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Abstract
We introduce and study the class of semidefinite games, which generalizes bima-
trix games and finite N-person games, by replacing the simplex of the mixed strate-
gies for each player by a slice of the positive semidefinite cone in the space of real 
symmetric matrices. For semidefinite two-player zero-sum games, we show that the 
optimal strategies can be computed by semidefinite programming. Furthermore, we 
show that two-player semidefinite zero-sum games are almost equivalent to semidef-
inite programming, generalizing Dantzig’s result on the almost equivalence of bima-
trix games and linear programming. For general two-player semidefinite games, we 
prove a spectrahedral characterization of the Nash equilibria. Moreover, we give 
constructions of semidefinite games with many Nash equilibria. In particular, we 
give a construction of semidefinite games whose number of connected components 
of Nash equilibria exceeds the long standing best known construction for many Nash 
equilibria in bimatrix games, which was presented by von Stengel in 1999.

Keywords  Semidefinite games · Bimatrix games · Nash equilibrium · Dantzig 
game · Number of Nash equilibria · Semidefinite programming

1  Introduction

In the fundamental model of a bimatrix game in game theory, the spaces of the 
mixed strategies are given by (two) simplices

Δ1 =

{
x ∈ ℝ

m ∶ x ≥ 0 and

m∑
i=1

xi = 1

}
, Δ2 =

{
y ∈ ℝ

n ∶ y ≥ 0 and

n∑
j=1

yj = 1

}
.
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The payoffs of the two players, pA and pB , are given by two matrices A,B ∈ ℝ
m×n , 

that is,

In the zero-sum case B = −A , optimal strategies do exist and can be characterized by 
linear programming. Moreover, by Dantzig’s classical result (Dantzig 1951), zero-
sum matrix games and linear programming are almost equivalent, see Adler (2013) 
and von Stengel (2022) for a detailed treatment of the situation when Dantzig’s 
reduction is not applicable. Bimatrix games can be seen as a special case of broader 
classes of games [such as convex games, see González-Dıaz et al. (2010), separable 
games, see Stein et al. (2008)], which—with increasing generality—are less acces-
sible from the combinatorial and computational viewpoint.

We introduce and study a natural semidefinite generalization of bimatrix games 
(and of finite N-person games), in which the strategy spaces are not simplices but 
slices of the positive semidefinite cone; that is

where Sm denotes the set of real symmetric m × m-matrices, “ ⪰ 0 ” denotes the posi-
tive definiteness of a matrix and tr abbreviates the trace. The payoff functions are

where A and B are tensors in the bisymmetric space Sm × Sn . That is, A satisfies the 
symmetry relations Aijkl = Ajikl and Aijkl = Aijlk ; analogous symmetry relations hold 
for B. If X and Y are restricted to be diagonal matrices, the semidefinite games spe-
cialize to bimatrix games. Similarly, if Aijkl = Bijkl = 0 whenever i ≠ j or k ≠ l , then 
the off-diagonal entries of X and Y do not have an influence on the payoffs and the 
game is a special case of a bimatrix game.

The motivation for the model of semidefinite games comes from several origins. 

1.	 The Nash equilibria of bimatrix games are intrinsically connected to the combi-
natorics of polyhedra. Prominently, von Stengel (1999) used this connection and 
cyclic polytopes to construct a family of n × n-bimatrix games whose number of 
equilibria grows as 0.949 ⋅ (1 +

√
2)n∕

√
n , for n → ∞ . In particular, this number 

grows faster than 2n − 1 , which was an earlier conjecture of Quint and Shubik 
(1997) for an upper bound. As of today, it is still an open problem whether there 
are bimatrix games with even more Nash equilibria than in von Stengel’s con-
struction. Recently, for tropical bimatrix games, Allamigeon et al. (2023) showed 
that the upper bound of 2n − 1 equilibria, i.e., the Quint-Shubik bound, holds in 
the tropical setting. In many subareas around optimization and geometry, the 
transition from linear-polyhedral settings to semidefinite settings has turned out 
to be fruitful and beneficial. In this transition, polyhedra (the feasible sets of linear 

pA(x, y) =
∑
i,j

xiAijyj and pB(x, y) =
∑
i,j

xiBijyj.

X ={X ∈ Sm ∶ X ⪰ 0 and tr (X) = 1}

and Y ={Y ∈ Sn ∶ Y ⪰ 0 and tr (Y) = 1},

pA(X, Y) =
∑
i,j,k,l

XijAijklYkl and pB(X, Y) =
∑
i,j,k,l

XijBijklYkl,
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programs) are carried over into the more general spectrahedra (the feasible sets 
of semidefinite programs), see, e.g., Blekherman et al. (2013). One of our main 
goals is to relate the Nash equilibria of semidefinite games to the geometry and 
combinatorics of spectrahedra.

2.	 Various approaches to quantum games have been investigated, which combine 
game theoretic models with features of quantum computation and quantum infor-
mation theory (see Berta et al. 2016; Guo et al. 2008; Khan et al. 2018; Landsburg 
2011; Meyer 1999; Sikora and Varvitsiotis 2017). Quantum states are given by 
positive semidefinite Hermitian matrices with unit trace (see, e.g., Nielsen and 
Chuang 2002 or Prakash et al. 2018 for an optimization viewpoint). An essential 
characteristic of our model is the use of positive semidefinite real-symmetric 
matrices with unit trace (also known as spectraplex) as mixed strategies. From 
this perspective, we can consider the semidefinite games as a real-quantum gen-
eralization of bimatrix games and of finite N-player games. Our class of games 
can also be seen as a subclass of the interactive quantum games studied in Gutoski 
and Watrous (2007), see also Bostanci and Watrous (2021). These games involve 
two players and a referee and, possible many, interactions between them. The 
overall actions of each player, the so-called Choi representation, consist of a sin-
gle Hermitian positive semidefinite matrix along with a finite number of linear 
constraints and for the zero-sum case they derive a minimax theorem over the 
complex numbers. We refer the reader to Bostanci and Watrous (2021) for further 
details and complexity results and to Jain and Watrous (2009) for an algorithm to 
compute the equilibrium in the one round zero-sum case.

3.	 In recent times, the connection of games and the use of polynomials in optimi-
zation has received wide interest. Prominently, Parrilo (2006) and Stein et al. 
(2008, 2011) have developed sum of squares-based optimization solvers for game 
theory. Laraki and Lasserre (2012) have developed hierarchical moment relaxa-
tions, see also Ahmadi and Zhang (2021) for semidefinite relaxations and the 
Lasserre hierarchy to approximate Nash equilibria in bimatrix games. Recently, 
Nie and Tang (2020, 2023) have studied games with polynomial descriptions and 
convex generalized Nash equilibrium problems through polynomial optimiza-
tion and moment-SOS relaxations. The semidefinite conditions correspond to a 
nice polynomial structure, with underlying convexity. In a different direction, the 
geometry of Nash equilibria in our class of games establishes novel connections 
and questions between game theory and semialgebraic geometry. Here, recall that 
already the set of Nash equilibria of finite N-person games can be as complicated 
as arbitrary semialgebraic sets (Datta 2003). See Portakal and Sturmfels (2022) 
for recent work on the geometry of dependency equilibria.

Our contributions

1.	 We develop a framework for approaching semidefinite games through the duality 
theory of semidefinite programming. As a consequence, the optimal strategies 
in semidefinite zero-sum games can be computed by a semidefinite program. 
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Moreover, the set of optimal strategies are spectrahedra (rather than only projec-
tions of spectrahedra). See Theorem 4.1.

2.	 We generalize Dantzig’s result on the almost equivalence of zero-sum bimatrix 
games and linear programs to the almost equivalence of semidefinite zero-sum 
games and semidefinite programs. See Theorem 5.3. For the special case of semi- 
definite programs with diagonal matrices, our result recovers Dantzig’s result.

3.	 For general (i.e., not necessarily zero-sum) semidefinite games, we prove a spec-
trahedral characterization of Nash equilibria. This characterization generalizes 
the polyhedral characterizations of Nash equilibria in bimatrix games. See Theo-
rem 6.2.

4.	 We give constructions of families of semidefinite games with many Nash equilib-
ria. In particular, these constructions of games on the strategy space Sn × Sn have 
more connected components of Nash equilibria than the best known constructions 
of Nash equilibria in bimatrix games (due to von Stengel 1999). See Example 7.5.

The paper is structured as follows. After collecting some notation in Sect.  2, we 
introduce semidefinite games in Sect. 3 and view them within the more general class 
of separable games. Section 4 deals with computing the optimal strategies in semi- 
definite zero-sum games by semidefinite programming. Section  5 then proves the 
almost equivalence of zero-sum games and semidefinite programs. For general semi- 
definite games, Sect. 6 gives a spectrahedral characterization of the Nash equilibria. 
In Sect. 7, we present constructions with many Nash equilibria. Section 8 concludes 
the paper.

2 � Notation

We denote by Sn the set of real symmetric n × n-matrices and by S+
n
 the subset of 

matrices in Sn which are positive semidefinite. Further, denote by ⟨⋅, ⋅⟩ the Frobenius 
scalar product, ⟨A,B⟩ ∶= ∑

i,j aijbij . In denotes the identity matrix.
An optimization problem of the form

with A1,… ,Am ∈ Sn , C ∈ Sn and b ∈ ℝ
m is called semidefinite program (SDP) in 

primal normal form, and a problem of the form

is called an SDP in dual normal form. We will make frequent use of the follow-
ing duality results of semidefinite programming, see, e.g., Vandenberghe and Boyd 
(1996).

(2.1)inf
X∈Sn

�⟨C,X⟩ ∶ ⟨Ai,X⟩ = bi, 1 ≤ i ≤ m, X ⪰ 0
�

(2.2)sup
Z∈Sn, y∈ℝ

m

{
bTy ∶

m∑
i=1

yiAi + Z = C, Z ⪰ 0

}
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Theorem 2.1 

(a)	 (Weak duality.) Let X and (Z, y) be feasible points for (2.1) and (2.2). Then 
⟨C,X⟩ − bTy ≥ 0 .

(b)	 (Strong duality.) If both (2.1) and (2.2) are strictly feasible with finite optimal 
values, then the optimal values coincide and they are attained in both problems.

A convex set C ⊂ ℝ
k is called a spectrahedron if it can be written in the form

with A0,… ,Ak ∈ Sn for some n ∈ ℕ . Any representation of C of the form (2.3) is 
called an LMI (Linear Matrix Inequality) representation of C.

A spectrahedron in ℝk can also be described as the intersection of the cone S+
n
 with 

an affine subspace U = A0 + L, where A0 ∈ Sn and L is a linear subspace of Sn of 
dimension k, say, given as L = span {A1,… ,Ak} (see, e.g., Rostalski and Sturmfels 
2010; Blekherman et al. 2013, Chapter 5). The sets of the form

with symmetric matrices Ai,Bj , are called spectrahedral shadows (see Scheiderer 
2018). Any representation of the form (2.4) is called a semidefinite representation 
of C.

3 � Semidefinite games

3.1 � Two‑player and N‑player semidefinite games

Most of our work is concerned with two-player semidefinite games. For simplicity, we 
work over the real numbers, while many considerations can also be carried over to the 
complex numbers. Let m, n ≥ 1 and the strategy spaces X  and Y are

To formulate the payoffs, it is convenient to denote by (A⋅⋅kl)1≤k,l≤n the symmetric 
n × n-matrix which results from a fourth-order tensor A by fixing the third index to 
k and the fourth index to l. Such two-dimensional sections of a tensor are also called 
slices. The payoff functions are

(2.3)C =

{
x ∈ ℝ

k ∶ A0 +

k∑
i=1

xiAi ⪰ 0

}
,

(2.4)C =

{
x ∈ ℝ

k ∶ ∃y ∈ ℝ
l A0 +

k∑
i=1

xiAi +

l∑
j=1

yjBj ⪰ 0

}
,

X ={X ∈ Sm ∶ X ⪰ 0 and tr (X) = 1}

and Y ={Y ∈ Sn ∶ Y ⪰ 0 and tr (Y) = 1}.
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where A and B are tensors in the bisymmetric space Sm × Sn . That is, A satisfies the 
symmetry relations Aijkl = Ajikl and Aijkl = Aijlk and analogous symmetry relations 
hold for B. If A = −B , then the game is called a semidefinite zero-sum game.

For the N-player version, with strategy spaces

let A(1),… ,A(N) ∈ Sm1
×⋯ × SmN

 . If X = (X(1),… ,X(N)) , then the payoff function 
for the k-th player is

3.2 � Separable games

Stein et al. (2008) have introduced the class of separable games. An N-player sepa-
rable game consists of pure strategy sets C1,… ,CN , which are non-empty compact 
metric spaces, and the payoff functions pk ∶ C → ℝ . The latter are of the form

where C ∶=
∏N

k=1
Ck , a

j1⋯jN
k

∈ ℝ , the functions f ji
k
∶ Ck → ℝ are continuous, and 

i, k ∈ {1,… ,N}.
Semidefinite games are special cases of separable games. We can see this relation 

from two viewpoints. From a first viewpoint, let Ck be the matrices in S+
mk

 with 
trace 1 and set

Then, the payoff functions become

pA(X, Y) =
�
i,j,k,l

XijAijklYkl = ⟨(⟨X,A⋅⋅kl⟩)1≤k,l≤n, Y⟩

and pB(X, Y) =
�
i,j,k,l

XijBijklYkl = ⟨(⟨X,B⋅⋅kl⟩)1≤k,l≤n, Y⟩,

X
(i) = {X ∈ Smi

∶ X ⪰ 0 and tr (X) = 1}, for 1 ≤ i ≤ N,

pk(X
(1),… ,X(N)) =

m1∑
i1,j1=1

⋯
mN∑

iN ,jN=1

A
(k)

(i1,j1),…,(iN ,jN )
X
(1)

(i1,j1)
⋯X

(N)

(iN ,jN )
.

pk(s) =

m1∑
j1=1

⋯
mN∑
jN=1

a
j1⋯jN
k

f
j1
1
(s1)⋯ f

jN
N
(sN),

f
(r,s)
t (X(t)) =X(t)

rs
,

a
(i1,j1),…,(iN ,jN )

k
=(A(k))(i1,j1),…,(iN ,jN )

.

pk(X
(1),… ,X(N)) =

m1∑
i1,j1=1

⋯
mN∑

iN ,jN=1

a
(i1,j1),…,(iN ,jN )

k
f
(i1,j1)

1
(X(1))⋯ f

(iN ,jN )
n (X(N))

=

m1∑
i1,j1=1

⋯
mN∑

iN ,jN=1

A
(k)

(i1,j1),…,(iN ,jN )
X
(1)

(i1,j1)
⋯X

(N)

(iN ,jN )
.
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This yields the setup of semidefinite games as introduced before.
The set of mixed strategies Δk of the k-th player is defined as the space of Borel 

probability measures �k over Ck . A mixed strategy profile � is a Nash equilibrium if 
it satisfies

where �−k denotes the mixed strategies of all players except player k.
In this setting, the relation of our model to the mixed strategies of separable 

games does not yield any new insight, since taking the Borel measures over the con-
vex set Ck does not give new strategies.

There is a second viewpoint, which better captures the role of the pure strategies. 
Since every point in the positive semidefinite cone is a convex combination of posi-
tive semidefinite rank-1 matrices, we can also define the set of pure strategies Ck as 
the set of matrices in S+

mk
 which have trace 1 and rank 1. Then, by a Carathéodory-

type argument in Stein et  al. (2008,  Corollary 2.10), every separable game has a 
Nash equilibrium in which player k mixes among at most dimmk

+ 1 =
(

mk + 1
2

)

+ 1 pure strategies. In contrast to finite N-player games, the decomposi-

tion of a mixed strategy (such as the one in a Nash equilibrium) in terms of the pure 
strategies is not unique. Example 7.3 will illustrate this.

4 � Semidefinite zero‑sum games

In this section, we consider semidefinite zero-sum games. The payoff tensors are 
given by A and B ∶= −A . Hence, the second player wants to minimize the payoff 
of the first player, pA . By the classical minimax theorem for bilinear functions over 
compact convex sets (Dresher et  al. 1950; von Neumann 1945) (see also Dresher 
and Karlin 1953), optimal strategies exist in the zero-sum case. We show that the 
sets of optimal strategies are spectrahedra and reveal the semialgebraic geometry of 
semidefinite zero-sum games.

Theorem 4.1  Let G = (A,B) be a semidefinite zero-sum game. Then, the set of opti-
mal strategies of each player is the set of optimal solutions of a semidefinite pro-
gram. Moreover, each set of optimal strategies is a spectrahedron.

The value V of the game is defined through the minimax relation

The following lemma records that zero-sum matrix games can be embedded into 
semidefinite zero-sum games.

pk(�k, �−k) ≤ pk(�), for all �k ∈ Δk and k ∈ {1,… ,N},

max
X∈X

min
Y∈Y

∑
i,j,k,l

XijAijklYkl = V = min
Y∈Y

max
X∈X

∑
i,j,k,l

XijAijklYkl.
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Lemma 4.2  For a given zero-sum matrix game G with payoff matrix 
A = (aij) ∈ ℝ

m×n , let G′ be the semidefinite zero-sum game on Sm × Sn-matrices and 
payoff tensor

Then a pair (x, y) ∈ Δ1 × Δ2 is a pair of optimal strategies for G if and only if there 
exists a pair of optimal strategies X × Y  for G′ with

Proof  For any strategy pair (X, Y) ∈ X × Y with (4.1), the payoff in G′ is

which coincides with the payoff in G for the strategy pair (x, y). 	�  ◻

As a consequence of Lemma  4.2, any oracle to solve semidefinite zero-sum 
games can be used to solve zero-sum matrix games. Namely, construct the semidefi-
nite zero-sum game G′ described in Lemma 4.2 and let X∗ ∈ S

+
m
 and Y∗ ∈ S

+
n
 be the 

optimal strategies provided by the oracle. Let x∗ and y∗ be the vectors of diagonal 
elements of X∗ and Y∗ . Since X∗ and Y∗ are positive semidefinite, the vectors x∗ and 
y∗ are nonnegative and due to tr (X∗) = tr (Y∗) = 1 we have 

∑m

i=1
x∗
i
=
∑n

j=1
y∗
i
= 1 . 

Since Aijkl = 0 for i ≠ j or k ≠ l , the off-diagonal elements in any strategy of the 
semidefinite game G′ do not matter for the payoffs. Hence, x∗ and y∗ are optimal 
strategies for the zero-sum matrix game.

Lemma 4.3  Let G be a semidefinite zero-sum game on Sn × Sn . If the payoff tensor 
satisfies

then G has value 0.

In the proof, we employ a simple symmetry consideration.

Proof  Let V denote the value of G. Then, there exists an X ∈ X  such that for all 
Y ∈ Y , we have 

∑
i,j,k,l XijAijklYkl ≥ V . In particular, this implies

If we rearrange the order of the summation and use the precondition, then

Aiikk = aik for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

Aijkl = 0 for i ≠ j or k ≠ l.

(4.1)Xii = xi, 1 ≤ i ≤ m, and Ykk = yk, 1 ≤ k ≤ n.

∑
i,j,k,l

XijAijklYkl =
∑
i,k

XiiAiikkYkk =
∑
i,k

xiaikyk,

Aijkl = −Aklij for all i, j, k, l,

(4.2)
∑
i,j,k,l

XijAijklXkl ≥ V .

(4.3)
∑
i,j,k,l

XijAklijXkl =
∑
i,j,k,l

−XijAijklXkl ≥ V .
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Adding (4.2) and (4.3) yields V ≤ 0 . Analogously, there exists some Y ∈ Y such that 
for all X ∈ X  , we have 

∑
i,j,k,l XijAijklYkl ≤ V . Arguing similarly as before, we can 

deduce V ≥ 0 . Altogether, this gives V = 0 . 	�  ◻

We characterize which a-priori-strategy player 1 will play if her strategy will be 
revealed to player  2 (max-min-strategy). In the following lemma, the symmetric 
n × n-matrix T plays the role of a slack matrix.

Lemma 4.4  Let (A,  B) be a semidefinite zero-sum game. As an a-priori-strategy, 
player 1 plays an optimal solution X of the SDP

The optimal value of this optimization problem is attained.

Proof  For an a priori known strategy of player 1, player 2 will play a best response, 
i.e., an optimal solution of the problem

In what follows we see that the optimal value of the minimization problem is 
attained and that strong duality holds. As a-priori-strategy, player 1 uses an optimal 
solution of

We write the inner minimization problem of the minmax problem in terms of the 
dual SDP. This gives

Note that the scaled unit matrix 1
n
In is a strictly feasible point for the minimization 

problem (4.6). If we choose a negative v1 with sufficiently large absolute value, then 
the maximization problem (4.7) has a strictly feasible point as well. Hence, the dual-
ity theory for semidefinite programming implies that both the minimization and the 
maximization problems attain the optimal value. In connection with the outer maxi-
mization this gives the semidefinite program (4.4). 	�  ◻

We remark that the expressions (4.6) and (4.7) can be interpreted as the small-
est eigenvalue of the matrix (⟨X,A⋅⋅kl⟩)1≤k,l≤n (see, e.g., Vandenberghe and Boyd 
1996). Further note that the SDP (4.4) is not quite in one of the normal forms, see 
Lemma 4.7 below.

(4.4)max
X,T⪰0, v1∈ℝ

�
v1 ∶ v1In + T = (⟨X,A⋅⋅kl⟩)1≤k,l≤n, tr (X) = 1

�
.

(4.5)
min
Y
{pA(X, Y) ∶ tr (Y) = 1, Y ⪰ 0}

= min
Y
{⟨(⟨X,A⋅⋅kl⟩)1≤k,l≤n, Y⟩ ∶ tr (Y) = 1, Y ⪰ 0}.

max
X⪰0, tr (X)=1

min
Y
{⟨(⟨X,A⋅⋅kl⟩)1≤k,l≤n, Y⟩ ∶ tr (Y) = 1, Y ⪰ 0} .

(4.6)min
Y
{⟨(⟨X,A⋅⋅kl⟩)1≤k,l≤n, Y⟩ ∶ tr (Y) = 1, Y ⪰ 0},

(4.7)= max
T , v1

{1 ⋅ v1 ∶ v1In + T = (⟨X,A⋅⋅kl⟩)1≤k,l≤n, T ⪰ 0, v1 ∈ ℝ}.
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Next, we characterize the a-priori-strategies of player 2 in terms of a minimi-
zation problem to facilitate the duality reasoning. Similar to Lemma 4.4, the sym-
metric n × n-matrix S serves as a slack matrix.

Lemma 4.5  Let (A,  B) be a semidefinite zero-sum game. As an a-priori-strategy, 
player 2 plays an optimal solution Y of the SDP

The optimal value of this optimization problem is attained.

Proof  The proof is similar to Lemma 4.4. As an a-priori-strategy, player 2 uses an 
optimal solution of

Since both the inner optimization problem and its dual are strictly feasible, strong 
duality holds. The statement then follows from the duality relation

	�  ◻

Remark 4.6  Similar to the case of zero-sum matrix games, if the coefficients of the 
payoff tensor are chosen sufficiently generically, then the SDPs (4.4) and (4.8) have 
a unique optimal solution and, as a consequence, each player has a unique optimal 
strategy. In contrast to the set of optimal strategies of zero-sum matrix games, it is 
possible that the set of optimal strategies of a semidefinite game is non-polyhedral. 
For example, already in the trivial semidefinite game with the zero matrix A, the 
value is 0 and the set of optimal strategies of player 1 and player 2 are the full sets X  
and Y , respectively.

Now we show that the sets of optimal strategies of the two players can be regarded 
as the optimal solutions of a pair of dual SDPs.

Lemma 4.7  The SDPs (4.4) and (4.8) are dual to each other.

Proof  We show that the dual of (4.8) coincides with (4.4). Setting

i.e., the block diagonal matrix with blocks Y, S, u+
1
 and u−

1
 (of size Sn,Sn, 1, 1) , the 

problem (4.8) can be written as

(4.8)min
Y ,S⪰0, u1∈ℝ

{−u1 ∶ u1In + S = (⟨−Aij⋅⋅, Y⟩)1≤i,j≤n, tr (Y) = 1} .

min
Y⪰0, tr (Y)=1

max
X

{⟨(⟨Aij⋅⋅, Y⟩)1≤i,j≤n,X⟩ ∶ tr (X) = 1, X ⪰ 0} .

max
X⪰0

{⟨(⟨Aij⋅⋅, Y⟩)i,j,X⟩ ∶ ⟨In,X⟩ = 1} = min
S⪰0, u1∈ℝ

{−u1 ∶ u1In + S = (⟨−Aij⋅⋅, Y⟩)i,j}.

Y � = diag (Y , S, u+
1
, u−

1
),
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We claim that the dual of (4.9) coincides with (4.4). Denote by Eij the matrix with 1 
in row i and column j whenever i = j and with 1/2 in row i and column j as well as 
row j and column i otherwise. The dual is

Observe that 
∑

i,j wijAijkl = ⟨W,A⋅⋅kl⟩ . The second block in the constraint matrices 
gives that W is minus the second block of S′ , which describes a positive semidefi-
niteness condition on −W . Then the equations involving �ij and −�ij ensure that ∑n

i=1
wii = −1 ; namely, in (4.10), each of the two corresponding equations contains a 

non-negative slack variable. The combination of these equations shows that both of 
these slack variables must be zero. Altogether, this gives

By identifying W with −X , we recognize this as the SDP in  (4.4) 	�  ◻

Now we provide the proof of Theorem 4.1.

Proof  Player 1 can achieve at least the gain provided by the a-priori-strategy (4.4) 
from Lemma 4.4, and player 2 can bound her loss by the a-priori-strategy (4.8) from 
Lemma 4.5. By Lemma 4.7, both strategies are dual to each other, so that their opti-
mal values coincide with the value of the game. In the coordinates (X, T , v1) and 
(Y , S, u1) , the feasible regions of those optimization problems are spectrahedra, and 
the sets of optimal strategies are the sets of optimal solutions of the SDPs. Intersect-
ing the feasibility spectrahedron, say, for player 1, with the hyperplane correspond-
ing to the optimal value of the objective function shows the first part of the theorem. 
Precisely, we obtain the sets

where V is the value of the game. By projecting the spectrahedra for the first player 
on the X-variables, we can deduce that in the space X  the set of optimal strategies of 
player 1 is the projection of a spectrahedron. Similarly, this is true for player 2.

(4.9)

min
�
diag (0, 0,−1, 1),Y �

�
�ij(u

+
1
− u−

1
) + sij + ⟨Aij⋅⋅, Y⟩ = 0 for all 1 ≤ i ≤ j ≤ n ,

y11 +⋯ + ynn = 1 ,

Y � ⪰ 0 .

(4.10)

maxS�,W,w� w�∑
wij diag ((Aij⋅⋅),Eij, �ij,−�ij)

+ w� diag (In, 0, 0, 0) + S� = diag (0, 0,−1, 1),

S� ⪰ 0, W ∈ Sn, w
� ∈ ℝ .

(4.11)max
S∗,−W⪰0,w�∈ℝ

�
w� ∶ w�In + S∗ = (⟨−W,A⋅⋅kl⟩)1≤k,l≤n, tr (W) = −1

�
.

{X, T ⪰ 0:VIn + T = (⟨X,A⋅⋅kl⟩)1≤k,l≤n, tr (X) = 1
}

and {Y , S ⪰ 0: − VIn + S = (⟨−Aij⋅⋅,Y⟩)1≤i,j≤n, tr (Y) = 1},
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Indeed, the set of optimal strategies of each player is not only the projection of a 
spectrahedron, but also a spectrahedron. Namely, taking the optimal value of v (i.e., 
the value V of the game) corresponds geometrically to passing over to the intersec-
tion with a separating hyperplane and, because the other additional variables (“T”) 
just refer to a slack matrix, we see that the set of optimal strategies for the first player 
is a spectrahedron. In particular, the equation VIn + T = (⟨X,A⋅⋅kl⟩)1≤k,l≤n gives

Similar arguments apply for the second player. Precisely, the spectrahedron for the 
first player lives in the space Sn , whose variables we denote by the symmetric matrix 
variable X. The inequalities and equations for X are

where we can write the equation as two inequalities and where we can combine all 
the scalar inequalities and matrix inequalities into one block matrix inequality. 	�  ◻

Corollary 4.8  Explicit LMI descriptions of the sets O 1 and O 2 of optimal strategies 
of the two players are

where V is the value of the game.

Note that O1 and O2 are spectrahedra in the space of symmetric matrices.

Example 4.9  We consider a semidefinite generalization of a 2 × 2-zero-sum matrix 
game known as “Plus one” (see, for example, Karlin and Peres 2017). The payoff 

matrix of that bimatrix game is A =

(
0 − 1

1 0

)
 and for each player, the second 

strategy is dominant. Let the semidefinite zero-sum game be defined by

for i, j, k, l ∈ {1, 2} . If both players play only diagonal strategies (i.e., X and Y are 
diagonal matrices), then the payoffs correspond to the payoffs of the underlying 
matrix game. By Lemma 4.3, the value of the semidefinite game is 0. To determine 
an optimal strategy for player 1, we consider those points in the feasible set of the 

−VIn + (⟨X,A⋅⋅kl⟩)1≤k,l≤n = T ⪰ 0.

tr (X) − 1 = 0,

−VIn + (⟨X,A⋅⋅kl⟩)1≤k,l≤n ⪰ 0,

O 1 ∶={X ∈ Sn ∶ diag (X, −VIn + (⟨X,A⋅⋅kl⟩)1≤k,l≤n,
tr (X) − 1, 1 − tr (X)) ⪰ 0},

O 2 ∶={Y ∈ Sn ∶ diag (Y , VIn + (⟨−Aij⋅⋅, Y⟩)1≤i,j≤n,
tr (Y) − 1, 1 − tr (Y)) ⪰ 0},

Aijkl =

⎧⎪⎨⎪⎩

1 max{i, j} > max{k, l},

−1 max{i, j} < max{k, l},

0 else
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SDP  (4.4) in Lemma 4.4, which have v1 = 0 . Hence, we are looking for matrices 
T ,X ⪰ 0 such that

Since X ⪰ 0 implies x11 ≥ 0 and T ⪰ 0 implies −x11 ≥ 0 , we obtain x11 = 0 . Hence, 
x22 = 1 − x11 = 1 . Further, X ⪰ 0 yields x12 = x21 = 0 . Therefore, the optimal strat-

egy of player 1 is 
(
0 0

0 1

)
 , and, similarly, the optimal strategy of player 2 is the 

same one.

Example 4.10  Consider a slightly different version of Example  4.9, in which the 
optimal strategies are not diagonal strategies. For i, j, k, l ∈ {1, 2} , let

By Lemma 4.3, the value of the game is 0. If both players play only diagonal strate-
gies, then the payoffs coincide (up to a factor of 2 in the payoffs, which is irrelevant 
for the optimal strategies) with the payoffs of the underlying zero-sum matrix game. 
Interestingly, we show that the optimal strategies are not diagonal strategies here. 
As in Example 4.9, we determine an optimal strategy for player 1 by considering the 
feasible points of the SDP (4.4) with v1 = 0 . Hence, we search for T ,X ⪰ 0 such that

Since, using the symmetry x12 = x21 , we have detT = −(x11 + 2x12 + x22)
2, we see 

that T ⪰ 0 implies x12 = −
1

2
(x11 + x22) . Hence,

so that X ⪰ 0 implies in connection with the arithmetic–geometric inequality that 

x11 = x22 =
1

2
 . Thus, the optimal strategy of player 1 is 1

2

(
1 − 1

−1 1

)
 , and, simi-

larly, the optimal strategy of player 2 is the same one.

Note that X =
⎛

⎜

⎜

⎝

0 0

0 1

⎞

⎟

⎟

⎠

 is not an optimal strategy for player 1, since, for example, for 

a given strategy Y of player  2, the payoff is 2y11 + 2y12. Specifically, the choice 

Y =
1

4

�
1 −

√
3

−
√
3 3

�
 yields a payoff of 1

2
(1 −

√
3) < 0 for player 1.

T =

� ⟨X,A⋅⋅11⟩ ⟨X,A⋅⋅12⟩⟨X,A⋅⋅21⟩ ⟨X,A⋅⋅22⟩
�

=

�
x12 + x21 + x22 − x11

−x11 − x11

�
.

Aijkl = (i + j) − (k + l).

T =

(
x12 + x21 + 2x22 − x11 + x22

−x11 + x22 − 2x11 − x12 − x21.

)
.

X =

(
x11 −

1

2
(x11 + x22)

−
1

2
(x11 + x22) x22

)
,
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5 � The almost‑equivalence of semidefinite zero‑sum games 
and semidefinite programs

We give a semidefinite generalization of Dantzig’s almost equivalence of zero-sum 
matrix games and linear programming (Dantzig 1951), see also Adler (2013). Given 
an LP in the form

with A ∈ ℝ
m×n and b ∈ ℝ

m and c ∈ ℝ
n , Dantzig constructed a zero-sum matrix 

game with the payoff matrix

For the semidefinite generalization, the following variant of a duality statement is 
convenient, whose proof is given for the sake of completeness.

Lemma 5.1  For A1,… ,Am,C ∈ Sn and b ∈ ℝ
m , the following SDPs in the slightly 

modified normal forms constitute a primal-dual pair.

We call them SDPs in modified primal and dual forms.

Proof  We derive these forms from the usual forms, in which the primal contains a 
relation “ = ” rather than a relation “ ≥ ” and in which the dual uses an unconstrained 
variable vector y rather than a non-negative vector. Starting from the standard pair, 
we extend each matrix Ai to a symmetric 2n × 2n-matrix via a single additional non-
zero element, namely −1 , in entry (n + i, n + i) of the modified Ai , 1 ≤ i ≤ m . Moreo-
ver, we formally embed C into a symmetric 2n × 2n-matrix. The dual (in the original 
sense) of the extended problem still uses a vector of length y, but the modifications 
in the primal problem give the additional conditions yi ≥ 0 , 1 ≤ i ≤ m . This shows 
the desired modified forms of the primal-dual pair. 	�  ◻

A semidefinite zero-sum game with X = Y is called symmetric if the payoff 
tensor A satisfies the skew symmetric relation Aijkl = −Aklij. By Lemma 4.3, the 
value of a symmetric game with payoff tensor A on the strategy space Sn × Sn is 
zero. Therefore, there exists a strategy X̄ of the first player such that

min
x
{cTx ∶ Ax ≥ b, x ≥ 0}

⎛
⎜⎜⎝

0 A − b

−AT 0 c

bT − cT 0

⎞
⎟⎟⎠
.

(5.1)inf
X
{⟨C,X⟩ ∶ ⟨Ai,X⟩ ≥ bi, 1 ≤ i ≤ m, X ⪰ 0}

(5.2)and sup
y,S

{bTy ∶

m∑
i=1

yiAi + S = C, y ∈ ℝ
m
+
, S ⪰ 0}.

(5.3)⟨(⟨X̄,A⋅⋅kl⟩)1≤k,l≤n, Y⟩ ≥ 0 for all Y ∈ Sn with tr (Y) = 1, Y ⪰ 0.
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Generalizing the notion in Adler (2013), we call such a strategy X̄ a solution of the 
symmetric game. The condition (5.3) states that the matrix ⟨(⟨X̄,A⋅⋅kl⟩)1≤k,l≤n is con-
tained in the dual cone of S+

n
 . Since the cone S+

n
 of positive semidefinite matrices is 

self-dual, (5.3) translates to

It is useful to record the following specific version of a symmetric minimax theo-
rem, which is a special case of the minimax theorem for convex games (Dresher and 
Karlin 1953) and of the minimax theorem for quantum games (Jain and Watrous 
2009).

Lemma 5.2  (Minimax theorem for symmetric semidefinite zero-sum games) Let G 
be a symmetric semidefinite zero-sum game with payoff tensor A. Then there exists a 
solution strategy X̄ , i.e., a matrix X̄ ∈ Sn satisfying (5.4).

Proof  There exists a strategy X̄ satisfying  (5.3). By the considerations before the 
theorem, we obtain (5.4). 	�  ◻

Now we generalize the Dantzig construction. Given an SDP in modified nor-
mal form of Lemma  5.1, we define the following semidefinite Dantzig game on 
Sn+m+1 × Sn+m+1 . The strategies of both players can be viewed as positive semidefi-
nite block matrices diag (X, y, t) with X ∈ S

+
n
 , y ∈ ℝ

m
+
 , t ∈ ℝ+ and trace 1.

The payoff tensor Q is defined as follows. For 1 ≤ k, l ≤ n and 1 ≤ j ≤ m , let

For 1 ≤ k, l ≤ n , let

For 1 ≤ i ≤ m , let

All other entries in the payoff tensor Q are zero. Note that Q has a block structure: For 
every non-zero entry Qijkl , we have either i, j ∈ {1,… , n} or i, j ∈ {n + 1,… , n + m} 
or i = j = n + m + 1 . An analogous property holds for k, l.

Let diag (X̄, ȳT , t̄)T be a solution to this symmetric game. By the definition of a 
solution, we have

Due to the block structure of the payoff tensor Q, the matrix on the left-hand side 
of  (5.5) has a block structure as well. The upper left n × n-matrix in  (5.5) gives 
the condition −

∑n

j=1
ȳjAj + t̄C ⪰ 0 . The square submatrix in  (5.5) indexed by 

n + 1,… , n + m is a diagonal matrix and gives the conditions ⟨Ai, X̄⟩ − bit̄ ≥ 0 , 

(5.4)(⟨X̄,A⋅⋅kl⟩)1≤k,l≤n ⪰ 0.

Qk,l,n+j,n+j = −Qn+j,n+j,k,l = (Aj)kl .

Qn+m+1,n+m+1,k,l = −Qk,l,n+m+1,n+m+1 = Ckl .

Qn+i,n+i,n+m+1,n+m+1 = −Qn+m+1,n+m+1,n+i,n+i = bi .

(5.5)(⟨ diag (X̄, ȳ, t̄),Q⋅⋅kl⟩)1≤k,l≤n+m+1 ⪰ 0.
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1 ≤ i ≤ m . The right lower entry in  (5.5) gives bT ȳ − ⟨C, X̄⟩ ≥ 0 . Hence, (5.5) is 
equivalent to the system

and in addition, we have the conditions defining a strategy,

This allows us to state the following result on the almost equivalence of semidefinite 
zero-sum games and semidefinite programs. Recall that reducing the equilibrium 
problem in a semidefinite zero-sum game to semidefinite programming follows from 
Sect. 4.

Theorem 5.3  The following holds for the semidefinite Dantzig game: 

1.	 t̄(bT ȳ − ⟨C, X̄⟩) = 0.
2.	 If t̄ > 0 , then X̄t̄−1 , ȳt̄−1 and some corresponding slack matrix S̄ are an optimal 

solution to the primal-dual SDP pair given in (5.1) and (5.2).
3.	 If bT ȳ − ⟨C, X̄⟩ > 0 , then the primal problem or the dual problem is infeasible.

The theorem ignores the case t̄ = 0 . In the special case of bimatrix games, that 
exception was already observed in Dantzig’s treatment (Dantzig 1951) and over-
come by Adler (2013) and von Stengel (2022).

While the precondition in (3) looks like a statement of missing strong duality, 
note that (X̄, ȳ) does not satisfy the constraints in the initially stated primal-dual SDP 
pair. If the initial SDP pair does not have an optimal primal-dual pair, then clearly 
case (2) can never hold. This is a difference to the LP case, where, say, in the case of 
finite optimal values, there always exists an optimal primal-dual pair and so case (2) 
is never ruled out a priori in the same way. This qualitative difference was expected, 
because for a semidefinite zero-sum game, the corresponding primal and dual feasi-
ble regions have relative interior points and thus there exists an optimal primal-dual 
pair. So, the qualitative situation reflects that for semidefinite zero-sum games, the 
SDPs characterizing the optimal strategies are always well behaved.

By adding the precondition that the original pair of SDPs has primal-dual interior 
points, we come into the same situation that case (2) is not ruled out a priori.

Proof  Since X̄ and ȳ are feasible solutions of the SDPs in (5.6) and (5.7), the weak 
duality theorem for semidefinite programming implies

(5.6)⟨Ai, X̄⟩ − bit̄ ≥0, 1 ≤ i ≤ m,

(5.7)−

m∑
j=1

ȳjAj + t̄C ⪰0,

(5.8)bT ȳ − ⟨C, X̄⟩ ≥0,

ȳ ≥ 0, X̄ ⪰ 0, t̄ ≥ 0 and 1T ȳ + tr (X̄) + t̄ = 1.
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Since t̄ ≥ 0 , we obtain t̄ = 0 or bT ȳ − ⟨C, X̄⟩ ≤ 0 . In the latter case,  (5.8) implies 
bT ȳ − ⟨C, X̄⟩ = 0 . Altogether, this gives t̄(bT ȳ − ⟨C, X̄⟩) = 0.

For the second statement, let t̄ > 0 . Then X̄t̄−1 , ȳt̄−1 and the corresponding slack 
matrix S̄ give a feasible point of the primal-dual SDP pair stated initially. Since 
bT ȳ − ⟨C, X̄⟩ = 0 and thus bT (ȳt̄−1) − ⟨C, X̄t̄−1⟩ = 0 , this feasible point is an optimal 
solution.

For the third statement, let bT ȳ − ⟨C, X̄⟩ > 0 . Then statement (1) implies t̄ = 0 . 
Thus, ⟨Ai, X̄⟩ ≥ 0 for 1 ≤ i ≤ m and 

∑m

j=1
ȳjAj ⪯ 0 . Since bT ȳ − ⟨C, X̄⟩ > 0 , we 

obtain bT ȳ > 0 or ⟨C, X̄⟩ < 0.
In the case ⟨C, X̄⟩ < 0 , assume that the originally stated primal  (5.1) has a fea-

sible solution X◊ . Then, for any � ≥ 0 , the point X◊ + 𝜆X̄ is a feasible solution as 
well. By considering � → ∞ , we see that (5.1) has optimal value −∞ . By the weak 
duality theorem, the dual problem (5.2) cannot be feasible. In the case bT ȳ > 0 , sim-
ilar arguments show that the primal problem is infeasible. 	�  ◻

Note that in Theorem  5.3 it is not necessary to assume that the constraints of 
the SDP are linearly independent, since we have not expressed the situation only in 
terms of the slack variable.

Example 5.4  Consider the SDP given in the primal normal form

and its dual

One can easily verify that optimal solutions of the SDP in primal normal form are 
matrices X� ∈ S

+
2
 with tr (X�) = 1 and the only optimal solution of the dual problem 

is the pair (y�, S�) , where y� = 2 and S� = 0 ∈ S
+
2
. The payoff tensor Q in the corre-

sponding Dantzig game in flattened form is

where the rows and columns are indexed by X11,X22,2X12,y1,t. To extract an optimal 
strategy diag (X̄, ȳ, t̄) for this game, we observe that (5.6) gives x̄11 + x̄22 ≥ t̄ and (5.7) 
yields 2t̄ ≥ ȳ . Then (5.8) implies ȳ ≥ 2(x̄11 + x̄22) and we obtain x̄11 + x̄22 = t̄ =

ȳ

2
 . 

t̄(bT ȳ − ⟨C, X̄⟩) ≤ 0.

min
X

{⟨(
2 0

0 2

)
,X

⟩
∶

⟨(
1 0

0 1

)
,X

⟩
≥ 1,X ⪰ 0

}

max
y,S

{
y ∶ y

(
1 0

0 1

)
+ S =

(
2 0

0 2

)
, y ≥ 0, S ⪰ 0

}
.
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By the trace condition, an optimal strategy is of the form diag (X̄, 1
2
,
1

4
) , where 

X̄ ∈ S
+
2
 satisfies tr (X̄) = 1

4
.

Since t̄ > 0 , Theorem 5.3 implies that 4X̄ and 4ȳ are optimal solutions to the pri-
mal-dual SDP pair.

6 � General semidefinite games

Now we study two-player semidefinite games without the zero-sum condition. By 
Glicksberg’s result (Glicksberg 1952) [see also Debreu (1952) and Fan (1952)], 
there always exists a Nash equilibrium for these games. This is so because they 
are a special case of N-players continuous games with continuous payoff functions 
defined on convex compact Hausdorff spaces (Glicksberg 1952). The goal of this 
section is to provide a characterization of the Nash equilibria in terms of spectrahe-
dra, see Theorem 6.2.

Recall the following representation of Nash equilibria for bimatrix games in terms 
of polyhedra, as introduced by Mangasarian (1964) (see also von Stengel 2002):

Definition 6.1  For an m × n-bimatrix game (A,  B), let the polyhedra P and Q be 
defined by

where 1 denotes the all-ones vector.

In P, the inequalities x ≥ 0 are numbered by 1,… ,m and the inequalities xTB ≤ 1
Tv 

are numbered by m + 1,… ,m + n . In Q, the inequalities Ay ≤ 1u are numbered by 
1,… ,m and the inequalities y ≥ 0 are numbered by m + 1,… ,m + n . In this setting, a 
pair of mixed strategies (x, y) ∈ Δ1 × Δ2 is a Nash equilibrium if and only if there exist 
u, v ∈ ℝ such that (x, v) ∈ P , (y, u) ∈ Q and for all i ∈ {1,… ,m + n} , the i-th inequal-
ity of P or Q is binding (i.e., it holds with equality). Here, u and v represent the payoffs 
of player 1 and player 2, respectively. This representation allows us to study Nash equi-
libria in terms of pairs of points in P × Q.

We aim at a suitable generalization of this combinatorial characterization to the case 
of semidefinite games. Note that in the case of bimatrix games, the characterization is 
strongly based on the finiteness of the pure strategies; this does not hold anymore for 
semidefinite games. Therefore, we start from equivalent versions of the bimatrix game 
polyhedra (6.1) and (6.2), which do not use finitely many pure strategies in their for-
mulation. Instead, the best responses are expressed more explicitly as a maximization 
problem,

(6.1)P ={(x, v) ∈ ℝ
m ×ℝ ∶ x ≥ 0, xTB ≤ 1

Tv, 1Tx = 1} ,

(6.2)Q ={(y, u) ∈ ℝ
n ×ℝ ∶ Ay ≤ 1u, y ≥ 0, 1Ty = 1},
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While the generalizations to semidefinite games are no longer polyhedral, it is con-
venient to keep the symbols P and Q for the notation. Consider the sets

We show that P and Q are spectrahedra in the spaces Sm ×ℝ and Sn ×ℝ . Simi-
lar to the considerations in the zero-sum case, for a fixed X, the expression 
max{pB(X, Y) ∶ Y ∈ S

+
n
, tr (Y) = 1} can be rewritten as

Here, the minimum is attained, since the feasible set in the first line of the equa-
tions is compact. The maximum in the third line is attained due to the strong duality 
theorem for semidefinite programming and using that the feasible set in the first two 
lines ( {Y ∶ Y ⪰ 0, tr (Y) = 1 }) has a strictly interior point and thus satisfies Slater’s 
condition. Hence,

If the min-problem inside P has some feasible solution (v1, T) then for any v′
1
≥ v1 , 

there exists a feasible solution (v�
1
, T �) as well. Namely, set T � ∶= T + (v�

1
− v1)In ⪰ 0 . 

Thus we have

P ={(x, v) ∈ ℝ
m ×ℝ ∶ x ≥ 0, max

y
{xTBy ∶ y ∈ Δ2} ≤ v, 1Tx = 1} ,

Q ={(y, u) ∈ ℝ
n ×ℝ ∶ y ≥ 0, max

x
{xTAy ∶ x ∈ Δ1} ≤ u, 1Ty = 1}.

P ={(X, v) ∈ Sm ×ℝ ∶ X ⪰ 0, max
Y

{pB(X, Y) ∶ Y ∈ S
+
n
, tr (Y) = 1} ≤ v,

tr (X) = 1},

Q ={(Y , u) ∈ Sn ×ℝ ∶ Y ⪰ 0, max
X

{pA(X, Y) ∶ X ∈ S
+
m
, tr (X) = 1} ≤ u,

tr (Y) = 1}.

−min{−pB(X, Y) ∶ Y ∈ S
+
n
, tr (Y) = 1}

= −min{⟨(⟨X,−B⋅⋅k,l⟩)1≤k,l≤n, Y⟩ ∶ tr (Y) = 1, Y ⪰ 0}

= −max{1 ⋅ v1 ∶ v1In + T = (⟨X,−B⋅⋅k,l⟩)1≤k,l≤n, T ⪰ 0, v1 ∈ ℝ}

= min{−v1 ∶ v1In + T = (⟨X,−B⋅⋅k,l⟩)1≤k,l≤n, T ⪰ 0, v1 ∈ ℝ}

= min{v1 ∶ −v1In + T = (⟨X,−B⋅⋅k,l⟩)1≤k,l≤n, T ⪰ 0, v1 ∈ ℝ}.

P ={(X, v) ∈ Sm ×ℝ ∶

X ⪰ 0, min
T , v1

{v1 ∶ −v1In + T = (⟨X,−B⋅⋅kl⟩)1≤k,l≤n, T ⪰ 0, v1 ∈ ℝ} ≤ v,

tr (X) = 1} ,

Q ={(Y , u) ∈ Sn ×ℝ ∶

Y ⪰ 0, min
S,u1

{u1 ∶ −u1In + S = (⟨−Aij⋅⋅, Y⟩)1≤i,j≤n, S ⪰ 0, u1 ∈ ℝ} ≤ u,

tr (Y) = 1}.

P ={(X, v) ∶ X ⪰ 0, −vIn + T = (⟨X,−B⋅⋅kl⟩)1≤k,l≤n, T ⪰ 0, tr (X) = 1} ,

Q ={(Y , u) ∶ Y ⪰ 0, −uIn + S = (⟨−Aij⋅⋅, Y⟩)1≤i,j≤n, S ⪰ 0, tr (Y) = 1}.
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We claim that P and Q are spectrahedra in the spaces Sm ×ℝ and Sn ×ℝ . For P, the 
inequalities and equations are given by

where the equation can be written as two inequalities and where we can combine all 
the scalar inequalities and matrix inequalities into one block matrix inequality. The 
spectrahedra P and Q can be used to provide the following characterization of Nash 
equilibria in terms of a pair of projections of spectrahedra. We build on the termi-
nology from the bimatrix situation after Definition 6.1 and describe Nash equilibria 
together with their payoffs.

Theorem 6.2  A quadruple (X, Y, u, v) represents a Nash equilibrium of the semidefi-
nite game if and only if 

1.	 (X, v) ∈ P,
2.	 (Y , u) ∈ Q,
3.	 and in every finite rank-1 decomposition of X and Y, 

 with 𝜆s,𝜇t > 0 , tr (p(s)(p(s))T ) = 1 , tr (q(t)(q(t))T ) = 1 and 
∑

s �s =
∑

t �t = 1 , we 
have 

The positivity condition on �i,�j reflects the binding property of xi ≥ 0 or 
yj ≥ 0 from the bimatrix situation. Moreover, in the bimatrix situation the ine-
qualities are induced by the pure strategies, which are the extreme points of Δ1 
and Δ2 . In the semidefinite situation, we can associate with each extreme point of 
the strategy space an inequality, namely the inequality (say, for P and an extreme 
point Y of the strategy space of the second player)

Proof  Let (X, Y, u, v) represent a Nash equilibrium. Then X is a best response of Y 
and Y is a best response of X, so that by definition of P and Q, we have (X, v) ∈ P 
and (Y , u) ∈ Q . Let 

∑
s �sp

(s)(p(s)T be a finite rank 1-decomposition of X with 𝜆s > 0 , 
tr (p(s)(p(s))T ) = 1 and 

∑
s �s = 1 . Then

(⟨X,−B⋅⋅kl⟩)1≤k,l≤n + vIn ⪰ 0, X ⪰ 0, tr (X) = 1,

X =
∑
s

�sp
(s)(p(s))T , Y =

∑
t

�tq
(t)(q(t))T

(6.3)⟨(⟨X,B⋅⋅kl⟩)1≤k,l≤n, q(t)(q(t))T⟩ =v for all t

(6.4)and ⟨p(s)(p(s))T , (⟨Aij⋅⋅, Y⟩)1≤i,j≤m⟩ =u for all s.

pB(X, Y) ≤ v.
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Since the first player’s payoff is u, the best response property gives 
pA(p

(s)(p(s))T , Y) ≤ u . If one of p(s)(p(s))T had pA(p(s)(p(s))T , Y) < u , then, since X is a 
convex combination, we would have pA(X, Y) < u , a contradiction. The statement on 
Y follows similarly.

Conversely, let (X, v) ∈ P , (Y , u) ∈ Q and in every finite rank-1 decomposi-
tion X =

∑
s �sp

(s)(p(s))T , Y =
∑

t �tq
(t)(q(t))T with 𝜆s,𝜇t > 0 , tr (p(s)(p(s))T ) = 1 , 

tr (q(t)(q(t))T ) = 1 and 
∑

s �s =
∑

t �t = 1 , we have (6.3) and (6.4). Since (Y , u) ∈ Q , 
we have u∗ ∶= max{pA(X, Y) ∶ X ∈ S

+
m
, tr (X) = 1} ≤ u . Due to  (6.4), this gives 

pA(p
(s)(p(s))T , Y) = u for all s and thus pA(p(s)(p(s))T , Y) = u∗ = u for all s. Hence, 

pA(X, Y) = u∗ = u and X is a best response to Y. Similarly, Y is a best response to X 
with payoff v so that altogether (X, Y, u, v) represents a Nash equilibrium. 	�  ◻

Remark 6.3  Theorem  6.2 also holds if “in every finite rank-1 decomposition” is 
replaced by “in at least one finite rank-1 decomposition". The proof also works in 
that setting. We will illustrate this further below, in Example 7.3.

Compared to bimatrix games, the more general situation of semidefinite games 
is qualitatively different in the following sense. In a bimatrix game, every mixed 
strategy is a unique convex combination of the pure strategies. In a semidefinite 
game, the analogs of pure strategies are the rank 1-matrices in the spectraplex 
and the decompositions of the mixed (i.e., of rank at least 2) strategies as convex 
combinations of rank-1 matrices are no longer unique. However, the situation for 
a Nash equilibrium to have several decompositions is quite restrictive.

Remark 6.4  To obtain a decomposition of a positive semidefinite matrix with trace 1 
into the sums of positive semidefinite rank 1-matrices with trace 1, one can proceed 
as follows. Consider a spectral decomposition. Then replace the eigenvalues (which 
sum to 1) by eigenvalues 1 and interpret the original eigenvalues as coefficients of a 
convex combination.

Example 6.5  We consider the example of a hybrid game, where the first player plays 
a strategy in the simplex Δ2 and the second player plays a strategy in S+

2
 with trace 1; 

note that the hybrid game can be encoded into a semidefinite game on S2 × S2 by 
setting Aijkl = Bijkl = 0 whenever i ≠ j . We can describe the situation in terms of an 
index i for the first player and the indices (j, k) for the second player. For i = 1 , let

and for i = 2 , let

pA(X, Y) =⟨X, ⟨(Aij⋅⋅, Y⟩)1≤i,j≤m⟩
=
�
s

�s⟨p(s)(p(s))T , (⟨Aij⋅⋅, Y⟩)1≤i,j≤m⟩.

(A1jk)1≤j,k≤2 = (B1jk)1≤j,k≤2 =

(
1 �

� 0

)
,
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To determine the Nash equilibria, we consider three cases:
Case 1: The first player plays the first pure strategy. Then the second player has 

payoff y11 + 2�y12 . A small computation shows that for small � , the second player’s 
best response is

and indeed, this gives a Nash equilibrium.
Case 2: The first player plays the second pure strategy. Analogously, the second 

player’s best response is

and indeed, this gives a Nash equilibrium.
Case 3: The first player plays a totally mixed strategy. Let x = (x1, x2) =

(x1, 1 − x1) ∈ Δ2 with x1, x2 > 0 and x1 + x2 = 1 . The second player’s best response 
has the payoff

The first pure strategy would give for the first player y11 + 2�y12 and the second 
pure strategy would give for the first player y22 + 2�y12. If (x,  Y) is a Nash equi-
librium such that x is a totally mixed strategy, we must have equality, that is, 
y11 + 2�y12 = y22 + 2�y12. Hence, y11 = y22 and the payoff of the second player is

which has become independent of x1 . The payoff of the second player is maximized 
for the value y12 =

√
y11y22 = y11 . Thus, the payoff for the second player is

Hence, for every non-negative � , the best response of the second player is

As apparent from the above considerations, in that case both pure strat-
egies of the first player are best responses of the second player. To 

(A2jk)1≤j,k≤2 = (B2jk)1≤j,k≤2 =

(
0 �

� 1

)
.

1

2
√
4�2 + 1

�√
4�2 + 1 + 1 2�

2�
√
4�2 + 1 − 1

�
,

1

2
√
4�2 + 1

�√
4�2 + 1 − 1 2�

2�
√
4�2 + 1 + 1

�
,

max{x1y11 + 2�x1y12 + (1 − x1)y22 + 2�(1 − x1)y12 ∶ Y ⪰ 0, tr (Y) = 1}

= max{x1y11 + (1 − x1)y22 + 2�y12 ∶ Y ⪰ 0, tr (Y) = 1}.

max{x1y11 + (1 − x1)y11 + 2�y12}

= max{y11 + 2�y12},

max{y11 + 2�y11}

= max{(1 + 2�)y11}.

(6.5)
(
1∕2 1∕2

1∕2 1∕2

)
.
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determine the strategy x of the first player, we use the condition that the maxi-
mum maxY∈Y{x1y11 + (1 − x1)y22 + 2�

√
y11y22} has to be attained at the matrix 

(6.5). Substituting y22 = 1 − y11 , the resulting univariate problem in y11 gives 
x = (1∕2, 1∕2) . The payoff is 1

2
+ � for both players.

We close the section by mentioning that some classical results for bimatrix games 
remain true for semidefinite games. Since semidefinite games are convex compact 
games, the generalized Kohlberg-Mertens structure theorem on the Nash equilib-
ria shown by Predtetchinski (2009) holds for semidefinite games [for related recent 
structural results in the context of polytopal games see Pahl (2023)]. Moreover, 
generically, the number of Nash equilibria in semidefinite games is finite and odd, as 
a consequence of the results of Bich and Fixary (2021).

7 � Semidefinite games with many Nash equilibria

We construct a family of semidefinite games on the strategy space Sn × Sn such that 
the set of Nash equilibria has many connected components. In particular, the number 
of Nash equilibria is larger than the number of Nash equilibria that an n × n bimatrix 
game can have.

The following criterion allows us to construct semidefinite games from bimatrix 
games that contain the Nash equilibria of the bimatrix games and possibly addi-
tional ones.

Lemma 7.1  Let G = (A,B) be an m × n bimatrix game. Let Ḡ = (Ā, B̄) be a semidefi-
nite game on the strategy space Sm × Sn with āiikk = aik and b̄iikk = bik for 1 ≤ i ≤ m , 
1 ≤ k ≤ n . If āijkk = 0 for all i ≠ j and all k, as well as b̄iikl = 0 for all i and all k ≠ l 
then, for every Nash equilibrium (x, y) of G, the pair (X, Y) defined by

is a Nash equilibrium of Ḡ.

Proof  Assume (X, Y) is not a Nash equilibrium of Ḡ . W.l.o.g. we can assume that a 
strategy Y ′ exists for the second player with pB̄(X, Y) < pB̄(X, Y

�) . This yields

where the last equation uses that b̄iikl = 0 for all l ≠ k . Hence, there exists a feasible 
strategy y′ for the second player in G with pB(x, y) < pB(x, y

�) . This contradicts the 
precondition that (x, y) is a Nash equilibrium in G. 	�  ◻

In Lemma  7.1, besides the Nash equilibria inherited from the bimatrix 
game, there can be additional Nash equilibria in the semidefinite games. In a 

Xij =

{
xi, i = j,

0, i ≠ j,
Yij =

{
yi, i = j,

0, i ≠ j

pB̄(X, Y) =
∑
i,j,k,l

b̄ijklXijYkl =
∑
i,k

b̄iikkXiiYkk <
∑
i,k

b̄iikkXiiY
�
kk
= pB̄(X, Y

�),
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2 × 2 bimatrix game, there can be at most three isolated Nash equilibria (see, e.g., 
Borm et  al. 1989 or Quint and Shubik 1997). The following example provides 
an instance of a semidefinite game on the strategy space S2 × S2 with five iso-
lated Nash equilibria. In particular, it has more isolated Nash equilibria than a 
2 × 2 bimatrix game can have.

Example 7.2  For a given c ∈ ℝ , let

and B = A . We claim that for c > 1∕2 , there are exactly five isolated Nash equilibria.
First consider the case that the diagonal of X is (1, 0). Since X ⪰ 0 , this implies 

x12 = 0 . The best response of player 2 gives on the diagonal (1, 0) of Y. From that, 
we see that

is a Nash equilibrium with payoff 1 for both players, and similarly,

as well. These Nash equilibria are isolated, which follows as a direct consequence of 
the current case in connection with the subsequent considerations of the cases with 
diagonal of X not equal to (1, 0).

Now consider the situation that both diagonal entries of X are positive, and due to 
the situation discussed before, we can also assume that both diagonal entries of Y are 
positive. Note that the payoff of each player is

In a Nash equilibrium, as soon as one player plays the non-diagonal entry with non-
zero weight, then both players will play the non-diagonal element with maximal 
possible absolute value and appropriate sign, say, for player 1, x12 = ±

√
x11x22.

Case 1: x12 ≠ 0 . We can assume positive signs for the non-diagonal elements of 
both players. The payoffs are

Expressing x22 = 1 − x11 and y22 = 1 − y11 , we obtain

In a Nash equilibrium, the partial derivatives

�
A⋅⋅11 A⋅⋅12
A⋅⋅21 A⋅⋅22

�
=

⎛
⎜⎜⎜⎝

�
1 0

0 0

� �
0 c

c 0

�

�
0 c

c 0

� �
0 0

0 1

�
⎞
⎟⎟⎟⎠

X = Y =

(
1 0

0 0

)

X = Y =

(
0 0

0 1

)

p(X, Y) = x11y11 + x22y22 + 4cx12y12.

p(X, Y) = x11y11 + x22y22 + 4c
√
x11x22

√
y11y22.

p(X, Y) = x11y11 + (1 − x11)(1 − y11) + 4c
√
x11(1 − x11)

√
y11(1 − y11).
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of p(X,  Y) necessarily must vanish. We remark that, since the payoff function is 
bilinear, non-infinitesimal deviations are not relevant here.

For the case c > 1∕2 , we obtain x11 = y11 = 1∕2 . For c = 1∕2 , any choice of 
x11 ∈ (0, 1) and setting y11 = x11 gives a critical point, see below.

For x11 =
1

2
 and y11 =

1

2
 , we obtain the Nash equilibria

with payoff 1
2
+ 4 ⋅ 1

4
⋅ c = 1

2
+ c for both players.

Case 2: x12 = 0 . This implies y12 = 0 , and we obtain the isolated Nash 
equilibrium

with payoff 1
2
 for both players.

In the special case c = 1∕2 , any choice for x11 ∈ (0, 1) and setting y11 = x11 gives 
a critical point. Further inspecting the second derivatives

the negative values show that the points are all local maxima w.r.t. deviating from 
x11 (and, analogously, from x22 ). Hence, in case c = 1∕2 , all the points with x = y for 
x ∈ (0, 1) and choosing the maximal possible off-diagonal entries (with appropriate 
sign with respect to the other player) give a family of Nash equilibria with payoff 1 
for each player.

Example 7.3  We can use the Example 7.2 also to illustrate a situation, where there 
exists more than one decompositions of a strategy into rank-1 matrices. Consider 
again the main situation c > 1

2
 . We have seen that the pair ( 1

2
I2,

1

2
I2) of scaled iden-

tity matrices constitutes a Nash equilibrium. If player 1 plays X =
1

2
I2 , the payoff of 

player 2 is

which is independent of c. Due to tr (Y) = 1 , the payoff is  1
2
 for any strategy Y of 

the second player. Note that the unit matrix has several decompositions into rank 
1-matrices. Besides the canonical decomposition

px11 = 2y11 − 1 +
2c
√
y11(1 − y11)(1 − 2x11)√

x11(1 − x11)
,

py11 = 2x11 − 1 +
2c
√
x11(1 − x11)(1 − 2y11)√

y11(1 − y11)

X = Y =

(
1∕2 1∕2

1∕2 1∕2

)
as well as X = Y =

(
1∕2 − 1∕2

−1∕2 1∕2

)

X = Y =

(
1∕2 0

0 1∕2

)

px11x11
||y11=x11 = −

1

2x11(1 − x11)
and py11y11

||y11=x11 = −
1

2x11(1 − x11)
,

pB(X, Y) =
1

2
y11 +

1

2
y22 + 0 ⋅ c ,
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we can also consider, say, even for a general unit matrix In , the decomposition

for any orthonormal basis u(1),… , u(n) of ℝn . Both for the canonical decomposition 
and for the decomposition, say, with u(1) = (cos �, sin �)T , u(2) = (− sin �, cos �)T for 
� ∶=

�

6
 , i.e., u(1) = 1

2
(
√
3, 1)T , u(2) = 1

2
(−1,

√
3)T , we obtain pB(X, Y) =

1

2
 . In par-

ticular, all the rank 1-strategies occurring in the various decompositions of 1
2
I2 are 

best responses of player 2 to the strategy 1
2
I2 of the first player.

We now show how to construct from Example 7.2 an explicit family of semidefinite 
games with many Nash equilibria.

Block construction Let A(1) and A(2) be tensors of size m1 × m1 × n1 × n1 and 
m2 × m2 × n1 × n1 . The block tensor with blocks A(1) and A(2) is formally defined as the 
tensor of size

which has entries

Naturally, this construction can be extended to more than two blocks.
For 1 ≤ k ≤ 2 , let (A(k),B(k)) be a semidefinite game G(k) with strategy space 

Smk
× Snk

 . Then the block game G = (A,B) , where A is the block tensor with 
blocks A(1) and A(2) and B is the block tensor with blocks B(1) and B(2) , defines a 
semidefinite game with strategy space Sm1+m2

× Sn1+n2
.

Lemma 7.4  (Block lemma) For 1 ≤ k ≤ 2 , let G(k) = (A(k),B(k)) be a semidefinite 
game with strategy space Smk

× Snk
 and (X(k), Y (k)) be a Nash equilibrium of G(k) and 

denote the payoffs of the two players by pA(k) and pB(k) . If �1, �2, �1, �2 ≥ 0 satisfy 
�1 + �2 = 1, �1 + �2 = 1 as well as

then

is a Nash equilibrium of the block game of (A(1),B(1)) and (A(2),B(2)).

I2 = e(1)(e(1))T + e(2)(e(2))T ,

In =

n∑
k=1

(u(k))(u(k))T

(m1 + m2) × (m1 + m2) × (n1 + n2) × (n1 + n2),

aijkl = a
(1)

ijkl
for all 1 ≤ i, j ≤ m1, 1 ≤ k, l ≤ n1,

ai+m1,j+m1,k+n1,l+n1
= a

(2)

ijkl
for all 1 ≤ i, j ≤ m2, 1 ≤ k, l ≤ n2.

�1pB(1) (X(1), Y (1)) = �2pB(2) (X(2), Y (2)) and �1pA(1) (X(1), Y (1)) = �2pA(2) (X(2), Y (2)),

X∗ ∶=

(
�1X

(1) 0

0 �2X
(2)

)
, Y∗ ∶=

(
�1Y

(1) 0

0 �2Y
(2)

)
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Note that if one of the coefficients �1, �2, �1 or �2 is zero in the theorem, then 
one of the blocks in X∗ or Y∗ consists solely of zeroes.

Proof  We denote the payoff tensors of the block game by A and B. Let the first player 
play X∗ . Since �1 + �2 = 1 , X∗ is indeed an admissible strategy of the first player. If 
the second player plays a strategy Ȳ  , we can assume that it is of the form

with some �1, �2 ≥ 0 , �1 + �2 = 1 and strategies Ȳ (1) , Ȳ (2) of G(1) and G(2) . Since 
(X(k), Y (k)) is a Nash equilibrium of G(k) for k ∈ {1, 2} , we obtain

An analogous argument holds for the best response of the first player to the strategy 
Y∗ of the second player. 	�  ◻

We can use the block lemma to construct a family of semidefinite games with 
many Nash equilibria.

Example 7.5  Let m = n , i.e., we consider a game Gn on Sn × Sn . Assume that n is 
even. We generalize Example 7.2. For a given c ∈ ℝ , let

as in Example 7.2. For 1 < s < n∕2 and 2s − 1 ≤ {i, j, k, l} ≤ 2s , let

and let all other entries of A be zero. Also, let B = A.
The discussion in Example 7.2, for the specific situation of the game on the strat-

egy sets S2 × S2 , implies that there are five Nash equilibria. In all these equilibria, 
the strategies of both players coincide and this property is preserved throughout the 
generalized construction we present.

Theorem 7.6  The set of Nash equilibria of Gn consists of

Ȳ =

(
𝛾1Ȳ

(1) 0

0 𝛾2Ȳ
(2)

)

pB(X
∗, Ȳ) =𝛼1𝛾1pB(1) (X(1), Ȳ (1)) + 𝛼2𝛾2pB(2) (X(2), Ȳ (2))

≤𝛼1𝛾1pB(1) (X(1), Y (1)) + 𝛼2𝛾2pB(2) (X(2), Y (2))

=(𝛾1 + 𝛾2)𝛼1pB(1) (X(1), Y (1))

=(𝛽1 + 𝛽2)𝛼1pB(1) (X(1), Y (1))

=𝛼1𝛽1pB(1) (X(1), Y (1)) + 𝛼2𝛽2pB(2) (X(2), Y (2))

=pB(X
∗, Y∗).

�
A⋅⋅11 A⋅⋅12
A⋅⋅21 A⋅⋅22

�
=

⎛⎜⎜⎜⎝

�
1 0

0 0

� �
0 c

c 0

�

�
0 c

c 0

� �
0 0

0 1

�
⎞⎟⎟⎟⎠

Aijkl = Ai−2(s−1),j−2(s−1),k−2(s−1),l−2(s−1)
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connected components.

Proof  Using the Block Lemma 7.4, we obtain 6n∕2 − 1 =
√
6
n

− 1 Nash equilibria, 
because we can also use the zero matrix as 2 × 2 block within a strategy as long 
as not all the blocks are the zero matrix. Outside of the 2 × 2-diagonal blocks, the 
entries of these Nash equilibria are zero. Those entries can be chosen arbitrarily as 
long as the positive semidefiniteness constraint on the strategy is satisfied, without 
losing the equilibrium property. As a consequence, the Nash equilibria are not iso-
lated. It remains to show that the 

√
6
n

− 1 Nash equilibria obtained from the Block 
Lemma belong to distinct connected components.

For each Nash equilibrium (X, Y), consider the diagonal 2 × 2-blocks of the strat-
egies. In each block, we have one of the five types from Example 7.2 or the block is 
the zero matrix. We associate a type p(X, Y) ∈ {0,… , 5}n to each Nash equilibria 
which gives the type in each of the n/2 blocks of X and in each of the n/2 blocks of 
Y.

Any two of the 
√
6
n

− 1 Nash equilibria coming from the Block Lemma have dis-
tinct types. By restricting to the diagonal blocks, this implies that the 6n∕2 − 1 Nash 
equilibria belong to distinct connected components. 	�  ◻

Asymptotically, we obtain more Nash equilibria than in the Quint and Shubik 
construction of bimatrix games (Quint and Shubik 1997) and also more Nash equi-
libria than in von Stengel’s construction of bimatrix games (von Stengel 1999), 
because there the number is 0.949 ⋅ 2.414n∕

√
n asymptotically.

Specifically, von Stengel’s construction gives a 6 × 6-bimatrix game with 75 iso-
lated Nash equilibria, and so far no 6 × 6-bimatrix game with more than 75 isolated 
Nash equilibria is known. Von Stengel also showed an upper bound of 111 Nash 
equilibria for a 6 × 6-bimatrix games. In our construction of a semidefinite game 
on S6 × S6 , we obtain from Theorem 7.6 the higher number of 66∕2 − 1 = 215 con-
nected components of Nash equilibria in the semidefinite game.

8 � Outlook and open questions

Since the transition from bimatrix games to semidefinite games leads from polyhe-
dra to spectrahedra, in the geometric description of Nash equilibria, the questions 
on the maximal number of Nash equilibria appear to become even more challeng-
ing than in the bimatrix situation. Both from the viewpoint of the combinatorics of 
Nash equilibria and from the viewpoint of computation, rank restrictions have been 
fruitfully exploited in the contexts of bimatrix games (Adsul et  al. 2021; Kannan 
and Theobald 2010) and separable games (Stein et al. 2008). It would be interesting 
to study the exploitation of low-rank structures of semidefinite games in the case of 
payoff tensors with suitable conditions on a low tensor rank.

√
6
n

− 1 ≈ 2.449n − 1
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Concerning the reduction from semidefinite programs to semidefinite games, it 
is a natural question whether the handlings of the exceptional cases by Adler (2013) 
and von Stengel (2022) can be generalized to the semidefinite case.

We also briefly mention questions of the semidefinite generalizations of more 
general classes of (bimatrix) games. A polymatrix game (or network game)  (Cai 
et  al. 2016) is defined by a graph. The nodes are the players and each edge cor-
responds to a two-player zero-sum matrix game. Every player chooses one set of 
strategies and she uses it with all the games that she is involved with. The game has 
an equilibrium that we can compute efficiently using linear programming. Shapley’s 
stochastic games are two-player zero-sum games of potentially infinite duration. 
Roughly speaking, the game takes place on a complete graph, the nodes of which 
correspond to zero-sum matrix games. Two players, starting from an arbitrary node 
(position), at each stage of the game, play a zero-sum matrix game and receive pay-
offs. Then, with a non-zero probability the game either stops or they players move 
to another node and play again. Because the stopping probabilities are non-zero at 
each position, the game terminates. Shapley proved (Shapley 1953) that this game 
has an equilibrium; there is also an algorithm to compute it (Hansen et al. 2011), 
see also Oliu-Barton (2021). It remains a future task to study the generalizations of 
polymatrix and stochastic games when the underlying bimatrix games are replaced 
by semidefinite games. For semidefinite polymatrix games this has recently been 
initiated in Ickstadt et al. (2023).
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