
Dächert, Kerstin; Fleuren, Tino; Klamroth, Kathrin

Article — Published Version

A simple, efficient and versatile objective space algorithm
for multiobjective integer programming

Mathematical Methods of Operations Research

Suggested Citation: Dächert, Kerstin; Fleuren, Tino; Klamroth, Kathrin (2024) : A simple, efficient and
versatile objective space algorithm for multiobjective integer programming, Mathematical Methods
of Operations Research, ISSN 1432-5217, Springer Berlin Heidelberg, Berlin/Heidelberg, Vol. 100,
Iss. 1, pp. 351-384,
https://doi.org/10.1007/s00186-023-00841-0

This Version is available at:
https://hdl.handle.net/10419/314963

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00186-023-00841-0%0A
https://hdl.handle.net/10419/314963
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Mathematical Methods of Operations Research (2024) 100:351–384
https://doi.org/10.1007/s00186-023-00841-0

ORIG INAL ART ICLE

A simple, efficient and versatile objective space algorithm
for multiobjective integer programming

Kerstin Dächert1 · Tino Fleuren2 · Kathrin Klamroth3

Received: 26 February 2023 / Revised: 2 August 2023 / Accepted: 31 October 2023 /
Published online: 21 March 2024
© The Author(s) 2024

Abstract
In the last years a multitude of algorithms have been proposed to solve multiobjective
integer programming problems. However, only few authors offer open-source imple-
mentations. On the other hand, new methods are typically compared to code that is
publicly available, even if this code is known to be outperformed. In this paper, we
aim to overcome this problem by proposing a new state-of-the-art algorithm with
an open-source implementation in C++. The underlying method falls into the class
of objective space methods, i.e., it decomposes the overall problem into a series of
scalarized subproblems that can be solved with efficient single-objective IP-solvers.
It keeps the number of required subproblems small by avoiding redundancies, and it
can be combined with different scalarizations that all lead to comparably simple sub-
problems. Our algorithm bases on previous results but combines them in a new way.
Numerical experiments with up to ten objectives validate that the method is efficient
and that it scales well to higher dimensional problems.

Keywords Multiobjective optimization · Nondominated set · Objective space
algorithms · Search region · Local upper bounds · Scalarization

Tino Fleuren and Kathrin Klamroth have been contributed equally to this work.

B Kerstin Dächert
kerstin.daechert@htw-dresden.de

Tino Fleuren
tino.fleuren@itwm.fraunhofer.de

Kathrin Klamroth
klamroth@uni-wuppertal.de

1 Faculty of Informatics/Mathematics, Hochschule für Technik und Wirtschaft Dresden -
University of Applied Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany

2 Fraunhofer Institute for Industrial Mathematics, Fraunhofer-Platz 1, 67663 Kaiserslautern,
Germany

3 Department of Mathematics and Computer Science, University of Wuppertal, Gaußstraße 20, 42119
Wuppertal, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-023-00841-0&domain=pdf
http://orcid.org/0000-0002-6458-6480

352 K. Dächert et al.

1 Introduction

Integer programming (IP) is a classical field of Operations Research with a wide
range of economical and industrial applications. Prominent examples are knapsack
and capital budgeting problems, assignment problems, routing problems and problems
occuring in supply chain management applications. The practical success of integer
programming is supported by the fact that highly efficient solvers are readily available.
This is not the case for multiobjective integer programming (MOIP). Indeed, while
there is a growing need for the consideration of multiple conflicting goals, including
economical, ecological and robustness criteria, the development of MOIP solvers lags
behind.

A simple yet efficient way to overcome this shortcoming can be seen in the recent
trend towards so-called objective space methods or scalarization-based algorithms.
Different from “purely” multiobjective approaches like, for example, multiobjective
branch and bound algorithms, such methods rely on the iterative solution of appro-
priately defined single-objective IPs, hence taking advantage of the efficiency of
single-objective IP solvers. Besides the fact that such methods largely benefit from the
strength of single-objective IP solvers, they are independent of the particular problem
structure and are thus very generally applicable, without the hassle of problem specific
fine-tuning.

Objective space methods can be distinguished w.r.t. the way the objective space
is decomposed and w.r.t. the way the subproblems are formulated. Both aspects,
decomposition and subproblem formulation, have a direct impact on the computa-
tional efficiency of the overall method: The decomposition influences the number of
solver calls, and the complexity of the subproblems has a decisive effect on the compu-
tational time required by each individual solver call. Different objective spacemethods
have been proposed, e.g., in Klein and Hannan (1982); Sylva and Crema (2004); Lau-
manns et al. (2006); Sylva and Crema (2008); Lokman and Köksalan (2013); Özlen
et al. (2014); Kirlik and Sayin (2014); Dächert and Klamroth (2015); Klamroth et al.
(2015); Boland et al. (2016); Dächert et al. (2017); Boland et al. (2017b); Holzmann
and Smith (2018); Tamby (2018); Turgut et al. (2019); Joswig and Loho (2020) and
Tamby and Vanderpooten (2020). We review the most prominent approaches in the
light of a generic algorithmic description in Sect. 4.

In the following subsections we first discuss the intrinsic difficulty of MOIP prob-
lems (Sect. 1.1) and then give a formal problem formulation and introduce the notation
(Sect. 1.2). We provide a prototypical formulation of a generic scalarization-based
algorithm in Sect. 2, discuss the geometric complexity of the associated decompo-
sition, and briefly review scalarization methods that can be used in this context.
Section3 presents how the number of integer problems can be reduced when using
the ε-constraint scalarization. In Sect. 4 we review the related literature and provide a
summary of the leading objective space algorithms for MOIP. An extensive compu-
tational study comparing different approaches on instances of knapsack, assignment
travelling salesman problems with up to ten objective functions is presented in Sect. 5.
While the approach presented in this paper does not necessarily require the fewest
number of integer programs to be solved, it is, nevertheless, the best with respect to
CPU time.

123

A simple, efficient and versatile objective space algorithm... 353

Fig. 1 Dominated region in the biobjective (a) and in the three-objective case (b) for two points z1 = (4, 6)
and z2 = (7, 3) (a) and z1 = (4, 6, 6) and z2 = (7, 3, 4) (b), respectively. Note that a can be interpreted
as a projection of b onto the f1 − f2-plane

1.1 Challenges inmultiobjective integer programming

While MOIP problems are relatively well understood in the biobjective case, they are
principally difficult in three and more dimensions (see, for example, Figueira et al.
2017). One reason for the specific role of biobjective problems is that in this case
Pareto optimal solutions can be sorted such that their objective values are increasing
in one objective and decreasing in the other objective. In this way, a natural ordering
within the nondominated set is induced which facilitates central operations like, for
example, decomposition, bound computations, and filtering for dominated solutions.
This is used in the context of objective space methods, for example, in Aneja and
Nair (1979); Chalmet et al. (1986); Ralphs et al. (2006). Since there is not such a
natural ordering in the case of three and more objectives, many approaches do not
directly transfer from the biobjective to the multiobjective case. Figure1 illustrates
this situation with the help of a simple example with two nondominated outcome
vectors in the biobjective case (Fig. 1a) and in the three-objective case (Fig. 1b).

In addition, when increasing the number of objective functions then also the number
of efficient solutions usually increases. Even though already biobjective problems are
intractable in the sense that the size of the nondominated set may grow exponentially
with the problem size (see, for example, Ehrgott 2005), in practice the percentage
of nondominated outcome vectors largely depends on two model characteristics: The
problem structure and coefficients, and the number of objective functions. Indeed,
when extending an MOIP problem by an additional objective function, then all for-
merly efficient solutions remain efficient for the extended problem, and chances are
high that further solutions become efficient if they perform well w.r.t. the additional
objective. It is easy to see that when the solution set is finite it is always possible to
define a finite number of objective functions so that all feasible solutions are efficient.

123

354 K. Dächert et al.

1.2 Problem formulation and notation

In the following, we give a brief introduction to multiobjective optimization and to the
classical concept of Pareto dominance. For an extensive introduction into the field, we
refer to the textbooks (Ehrgott 2005) and Miettinen (1999). Throughout this paper we
use the following notation to compare two vectors x1, x2 ∈ R

n :

x1 � x2 ⇔ x1i ≤ x2i for all i = 1, . . . , n

x1 ≤ x2 ⇔ x1i ≤ x2i for all i = 1, . . . , n and x1 �= x2

x1 < x2 ⇔ x1i < x2i for all i = 1, . . . , n.

The symbols �,≥ and > are used analogously.
We consider multiobjective integer programming problems (MOIP) with p ≥ 2

functions given by

min{Cx : Ax � b, x ∈ Z
n}, (MOIP)

where C ∈ Z
p×n is the objective matrix, A ∈ Z

m×n is the constraint matrix, b ∈ Z
m

is the right-hand-side vector, and X = {x ∈ Z
n : Ax � b} denotes the set of

feasible solutions of MOIP. We assume that all coefficients are integer and that the
variables may only take integer values. Non-negativity constraints can be included
in the constraint system Ax � b when required. We note that multiobjective binary
programming problems (MOBP) where the solution vectors are constrained to x ∈
{0, 1}n are an important special case that is included in this formulation.

The p objective functions are given as a p-dimensional vector f = (f1, . . . , f p) :
X → Z

p, where p ≥ 2 denotes the number of objective functions and hence the
dimension of the objective space. The i th objective function is given as a linear function
with cost vector ci = (ci1, . . . , cin), i.e., fi (x) = ci x = ∑n

j=1 ci j x j , i = 1, . . . , p.
Since we assume that all coefficients are integer, the set of attainable (i.e., feasible)
outcome vectors Z = f (X) satisfies Z ⊆ Z

p.
We focus on the determination of Pareto optimal (or efficient) solutions which

are those solutions for which none of the objective values can be improved without
deterioration of at least one other objective value. This concept is based on the partial
ordering induced by the natural ordering cone Rp

≥ = {z ∈ R
p : z ≥ 0} = R

p
�\{0},

where 0 ∈ R
p denotes the p-dimensional zero-vector. Then z1 ≤ z2 (i.e., z1 dominates

z2) if and only if z1 ∈ z2 − R
p
≥, and x̄ ∈ X is Pareto optimal if and only if there does

not exist x ∈ X such that f (x) ∈ f (x̄) − R
p
≥.

The image of a Pareto optimal solution in the objective space is called nondomi-
nated point or nondominated outcome vector. The set of all Pareto optimal solutions
(nondominated points) is referred to as the Pareto set (nondominated set) and denoted
by XE ⊆ X and ZN ⊆ Z , respectively. For a given nonempty set N ⊆ Z of feasible
outcome vectors, we refer to the set N +R

p
� as the dominated region of the set N , see

Fig. 1 for an illustration. Note that further nondominated outcome vectors of MOIP
can only be located in the complement of the dominated region of the set N , i.e., in

123

A simple, efficient and versatile objective space algorithm... 355

the set S(N) := R
p \ (N + R

p
�) which we call the search region w.r.t. N . This is in

fact true for every nonempty set N ⊆ Z , irrespective of the fact whether all points in
N are nondominated or not. In the special case that N = ZN we additionally have
that N + R

p
� = Z + R

p
� and that S(N) ∩ Z = ∅.

2 Generic scalarization-based algorithm

In this section, we provide a generic formulation of an objective space algorithm that
is based on an appropriate decomposition of the search region and on the iterative
solution of scalarized single-objective IPs using standard IP solvers. We emphasize
that this method does not assume a specific (combinatorial) problem structure and that
it takes advantage of the efficiency of readily available IP solvers.

Given an initial area of interest, i.e., an initial search region, each solver call either
generates a new nondominated outcome vector (which, by removing the region it
dominates, leads to a reduction of the search region) or returns the information that
the corresponding subproblem is infeasible (and that the associated part of the search
regiondoes not contain any further nondominatedoutcomevectors and canbe excluded
from further evaluations).

Key operations are hence the description and update operation for the search region
as the basis for its decomposition into search zones (Sect. 2.1) and the formulation
of appropriate subproblems in the respective search zones which is usually realized
through scalarizations (Sect. 2.2).Apseudocode formulationof thegeneral algorithmic
framework is given in Algorithm 1.

Algorithm 1: Generic Scalarization-Based Algorithm
Input : MOIP problem
Output: Set of nondominated points ZN

1 Determine initial search region
2 while exists unexplored search zones of the search region do
3 Choose search zone, solve subproblem ‘therein’
4 if subproblem infeasible then
5 remove explored search zone from search region
6 else
7 save new nondominated point zs

8 update search region based on zs

9 end
10 end

As said before, the driving factors for the efficiency of Algorithm 1 are the number
and the complexity of subproblems that are solved during the course of the algorithm.
These two factors are interrelated: By formulating more complex subproblems, larger
reductions of the search region can be achieved which can in turn be used to reduce
the number of solver calls. However, this usually comes at the price of more expensive
solver calls. This trade-off is analyzed in the numerical tests in Sect. 5. We note that

123

356 K. Dächert et al.

an additional criterion when implementing Algorithm 1 is the avoidance of infeasible
subproblems since detecting infeasibility often comes at a (slightly) higher computa-
tional cost.

2.1 The search region and its complexity

In this section we first focus on the mathematical description of the search region
and show how it suggests a natural decomposition into non-redundant search zones.
Towards this end, consider an arbitrary iteration of Algorithm 1 and let N �= ∅ denote
the set of nondominated points computed so far. Then the search region S(N) that
potentially contains further nondominated points is formally defined as

S(N) = R
p \ (N + R

p
�)

= R
p \ {z ∈ R

p : ∃z̄ ∈ N with z̄ � z}.

A thorough analysis of the geometric structure of the search region and its concise
description is given in Dächert and Klamroth (2015) for the three-objective case, and
inKlamroth et al. (2015) andDächert et al. (2017) for the general case. See also Joswig
and Loho (2020) for an alternative yet equivalent interpretation based on monomial
cones and tropical algebra.

We follow the exposition inKlamroth et al. (2015) and assume that the search region
is restricted to a bounding box with lower bound (m, . . . ,m)T ∈ Z

p and upper bound
(M, . . . , M)T ∈ Z

p (withm < M). These boundsmay be given by the decisionmaker
or they may be derived, for example, from global bounds on the attainable objective
function values. For example, the ideal point can be used to determine a global lower
bound. For an MOIP problem the ideal point z I ∈ Z

p is defined component-wise as

z Ii = min{ci x : Ax � b, x ∈ Z
n}, i = 1, . . . , p. (1)

To simplify the notation, we assume wlog that m = 0. Moreover, let p dummy points
di = M · ei ∈ Z

p, i = 1, . . . , p be included in the set N that delimit the bounding
box, where ei denotes the i th unit vector in R

p. Then the search region S(N) can be
unambiguously described by a finite set of local upper bounds U (N) such that

S(N) = {z ∈ R
p : ∃u ∈ U (N), z < u}

= ⋃
u∈U (N) C(u),

where C(u) = u − R
p
> denotes the search zone induced by the local upper bound u.

Figure2 illustrates the situation for the example problems from Fig. 1.
Intuitively, local upper bounds are the maximal points in the objective space that

are not dominated by any of the points in N . As a consequence, all components ui , i =
1, . . . , p, of a local upper bound u ∈ U (N) are induced by a corresponding component
zii of a point z

i ∈ N that satisfies zii = ui and zij < u j for all j ∈ {1, . . . , p}\{i}. We
call such a point a defining point for (component i of) the local upper bound u. Note
that local upper bounds are thus also integer points, i.e., U (N) ⊂ Z

p.

123

A simple, efficient and versatile objective space algorithm... 357

Fig. 2 Local upper bounds shown by filled circles in the biobjective (a) and in the three-objective case (b)
for the two points introduced in Fig. 1. The empty circles in a show the projections û31 and û33 of the local
upper bounds u31 and u33 that are only present in the three-objective case, see b

Moreover, as soon as at least one nondominated point z in the interior of the bound-
ing box is found (this is usually the case after solving the first subproblem), then the
global upper bound (M, . . . , M)T is dominated and every local upper bound has at
least one defining point that is not a dummy point.

More generally, whenever a new nondominated point z̄ is found in U (N), then the
set U (N) needs to be updated: For all u ∈ U (N) with z̄ < u, u is replaced by p
smaller local upper bounds u1, . . . , u p, where

uij =
{
z̄ j , j = i
u j , j �= i

for i = 1, . . . , p. (2)

I.e., to computeui , the i-th component ofu is replacedby thevalueof the nondominated
point z̄ in component i while all other components remain unchanged. Hence, ui ≤ u
for all i = 1, . . . , p, that is, the search region is reduced. For convenience we call
the resulting local upper bound ui an i-child of u. Note that z̄ < u may be satisfied
for more than one local upper bound in U (N). In this case, some of the generated
i-children may be redundant for the description of U (N ∪ {z̄}) and can be removed.
The detection of redundant local upper bounds is described in detail in Dächert and
Klamroth (2015), Klamroth et al. (2015) and Dächert et al. (2017).

In the biobjective case (see Fig. 2a for an illustration), the set U (N) is imme-
diately obtained from the points in N by first sorting these points, for example,
w.r.t. f1, and then combining their respective components in increasing order of f1
(in Fig. 2a, this yields U (N) = {u1, u2, u3}). Figure2b illustrates the set U (N) =
{u1, u21, u22, u31, u33} for an example problem with three objectives that was com-
puted by recursively introducing the outcome vectors z1 and z2. Efficient operations
to iteratively update the set U (N) when further nondominated points are added to N
are described in Klamroth et al. (2015) and Dächert et al. (2017).

123

358 K. Dächert et al.

Given the set U (N), a single-objective subproblem can be solved for each of the
associated search zones C(u) = u−R

p
> to either find a new (mutually nondominated)

point, or to show that the corresponding search zone does not contain any further
nondominated points. The cardinality of the setU (N) is thus decisive for the number
of subproblems that need to be solved in Algorithm 1. A worst case bound on |U (N)|
can be derived from results of Boissonnat et al. (1998) and Kaplan et al. (2008) from
the field of algorithmic geometry: The number of local upper bounds is bounded by

|U (N)| = O
(
|N |� p

2 �) for p ≥ 2. (3)

This bound is tight in the sense that there are instances where this bound is attained.
However, in practice the value of |U (N)| is often much smaller, often even by orders
of magnitude. In the special case of two objectives (p = 2) the number of local upper
bounds is exactly |U (N)| = |N |+ 1, irrespective of the considered problem instance.
Moreover, Dächert and Klamroth (2015) showed that for three objectives (p = 3) it
holds that |U (N)| = 2|N | + 1 (under the assumption that no two points in N share
the same value in one of their components). Hence, for p = 3 the number of search
zones still grows only linearly with the number of nondominated points.

We argue that the decomposition of the search region S(N) into |U (N)| pairwise
non-redundant search zones C(u), u ∈ U (N), is a natural decomposition that imme-
diately leads to the formulation of associated pairwise non-redundant single-objective
subproblems. The efficiency of thismethod is validated in the numerical tests presented
in Sect. 5. While other decompositions of the search region are of course possible and
have other pros and cons, the structure of the setU (N) and particularly its cardinality
remain decisive for the computational complexity of the respective methods.

Indeed, when the number of objective functions p is fixed and when the natural
decomposition is combined with a suitable scalarization method, then (3) implies a
polynomial bound on the overall number of iterations of Algorithm 1. In this situation
we call a scalarization method suitable if and only if either a new nondominated point
is found or the respective search zone is identified as an empty zone (which can be
excluded from further consideration) when solving an appropriate scalarization in a
search zone. This property is, e.g., satisfied by the frequently applied ε-constraint
scalarization and by the weighted Tchebychev scalarization, see Sect. 2.2 below for
further details.

Theorem 1 When the natural decomposition of the search region into non-redund-
ant search zones is combined with a suitable scalarization method, then the overall
number of iterations of Algorithm 1 can be bounded by

O
(
|ZN |� p

2 �) for p ≥ 2, (4)

which is polynomial in the size of the nondominated set |ZN | when p is fixed.

Proof First consider the case where the |ZN | nondominated points are found within
the first |ZN | iterations, and after that the remaining search zones are investigated

123

A simple, efficient and versatile objective space algorithm... 359

which are empty. In this case, the number of subproblems solved by Algorithm 1 is
bounded by

O
(
|ZN | + |ZN |� p

2 �) = O
(
|ZN |� p

2 �) for p ≥ 2, (5)

i.e., |ZN | iterations in each of which a nondominated point is determined, and at most
O(|ZN |� p

2 �) iterations to detect that all search zones induced by these points are empty.
C.f. (3) for the corresponding bound on the number of search zones induced by ZN .

Now consider the general case where empty search zones may be detected at any
time. In this case the above argumentation still holds since an empty search zone is
never changed in later iterations, irrespective from the fact whether it is detected earlier
or later during the procedure. Indeed, only those search zones are updated and split
that contain a newly detected nondominated point, and this situation can not occur
when the considered search zone is empty. Therefore, the iteration at which an empty
search zone is detected does not matter. ��

Note that Theorem 1 relies on two central properties: (a) The complexity of the
decomposition used in Algorithm 1 grows only polynomially with the number of
nondominated points (which is guaranteed in the case of the natural decomposition),
and (b) the employed scalarization must be tailored for the respective search zones
in the sense that with each solver call, either a new nondominated point is found or
the search zone is excluded. We will focus on this property when discussing suitable
scalarizations, tailored for the natural decomposition, in the following section.

To the best of our knowledge the above approach is the only objective space method
that has a provably polynomial bound on the number of required solver calls while
keeping these solver calls simple, i.e., without relying on disjunctive constraints and/or
additional integer variables.

2.2 Scalarizationmethods

We now assume that an intermediate set N of already computed nondominated points
and a decomposition of the associated search region into a finite set of search zones is
given. We exemplify the following discussion at the natural decomposition described
in Sect. 2.1 above, where each search zone C(u), u ∈ U (N), corresponds to a hyper-
rectangle with lower bound 0 and upper bound u.

Algorithm 1 then iteratively selects a search zone in order to decide whether it is
feasible and hence contains further nondominated points–in this case, such a nondom-
inated point has to be computed–or whether it is infeasible and can be excluded from
further consideration. This is realized by formulating an appropriate single-objective
subproblem. For search zones with a simple structure as in the case of the natural
decomposition, this can be realized by appropriate scalarizations, see, for example,
Ehrgott (2006) for a survey in the context of multiobjective integer programming
problems. In the following, we focus on ε-constraint scalarizations and weighted
Tchebychev scalarizations since they are particularly well suited in this setting.

123

360 K. Dächert et al.

2.2.1 "-constraint scalarization

The most commonly used scalarization in this context is the ε-constraint scalariza-
tion: Given a search zone C(u) with local upper bound u, the associated ε-constraint
subproblem w.r.t. the i th objective, i ∈ {1, . . . , p}, is given by

min
x∈X

{
ci x : c j x ≤ u j −1 for j ∈ Ji

}
, (Pε

i (u))

where Ji := {1, . . . , p} \ {i} denotes the index set of all non-selected objective func-
tions. Figure4a illustrates the additional constraints together with an exemplary level
curve of the objective function. The following lemma illuminates the role of the defin-
ing points of the local upper bound u for the associated ε-constraint scalarization
(Pε

i (u)). We refer to Tamby and Vanderpooten (2020) for a similar result.

Lemma 1 Let C(u) be a search zone from the natural decomposition of the search
region, let i ∈ {1, . . . , p} be a selected objective function such that ui is not defined
by a dummy point, and let zi be a defining point for the i-th component of u with
pre-image xi ∈ X. Then it holds:

1. xi is a feasible solution for the ε-constraint scalarization (Pε
i (u)).

2. If xi is an optimal solution of (Pε
i (u)), then the search zone C(u) does not contain

any further nondominated points.

Proof Since zi ∈ N \ {d1, . . . , d p} is a defining point of u we have that zij < u j for

all j ∈ Ji . Since in addition zi = Cxi with xi ∈ X , it follows that zi ∈ Z
p and hence

zij = c j xi ≤ u j − 1 for all j ∈ Ji . Thus, xi is feasible for problem (Pε
i (u)).

Now let xi be an optimal solution of problem (Pε
i (u)). Then there is no x̄ ∈ X with

c j x̄ < u j , j ∈ Ji (recall that c j x̄ is integral for all j ∈ {1, . . . , p}) and ci x̄ < zii = ui ,
and hence Z ∩ C(u) = ∅. ��

If the ε-constraint scalarization (Pε
i (u)) is solved by an IP-solver that can be sped

up when providing a feasible starting solution, then Lemma 1 suggests to select a
minimization objective fi , i ∈ {1, . . . , p}, such that the corresponding defining point
zi is not a dummy point since then a corresponding pre-image xi ∈ X with Cxi = zi

is already known and can be used as a feasible starting solution when solving problem
(Pε

i (u)). Moreover, problem (Pε
i (u)) is then feasible which usually has a positive

effect on the computational time (as compared to infeasible subproblems).
The following properties are well-known; we refer to the textbook (Ehrgott 2005)

for further details.

Lemma 2 Every optimal solution x̄ ∈ X of an ε-constraint scalarization (Pε
i (u)) is

weakly efficient for MOIP, and at least one of the optimal solutions of (Pε
i (u)) is

efficient for MOIP.

When combining the results of Lemmas 1 and 2 we can conclude that if an ε-
constraint scalarization (Pε

i (u)) returns an optimal solution x̄ ∈ X with ci x̄ < zii , then

123

A simple, efficient and versatile objective space algorithm... 361

this solution is in the search zone C(u) and it is at least weakly efficient for (Pε
i (u)).

In this case, ZN ∩ C(u) �= ∅ and a nondominated point in C(u) can be found by, for
example, performing a lexicographic optimization over the set of optimal solutions of
problem (Pε

i (u)). The latter can be realized, e.g., by solving a second-stage problem

min
x∈X

⎧
⎨

⎩

p∑

j=1

c j x : ci x = ci x̄, c j x ≤ u j −1 for j ∈ Ji

⎫
⎬

⎭
(Pε,2

i (u))

over the set of optimal solutions of problem (Pε
i (u)). Note that a feasible starting

solution is readily available by the optimal solution from the first stage problem.
Note that this two-stage approach requires two solver calls whenever a search zone

contains further nondominated points. This can be avoided by adding an appropriate
augmentation term to problem (Pε

i (u)), leading to an augmented ε-constraint scalar-
ization

min
x∈X

⎧
⎨

⎩
ci x + ρ

p∑

j=1

c j x : c j x ≤ u j −1 for j ∈ Ji

⎫
⎬

⎭
, (Pε,ρ

i (u))

which returns an efficient solution of MOIP. Here, ρ > 0 is an appropriately cho-
sen small augmentation parameter. We refer to Ehrgott and Ruzika (2008) for a
detailed discussion on augmented ε-constraint scalarizations and appropriate choices
of ρ.

Remark 1 Since an optimal solution x̄ of the ε-constraint scalarization (Pε
i (u)) min-

imizes the selected objective function fi in the search zone C(u), there can not be
any further nondominated points in C(u) that have an even better value in objec-
tive fi . As a consequence, when updating the decomposition w.r.t. the new point
z̄ = Cx̄ , search zones C(ū) with ū ≤ u and ūi ≤ z̄i are known to be empty
and can be removed from the search region without further consideration. Depend-
ing on the applied decomposition, this fact usually results in a reduction of solver
calls and is thus an advantage of using ε-constraint scalarizations. In the example
depicted in Fig. 3, u11 ≤ u1 and u111 ≤ z31, hence, u

11 can be removed without fur-
ther inspection. We discuss the realization of such a reduction in detail in Sect. 3
below.

2.2.2 Weighted Tchebychev scalarization

The weighted Tchebychev scalarization minimizes a weighted Tchebychev distance
lw∞(z, zr) = max j=1,...,p |w j (z j − zrj)| between a reference point zr and the closest
feasible point z ∈ Z in the objective space.

In order to determine whether a given search zone C(u) with u ∈ U (N) contains
further nondominated points, a natural choice for the reference point is the origin, i.e.,
zr = 0. The weights w j > 0, j = 1, . . . , p of the weighted Tchebychev distance are

123

362 K. Dächert et al.

Fig. 3 a The 3d situation fromFig. 2b before solving the next subproblem; b 2-dimensional projection of the
ε-constraint scalarization (Pε

1 (u1)) in C(u1) minimizing f1 with feasible set constrained by c j x ≤ u1j −1,

j = 2, 3 (shaded) and level curve associated to an optimal point z3 = (3, 4, 8) (dashed) for the problem
shown in a; c 3d situation with updated local upper bounds for the same problem after adding the newly
generated point z3 = (3, 4, 8) to the set N

then set such that the level set of level 1 passes through all defining points of u and
has its upper right corner in u, see Fig. 4b for an illustration. This yields w j = 1

u j
,

j = 1, . . . , p. Note that we assume wlog that u > 0 for all u ∈ U (N) so that these
weights are well-defined. Since we assume that the bounding box is contained in Rp

�
we can omit all absolute values and formulate the weighted Tchebychev scalarization
w.r.t. the search zone C(u) as

min
x∈X

{

max
j=1,...,p

w j c
j x

}

= min
x∈X

{
α : c j x ≤ αu j for j = 1, . . . , p, α ∈ R

}
.

(PT (u))

Note that the second, constrained reformulation can be immediately passed to a
standard IP-solver.

Lemma 3 Let C(u) be a search zone from the natural decomposition of the search
region. Then it holds:

1. Every pre-image xi ∈ X of a defining point zi of u, i ∈ {1, . . . , p}, that is not
a dummy point is a feasible solution for the weighted Tchebychev scalarization
(PT (u)) with objective value 1.

2. If the optimal objective value of problem (PT (u)) is 1, then the search zone C(u)

does not contain any further nondominated points.

Proof Since every solution in X is feasible for problem (PT (u)) this is also true for
every pre-image xi of a defining point zi of u, i ∈ {1, . . . , p}. Since zii = ci xi = ui
and zij = c j xi < u j for all j ∈ Ji it follows that max j=1,...,p w j c j xi =
max j=1,...,p

c j xi
u j

= ci xi
ui

= 1.

Now suppose that the optimal objective value of problem (PT (u)) is 1. Then there is
no solution x̄ ∈ X that satisfies c j x < u j for all j = 1, . . . , p, and hence Z ∩C(u) =
∅. ��

123

A simple, efficient and versatile objective space algorithm... 363

Fig. 4 (a) ε-constraint scalarization in C(u1) minimizing f1 with feasible set constrained by f2(x) =
c2x ≤ u12 −1 (shaded) and level curve (dashed) through z1, which can be used as feasible starting solution;

(b) weighted Tchebychev scalarization inC(u1)with feasible set (shaded) and level curve (dashed) passing
through u1, using also z1 as feasible starting solution

Note that different from the ε-constraint scalarization (Pε
i (u)), all previously deter-

mined solutions, and hence in particular all defining points of the considered search
zone or its upper bound, respectively, that are not dummy points, can be used as (rel-
atively good) feasible starting solutions for the weighted Tchebychev scalarization
(PT (u)).

In general, the theoretical properties of the weighted Tchebychev scalarization
and of the ε-constraint scalarization are very similar. We refer again to the textbook
(Ehrgott 2005) for the following result.

Lemma 4 Every optimal solution x̄ ∈ X of a weighted Tchebychev scalarization
(PT (u)) is weakly efficient for (MOIP), and at least one of the optimal solutions of
(PT (u)) is efficient for (MOIP).

Similar to the case of the ε-constraint scalarization, weakly efficient solutions can
be avoided by solving a second-stage problem

min
x∈X

⎧
⎨

⎩

p∑

j=1

c j x : c j x ≤ ᾱ u j for j ∈ {1, . . . , p}
⎫
⎬

⎭
(PT ,2(u))

over the set of optimal solutions of problem (PT (u)), where ᾱ denotes the optimal
objective value of problem (PT (u)). Again, a feasible starting solution for this second
stage problem is known from solving the first stage problem.

Rather than solving two IP-problems, the original problem can also be extended by
an augmentation term to the objective, yielding an augmented weighted Tchebychev

123

364 K. Dächert et al.

scalarization

min
x∈X

⎧
⎨

⎩
α + ρ

p∑

j=1

c j x : c j x ≤ αu j for j = 1, . . . , p, α ∈ R

⎫
⎬

⎭
. (PT ,ρ(u))

We emphasize that the augmentation parameter ρ > 0 has to be chosen carefully.
Indeed, while ρ has to be chosen small enough such that no efficient solution is missed,
an overly small choice of ρ may lead to numerical problems. A detailed analysis with
a concrete suggestion for an “optimal” choice of the augmentation parameter when
p = 2 is given in Dächert et al. (2012).

Figure 4 illustrates the additional constraints added to the problem in the respective
scalarizations (ε-constraint versusweightedTchebychev). In addition, exemplary level
curves of the respective objective functions are shown.

3 Reduction of the search regionwhen using the "-constraintmethod

If we use the ε-constraint scalarization in Line 3 of Algorithm 1, we can reduce
the search region further. This is due to a specific property of the the ε-constraint
scalarization which allows to remove one newly created search zone directly in every
iteration in which a new nondominated point is found. However, to make use of
this additional reduction, we cannot select the zone in which we search for a new
nondominated point arbitrarily but have to select it according to some criterion. Note
that the idea itself is not new but has already been elaborated in Dächert and Klamroth
(2015) for the tricriteria case.

In the following we present a selection criterion that is valid for any number of
criteria. We prove that this selection criterion allows to reduce the total number of
evaluated search zones by the number of nondominated points. In the proof we make
use of certain results from Dächert et al. (2017), namely Lemma 3.8 and Proposi-
tion 4.3, which we recall below before stating and proving the selection criterion.
They use both the notion of a neighbor from Definition 3.6 in Dächert et al. (2017)
which we present in a shorter form below.

Definition 1 [Neighbor] Two local upper bounds u, u′ ∈ U (N) are neighbors if they
share p− 1 defining points, among which exactly one changes its position from some
j ∈ {1, . . . , p} to some k ∈ {1, . . . , p}, k �= j . That is, there are two indices j, k with
j �= k such that z j (u) = zk(u′) while zi (u) = zi (u′) for all i ∈ {1, ..., p}\{ j, k}. We
then say that u is a j-neighbor of u′, and that u′ is a k-neighbor of u.

Lemma 5 (Dächert et al. 2017) Let u, u′ ∈ U (N) be local upper bounds such that u′
is a k-neighbor of u, and u is a j-neighbor of u′. Then, we have u j < u′

j , uk > u′
k

and ui = u′
i for i �= j, k.

Proposition 1 (Dächert et al. 2017) Let u ∈ Uz̄ = {u′ ∈ U (N) : z̄ < u′}. Then, for
every k = 1, . . . , p, one of the following two assertions holds exclusively:

1. uk ∈ U (N ∪ {z̄}), where uk denotes the k-child of u

123

A simple, efficient and versatile objective space algorithm... 365

2. u′ ∈ Uz̄, where u′ is the k-neighbor of u.

Theorem 2 (Min-component selection criterion) If, in every iteration of Algorithm 1,
we select a search zone ū which is minimal in some component i ∈ {1, . . . , p}, i.e.,
for which

ūi = min{ui : u ∈ U (N)} (6)

for some i ∈ {1, . . . , p} holds, and if we then solve an ε-constraint problem of the form
Pε,2
i (ū) or Pε,ρ

i (ū), then, whenever there is a solution z̄ ∈ ZN with z̄ < ū, the i-child
of ū exists, i.e., ūi ∈ U (N ∪ {z̄}). Moreover, ūi can not contain further nondominated
points, i.e., {z ∈ ZN : z < ūi } = ∅.

Proof We first show that ūi ∈ U (N ∪ {z̄}). Since z̄ < ū, using the notation of Propo-
sition 1, ū ∈ Uz̄ holds.

Assume that ūi /∈ U (N ∪ {z̄}). Then, due to Proposition 1, the i-neighbor u′ of
ū contains z̄. According to Lemma 5, u′

i < ūi holds for the i-neighbor u′ of ū.
However, this is a contradiction to ū being minimal with respect to component i .
Hence, ūi ∈ U (N ∪ {z̄}) must hold.

It remains to show that ūi does not contain further nondominated points. Assume
that there is a z′ ∈ ZN with z′ < ūi . Then, in particular, z′i < ūii = z̄i would hold. This,

however, is a contradiction to z̄ being optimal for the ε-constraint problem Pε,2
i (ū) or

Pε,ρ
i (ū). ��

Thanks to Theorem 2 we can remove one search zone per iteration, in which a
new nondominated point is detected, when using the ε-constraint scalarization. The
presented selection criterion is simple but not the only possible one. Another one is
presented as a heuristic in Tamby and Vanderpooten (2020) (see their Section 3.3). In
the following we formally prove that also their criterion yields the desired result of
avoiding to solve unnecessary scalarizations.

Tamby and Vanderpooten (2020) select a search zone u∗ by computing

(i∗, u∗) =

⎧
⎪⎪⎨

⎪⎪⎩

(1, (M, . . . , M)) if N = ∅,

argmax
u∈U (N),
i∈{1,...,p},

ui �=M

{h(i, u)} otherwise,
(7)

where

h(i, u) =
∏

j �=i

(
u j − z Ij

)

and z I denotes the ideal point, see (1). The index i∗ serves to make use of starting
solutions. If we ignore this additional feature, their selection criterion for a fixed index

123

366 K. Dächert et al.

i reads

u∗ =

⎧
⎪⎪⎨

⎪⎪⎩

(M, . . . , M) if N = ∅,

argmax
u∈U (N),
ui �=M

⎧
⎨

⎩

∏

j �=i

(
u j − z Ij

)
⎫
⎬

⎭
otherwise, (8)

for a certain i ∈ {1, . . . , p}. Note that, except in the first iteration, a product consisting
of p − 1 terms has to be computed for every search zone with ui �= M to find the
search zone with the largest projected hypervolume.

Theorem 3 [Max-projected-volume selection criterion] If, in every iteration of Algo-
rithm 1, we select a search zone ū according to (8), and if we then solve an ε-constraint
problem of the form Pε,2

i (ū) or Pε,ρ
i (ū), then, whenever there is a solution z̄ ∈ ZN

with z̄ < ū, the i-child of ū exists, i.e., ūi ∈ U (N ∪ {z̄}). Moreover, ūi can not contain
further nondominated points, i.e., {z ∈ ZN : z < ūi } = ∅.
Proof The proof is similar to the proof of Theorem 2. Assume that ūi /∈ U (N ∪ {z̄}).
Then, due to Proposition 1, the i-neighbor u′ of ū contains z̄. According to Lemma 5,
we then have u′

i < ūi , u′
k > ūk for some k �= i and u′

j = ū j for j �= i, k. However,
then

∏

j �=i

(
u′
j − z Ij

)
>

∏

j �=i

(
ū j − z Ij

)

would hold, a contradiction to ū satisfying (8). Hence, ūi ∈ U (N ∪ {z̄}) must hold.
The rest of the proof is the same as for Theorem 2. ��
Theorem 3 demonstrates that the heuristic selection criterion of Tamby and Vander-

pooten (2020) has indeed the same beneficial property as our selection criterion (6).
However, ours is much simpler, since it is solely based on one component value of a
search zone, an information that is available anyway. It does not require any compu-
tation of additional figures as, e.g., the projected hypervolumes computed in Tamby
and Vanderpooten (2020).

As done in (7), we could additionally choose the index i which then determines
the index to be optimized in the ε-constraint problem. Then, previously generated
nondominated points can be used as starting solutions as discussed in Lemma 1.

4 Search strategies in objective spacemethods

Objective space methods can be distinguished w.r.t. the way in which they search for
nondominated outcome vectors in the objective space and, in particular, in the search
region. While the previous sections focused on a formal description of the search
region and its decomposition into (rectangular) search zones, which naturally implies
decomposition-based methods, we will also review alternative search strategies and
provide a brief summary of some of the most successful objective space methods.

123

A simple, efficient and versatile objective space algorithm... 367

We classify these methods into three categories: Decomposition, recursive dimension
reduction and disjunctive constraints. However, some methods can not be assigned
clearly to one of these categories, wherefore we also discuss hybrid approaches in the
end.

4.1 Decomposition

The concept of decomposition relies on the idea that the search region can be described
by the union of rectangular sets which in turn can be described based on already
generated nondominated points. In every iteration, one of these rectangular sets can
be investigated which results in a rather simple IP to be solved. A natural and efficient
decomposition of the search region was described in Sect. 2.1 above. However, there
are different ways of decomposing the search region which will be briefly reviewed
in the following.

Oneway consists in subdividing the search region into disjoint cells each ofwhich is
defined by a lower and upper bound vector. When a new nondominated point is gener-
ated, its components are inserted as axis-parallel “hyper-cuts” to all (concerned) cells.
Dominated cells can be deleted immediately. Nevertheless, the number of remaining
cells grows quickly. The union of all disjoint cells represents the search region. This
idea is used in Laumanns et al. (2006, 2005), and Kirlik and Sayin (2014). The perfor-
mance of an algorithm based on such a disjoint decomposition highly depends on the
order in which the cells are investigated. Kirlik and Sayin (2014) select the box with
the largest volume, where the volume is defined by the upper bound of the cell and
the ideal point. Thereby they can avoid the generation of dominated points. However,
without further enhancement strategies, it might happen that a nondominated point is
computed more than once.

Other algorithms use a non-disjoint decomposition which leads to a smaller number
of boxes to be saved and investigated. In this case, the boxes are usually only defined
by upper bound vectors. Przybylski et al. (2010) use the idea of upper bounds in the
second phase of their algorithm. They remove redundant upper bounds by a filtering
step in every iteration. Lokman and Köksalan (2013) also implicitly use a sort of a
non-disjoint decomposition by varying the right-hand side vectors of the constraints
on the objective vectors in a systematic way based on all already generated nondomi-
nated points. Dächert and Klamroth (2015) propose a non-disjoint decomposition for
tricriteria optimization problemswhich results in a number of upper bound vectors that
depends linearly on the number of nondominated points. Klamroth et al. (2015) present
a constructive algorithm that generates the set of local upper bound vectors based on
a stable set of points, i.e., mutually nondominated points. The main idea is to use this
stable set of points as defining points and to formulate a criterionwhich guarantees that
the number of local upper bounds is minimal. This method will be referred to as the
defining point algorithm (DPA) in Sect. 5 below. Another non-disjoint decomposition
is proposed in Dächert et al. (2017) that is based on the inherent neighborhood struc-
ture between nondominated points and local upper bounds. Different to most other
recursive and decomposition approaches, Dächert and Klamroth (2015), Klamroth
et al. (2015) and Dächert et al. (2017) can guarantee that each nondominated point is

123

368 K. Dächert et al.

only generated once during the algorithm which implies that no strategy based on the
examination of all previously generated nondominated points is needed.Moreover, the
DPA approach is not restricted to the application of ε-constraint scalarizations for the
solution of subproblems. A specific implementation of the DPA approach is presented
in Tamby and Vanderpooten (2020). It uses the particular properties of ε-constraint
scalarizations in combination with a strategy for choosing the next search zone, which
allows to use feasible starting solutions for the next IP to be solved. Holzmann and
Smith (2018) suggest to use modified augmented weighted Tchebychev scalarizations
to solve the subproblems, both in combination with simple non-disjoint decomposi-
tions including redundancies, and in combination with the DPA approach. Numerical
tests confirm the clear superiority of the non-redundant decomposition from DPA.

4.2 Recursive dimension reduction

The idea of recursion is to reduce the dimension of the objective space (and hence
the search region) until single criterion or bicriteria (sub-)problems are obtained. The
results of lower level formulations are then used as bounds in the next higher level
problem in a systematic way.

There are different ways how to organize the recursion. One way consists in select-
ing two objectives (typically the first and the second) and computing all points that are
nondominated with respect to these two objectives. All other objectives are bounded
from above, where the upper bounds are narrowed iteratively in every level of recur-
sion. This is the basic idea of Chalmet et al. (1986), Özlen and Azizoğlu (2009) and
Özlen et al. (2014).

Others also compute all possible combinations of recursions. Given a multiob-
jective optimization problem with p objectives they consider all p corresponding
(p − 1)-dimensional optimization problems and so on. Therefore, a tree is created
with bicriteria optimization problems in its leaf nodes. It is shown in Ehrgott and
Tenfelde-Podehl (2003) that the points obtained by solving all (p − 1)-criteria prob-
lems represent a subset of the nondominated set of the original problem. This way
of recursion has been used, e.g., in Tenfelde-Podehl (2003) and as a subprocedure in
Dhaenens et al. (2010) and Przybylski et al. (2010).

A drawback of recursive algorithms is the fact that nondominated points are typ-
ically computed several times since they are often optimal for multiple recursive
subproblems. Since the solution of IPs is costly, it is critical for the performance to
avoid the repeated generation of already known nondominated points. In order to deal
with this issue the information from all problems solved before can be stored. More
precisely, this requires to save the right-hand side values of the bounded objectives as
well as the result of the corresponding optimization run, i.e., the optimal solution of
the problem or the information that it is infeasible. Before solving a new problem, the
list of already solved problems is scanned. This idea is implemented in Özlen et al.
(2014) and improved the number of solved IPs drastically.

123

A simple, efficient and versatile objective space algorithm... 369

4.3 Disjunctive constraints

Using disjunctive constraints is a general concept in optimization that is tailored for
the case that the feasible set is non-convex. Typically, artificial binary variables are
used to activate or deactivate parts of the feasible set. We refer, e.g., to the textbook
Nemhauser and Wolsey (1999) for the general concept.

In the context of multiobjective optimization problems this concept is useful to
describe the search region, which is a non-convex set. It is then possible to consider
all remaining parts of the search region (that are not already known to be empty)
simultaneously, i.e., to search for a new nondominated point by solving one single IP
formulated over the complete (non-convex) search region. In this case, every nondom-
inated point is computed exactly once. However, with every new nondominated point,
the number of constraints and artificial binary variables increases which makes this
approach computationally demanding and hardly ever competitive. Disjunctive con-
straints are used in Klein and Hannan (1982), Sylva and Crema (2004) and Lokman
and Köksalan (2013).

4.4 Hybrid approaches

There are also hybrid methods that combine ideas from the three categories mentioned
above. Boland et al. (2016) propose a method called L-shape search method for tricri-
teria problems that is a hybrid of disjunctive constraints and decomposition. The idea
is to use disjunctive constraints only with respect to the lastly generated nondominated
point which results in an L-shape element that is investigated with priority, i.e., shrunk
quickly towards the ideal point. During the procedure, unexplored rectangular sets are
saved and investigated in the later phase of the algorithm. Boland et al. (2017a) extend
the L-shape search method to any number of objectives. The approach of Boland
et al. (2017b) for tricriteria optimization problems can be seen as a hybrid of recursion
and decomposition. It deals with upper bound vectors similar to other decomposition
approaches. However, for a certain sequence of problems to be solved it keeps the
bound on one of the objectives fixed as in a recursive method.

Bektaş (2018) presents a hybrid approach for multiobjective IPs that combines
disjunctive constraints, inspired by Klein and Hannan (1982) and Sylva and Crema
(2004), with decomposition. The disjunctive single-objective IPs use fewer variables
than the original approaches, and the number of solver-calls (i.e., single-objective IPs
solved) is reduced as compared to pure decomposition methods. However, the higher
complexity of the individual solver calls still counteracts the speed-up obtained from
solving fewer IPs.

5 Numerical study

For our numerical study we provide an implementation of the defining point algorithm
(DPA) in C++. The source files as well as our own test files can be downloaded from
https://github.com/kerstindaechert/DefiningPointAlgorithm. For the test files taken

123

https://github.com/kerstindaechert/DefiningPointAlgorithm

370 K. Dächert et al.

from other authors we refer to the respective urls. We compare our implementation to
three state-of-the-art algorithms for which open source code is available and which are
also implemented in C++. Moreover, all three methods invoke the commercial solver
CPLEX to solve the single-objective scalarizations. Note that the respective implemen-
tations are of different types according to the classification shown in Sect. 4: disjoint
decomposition (method “Epsilon” by Kirlik and Sayin 2014), recursive dimension
reduction (method “AIRA” by Özlen et al. 2014) and a hybrid of disjunctive con-
straints and decomposition (method “DCM” by Boland et al. 2017a), supplemented
by our “DPA” implementation which is a pure non-disjoint and non-redundant decom-
position method.

We acknowledge that there are several other objective space methods that could
be used for further comparisons, such as, for example, Bektaş (2018), Holzmann and
Smith (2018), Tamby and Vanderpooten (2020). Our comparison are focused on the
above methods Epsilon, AIRA and DCM for the following reasons: (1) C++ imple-
mentations are available for these methods, and they can be combined with the same
versions of single-objective solvers (CPLEX in our case). This leads to a fair compar-
ison and avoids bias resulting from translations from other programming languages
and/or re-implementations of existing code in C++. (2) The selected methods are rep-
resentative in the sense that they cover different variants of objective space methods
as discussed in Sect. 4 above. (3) In particular, Epsilon, the disjoint decomposition
method of Kirlik and Sayin (2014), is used in a majority of all comparative studies on
objective space methods. It can thus be seen as a general reference and may provide
information on the relative performance w.r.t. other methods that are not included in
this study.

In Sect. 5.1 we present our implementation in more detail. In Sect. 5.2 we state
the benchmark algorithms with their current sources. We present the test instances in
Sect. 5.3, followed by the discussion of the numerical results in Sect. 5.4.

5.1 Implementation

We implement the defining point algorithm (DPA) in C++. It is based on the original
implementation of Klamroth et al. (2015) in C which has been designed to find and
insert discrete sets of (nondominated) points. Hence, our main adjustment besides the
translation toC++ is tomake it applicable to solvemultiobjective integer programming
problems. To do so we add an interface to the commercial solver CPLEX to solve
ε-constraint scalarizations. Moreover, we implement the enhancement discussed in
Sect. 3.

Algorithm 2 shows the pseudocode of our implementation. Note that it has the
same structure as Algorithm 1, the Generic Scalarization-Based Algorithm. We read
theMOIP problem from a textfile and transform it into minimization format if needed.
In ObtainBounds we compute the ideal point z I as well as a global upper bound
zM by minimizing or maximizing each objective function individually, respectively.
The values of zM incremented by 1 are used to define the upper bound u of the initial
box. We initialize the list of boxes U by appending the initial box. As long as U is
not empty, we select a box in SelectBoxToRefine. While it is possible to select

123

A simple, efficient and versatile objective space algorithm... 371

any box here, in order to make use of Theorem 2, we select a box with minimal value
ui according to (6), where the index i has been specified by the user and is part of the
Input of Algorithm 2.

Algorithm 2: Defining Point Algorithm with ε-constraint scalarization
Input : MOIP problem, e-constraint index i
Output: Set of nondominated points N

1 [z I , zM] ← ObtainBounds // Compute ideal point and global upper bound

2 u ← CreateInitialBox(zM) // Initialize u
3 U ← {u} // Initialize list of boxes
4 N ← ∅ // Initialize list of nondominated points
5 s ← 1 // Iteration counter
6 while U �= ∅ do
7 ū ← SelectBoxToRefine(U) // Get search zone with minimal value ui
8 (f easible, zs) ← Solve(ū) // Solve scalarization
9 if f easible and zsi < ūi then

10 N ← N ∪ {zs } // save new nondominated point
11 U ← UpdateList(U , zs) // update search region
12 else
13 U ← U\{ū} // remove explored search zone from search region
14 end
15 s ← s + 1
16 end

We then solve a scalarization, more precisely a two-stage or augmented ε-constraint
method as presented in Sect. 2.2. We call the resulting variants DPA-TS and DPA-A,
respectively. Note that we do not make use of the option of feeding the solver with
a feasible starting solution. However, the defining point of the selected local upper
bound ū in component i is typically a feasible solution for (Pε

i (u)) and (Pε,ρ
i (u))

and might be the result of the scalarization when the box is empty. Hence, in case of
feasibility, we additionally check whether zsi < ūi . We append zs only to the list N if
the inequality is satisfied, otherwise we remove ū from U .

In case a new nondominated point has been found, the list of local upper bounds
is updated in UpdateList(U , zs) which is basically a re-implementation of Algo-
rithm 5 of Klamroth et al. (2015), however, without generating the i-child of ū which
yields an empty search zone according to Theorem 2. For the pseudocode and justifi-
cation of this routine we refer to Klamroth et al. (2015).

5.2 Benchmark algorithms

In our numerical study we take into account recently proposed algorithms that offer
an open-source implementation in C++ and invoke the commercial solver CPLEX to
solve scalarizations. To the best of our knowledge the following algorithms satisfy
these requirements:

• Epsilon (Kirlik and Sayin 2014): http://home.ku.edu.tr/~moolibrary/

123

http://home.ku.edu.tr/~moolibrary/

372 K. Dächert et al.

• AIRA (Özlen et al. 2014, Pettersson and Ozlen 2019): An implementation in
C is available at https://bitbucket.org/melihozlen/moip_aira (last update 2017).
A parallelized version of this code in C++ is available at https://github.com/
WPettersson/moip_aira. It can also be used in a non-parallel fashion, hence, we
used this implementation for our comparison.

• DCM (Boland et al. (2017a): http://www.eng.usf.edu/~hcharkhgard/

5.3 Instances

For problems with three to five objectives we use publicly available benchmark
instances of knapsack, assignment and travelling salesman instances. For our tests
with up to ten objectives we create new instances of knapsack and assignment prob-
lems.

5.3.1 Knapsack problem

We use knapsack instances from http://home.ku.edu.tr/~moolibrary/ which have been
used as a benchmark in Kirlik and Sayin (2014) and are still used for comparison
in recent publications. These instances include problems with three objectives and
10, 20, . . . , 100 items, problems with four objectives and 10, 20, 30, 40 items as well
as problems with five objectives and 10 and 20 items. For each problem size there are
10 instances, so in total this set consists of 160 test files.

In order to create instances with six to ten criteria we used the test problem creator
from https://github.com/wpettersson/ProblemGenerator.

5.3.2 Assignment problem

Assignment instances are also available at http://home.ku.edu.tr/~moolibrary/. These
instances include problems with three objectives and 5, 10, . . . , 50 items. Again, for
each problem size there are 10 instances.

We also created instanceswithmore criteriawith the help of the test problem creator
from https://github.com/wpettersson/ProblemGenerator.

5.3.3 Travelling salesman problem

We use instances with three and four objectives from Pettersson and Ozlen (2019).
Thereby, the problems with three objectives are available under the direct link https://
figshare.com/articles/3_objective_problem_test_cases/4814695. The problems with
four objectives are available here: https://figshare.com/articles/4_objective_problem_
test_cases/4814698.

5.4 Numerical results

All algorithms are implemented in C++ and compiled for the Microsoft Windows
64 Bit operation system. For solving the optimization problems, the IBM CPLEX

123

https://bitbucket.org/melihozlen/moip_aira
https://github.com/WPettersson/moip_aira
https://github.com/WPettersson/moip_aira
http://www.eng.usf.edu/~hcharkhgard/
http://home.ku.edu.tr/~moolibrary/
https://github.com/wpettersson/ProblemGenerator
http://home.ku.edu.tr/~moolibrary/
https://github.com/wpettersson/ProblemGenerator
https://figshare.com/articles/3_objective_problem_test_cases/4814695
https://figshare.com/articles/3_objective_problem_test_cases/4814695
https://figshare.com/articles/4_objective_problem_test_cases/4814698
https://figshare.com/articles/4_objective_problem_test_cases/4814698

A simple, efficient and versatile objective space algorithm... 373

Table 1 CPU times (absolute) on knapsack instances from Kirlik and Sayin (2014). If not all of the 10
problems in one instance could be solved within the given time, the number of solved problems is indicated
in parentheses

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 9.8 0.24 0.20 0.27 0.31 0.62

20 38 1.14 0.87 1.27 1.41 1.82

30 115.8 4.77 3.61 6.05 6.19 7.85

40 311.2 17.13 12.35 22.49 26.27 28.72

50 444.2 28.41 19.94 36.45 48.71 46.44

60 917.1 72.54 50.85 98.14 166.48 118.86

70 1643.4 161.86 114.58 232.77 534.98 265.45

80 2295.8 249.08 174.51 354.34 911.59 393.98

90 3107.8 410.20 293.55 665.13 1863.69 647.32

100 5849 1035.90 758.72 2220.52 5753.29 1613.51

4 10 11.6 0.35 0.32 0.40 0.41 0.80

20 136.8 9.95 8.77 32.24 14.37 22.38

30 397.6 44.39 37.85 385.32(9) 70.50 109.28

40 1808.6 349.91 297.00 629.49(2) 1091.37 1015.94

5 10 16.2 0.68 0.64 1.06 0.66 1.41

20 161.2 29.71 28.76 170.26(6) 44.11 87.69

Optimizer 12.10 solver is used. The comparisons were executed on an Intel Core i7–
7500U@2.90GHzwith 16GBofRAM,which is a rather slowcomputer in comparison
to most popular processors. However, it demonstrates that the described algorithms
also run on personal laptops and do not require high-performance compute clusters.
All algorithms generate a textfile as output that contains the generated nondominated
points. We compare these output files to make sure that all algorithms work correctly.

Some of the compared algorithms measure the runtime when executing, others do
not. Since we do not want to alter the algorithms, we measure runtime as the time
between calling the main routine until its termination. In order to avoid excessive
runtimes we use the following timeout rule for all knapsack and assignment instances:
Wemeasure the runtimeofDPA-TSanduse it as a reference. Themaximumruntime for
all other algorithms is at least 30 minutes and at most ten times the reference runtime.
For the TSP instances we reduce the upper bound of the timeout to three (instead of
ten) times the runtime of DPA-TS to obtain shorter overall running times. In order
to obtain stable run times, we run every benchmark instance twice and compute the
average runtime.

5.4.1 Knapsack instances from Kirlik and Sayin (2014)

We first study the knapsack instances with three to five objectives in Tables 1, 2, 3 and
4. Thereby, Table 1 shows CPU times, Table 2 the number of calls to CPLEX, thus,
the number of solved IPs. For better comparison, the following two Tables 3 and 4

123

374 K. Dächert et al.

Table 2 Number of solved IPs (absolute) on knapsack instances from Kirlik and Sayin (2014). If not all of
the 10 problems in one instance could be solved within the given time, the number of solved problems is
indicated in parentheses

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 9.8 34.4 24.6 40.3 18.4 52

20 38 118.9 80.9 145.8 78.9 206.8

30 115.8 351.9 236.1 446.9 258.2 654.8

40 311.2 935.2 624 1202.7 727.6 1779.2

50 444.2 1329 884.8 1727.8 1044.9 2567.7

60 917.1 2742 1824.9 3571.8 2216.1 5319

70 1643.4 4885.9 3242.5 6402.3 4022.5 9558.9

80 2295.8 6816.6 4520.8 8976.7 5691.9 13,411.5

90 3107.8 9248.4 6140.6 12,141.5 7671 18,148.3

100 5849 17,379.4 11,530.4 22,930.2 14,620.5 34,315

4 10 11.6 59.8 48.2 75.5 24.9 125.3

20 136.8 801.8 665 1211.5 514.1 2300.7

30 397.6 2394.1 1996.5 3423.6(9) 1666.9 7388.8

40 1808.6 11,609.3 9800.7 4849.5(2) 9044.6 37,130.3

5 10 16.2 142.2 126 199.8 43.7 415.2

20 161.2 2033.6 1872.4 1318.7(6) 1071.7 7571.2

Table 3 Relative CPU times
(deviation from the fastest) on
knapsack instances from Kirlik
and Sayin (2014). If not all of
the 10 problems in one instance
could be solved within the given
time, we do not indicate relative
figures since this would be
misleading

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 9.8 1.19 1.01 1.29 1.54 3.30

20 38 1.30 1 1.44 1.62 2.09

30 115.8 1.33 1 1.67 1.70 2.16

40 311.2 1.38 1 1.85 2.09 2.35

50 444.2 1.42 1 1.79 2.35 2.30

60 917.1 1.42 1 1.93 3.15 2.34

70 1643.4 1.42 1 1.99 4.30 2.33

80 2295.8 1.43 1 2.02 5.01 2.27

90 3107.8 1.41 1 2.15 6.00 2.22

100 5849 1.38 1 2.64 7.22 2.17

4 10 11.6 1.12 1.03 1.25 1.32 2.79

20 136.8 1.15 1 2.62 1.45 2.45

30 397.6 1.17 1 – 1.76 2.84

40 1808.6 1.18 1 – 2.93 3.09

5 10 16.2 1.18 1.11 1.69 1.16 2.69

20 161.2 1.14 1.05 – 1.32 2.90

123

A simple, efficient and versatile objective space algorithm... 375

show the same results but this time relative w.r.t. the best performing algorithm per
problem, which means relative CPU time with respect to the fastest and the relative
number of IP calls with respect to the one with the smallest number of IPs. Note that
since we are showing average figures, it might happen that none of the algorithms
reaches a value of 1 which means that it is not superior in all of the 10 problems.

Considering CPU times we note that DPA outperforms the three benchmark algo-
rithms Epsilon, DCM and AIRA considerably, especially for large instance sizes.
With growing problem size, the superiority of DPA becomes more pronounced. For
example, for p = 3 and n = 100, AIRA requires a relative runtime of 2.17, EPS a
relative runtime of 2.64 and DCM a relative runtime of even 7.22 compared to DPA-A.
Expressed in absolute terms, this means a runtime of 758.72 s for DPA-A, 1613.51 s
for AIRA, 2220.52 s for EPS and 5753.29 s for DCM.

Note that EPS ran out of the given time limit of ten times the runtime of DPA-TS
in 13 of the 160 problems, all of them from instances 4–30, 4–40 and 5–20. To some
extent this matches the results presented in Kirlik and Sayin (2014), where for 4–40
only five of the ten problems could be solved within a time limit of 25000 s of CPU
time. AIRA and DCM solve all problems reliably.

Comparing DPA within its two variants, DPA-A is fastest in most of the instances.
The two-stage variant DPA-TS requires between 1.12 up to 1.43 times longer CPU
times. This goes in line with the fact that the two-stage variants solve one IP more per
nondominated point compared to the augmented variant.

Comparing the number of CPLEX calls in Tables 2 and 4, DCM solves less IPs
than all the other algorithms for the small instances. This is not surprising since DCM
uses disjunctive programs to search multiple rectangular boxes at once. This reduces
the number of CPLEX calls on the one hand, but yields more complicated models
involving additional binary variables on the other hand. As can be seen from the CPU
times, the strategy of solving less but more complicated problems does not pay off.
Even if DPA-A solves much more IPs in some instances, it requires considerably less
CPU time.

5.4.2 Assignment instances from Kirlik and Sayin (2014)

The results obtained for the benchmark assignment instances with three objectives
are given in Tables 5, 6, 7, and 8. Again, we depict absolute CPU times and number
of solved IPs as well as their relative conterparts. While the average number of non-
dominated points of these instances is similar to those of the knapsack instances, it is
common knowledge that assignment problems are much harder to solve.

With respect to CPU time, the DPA algorithms perform best again. For instance
3–50 EPS requires 1.69 more runtime than DPA-A, followed by AIRA with a factor
of 1.97 and DCM with a factor of 10.26. While DCM does not only consume much
more CPU time than all other algorithms for this instance, it also does not find all
nondominated points reliably. More precisely, for the ten problems contained in 3–50,
it misses on average around 10% of the nondominated set.

With respect to the number of IPs, DPA-A solves the smallest number in all
instances, followed by DCM, DPA-TS, EPS and AIRA, respectively.

123

376 K. Dächert et al.

Table 4 Relative number of
solved IPs (deviation from the
smallest) on knapsack instances
from Kirlik and Sayin (2014). If
not all of the 10 problems in one
instance could be solved within
the given time, we do not
indicate relative figures since
this would be misleading

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 9.8 1.98 1.44 2.26 1 2.80

20 38 1.57 1.07 1.91 1.02 2.69

30 115.8 1.49 1 1.88 1.06 2.74

40 311.2 1.50 1 1.92 1.15 2.84

50 444.2 1.50 1 1.95 1.16 2.89

60 917.1 1.50 1 1.95 1.21 2.91

70 1643.4 1.51 1 1.97 1.24 2.95

80 2295.8 1.51 1 1.98 1.25 2.96

90 3107.8 1.51 1 1.98 1.25 2.95

100 5849 1.51 1 1.99 1.27 2.97

4 10 11.6 2.59 2.10 3.09 1 4.82

20 136.8 1.83 1.50 2.63 1 4.87

30 397.6 1.51 1.25 – 1 4.56

40 1809 1.35 1.13 – 1 4.22

5 10 16.2 3.43 3.02 4.64 1 9.30

20 161.2 2.29 2.07 – 1 7.88

Table 5 CPU times (absolute) on assignment instances from Kirlik and Sayin (2014). For instance 3–50,
DCM only found on average 90% of the nondominated points, marked by ∗
p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 5 14.1 0.33 0.25 0.30 0.30 0.67

10 176.8 9.66 8.01 10.52 22.52 12.77

15 674.9 72.69 56.26 87.46 155.50 108.05

20 1860.5 283.41 209.34 346.41 680.95 416.30

25 3567.8 681.26 492.85 819.14 1989.17 1017.63

30 6181.3 1483.08 1071.81 1790.61 5319.32 2128.10

35 8972.3 2605.24 1879.81 3127.74 11,445.82 3757.89

40 14,679.7 4933.75 3526.23 5951.51 30,241.19 7037.86

45 17,702.2 7039.59 5033.75 8401.81 48,333.81 9959.07

50 24,916.8 11,776.82 8377.07 14,131.75 84,993.60∗ 16,420.50

5.4.3 Travelling salesman instances from Pettersson and Ozlen (2019)

As a third test bed we use travelling salesman instances with three and four objectives.
Note that each problem size consists of five instances. Moreover, we set the timeout
here to at most three times the runtime of DPA-TS (but again at least 30min). The
results are shown in Tables 9, 10, 11, and 12. The results are in line with the results
for knapsack and assignment instances, and, thus, confirm the general behavior for
three and four objectives: DPA-A is fastest in nearly all instances, followed by DPA-
TS. The behavior of the three remaining algorithms depends on the problem size. For

123

A simple, efficient and versatile objective space algorithm... 377

Table 6 Number of solved IPs (absolute) on assignment instances from Kirlik and Sayin (2014). For
instance 3–50, DCM only found on average 90% of the nondominated points, marked by ∗
p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 5 14.1 45.2 31.1 53 27.7 70.2

10 176.8 472.6 295.8 572 352.2 841.9

15 674.9 1743.9 1068.8 2128.2 1360.6 3178.4

20 1860.5 4628.3 2767.9 5428.4 3676.3 8120.4

25 3567.8 8643.9 5075.8 10,132.2 7028.8 15,322.9

30 6181.3 14,753.4 8573.8 16,669.9 11,961.2 25,195.6

35 8972.3 21,193.2 12,223.9 24,045.7 17,264.7 36,297.2

40 14,679.7 34,035.8 19,368.1 38,363.8 27,933.3 57,969.9

45 17,702.2 40,822.3 23,126.7 45,724.2 33,560.9 69,082.4

50 24,916.8 56,876.1 31,965.6 62,968 41,067.4∗ 95,343

Table 7 Relative CPU times (deviation from the fastest) on assignment instances from Kirlik and Sayin
(2014). For instance 3–50, DCM only found on average 90% of the nondominated points, marked by ∗
p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 5 14.1 1.3 1.04 1.25 1.21 2.87

10 176.8 1.2 1 1.3 2.86 1.57

15 674.9 1.35 1 1.66 3.24 1.98

20 1860.5 1.30 1 1.56 2.82 1.92

25 3567.8 1.39 1 1.66 3.97 2.06

30 6181.3 1.39 1 1.67 4.94 1.99

35 8972.3 1.39 1 1.67 6.05 2

40 14,679.7 1.4 1 1.68 8.40 2

45 17,702.2 1.40 1 1.68 9.51 1.99

50 24,916.8 1.41 1 1.69 10.26∗ 1.97

Table 8 Relative number of
solved IPs (deviation from the
smallest) on assignment
instances from Kirlik and Sayin
(2014). For instance 3–50, DCM
only found on average 90% of
the nondominated points,
marked by ∗

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 5 14.1 1.67 1.16 1.94 1.00 2.53

10 176.8 1.60 1 1.91 1.18 2.81

15 674.9 1.63 1 1.99 1.27 2.98

20 1860.5 1.67 1 1.95 1.32 2.92

25 3567.8 1.70 1 1.99 1.38 3.01

30 6181.3 1.72 1 1.95 1.40 2.94

35 8972.3 1.73 1 1.97 1.41 2.97

40 14,679.7 1.76 1 1.98 1.44 2.99

45 17,702.2 1.77 1 1.98 1.45 2.99

50 24,916.8 1.78 1 1.97 1.30∗ 2.99

123

378 K. Dächert et al.

Table 9 CPU times (absolute) on TSP instances from Pettersson and Ozlen (2019). For instance size 4–15
we only solve three of the five problems. If not all of the 5 (3) problems in one instance could be solved
within the given time (at most three times the runtime of DPA-TS), the number of solved problems is
indicated in parentheses

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 250 24.24 16.15 27.22 34.00 33.72

12 384 38.62 27.80 48.88 68.35 58.60

15 1202 223.28 164.02 300.31 646.97 351.80

20 3237.2 1071.85 772.78 1475.89 −(0) 1662.71

30 11,651.4 8324.52 6086.55 18,678.32 −(0) 12,942.86

4 6 50.4 2.96 2.49 4.37 3.45 5.50

8 253.8 31.32 27.27 145.16 58.26 68.94

10 683.6 157.79 137.68 535.70(2) 418.95 370.33

12 3036 1348.79 1180.08 −(1) −(2) 1889.35(4)

15(3) 8679.7 7493.48 6505.86 −(0) −(0) −(1)

Table 10 Number of solved IPs (absolute) on TSP instances from Pettersson andOzlen (2019). For instance
size 4–15 we only solve three of the five problems. If not all of the 5 (3) problems in one instance could be
solved within the given time (at most three times the runtime of DPA-TS), the number of solved problems
is indicated in parentheses

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 250 753.8 503.8 977.8 610 1448.2

12 384 1151.8 767.8 1484.6 903 2200.8

15 1202 3592.8 2390.8 4745 2945 7090.6

20 3237.2 9640.4 6403.2 12,757.4 −(0) 19,093.2

30 11,651.4 34,554.8 22,903.2 45,737.4 −(0) 68,502.6

4 6 50.4 276.2 225.8 406 156 758.2

8 253.8 1567 1313.2 2522.6 1125.4 4927.6

10 683.6 4455 3771.4 3568(2) 3536 14,249.8

12 3036 20,228 17,192 −(1) −(2) 42,134.5(4)

15 (3) 8679.7 58,459 49,779.7 −(0) −(0) 107,469(1)

smaller problems, EPS is faster than DCM, which in turn is faster than AIRA. At some
problem size, AIRA gets better than DCM. For large problems, AIRA outperforms
DCM and EPS.

5.4.4 High-dimensional instances

Finally we investigate how the algorithms perform when applied to instances with up
to 10 objectives. To the best of our knowledge, we are the first to present results for
problems with more than six objectives by exact algorithms. Since the computational
effort increases considerably with an increasing number of objectives, we restrict the

123

A simple, efficient and versatile objective space algorithm... 379

Table 11 Relative CPU times (deviation from the fastest) on TSP instances from Pettersson and Ozlen
(2019). For instance size 4–15 we only solve three of the five problems. If not all of the 5 (3) problems
in one instance could be solved within the given time (at most three times the runtime of DPA-TS), the
number of solved problems is indicated in parentheses

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 250 1.46 1 1.69 2.14 2.09

12 384 1.39 1 1.75 2.42 2.10

15 1202 1.36 1 1.83 3.89 2.14

20 3237.2 1.39 1 1.90 −(0) 2.15

30 11,651.4 1.38 1 3.07 −(0) 2.15

4 6 50.4 1.18 1.02 1.66 1.30 2.06

8 253.8 1.14 1 4.37 2.05 2.48

10 683.6 1.17 1 −(2) 2.77 2.57

12 3036 1.15 1 −(1) −(2) 2.83(4)

15 (3) 8679.7 1.2 1 −(0) −(0) −(1)

Table 12 Relative number of solved IPs (deviation from the smallest) on TSP instances from Pettersson
and Ozlen (2019). For instance size 4–15 we only solve three of the five problems. If not all of the 5 (3)
problems in one instance could be solved within the given time (at most three times the runtime of DPA-TS),
the number of solved problems is indicated in parentheses

p n |ZN | DPA-TS DPA-A Eps DCM AIRA

3 10 250 1.50 1 1.93 1.21 2.86

12 384 1.50 1 1.93 1.17 2.86

15 1202 1.50 1 1.98 1.23 2.96

20 3237.2 1.51 1 1.99 −(0) 2.98

30 11,651.4 1.51 1 2.00 −(0) 2.99

4 6 50.4 1.97 1.6 2.72 1 4.88

8 253.8 1.43 1.2 2.29 1 4.45

10 683.6 1.40 1.17 −(2) 1 4.29

12 3036 1.27 1.07 −(1) −(2) 4.01(4)

15 (3) 8679.7 1.2 1 −(0) −(0) −(1)

number of knapsack items (variables) to at most 15. For the assignment instances with
six to ten objectives we present results for 5 items, i.e., 25 variables. Moreover, we
evaluate only five or three problems per instance.

The results of the knapsack instances are shown in Tables 13 and 14. First we
state that both variants, DPA-TS and DPA-A, solve all instances reliably. Moreover,
we observe that the main difference between both variants, the saving of |ZN | inte-
ger programs when using the augmented variant, looses importance with increasing
number of objectives. This also translates to the CPU times. Considering the results
of EPS we observe that it can only solve the smaller instances within the given time
frame. While, e.g., DPA-TS solves instance 7–10 with on average 81.8 nondominated

123

380 K. Dächert et al.

Table 13 CPU times (absolute) on high-dimensional knapsack instances. The number of evaluated problems
per instance size changes with p and n; it is reported in parentheses in the third column. The sign “−” means
stopped by timeout

p n i |ZN | DPA-TS DPA-A Eps DCM AIRA

6 5 (5) 6.6 0.29 0.26 0.34 0.21 0.52

10 (5) 58.4 5.47 5.33 333.61 6.10 14.92

15 (3) 86.3 15.09 14.55 – 21.75 49.56

7 5 (5) 10 0.64 0.63 3.12 0.43 1.75

10 (5) 81.8 34.67 34.95 – 40.56 161.15

15 (3) 182.7 305.55 304.82 – 147.63(2) 446.26(2)

8 5 (5) 10 0.82 0.85 23.47 0.47 2.40

10 (5) 98.2 114.95 115.18 – 124.46(2) 455.71(3)

15 (3) 65.3 161.28 161.39 – 358.64 256.21(2)

9 5 (5) 10 1.05 1.19 332.54 0.51 3.55

10 (5) 96.2 276.10 278.36 – 620.74(4) 1538.96(1)

15 (3) 178.7 1923.23 1935.12 – 7325.56(2) –

10 5 (5) 14.2 1.56 1.70 – 0.49 3.99

10 (5) 116 973.38 965.93 – 2202.52(4) –

15 (3) 238.3 7328.30 6974.35 – 86,402.6(2) –

points within 34.67 s, EPS can not provide the nondominated set within half an hour.
The smaller instances 6–5, 6–10, 7–5, 8–5 and 9–5 can be solved by EPS, but in all
but one instance EPS is the slowest algorithm. AIRA also shows difficulties with the
larger instances. In general, it performs better than EPS (except for instance 6–5) but
worse than the DPA variants and DCM. DCM outperforms the DPA variants with
respect to CPU times for the smaller instances 6–5, 7–5, 8–5, 9–5 and 10–5, for which
the solution time is less than 1 s or slightly above. However, the DPA variants show
their superiority in all larger instances. DCM can only partially solve these instances.
The average figures shown in Table 13 only take the solved problems into account.
Even for these, the average CPU times are, in general, higher than those of the DPA
variants. Looking at the number of IPs, DCM solves significantly less IPs than both
DPA variants in all high-dimensional instances. This underlines again that the number
of IPs is not the main figure to look at but that the structure of these IPs, in particular
the number of the involved integer variables, is decisive for the CPU time.

The results of the assignment instances are given in Tables 15 and 16. In general,
the results are similar to the knapsack results. However, the DPA variants perform
even better. Again, DPA-TS and DPA-A solve all instances reliably and are, apart
from instances 4–5 and 5–5, clearly the fastest algorithms compared to the other three
algorithms. However, different to the knapsack results, DCM is outperformed by the
DPA variants also for most of the smaller instances. Besides, AIRA performs better
for the assignment instances. It outperforms DCM in the larger instances 4–15, 4–20
and 5–10 with respect to CPU time, but is still inferior to the DPA variants.

123

A simple, efficient and versatile objective space algorithm... 381

Table 14 Number of solved IPs (absolute) on high-dimensional knapsack instances. The number of evalu-
ated problems per instance size changes with p and n; it is reported in parentheses in the third column. The
sign“−” means stopped by timeout

p n i |ZN | DPA-TS DPA-A Eps DCM AIRA

6 5 (5) 6.6 74.4 67.8 90.4 15.4 177.8

10 (5) 58.4 981.4 923 1531.4 326 4024.4

15 (3) 86.3 1711.3 1625 – 751.7 8856

7 5 (5) 10 287.2 277.2 419.8 37.6 1107.8

10 (5) 81.8 4280.6 4198.8 – 1308 22,772.4

15 (3) 182.7 19,321 19,138.3 – 2649(2) 33,278(2)

8 5 (5) 10 370.4 360.4 504.4 33.8 1363

10 (5) 98.2 13,765.2 13,667 – 2878.5(2) 35,266.5(3)

15 (3) 65.3 11,293.3 11,228 – 1066 33,272.5(2)

9 5 (5) 10 588.4 578.4 876.4 39.4 2748.2

10 (5) 96.2 31,436.6 31,340.4 – 8664.3(4) 82,085(1)

15 (3) 178.7 110,496.7 110,318 – 27,285.5(2) –

10 5 (5) 14.2 975.8 961.6 – 42.6 4329.6

10 (5) 116 90,220.4 90,104.4 – 12,537.2(4) –

15 (3) 238.3 364,318.7 364,080.3 – 94,734.5(2) –

Table 15 CPU times (absolute) on high-dimensional assignment instances. The number of evaluated prob-
lems per instance size changes with p and n; it is reported in parentheses in the third column. The sign “−”
means stopped by timeout. For instance 4–20, DCM only found 28,869 of the 33,672 points, marked by ∗
p n i |ZN | DPA-TS DPA-A Eps DCM AIRA

4 5 (10) 29.3 0.55 0.52 0.74 0.54 0.92

10 (10) 971.2 184.85 159.74 330.61 315.78 366.41

15 (4) 6787.5 2613.33 2253.98 5237.27 6707.09 5005.14

20 (1) 33,672 29,365.56 26,813.56 59,572.00 86,732.04* 42,150.95

5 5 (10) 47.9 2.85 2.99 8.42 2.91 5.68

10 (10) 3465.6 2240.03 2154.90 – 9146.58 6053.46

6 5 (10) 70.4 9.23 10.10 571.77(9) 12.99 21.04

7 5 (5) 68.2 16.40 18.48 – 25.52 41.80

8 5 (5) 80.4 38.73 44.15 – 108.55 403.19

9 5 (5) 105.4 408.21 468.40 – 2030.70 –

10 5 (5) 106.8 986.12 1108.12 – 5514.01 –

6 Summary and further ideas

In this paper we combine the defining point algorithm (DPA) introduced in Klamroth
et al. (2015) with suitable scalarization methods to obtain a new versatile approach
to compute the nondominated set of multiobjective integer programming problems.

123

382 K. Dächert et al.

Table 16 Number of solved IPs (absolute) on high-dimensional assignment instances. The number of
evaluated problems per instance size changes with p and n; it is reported in parentheses in the third column
The sign “−” means stopped by timeout. For instance 4–20, DCM only found 28,869 of the 33,672 points,
marked by ∗
p n i |ZN | DPA-TS DPA-A Eps DCM AIRA

4 5 (10) 29.3 139.4 110.1 194.4 69.6 351

10 (10) 971.2 4578.2 3608 6902.3 3279.2 13,714.3

15 (4) 6787.5 33,351.75 26,655.25 45,366.75 22,864.75 91,014.25

20 (1) 33,672 235,024 200,411 208,271 83,756∗ 424,282

5 5 (10) 47.9 476.8 428.9 783.7 223.9 1797.6

10 (10) 3465.6 41,910.3 38,452.9 – 29,495.7 166,487.8

6 5 (10) 70.4 1476.6 1406.2 2079 (9) 614.6 7130.7

7 5 (5) 68.2 2907.6 2839.4 – 893.6 16,007.4

8 5 (5) 80.4 7375 7294.6 – 2439.2 45,095.6

9 5 (5) 105.4 41,350.4 41,245 – 13,362.2 –

10 5 (5) 106.8 72,819.4 72,712.6 – 20,545.2 –

Our theoretical and numerical analysis provide evidence that DPA finds a competitive
balance between the number of required solver calls on the one hand, and the numerical
complexity of each individual solver call on the other hand. Indeed, we show that the
number of solver calls can be bounded by a polynomial in the number of nondominated
points in the worst case. At the same time, subproblems are kept simple by using
basic ε-constraint or weighted Tchebychev scalarizations. Two variants of DPA are
implemented in C++ and compared to available state-of-the-art open-source solvers.
We demonstrate the clear superiority of DPA with respect to CPU time on common
benchmark instances as well as newly generated instances with up to ten objectives.
Setting a time limit of at most ten times the solution time of the fastest algorithm,
respectively, only DPA solves all instances reliably.

We present our algorithm as versatile and modular in the sense that it can be com-
bined with any scalarization. Our numerical study concentrates on the ε-constraint
scalarization due to the advantages described in Sect. 3 when the goal is to find every
efficient solution. A numerical comparison using an ε-constraint scalarization and
additionally a weighted Tchebychev scalarization has been presented in Dächert and
Klamroth (2015). The algorithm therein is structurally similar to the defining point
approach used in this paper, so the findings can be transferred directly. It is shown that
when the goal is to generate the entire nondominated set, the (augmented) ε-constraint
scalarization is always superior to the weighted Tchebychev scalarization due to its
reduced number of IPs. However, when the goal is to generate only a subset of the non-
dominated set, a so-called incomplete representation, then other scalarizations as, e.g.,
the weighted Tchebychev scalarization promise to be more useful. We refer to Doğan
et al. (2022) for an implementation in the context of multi-objective mixed-integer
linear programming (MOMILP) problems. An adaptation of DPA to other types of
representations is a promising direction for future research. This topic is, however,
beyond the scope of this paper and left for further research.

123

A simple, efficient and versatile objective space algorithm... 383

Our study also shows that with an increasing number of objectives, the compu-
tational time increases as well. Therefore, in the future, a parallel variant should be
developed. Parallel variants based on other algorithms have already been proposed in
Pettersson and Ozlen (2019) and Turgut et al. (2019). It remains to be studied how a
parallel defining point algorithm competes with these approaches.

Acknowledgements We thank two anonymous referees for their valuable comments which helped to
improve the paper. Kathrin Klamroth acknowledges financial support by the Deutsche Forschungsgemein-
schaft, project number KL 1076/11-1.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest We assure that there is no conflict of interest concerning the publication of this
manuscript in MMOR. Kathrin Klamroth declares financial support by the Deutsche Forschungsgemein-
schaft, project number KL 1076/11-1. The other two authors have not received specific funding. All sources
of data that have been used for this work are properly declared and referenced.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aneja YP, Nair KPK (1979) Bicriteria transportation problem. Mangement Science 25:73–78
Bektaş T (2018) Disjunctive programming for multiobjective discrete optimisation. INFORMS J Comput

30(4):625–633
Boissonnat JD, Sharir M, Tagansky B et al (1998) Voronoi diagrams in higher dimensions under certain

polyhedral distance functions. Discrete Comput Geometry 19:485–519
Boland N, Charkhgard H, Savelsbergh M (2016) The L-shape search method for triobjective integer pro-

gramming. Math Program Comput 8:217–251
Boland N, Charkhgard H, Savelsbergh M (2017a) A new method for optimizing a linear function over the

efficient set of a multiobjective integer program. Eur J Oper Res 260(3):904–919
Boland N, Charkhgard H, Savelsbergh M (2017b) The quadrant shrinking method: a simple and efficient

algorithm for solving tri-objective integer programs. Eur J Oper Res 260(3):873–885
Chalmet L, Lemonidis L, Elzinga D (1986) An algorithm for the bi-criterion integer programming problem.

Eur J Oper Res 25:292–300
Dächert K, Klamroth K (2015) A linear bound on the number of scalarizations needed to solve discrete

tricriteria optimization problems. J Global Optim 61(4):643–676
Dächert K, Gorski J, Klamroth K (2012) An augmented weighted Tchebycheff method with adaptively

chosen parameters for discrete bicriteria optimization problems. Comput Oper Res 39:2929–2943
Dächert K, Klamroth K, Lacour R et al (2017) Efficient computation of the search region in multi-objective

optimization. Eur J Oper Res 260(3):841–855
DhaenensC, Lemesre J, Talbi EG (2010)K-PPM: a new exactmethod to solvemulti-objective combinatorial

optimization problems. Eur J Oper Res 200:45–53
Doğan I, Lokman B, Köksalan M (2022) Representing the nondominated set in multi-objective mixed-

integer programs. Eur J Oper Res 296:804–818

123

http://creativecommons.org/licenses/by/4.0/

384 K. Dächert et al.

Ehrgott M (2005) Multicriteria optimization. Springer, Berlin
Ehrgott M (2006) A discussion of scalarization techniques for multiple objective integer programming. Ann

Oper Res 147:343–360
EhrgottM,Ruzika S (2008) Improved ε-constraintmethod formultiobjective programming. JOptimTheory

Appl 138:375–396
Ehrgott M, Tenfelde-Podehl D (2003) Computation of ideal and Nadir values and implications for their use

in MCDM methods. Eur J Oper Res 151:119–139
Figueira et al. (2017) Easy to say they’re hard, but hard to see they’re easy - toward a categorization of

tractable multiobjective combinatorial optimization problems. J Multi-Criteria Decis Anal 24:82–98
Holzmann T, Smith J (2018) Solving discrete multi-objective optimization problems using modified aug-

mented weighted Tchebychev scalarizations. Eur J Oper Res 271:436–449
Joswig M, Loho G (2020) Monomial tropical cones for multicriteria optimization. SIAM J Discrete Math

34:1172–1191
Kaplan H, Rubin N, Sharir M et al (2008) Efficient colored orthogonal range counting. SIAM J Comput

38:982–1011
Kirlik G, Sayın S (2014) A new algorithm for generating all nondominated solutions of multiobjective

discrete optimization problems. Eur J Oper Res 232:479–488
Klamroth K, Lacour R, Vanderpooten D (2015) On the representation of the search region in multi-objective

optimization. Eur J Oper Res 245(3):767–778
Klein D, Hannan E (1982) An algorithm for the multiple objective integer linear programming problem.

Eur J Oper Res 9:378–385
Laumanns M, Thiele L, Zitzler E (2005) An adaptive scheme to generate the pareto front based on the

epsilon-constraint method. In: Branke J, Deb K, Miettinen K, et al. (eds) Practical approaches to
multi-objective optimization. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany, no. 04461 in Dagstuhl Seminar Proceedings,
http://drops.dagstuhl.de/opus/volltexte/2005/246

LaumannsM,Thiele L, Zitzler E (2006)An efficient, adaptive parameter variation scheme formetaheuristics
based on the epsilon-constraint method. Eur J Oper Res 169:932–942

Lokman B, Köksalan M (2013) Finding all nondominated points of multi-objective integer programs. J
Global Optim 57:347–365

Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston
Nemhauser GL, Wolsey LA (1999) Integer and combinatorial optimization. Wiley
Özlen M, Azizoğlu M (2009) Multi-objective integer programming: a general approach for generating all

non-dominated solutions. Eur J Oper Res 199:25–35
Özlen M, Burton BA, MacRae CAG (2014) Multi-objective integer programming: an improved recursive

algorithm. J Optim Theory Appl 160(2):470–482
Pettersson W, Ozlen M (2019) Multi-objective integer programming: Synergistic parallel approaches.

INFORMS J Comput
PrzybylskiA,GandibleuxX,EhrgottM (2010)A twophasemethod formulti-objective integer programming

and its application to the assignment problem with three objectives. Discrete Optim 7:149–165
Ralphs T, SaltzmanM,WiecekMM(2006)An improved algorithm for solving biobjective integer programs.

Ann Oper Res 147:43–70
Sylva J, Crema A (2004) A method for finding the set of non-dominated vectors for multiple objective

integer linear programs. Eur J Oper Res 158:46–55
Sylva J, Crema A (2008) Enumerating the set of non-dominated vectors in multiple objective integer linear

programming. RAIRO-Oper Res 42(3):371–387
TambyS (2018)Approches génériques pour la résolutiondeproblèmesd’optimisationdiscrètemultiobjectif.

PhD thesis, Université Paris-Dauphine, in French
Tamby S, Vanderpooten D (2020) Enumeration of the nondominated set of multiobjective discrete opti-

mization problems. INFORMS J Comput
Tenfelde-Podehl D (2003) A recursive algorithm for multiobjective combinatorial optimization problems

with Q criteria. Institut für Mathematik, Technische Universität Graz, Tech. rep
TurgutO,Dalkiran E,Murat A (2019)An exact parallel objective space decomposition algorithm for solving

multiobjective integer programming problems. J Global Optim 75:35–62

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://drops.dagstuhl.de/opus/volltexte/2005/246

	A simple, efficient and versatile objective space algorithm for multiobjective integer programming
	Abstract
	1 Introduction
	1.1 Challenges in multiobjective integer programming
	1.2 Problem formulation and notation

	2 Generic scalarization-based algorithm
	2.1 The search region and its complexity
	2.2 Scalarization methods
	2.2.1 ε-constraint scalarization
	2.2.2 Weighted Tchebychev scalarization

	3 Reduction of the search region when using the ε-constraint method
	4 Search strategies in objective space methods
	4.1 Decomposition
	4.2 Recursive dimension reduction
	4.3 Disjunctive constraints
	4.4 Hybrid approaches

	5 Numerical study
	5.1 Implementation
	5.2 Benchmark algorithms
	5.3 Instances
	5.3.1 Knapsack problem
	5.3.2 Assignment problem
	5.3.3 Travelling salesman problem

	5.4 Numerical results
	5.4.1 Knapsack instances from kirlik14
	5.4.2 Assignment instances from kirlik14
	5.4.3 Travelling salesman instances from pettersson2019
	5.4.4 High-dimensional instances

	6 Summary and further ideas
	Acknowledgements
	References

