of a patch is
εdom-dominated by some other patch.

Lemma 4 If the ideal point z I of a patch is εdom-dominated by a different patch, the
patch will be fully marked as εdom-dominated the first time it is considered by the patch
approximation algorithm.

Proof After an initial approximation of the patches has been computed, the ideal points
of the patches are checked for εdom-dominance by other patches by (3) (or (4)). Using
Lemma 2, we know that if the ideal point of the patch is εdom-dominated, then some
εdom-dominating point zdom will be found using (3) (or (4)). Then, the part of the patch
intersecting zdom+R

d≥ will be marked as εdom-dominated. Since for every patch point
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Algorithm 1 Check the initial approximation of every patch for epsilon-domination
Require: Initial approximation of every patch,

dominance precision εdom,
a method that checks if a point is εdom-dominated by some patch (e.g. 3 or 4)
a method that marks a εdom-dominated part of a patch to avoid placing more points there

1: for evey patch do
2: Determine the ideal point of the patch
3: Check whether the ideal point is εdom-dominated by a different patch
4: if a dominating point is found then
5: Mark the whole patch as εdom-dominated.
6: else
7: for every patch point that is not already known to be εdom-dominated do
8: Check if the point is εdom-dominated by a different patch
9: if a dominating point zdom is found then
10: Mark the region of the patch intersecting zdom + R

d≥ as εdom-dominated
11: end if
12: end for
13: end if
14: end for

z it holds z I ≤ z and zdom ≤ z I , we have z ∈ zdom + R
d≥. Since every nondominated

point lies in the εdom-dominated region, every facet can be marked as εdom-dominated.

3.3 Ensuring that nomore nondominated points are calculated in regions that are
known to be dominated

Once a region of a nondominated set is known to be εdom-dominated, we want to
avoid computing new nondominated points there. We introduce two strategies that
make sure that new nondominated points are only placed where they contribute to the
nondominated set of (1).

3.3.1 Biobjective problems: objective box constraints

In biobjective problems, parts on the boundary of a patch can be easily excluded from
further consideration by adding objective box constraints to the patch optimization
problem.

Let a point zdom be given that dominates a patch. We want to avoid computing new
points in those parts of the patch that lie in the cone zdom + R

2≥.
We look for intersections of D1 = {zdom + δe1, δ > 0} and D2 = {zdom + δe2}

where e1 = (1, 0)T and e2 = (0, 1)T with the patch. If an intersection of D1 with
the patch is found in z̄, a new patch problem is created with additional constraint
f1(x) ≤ z̄1. If an intersection of D2 with the patch is found in z̃, a new patch problem
is created with additional constraint f2(x) ≤ z̃2. If a new patch problem has been
created, i.e. there was at least one intersection point, the original patch problem is
removed from (1) and the corresponding patch is removed from the approximation. If
there are two intersection points, the number of patches increases by one.

Adding box constraints to a patch is equivalent to setting trade-off bounds as
described by Serna et al. (2009): when the decision maker removes those patch points
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that satisfy f1(x) ≤ z̄1, they implicitly remove those parts of the nondominated set
that have steeper trade-offs with respect to f1 than the gradient of the patch at z̄.
Specifying trade-off bounds can be incorporated into the approximation process by
modifying the domination cone. Then, different domination cones need to be used for
each patch.

A different strategy is used in Cabrera-Guerrero et al. (2021). Once a scalarization
parameter has been selected for the next epsilon-constraint scalarization, the other
component of the outer approximation for every patch is evaluated there. The scalar-
ization problem is then solved for the patch with the smallest outer approximation
value. The algorithm therefore avoids having to actively remove parts of patches from
further approximation.

3.3.2 General number of objective dimensions: placing a perfectly approximated
Sandwiching facet

We present a method to avoid computing any more nondominated points in regions
that are known to be εdom-dominated that is tailored to the Sandwiching algorithm. If
a whole facet of the inner approximation of a patch is εdom-dominated by a different
patch, we will ignore it by adding a so-called fake nondominated point. By adding
these artificial points to the nondominated set, we generate facets in which the outer
and inner approximation coincide. Therefore, the Sandwiching algorithm will never
select one of those facets to compute a new nondominated point there.

The inner approximation of a patch consists of the convex hull of its nondominated
points with added domination cone. In this section, we want to work with the facets,
i.e. the full-dimensional faces, of the inner approximation. Since these are not easy to
compute directly,weworkwith those facets of the convexhull of the patch pointswhich
lie on the boundary of the inner approximation. We use a nadir point approximation
or a user-defined upper bound on the patch ỹN ∈ R

d and define

F := { f : f is facet of conv (z1p, . . . , z
n
p, ỹ

N ) with ỹN /∈ f }.

The set F can easily be computed using a convex hull algorithm, e.g. Barber et al.
(1996). We justify the usage of F instead of I np in the following lemma.

Definition 2 A facet is called dominated if there exist points in its interior that are
dominated by a convex combination of nondominated points.

A facet is called nondominated if each of its points is nondominated.

There are no dominated facets in biobjective problems. Let Z be the set of computed
nondominated points.

Lemma 5 1. If the outer normal of a facet f ∈ F has at least one positive component,
the facet is dominated.

2. Every facet of I np that is not a facet of the standard domination cone is also a facet
of F.

3. Every facet f ∈ F is either a facet of I np or it is dominated.
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Proof 1. From the definition of F and I np we have f ⊂ I np for every f ∈ F .
FromLemma2 ofRennen et al. (2011), we know that the outer normal of a support-
ing hyperplane of a facet of conv (Z + R

d≥) always has nonpositive components.
Therefore, if a facet f ∈ F has an outer normal with a component vi > 0 for some
i ∈ {1, . . . , d}, it holds f � ∂ I np , where ∂ I np denotes the boundary of I np .
Thus, there exists a point z ∈ f with z /∈ I np\∂ I np . Then there is a δ ∈ R

d , δ ≥ 0
with at least one component δi > 0 with z − δ ∈ I np . Thus, z ∈ f ⊂ I np is domi-
nated by z−δ ∈ I np . As an element of I np , z−δ can be decomposed into the sum of
a convex combination of nondominated points and an element of R

d≥ which shows
that f is a dominated facet.

2. Due to the added domination cone, the boundary of I np consists of weakly non-
dominated points. Next, we show that every nondominated facet of conv (Z) is an
element of F . Let us assume that a nondominated facet of conv (Z) is not a facet
of conv (Z, ỹN ). Then f would need to be visible from ỹN , i.e. the hyperplane
extending f would need to separate conv (Z) from ỹN . But this is not possible
since f consists of nondominated points of conv (Z) and ỹN is an approximation
of the nadir point and therefore is dominated by conv (Z).

3. Every facet in F is a facet of conv (Z). If the facet’s outer normal fulfills v ≤ 0,
each of its points is nondominated. And every nondominated facet of conv (Z)

is a facet of I np . We already showed in Step 1 that every facet in F whose outer
normal has a component vi > 0 is dominated.

�

We can thus use the nondominated facets in F instead of the nondominated facets

of I np .
We first discuss the approach for a nondominated facet and then describe how we

handle dominated facets.
When a nondominated facet of the nondominated set consisting of d linearly

independent nondominated points z0, . . . , zd−1 is known to be fully dominated by
a different patch, we calculate the mean point zm defined as zmi := 1

d

∑d−1
j=0 z

j
i . As a

convex combination of the defining nondominated points, zm lies on the inner approx-
imation facet. We then take the unit outer normal vector vn of the facet and add the
“fake nondominated point” zm with vn as its optimization weight to the approximation
of the nondominated set. This idea is illustrated in Fig. 3.

Lemma 6 Let f be the vector of objectives of a convex bounded multiobjective opti-
mization problem. For the solution x̃ of the weighted sum scalarization (2) with
weights λ ≥ 0, the point f (x̃) has the supporting hyperplane H(λT , λT f (x̃)) =
{z ∈ R

d , λT z = λT f (x̃)}.
Proof In objective space, λT f (x) = c, c ∈ R forms a hyperplane with normal λ.
Whenminimizing λT f (x) in the weighted sum scalarization problem, this hyperplane
is shifted by decreasing c until the boundary of the feasible set is reached at c̃.

Since for the solution x̃ of the weighted sum scalarization the point f (x̃) lies on
the hyperplane, it holds c̃ = λT f (x̃). �
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Fig. 3 Let a facet be given by two nondominated points z1 and z2 and their normals which form the outer
approximation. When adding the mean point zm with the normal of the facet to the nondominated set, the
outer and inner approximations coincide in this facet

Lemma 7 When adding the mean point zm of an inner approximation facet, setting
the unit outer normal vector vn of the facet as its normal to the approximation of the
nondominated set, the outer and inner approximation of the facet will coincide, i.e.
the facet has perfect approximation quality.

Proof When adding the point zm with outer normal vn to the approximation, the inner
approximation is updated by I n+1

p = conv (I np , z
m). Since zm is a convex combination

of patch points, it holds I n+1
p = I np .

The outer approximation is updated by the halfspace through zm with outer normal
vn

{z ∈ R
d : (vn)T ·(z−zm) ≤ 0} = {z ∈ R

d : (vn)T z ≤ (vn)T zm} = HS(vn, (vn)T zm)

Since zm lies on the facet and the facet normal is vn , the hyperplane extending the
facet is given by

{z ∈ R
d : (vn)T ·(z−zm) = 0} = {z ∈ R

d : (vn)T z = (vn)T zm} ⊆ HS(vn, (vn)T zm).

If for a patch point z an εdom-dominating point zdom is determined, then only facets
fully lying in zdom+R

d≥ can bemarked as εdom-dominated using our proposedmethod.
To fully mark the intersection of the patch with zdom + R

d≥ as εdom-dominated, addi-
tional optimization problems would have to be solved to compute new nondominated
points. We do not follow this approach since we cannot know whether such addi-
tional points would improve the approximation quality of the nondominated set of (1)
substantially.

Handling dominated facets If a region of the patch containing a dominated facet
f ∈ F is identified as εdom-dominated, we cannot add a fake nondominated point to
f to mark it as dominated since its normal is not a suitable parameter for the weighted
sum scalarization.

In literature, a variety of different approaches has been proposed to avoid dominated
facets (Craft et al. (2006), Rennen et al. (2011), Bokrantz and Forsgren (2013)). The
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basis of the approach introduced in Rennen et al. (2011) is that while the convex hull
of the nondominated points Z may contain dominated facets, the set Z + R

d≥ only
consists of nondominated facets. We will now make use of the same approach.

We originally introduced F to avoid having to compute the facets of I np which does
not have dominated facets since the domination cone R

d≥ is added to all of its points.
Instead, we now construct facets of f + R

d≥ by adding points to f such that the
nondominated set of f + R

d≥ only consists of nondominated facets. Then, for each
of these nondominated facets, fake Points can be added to remove them from further
refinement.

Definition 3 (Definition 7 of Rennen et al. (2011)) Let an upper bound on the nondom-
inated set ỹN , e.g. a nadir point approximation (see Equation 2.15 of Ehrgott (2005)),
be given. For a nondominated point z ∈ Y we define the points d1(z), . . . , dd(z) ∈ R

d .
The j-th point is defined as

dij (z) :=
{
z j if j �= i

ỹNj if j = i .

Adding all d points to every nondominated point z ∈ f creates all facets of f +R
d≥,

but produces a large amount of additional points. Many of these points are actually
not on the boundary of the nondominated set of f + R

d≥ and therefore do not need to
be computed, as shown in the following lemma.

Lemma 8 Let a facet f ∈ F be defined by the points p = {z1, . . . , zd}. Let the facet
be dominated with an outer normal with positive entries in directions J ⊂ {1, . . . , d}.
To construct all facets of the nondominated set of f + R

d≥, it suffices to add the points
{d j (z) ∀z ∈ p ∀ j ∈ J } (see Definition 3) to the approximation.

Proof FromLemma2ofRennen et al. (2011)we obtain that if d points representing the
domination cone are added for every computed nondominated point, then the convex
hull of the nondominated points and the points representing the domination cone will
not contain any dominated facets.

We want to add points representing the domination cone to obtain facets with fully
non-positive normals. When adding points d j (z) ∀z ∈ Z , those points represent the
j-th extreme ray of the domination cone. Since the ray’s normal is zero in direction
j , we eliminated the positive normal direction j ∈ I .
After repeating this process for all i ∈ I , all facets of conv (Z ∪ {di∀i ∈ I }) are

nondominated. �

For a dominated facet in d-dimensional objective space with ndom dominated direc-

tions, we add ndomd artificial points that represent the domination cone. Since adding
a point to a d-dim simplex will split the simplex into d simplices, (d − 1) facets are
added to the convex hull for every added representative point.

To construct the outer approximation of the patch, we will need a normal on the
points representing the domination cone as well. For a point d j (z) constructed using
nondominated point z with normal w, the normal of d j (z) has entries min{wi , 0},
i = 1, . . . , d.
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Algorithm2Mark the part of a patch front εdom-dominated by zdom as εdom-dominated
using fake nondominated points

1: Determine all facets that lie inside of zdom + R
d≥.

2: for all of these facets do
3: if the facet is dominated then
4: Add points representing the domination (see Lemma 8)
5: end if
6: Add a fake nondominated point to every facet
7: end for

Lemma 9 The part of a patch marked as εdom-dominated using fake nondominated
points is indeed εdom-dominated by some other patch.

Proof If for some patch point, an εdom-dominating point zdom is found using (3) or
(4), then fake nondominated points ensure that in those facets that fully lie inside of
zdom + R

d≥, no new nondominated points are added. These facets form a subset of the
cut of the patch with zdom + R

d≥. Every point z ∈ zdom + R
d≥ is εdom-dominated by

zdom.

3.4 Patch Navigation

Navigation is a common tool in multi-criteria decision making. It is the interactive
procedure of traversing through a set of points in the objective space guided by a deci-
sion maker. The ultimate goal of this procedure is to identify the single most preferred
nondominated solution (Definition 1.1 ofAllmendinger et al. (2017)).Numerousmeth-
ods have been introduced for convex (e.g. Monz et al. (2008), Eskelinen et al. (2010))
and nonconvex (e.g. Nowak and Küfer (2020), Nowak et al. (2022), Hartikainen et al.
(2019)) nondominated sets. An overview is given in Allmendinger et al. (2017). A first
method for the comparison of two patches was introduced in Teichert et al. (2011).
More recently, navigation approaches for patch problems have been developed, for
example Hartikainen et al. (2019) and Collicott et al. (2021).

We will briefly outline the patch navigation approach published in Collicott et al.
(2021). For the exploration of the nondominated set, two main navigation features
can be used. The decision maker can change the solution in coordinate direction
and observe the related trade-offs in real time (selection) and they can set bounds to
individual objectives (restriction) and monitor their effect on the obtainable range in
other objectives. This approach naturally extends to patches as shown by the authors
in Collicott et al. (2021). Additionally, the distance of the solution that was chosen by
the decisionmaker to the closest solutions on other patches is displayed. This helps the
decision maker evaluate whether a solution on a different patch could be an alternative
to the chosen solution.

In the patch approximation algorithm, we present the initial approximation of the
nondominated set of (1) to the decisionmaker in the patch navigation tool. The decision
maker can then explore the trade-offs of the nondominated set and specify parts of the
nondominated set that are not of interest to them and therefore do not need a refinement
using the restriction process of the navigation. The restriction choices are incorporated
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Fig. 4 An initial approximation of a tri-criteria problem with three patches is presented to the decision
maker in the patch navigation tool. The decision maker decided to restrict the objective space in the first
and third objective (shaded)

into the optimization problem using Algorithm 3. When a patch nondominated point
z p has been removed by the restrictor, a new nondominated point is computed with
the same weight to ensure that the initial approximation consists of d + 1 points. This
is necessary so that the convex hull of the nondominated points can be used when
removing εdom-dominated parts of patches.

Algorithm 3 Process restrictors set in navigation step
Require: restrictor positions, all patch points
1: for every patch do
2: for every restrictor do
3: Add the constraint fi ≤ z̄ to the patch optimization problem
4: if there are patch points z with weight w fulfilling zi > z̄ then
5: Remove the patch point from the approximation
6: Compute a new nondominated point for this patch using weight w.
7: end if
8: end for
9: end for

We have implemented the approach of Collicott et al. (2021). In Figs. 4 and 5, the
two navigation stages of the patch approximation algorithm are illustrated.

Some algorithms that approximate nondominated sets contain steps to remove dom-
inated points that were computed during the course of the algorithm (e.g. Rennen et al.
(2011), Cacchiani and D’Ambrosio (2017)). Since the linear programs used in nav-
igation make sure that we only navigate on the nondominated set of (1), we do not
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Fig. 5 After incorporating the restrictor positions, the approximation is refined using the patch approxi-
mation algorithm. No new nondominated points have been computed in the restricted (shaded) areas. The
decision maker can now explore the trade-offs of the finely approximated nondominated set of (1)

need to remove nondominated patch points that are dominated with respect to the
nondominated set of the overall problem (1).

3.5 Patch approximation algorithm scheme

After introducing the elements of the patch approximation algorithm, we can now
state the algorithm scheme in Algorithm 4.

The algorithm is illustrated in Fig. 6 on a biobjective case with five patches. Patches
1 and 2 partially contribute to the nondominated set, patch 3 is fully dominated and
intersects patch 1 and 2, and patch 4 and 5 are fully dominated and far behind the
nondominated set. We select method (4) to check for dominating points and remove
dominated parts using fake nondominated points (Algorithm 2).

Step 1 (Fig. 6a): An initial approximation is computed for every patch. For
simplicity, we only show the inner approximation Ip, p = 1, . . . , 5.

Step 2 and 3 (Fig. 6b): The decision maker removed the shaded area from further
refinement using restrictors. I4 and I5 are updated with new nondominated points
(bold ’x’).

Step 4 phase 1 (Fig. 6c): patches 4 and 5 are identified as fully dominated by their
ideal points (both labelled z I ).

Step 4 phase 2 (Fig. 6d): Patch 3 is identified as fully dominated by computing
dominating points (bold ’x’) using (4). Parts of patches 1 and 2 are identified as
dominated, but cannot be removed using fake Points (see Algorithm 2) since they
contain only a single point each, no facet.
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Algorithm 4Multiobjective patch approximation algorithm
Require: target approximation quality εapprox or other stopping criterion,

dominance precision εdom ,
a method that checks if a point is εdom-dominated by some patch (e.g. programs (4) or (3)),
a method for each patch that calculates points using weighted sum scalarization

1: Generate initial approximation for each patch: compute the extreme compromises and the weighted sum
solution with equal weights

2: Present the initial approximation to the decision maker in a patch navigation tool (see Sect. 3.4). The
decision maker can exclude parts of the objective space that they are not interested in from further
refinement using restrictors.

3: Process the restrictor positions using Algorithm 3
4: Check the initial approximations for εdom -domination and remove εdom-dominated patch parts using

Algorithm 1.
5: while the stopping criterion is not met do
6: Calculate a new patch point using Sandwiching in the patch that has the worst approximation

quality
7: Check whether the new point is εdom-dominated by some other patch. If this is the case, mark this

part of the patch as εdom-dominated using Algorithm 2.
8: Determine the approximation quality of the updated patch and update the estimate of the

approximation quality of the nondominated set of (1) as the maximum of the patch qualities.
9: end while

Since for simplicity we only show the inner approximation in Fig. 6, we cannot see
that patch 2 attained the worst patch approximation quality.
Step 6 (Fig. 6e): Add a new nondominated point z̄ to patch 2.

Step 7 (Fig. 6f):We check z̄ for domination. Two nondominated points (z̄ and z1) of
patch 2 form a facet dominated by patch 1. The facet can then be removed by adding
a fake nondominated point.

In the following section, we will investigate the convergence behaviour of the patch
approximation algorithm.

4 Convergence properties of the patch approximation algorithm

Wecan obtain convergence results of the patch approximation algorithm (Algorithm 4)
by using corresponding results for the Sandwiching algorithm introduced in Lammel
(2023). The results are formulated using the epsilon indicator δε (see Sect. 2.3), but
also hold for some other metrics, e.g. the polyhedral gauge and the Hausdorff metric.

To apply the algorithms, we need the additional assumption that all patches need
to be full-dimensional. Requirements for a full-dimensional nondominated set have
been derived in Hillermeier (2001).

Theorem 10 Algorithm 4 applied to a problem of the form (1) with full-dimensional
patches converges, i.e. limn→∞ δε(In,On) = 0.

Proof For every patch, the Sandwiching algorithm converges (Theorem 3.3.18 of
Lammel (2023)). Since the overall approximation quality of the nondominated set of
(1) can by bounded by the maximum of all patch approximation qualities (Lemma 1)
and a new nondominated point is added to the patch that attains the worst quality, all
patches will eventually be approximated because we assume that there are only finitely

123



An approximation algorithm for multiobjective… 341

Fig. 6 Illustration of the patch approximation algorithm (Algorithm 4) in a biobjective example with five
patches

many patches. Some parts of the nondominated set of the original problem (1) will
not be approximated finely since they are marked as εdom-dominated in the course of
the algorithm.

In the worst case, no part of one patch dominates another patch. Then, the nondom-
inated set of (1) is just the union of the nondominated sets of all patches. In Lammel
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(2023), a bound on the reduction of the approximation error of the Sandwiching
approximation was introduced. We extend this result to the patch approximation algo-
rithm. Theorem 11 shows that the approximation error is reduced whithin one iteration
in the order of n1/(d−1) with n the number of iterations. With additional regularity of
the patches, we can obtain an improved rate of n2/(d−1).

We introduce some notation that will be used in the following theorems. The
asphericity α(C) is defined as the minimal ratio of the radii of concentric outer and
inner spheres ofC , rinner(C) is the radius of the largest ball included inC and router(C)

is the radius of the smallest ball containing C . The constant πd denotes the volume of
a d-dimensional unit ball.

Theorem 11 Let {(In,On)}n=0,1,... be a sequence of inner and outer approximations
generated by the patch approximation algorithm (Algorithm 4) for q patches. The set
Ci denotes patch i , all patches are full-dimensional. Then for any ε > 0 there exists
a number n0 such that for n ≥ n0 it holds

δε(In,On) ≤ (1 + ε)

q∑

i=1

(
ci1n

1/(d−1)
)−1

where

ci1 = 1

2

(
d − 1

d

πd−1

d

1

σ(Ci )

)1/(d−1)

(α(Ci )2 − 1)−1/2α(Ci )2d/(1−d)

(
1√
d

)d/(d−1)

.

Theorem 12 Let {(In,On)}n=0,1,... be a sequence of inner and outer approximations
generated by the patch approximation algorithm (Algorithm 4) for q patches. The set
Ci denotes patch i , I i0 denotes the initial inner approximation of the patch. If each
patch is full-dimensional, the objective functions and the functions forming the feasible
set are three times continuously differentiable, the function mapping a weight λ of (2)
to a weakly nondominated point is locally injective, and for the KKT points of the
weighted sum problem the strict complementary slackness condition, LICQ and SOSC
are fulfilled, then for any ε > 0 there exists a number n0 such that for n ≥ n0 it holds

δε(In,On) ≤ (1 + ε)

q∑

i=1

(
ci2n

2/(d−1)
)−1

where

ci2 =
⎛

⎝d − 1

d + 1

πd−1

d

(
rinner(I i0)√
drouter(Ci )

)d
1

σ(Ci )

⎞

⎠
2/(d−1)

ρmin(Ci )

8
.
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5 Numerical results

Wewill demonstrate the abilities of our patch approximation algorithm (Algorithm 4).
We compare our algorithm to the HyPaD algorithm presented in Eichfelder and
Warnow (2023). Additionally, we demonstrate that our algorithm performs well in
higher-dimensional cases using a seven-criteria problem. Since we want to compute
the entire nondominated set in the following examples, we will omit the navigation
step of the patch approximation algorithm.

We implemented the patch approximation algorithm in Python 3.9. All convex
optimization problems are solved using scipy.optimize.minimize’s SLSQP
algorithm. The tests were performed on a laptop with 32 GB of RAM and an Intel
Core i7-11850H processor with a clock rate of 2.5 GHz and 8 cores.

5.1 Comparing our algorithm to the HyPaD algorithm

From experimental data presented in Eichfelder and Warnow (2023), it appears that
the HyPaD algorithm introduced in Eichfelder and Warnow (2023) is currently the
best-performing patch algorithm that can be applied to problems of arbitrary objec-
tive dimension. The HyPaD algorithm also approximates the nondominated set of
multiobjective mixed-integer convex problems. It requires that every patch problem
is defined using the same feasible set. However, their algorithm allows an infinite
amount of feasible integer assignments. In the following, we apply our algorithm to
the three examples discussed in Eichfelder andWarnow (2023) to demonstrate the abil-
ities of our patch approximation algorithm and compare the behaviour to the HyPaD
algorithm.

To compare the results we use the computation times given in Eichfelder and
Warnow (2023). In Eichfelder and Warnow (2023), the HyPaD algorithm was imple-
mented in MATLAB, the numerical tests were performed on a machine with 32 GB
of RAM and a an Intel Core i9-10920X processor with a clock rate of 3.5 GHz and
12 cores.

TheHyPaDalgorithmconstructs an enclosure of the nondominated set by excluding
dominated and dominating regions of the objective space. The space between the lower
and upper bounds can be separated into boxes (rectangles in the biobjective case) and
the quality criterion is the largest smallest length of all boxes. This criterion only uses
the computed nondominated points and dominance relations.

In our proposed algorithm, the approximation of the nondominated set is not
only given by the nondominated points, but also uses the convexity of the patches
in the definition of the inner and outer approximation. The epsilon indicator mea-
sures the distance not between nondominated points but between the inner and outer
approximation.

As an example, assume that a patch in biobjective space is given by a line between
two points. Our algorithm would only need to compute the two points to approximate
the nondominated set exactly as the inner and outer approximation are an exact linear
model of this linear nondominated set. The epsilon indicator would then be zero and
the algorithmwould terminate. The quality criterion of theHyPaD algorithm evaluated

123



344 I. Lammel et al.

Fig. 7 Nondominated set of
example (5) generated by our
patch approximation algorithm.
Dominated points are marked
with an ’x’, added fake
nondominated points are marked
with a ’+’. Those parts of
patches that contribute to the
nondominated set are coloured

for the approximation of the line by two nondominated points is the minimal length
of the rectangle defined by the two points.

As the behaviour of the quality criteria is therefore very different, none of the two
algorithms can be evaluated by the quality criterion of the other algorithm.

We can therefore not compare the performance of the two algorithms quantitatively.
For the following examples, wewill still document values of the two quality criteria for
their respective algorithms as they still represent a notion of the approximation quality.

Wewill determine whether a part of a patch is dominated using one search direction
by solving (3) for εdom = 0.Wewill remove dominated parts using fake nondominated
points.

Biobjective problemwith five patches

This biobjective test instance with quadratic constraint functions and a non-quadratic
objective function was introduced in De Santis et al. (2020) under the name T6. There
are two continuous variables and one integer variable which leads to five patches (Fig.
7).

min (x1 + x3, x2 + exp(−x3))
T

s.t. x21 + x22 ≤ 1

x1, x2 ∈ [−2, 2]
x3 ∈ {−2,−1, 0, 1, 2}. (5)

To apply our patch approximation algorithm, we create one optimization problem for
every possible integer assignment. The HyPaD algorithm computes an enclosure of
the nondominated set with maximal box width ε = 0.1 within 1.34 s and for ε = 0.01
within 6.09 s, that is, the improved quality is achieved in approximately 4.5 times the
approximation time. Our patch approximation algorithm computes an approximation
with epsilon indicator quality of 0.05 within 0.1 s and achieves quality 0.005 within
0.32 s which is 3.2 times the approximation time of the lower approximation quality.
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Fig. 8 Nondominated set of
example (6) with two continuous
and two discrete variables, e.g.
25 patches, generated by our
patch approximation algorithm.
Dominated points are marked
with an ’x’. Those parts of
patches that contribute to the
nondominated set are coloured

Bicriteria problemwith scalable number of continuous and integer variables

The next test case (example H1 of Eichfelder and Warnow (2023)) has two quadratic
objective functions and a quadratic constraint function. The number of continuous
variables n and the number of integer variables m are even natural numbers. The
problem is given as

min

( ∑n/2
i=1 xi + ∑n+m/2

i=n+1 x
2
i − ∑n+m

i=n+m/2+1 xi∑n
i=n/2+1 xi − ∑n+m/2

i=n+1 xi + ∑n+m
i=n+m/2+1 x

2
i

)

s.t.
n∑

i=1

x2i ≤ 1,

x1, . . . , xn ∈ [−2, 2],
xn+1, . . . , xm ∈ {−2,−1, 0, 1, 2}. (6)

The number of patches is given by 5m . We perform tests using m = 2 and m = 4, i.e.
25 and 625 patches. We use an epsilon indicator value of 0.05 as the stopping criterion
for our patch approximation algorithm. The HyPaD approximation was improved to
a width of the enclosure of 0.1.

For two continuous and two discrete variables, i.e. 25 patches, the computed patch
points and the inner and outer approximation of the biobjective mixed-integer convex
optimization problem are shown in Fig. 8. We can see that many patches are fully
dominated. All of the fully dominated patches are discarded from the start since their
ideal point is dominated by a different patch. Therefore, no fake nondominated points
need to be added. In the figure, it looks like nondominated points are removed from
the patch situated around the origin. In fact, there are two patches lying on top of each
other. Only one patch is refined, the other is marked as dominated.

The results of the computation time of our patch approximation algorithm and the
HyPaD algorithm (as documented in Eichfelder and Warnow (2023)) for 25 and 625
patches are shown in Fig. 9.
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Fig. 9 Comparison of the approximation time of the nondominated set of example (6), with 25 and 625
patches

From the construction of our algorithm, which for example computes several non-
dominated points for every patch, it is expected that it performs best for cases with
small amounts of patches. This behaviour can be observed in this example. Our patch
approximation algorithm performs significantly better than HyPaD in the case with 25
patches.But even for 625patches our algorithmstill outperforms theHyPaDalgorithm.

For even larger numbers of patches, however, theHyPaD algorithm performs signif-
icantly better than our algorithm. Our patch approximation algorithm solves problem
(6) with two continuous and six discrete variables, i.e. 56 = 15625 patches to an
epsilon indicator quality of 0.05 within 75 s. The HyPaD algorithm can solve the even
larger problem with two continuous and eight discrete variables in 25.70 s.

Tricriteria problem

The third test case that we use to compare our algorithm to the HyPaD algorithm from
Eichfelder and Warnow (2023) is a tri-objective test instance, originally presented as
T5 in De Santis et al. (2020). Its optimization problem is given by

min

⎛

⎝
x1 + x4
x2 − x4
x3 + x24

⎞

⎠

s.t.
3∑

i=1

x2i ≤ 1,

x1, x2, x3 ∈ [−2, 2],
x4 ∈ {−2,−1, 0, 1, 2}. (7)

Thus, there are five patches. The approximated nondominated set is shown in Fig. 10.
We can see that the five patches mostly do not intersect. Some pieces of the boundary
of some patches are determined as dominated (see the black ’x’ in the figure). But the
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Fig. 10 Approximated
nondominated set of example (7)
with three objectives and five
patches, approximated to an
epsilon indicator quality of 0.05

dominated parts never forma full facet so that no parts of the patch can be removed from
further refinement by adding fake nondominated points. Since every patch contributes
to the nondominated set, an integer searchmethod instead of our approach to enumerate
all patches would not improve the approximation process in this case.

The HyPaD algorithm computes an approximation with maximal width of 0.1
within about 9 s (see Eichfelder and Warnow (2023)). The patch approximation algo-
rithm presented in this article approximates the same nondominated set to an epsilon
indicator quality of 0.05 within 0.62 s.

5.2 An example with seven objectives

We illustrate that our algorithm can approximate the nondominated sets of prob-
lems with an arbitrary number of objectives by applying it to a problem with seven
objectives.

The nondominated set consists of three spherical patches. One patch is fully dom-
inated by the others. The patch problems are parametrized by the center point of the
sphere and the radius. Patch 1 has center c1 = (1, . . . , 1) and radius r1 = 0.2,
patch 2 has c2 = (0.8, 0.8, 0.8, 0.6, 0.6, 0.6, 0.6), r2 = 0.4 and patch 3 has
c3 = (0.6, 0.6, 0.6, 0.7, 0.7, 0.7, 0.7), r3 = 0.3. The j’th patch problem is then
given by

min f1(x) = x1, . . . , f7(x) = x7

s.t.
7∑

i=1

(
xi − c ji
r j

)2

≤ 1

0 ≤ x1, . . . , x7 ≤ 1.

Using the patch approximation algorithm (Algorithm 4) using problem (3) as the
criterion to check for dominating patches, this nondominated set can be approximated
to an epsilon indicator value of less than 0.1 using 106 nondominated points within
14.5 s. and to an epsilon indicator value of 0.05 using 325 nondominated points within
765 s.

123



348 I. Lammel et al.

6 Conclusion

We introduced a novel algorithm that approximates the nondominated sets of multiob-
jective mixed-integer convex problems of the form (1). To the best of our knowledge,
it is the first algorithm that constructs an inner and outer approximation of the non-
dominated set exploiting the convexity of the patches for problems with an arbitrary
number of criteria.

In the algorithm, the problem is decomposed into patches, which are bounded
multiobjective convexproblems, byfixing the integer assignments. Thepatchproblems
are solved using simplicial Sandwiching. We introduce methods that determine parts
of patches that are εdom-dominated by other patches. Then, we remove these patch
parts from further refinement by adding artificial nondominated points. An interactive
step allows a decision maker to exclude parts of the nondominated set from further
refinement after a coarse approximation of the nondominated set has been computed.
We proved that the algorithm converges and showed a bound on the reduction of the
approximation error.

We demonstrated that the algorithm can approximate nondominated sets with small
andmedium (up to a few hundred) numbers of patches faster than theHyPaD algorithm
introduced by Eichfelder and Warnow (2023), which then outperforms our algorithm
for larger numbers of patches. To illustrate that our algorithm can also approximate
the nondominated sets of problems with an arbitrary number of criteria, we apply the
algorithm to a problem with seven objectives.

Many problems arising from applications can be modeled as multiobjective mxied-
integer convex problems. In other cases, for example in radiotherapy or chemical
process engineering, a practical problem can be solved using different technologies
that aremodeled asmultiobjective convexproblems.Approximating the nondominated
set of multiple multiobjective convex problems at once is also captured by our problem
formulation (1). Typically, the number of technologies that are compared is small, e.g.
less than 10, and the computational effort of computing a nondominated point is high.
The technologies can then be interpreted as patches and their nondominated set can
be computed using our patch approximation algorithm.
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