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Abstract
In this paper, we take an in-depth look at the complexity of a hitherto unexplored
multiobjective minimum weight minimum stretch spanner problem; or in short multi-
objective spanner (MSp) problem. The MSp is a multiobjective generalization of the
well-studiedminimum t-spanner problem. This multiobjective approach allows to find
solutions that offer a viable compromise between cost and utility—a property that is
usually neglected in singleobjective optimization. Thus, the MSp can be a powerful
modeling tool when it comes to, e.g., the planning of transportation or communication
networks. This holds especially in disaster management, where both responsiveness
and practicality are crucial. We show that for degree-3 bounded outerplanar instances
the MSp is intractable and computing the non-dominated set is BUCO-hard. Addi-
tionally, we prove that if P �= NP, the set of extreme points cannot be computed in
output-polynomial time, for instances with unit costs and arbitrary graphs. Further-
more, we consider the directed versions of the cases above.

Keywords Multiobjective optimization · Graph spanners · Output-sensitive
complexity · Extreme points · Parametric optimization

1 Introduction

Natural disasters require a significant logistical effort to provide relief to victims and
to distribute equipment, humanitarian goods, and information. The efficient design of
emergency infrastructure therefore forms the basis for initial responses, as well as for
long-term measures taken to stabilize affected communities. An important part of this

B Fritz Bökler
fboekler@uos.de

Henning Jasper
henjasper@uos.de

1 Dep. of Computer Science, Osnabrück University, Osnabrück, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-024-00850-7&domain=pdf
http://orcid.org/0000-0002-7950-6965
https://orcid.org/0000-0002-9821-8600


66 F. Bökler, H. Jasper

infrastructure is the construction of makeshift communication networks connecting
cut-off areas. These makeshift networks can be modeled as spanners, a subset of con-
nections that connect all of the nodes in the network. As time and resources are scarce,
spannersmust offer a balanced combination of cost-effectiveness and utility. Their util-
ity can be measured in their stretch factor—the maximum factor by which the length
of the shortest path between any two nodes is extended in the spanner compared to the
original network. Spanners are an important tool in a wide range of fields. Therefore,
their efficient construction is examined in a variety of papers (Sigurd and Zachariasen
2004; Ahmed et al. 2019). Clearly, cost-effectiveness and a low stretch-factor are two
inherently conflicting objectives. In a literature review, Caunhye et al. (2012) state that
in emergency logistics, many optimization models only focus on one of the aspects,
marginalising the other as a constraint or even ignoring it completely. This is done as
for many problems, multiobjective approaches are perceived as too difficult to solve
in practice. Albeit, Caunhye et al. (2012) conclude that these singleobjective models
may hamper relief services by causing an oversupply of resources leading to difficulty
with coordination, greater traffic, and complex scheduling. This motivates the consid-
eration of the Multiobjective Minimum Weight Minimum Stretch Spanner problem;
or in short Multiobjective Spanner (MSp) problem–a multiobjective generalization of
the Minimum t-Spanner problem.

Given a connected, simple graph G = (V , E) where every edge has a cost and
length of 1, a subset of edges S is a t-spanner of G if for every pair of vertices

u, v ∈ V , dS(u,v)

dE (u,v)
≤ t holds, with dS(u, v) being the distance from u to v in S and

dE (u, v) their respective distance in E (Peleg andSchäffer 1989). For a givengraph, the
problem of finding the cheapest t-Spanner, with regard to the sum over all edge-costs,
is commonly known as theMinimum t-Spanner problem. It is well-known to be NP-
hard (Cai 1994).We refer to t as the stretch factor. TheMSp generalizes theMinimum
t-Spanner problem by introducing two edge-weight functions, allowing us to assign
each edge a cost independent of its length. Furthermore, in contrast to the Minimum
t-Spanner problem, the goal of the MSp is not to find a minimumweight spanner for a
given stretch factor. Instead, the stretch factor is another objective we aim tominimize.
The stretch factor is an interesting objective function in itself that is to be minimized
in, e.g., the Minimum Max-Stretch Spanning Tree (MMST) problem (Cai and Corneil
1995). Feasible solutions for the MSp are defined less restrictive than t-Spanners.
We define a spanner of a connected, undirected graph G = (V , E), as a subset of
edges S ⊆ E , such that G ′ = (V , S) is a connected subgraph. Since the MSp is a
Multiobjective Combinatorial Optimization (MOCO) problem, solutions are mapped
to a value vector instead of a single value.Due to conflicts among objectives, there does
not necessarily exist a solution that achieves the best value in all objective functions
simultaneously. Instead, we look for value vectors for which there are no other value
vectors that dominate them. This set of value vectors is called non-dominated set (or
Pareto-front) YN . See below for formal definitions of these notions. The reason we
look at the value vectors instead of the solutions they are associated with is that we
consider two different solutions that produce the same value vectors to be equivalent.
As is also the case in singleobjective optimization: we usually require algorithms to
produce only one optimal solution, even if more than one exist.
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Complexity of the MSp 67

Definition 1 (Multiobjective minimum weight minimum stretch spanner (MSp) prob-
lem) The input is a connected, undirected graph G = (V , E) and edge-weight
functions c1 : E → Z and c2 : E → N+. Feasible solutions are spanners S of G
and are assessed based on the two objective functions

f1(S) =
∑

e∈S
c1(e) and f2(S) = max

u,v∈V
dS
c2(u, v)

dE
c2(u, v)

,

with dS
c2(u, v) and dE

c2(u, v) being the length of the shortest u-v-path in S and E
respectively, regarding the c2-length. We consider an instance of the MSp to be solved
if we output its non-dominated set YN .

The concept of t-Spanners and their related problems were first introduced by
Peleg, Schäffer, and Ullman in the context of synchronization in distributed systems
and communication networks (Peleg and Schäffer 1989; Peleg and Ullman 1989) and
have since been explored in a variety of publications. A greedy algorithm with one of
the best cost-guarantees was developed by Althöfer et al. (1993). For a graph G and
a stretch factor of t = 2k − 1(k ∈ N≥1), it creates a t-Spanner S of G containing
O(n1+1/k) edges in timeO(m(n1+1/k+n log n)). This algorithmcan even be applied to
theWeighted Minimum t-Spanner problem, where every edge is assigned an arbitrary
positive cost. Then the algorithm additionally guarantees that S has a cost of at most
O(n/k) times the cost of the minimum spanning tree of G. For undirected Minimum
2-Spanners, Kortsarz and Peleg (1994) published aO(log(m/n))-approximation with
a theoretical running time of O(m2n2 log(n2/m)). For a weighted, undirected graph,
Baswana and Sen (2007) give a method that computes a t = 2k − 1 spanner S that
contains at most O(kn1+1/k) edges in an expected running time of O(km), but with
no cost guarantee. For unweighted graphs the size of S is bounded byO(n1+1/k +kn).
Cai and Keil (1994) focused on the complexity of the Minimum t-Spanner problem
for degree bounded graphs and showed, among others, that if the maximum degree
of the graph is at most 4, the Minimum 2-Spanner problem can be solved in linear
time, whereas the problem is NP-hard even if the maximum degree is at most 9.
A recent paper by Kobayashi (2018) focuses on the complexity of the Minimum t-
Spanner problem in planar graphs and, as a byproduct, improves the degree bounds
for NP-hardness found by Cai and Keil.

As many decisions require the consideration of multiple goals and conflicting
demands, MOCO problems are an important modeling tool in a variety of fields. Prac-
tical applications include routing problems in public transport (Delling et al. 2015;
Wagner and Zündorf 2017), the planning of radiotherapy (Hamacher and Küfer 1999;
Thieke et al. 2007; Giantsoudi et al. 2013) and the determination of control strategies
for vaccine administration in COVID-19 pandemic treatment (Libotte et al. 2020).
As mentioned before, MOCO problems are often perceived as too difficult to solve
in practice. However, a theoretical base can substantiate this perception. In the multi-
objective context, a problem is called intractable, if there is no algorithm capable of
solving it in polynomial time (Ehrgott 2005). Due to the exponential size of their non-
dominated sets, many interestingMOCOproblems are intractable, e.g., multiobjective
variants of the Traveling Salesperson (Emelichev and Perepelitsa 1992), Shortest Path
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68 F. Bökler, H. Jasper

(Hansen 1980), or Spanning Tree (Hamacher and Ruhe 1994) problem. Therefore, it
makes sense to consider a complexity class that distinguishes between problems that
cannot be solved in polynomial time due to the size of their output and the ones that are
genuinely hard to solve. This motivates an output-sensitive analysis: We say a MOCO
problem O is solvable in output-polynomial time if there is an algorithm that, for any
given instance I of O , outputs every y ∈ YN exactly once and runs in polynomial time
depending on the size of the input I and the output YN (Johnson et al. 1988). Such
an algorithm is called output-polynomial. We denote the class of problems for which
an output-polynomial algorithm exists as OP. There are many different gradations of
output-sensitivity, but for our purposes we exclusively focus on OP. This is done as
it is the most basic class. Thus, showing that a problem is not in OP directly implies
negative results for all of the more restrictive classes, such as Polynomial Time Delay.

Three observations further motivate the investigation of this enumerative approach.
First, in experimental studies for other MOCO problems, the non-dominated sets are
much smaller than in the worst case (cf., e.g., Bökler and Chimani 2020). Second,
there is also a theoretical reason for this behavior: In a smoothed analysis setting,
Brunsch and Röglin (2015) showed that the expected size of the non-dominated set
is at most polynomial in the input size for each fixed number of objectives. Third,
although in theory, for some MOCOs an approximation with quality guarantees can
be computed efficiently (Papadimitriou and Yannakakis 2000). However, to the best
of our knowledge, there currently is no practical implementation capitalizing on this
property and thus is competitive to exact algorithms except in special cases (see, e.g.,
Bökler and Chimani 2020).

An interesting subset of the non-dominated set is the set of so called extreme points
YX (for a definition see Sect. 5).DeterminingYX is aparametric optimization problem.
The extreme points of aMOCOproblem instance are exactly the points that are needed
to solve any weighted sum scalarization (WSS) of the instance. In a WSS all objective
functions are combined into a singleobjective linear scalar (or preference) function,
where eachobjective function isweighted according to its importance. If everydecision
maker has a linear preference function, computing the extreme points suffices. Note,
however, that in general not all non-dominated points can be found in this way. As
every extreme point is non-dominated, while not every non-dominated value vector is
an extreme point, solving theMSp could be hard, while the problem of only computing
the set of extreme points could be in OP. This is the case for, e.g., Multiobjective
Shortest Path (Bökler and Mutzel 2015; Bökler et al. 2017). It is important to note,
however, that determiningweights accurately reflecting the preferences of the decision
makers is not trivial and that scalar approaches do not give as much information about
trade-offs between solutions as the enumerative approach. For more information on
MOCOs and related topics cf. the book by Ehrgott (2005).
Contribution and organisation. In the remainder of this paper, we first give some
definitions and establish basic concepts and results in Sect. 2. In Sect. 3, we study the
classic tractability of MSp.

Theorem 1 MSp is intractable even on degree-3 bounded outerplanar graphs.

This is an interesting result as there are non-trivial stretch factors for which theMin-
imum t-Spanner problem is solvable in linear time under such restrictions. In Sect. 4,
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Complexity of the MSp 69

we first consider the output-sensitive complexity of computing the non-dominated set
for unweighted instances of the MSp, where each edge has a cost and length of 1.
In Corollary 8 we infer that, unless P �= NP, such computations cannot be done in
output-polynomial time for graphs on which the t-SpannerDEC problem is NP-hard.
This includes, e.g., degree-6 bounded planar graphs (Kobayashi 2018). Afterwards, we
consider theBUCO problem (cf. Definition 2 below) that can be interpreted as an unre-
stricted version of the Knapsack problem and discuss the output-sensitive complexity
of computing the non-dominated set for degree bounded outerplanar instances of the
MSp. While BUCO appears to be a straight forward problem, it is currently unknown
whether it can be solved in output-polynomial time (Bökler et al. 2020). However, it
has been shown that there are other problems of unknown output-sensitive complexity
that the BUCO problem can be reduced to. This motivated the introduction of the
complexity-class of BUCO-hard problems (Bökler 2018). If we showed that one of
the BUCO-hard problems can be solved in output-polynomial time, we would prove
that the BUCO problem can be solved in output-polynomial time.

Theorem 2 MSp is BUCO-hard even on degree-3 bounded outerplanar graphs.

Note that this result holds for a very restricted class of graphs to which currently
Corollary 8 cannot be applied, as it is as of now unclear whether there is a stretch
factor t such that the Minimum t-Spanner problem is NP-hard on degree-3 bounded
outerplanar graphs (Kobayashi 2018). Hence, Theorem 2 improves on Corollary 8 in
the degree requirement aswell as the planarity requirement. However, the precondition
that BUCO /∈ OP isweaker thanP �= NP, asP = NP impliesBUCO∈ OP.Moreover,
this theorem implies that if there is a polynomial time algorithm for the Minimum t-
Spanner problem on degree-3 bounded outerplaner graphs where t > 1 is part of the
input then BUCO can be solved in output polynomial time.

As Corollary 8 states that we cannot compute the entire non-dominated set of
unweightedMSp instances in output-polynomial time, in Sect. 5we define the problem
of computing the set of extreme points for instances of the MSp (MSpYEx) and show
its hardness with regard to output-sensitive complexity.

Theorem 3 If P �= NP, then MSpYEx /∈ OP, even for unweighted instances.

Finally, Sect. 6 has concluding remarks. Note that we also define a directed ver-
sion of the MSp (diMSp), for which we prove the same results. The only exemption
being Theorem 2. The diMSp is BUCO-hard, even for degree-4 bounded outerplanar
instances. It is clear that the definition of the MSp can be extended by adding further
arbitrary objective functions. However, keep in mind that the basic biobjective MSp
remains a special case of these inflated problem variants. Thus, all the hardness results
mentioned above still apply.

2 Preliminaries

We denote N = {0, 1, 2, ...}, N+:=N\{0} and non-negative real numbers as R≥. For
n ∈ N, we denote the set {1, ..., n} as [n]. For a graphG = (V , E), an edge {u, v} ⊆ E
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70 F. Bökler, H. Jasper

and an edge-weight function ci : E → Z, i ∈ [2] we abbreviate ci ({u, v}) by ci (u, v).
Furthermore, for a set of edges S ⊆ E , we denote ci (S) = ∑

e∈S ci (e). In order to
simplify the input of the (di)MSp, we sometimes combine the edge-weight functions
c1 and c2 into one function c : E → Z × N+ with c(e) = (c1(e), c2(e))T. Similarly,
for an instance of the (di)MSp and a feasible (directed) spanner S, we combine the two
objective functions f1(S) and f2(S) into one single function f (S) = ( f1(S), f2(S))T

that directly maps S to its value vector. We sometimes refer to c : E → {(1, 1)T} with
c(e) = (c1(e), c2(e))T = (1, 1)T for all e ∈ E as the trivial edge-weight function and
call instances of the MSp with these edge-weight functions unweighted.

The degree of a vertex in an undirected graph is the number of vertices it is adjacent
to. The degree of a vertex in a directed graph is the sum of the number of its in- and
out-going edges. For δ ∈ N, we call any graphG = (V , E) degree-δ bounded if for all
v ∈ V their degree is less than or equal to δ. We call graphs outerplanar if they have a
planar drawing, in which every vertex lies on the boundary of the outer face. We call
undirected graphs connected if they are non-empty and any two of their vertices are
linked by a path. A directed graph is called weakly connected if replacing all of its
arcs with undirected edges results in a connected (undirected) graph. See also Diestel
(2017); Bang-Jensen and Gutin (2008). For an instance of a MOCO problem with an
objective function f , we denote the set of all its value vectors as Y . For unequal value
vectors y, y′ ∈ Y , we say y is dominated by y′ if y′ is component wise less than or
equal to y. Analogously, for feasible solutions S, S′ we say S is dominated by S′ if
f (S) is dominated by f (S′). If a value vector is not dominated by any value vector,
we call it non-dominated; the associated solution is called Pareto-optimal.

For a weakly connected, directed graph G = (V , A), we call a subset of arcs
S ⊆ A a directed spanner of G, if G ′ = (V , S) is a subgraph such that, for every pair
of vertices u, v ∈ V , if there is a directed u-v-path in A, there is one in S as well.

Note that the definition of a (directed) spanner does not require the resulting sub-
graph to be acyclic. Analogously to the MSp, we define the directed multiobjective
minimum weight minimum stretch spanner (diMSp) problem. The only differences
being that the input is a weakly connected, directed graph, solutions are now directed
spanners and that in the second objective function, we only consider pairs of vertices
that are connected in the initial graph. This guarantees the well-definedness of the
objective function values.

Lemma 4 For a set of (di)MSp instances I, if there is a polynomial p : N → N, such
that for every instance I ∈ I and its set of solutions S : | fi (S)| ≤ p(|I |) for i = 1 or
i = 2, then |YN | ≤ p(|I |).
Proof Without loss of generality, we can assume that f1 only has polynomially many
different values in its image. For every a ∈ f1(S), there is one s′ ∈ S with f1(s′) = a
and f2(s′) ≤ f2(s) for all s ∈ S with f1(s) = a. Hence, (a, f2(s′))T dominates
(a, f2(s))T for all s ∈ S with f1(s) = a. Thus, for each a ∈ f1(S) there is only one
non-dominated value vector. 	

Observation 1 It is clear that adding edges to a spanner never increases its stretch
factor and that therefore, for every non-dominated value vector y ∈ YN there is a
spanner S with f (S) = y and e ∈ S for all e ∈ E with c1(e) = 0.
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Complexity of the MSp 71

We call the decision problem corresponding to the Minimum t-Spanner problem t-
SpannerDEC. For it, verifying the stretch factor t of a spanner only requires considering
pairs of vertices that are adjacent in the underlying graph (Peleg and Schäffer 1989).
In case of the MSp a similar statement can be made.

Lemma 5 Let I = (G = (V , E), c1, c2) be an MSp instance with a connected,
undirected graph G and edge-weight functions c1 and c2. For any spanner S of G,

f2(S) = maxu,v∈V
dSc2 (u,v)

dE
c2

(u,v)
= max{u,v}∈E

dSc2 (u,v)

dE
c2

(u,v)
holds.

Proof Let S be a spanner of G and assume f2(S) = dSc2 (r ,z)

dE
c2

(r ,z)
with {r , z} /∈ E . Let

{r = u0, u1}, {u1, u2}, ..., {um−1, um = z} be the shortest r-z-path in E . Denote the
set of edge {ui , ui+1}, 0 ≤ i ≤ m − 1 as U . Observe that for every 0 ≤ i ≤ m − 1,
dSc2 (ui ,ui+1)

dE
c2

(ui ,ui+1)
≤ max{uk ,uk+1}∈U

dSc2 (uk ,uk+1)

dE
c2

(uk ,uk+1)
holds. We get

dS
c2(r , z)

dE
c2(r , z)

≤
∑m−1

i=0 dS
c2(ui , ui+1)

∑m−1
i=0 dE

c2(ui , ui+1)
≤ max{uk ,uk+1}∈U

dS
c2(uk, uk+1)

dE
c2(uk, uk+1)

·
∑m−1

i=0 dE
c2(ui , ui+1)

∑m−1
i=0 dE

c2(ui , ui+1)

= max{ui ,ui+1}∈U
dS
c2(ui , ui+1)

dE
c2(ui , ui+1)

.

	

It is clear that the same arguments hold for the directed case.

3 Intractability

We begin by proving that no algorithm is capable of solving the MSp in polynomial
time, even if we restrict the considered graphs to be both degree-3 bounded and outer-
planar. We do this by showing that there is a family of instances, complying to these
restrictions, for which the size of the non-dominated set YN is exponential in the size
of the instance, proving the intractability of the MSp.

Consider the following family of instances for 2 ≤ n ∈ N, of connected, undirected
graphs G = (V , E) and edge-weight functions c1 : E → Z and c2 : E → N+. For
every i ∈ [n], we create vertices vi , v

′
i and wi , and add edges {vi , wi } with weights

(2i , 2i )T, as well as edges {vi , v′
i } and {v′

i , wi } with respective weights of (0, 2i )T.
Furthermore, we introduce edges {wi , vi+1} with weights (0, 1)T, for i ∈ [n − 1].
Finally, we define v1:=s and wn :=t and add the edge {s, t} with weights (2n+1, 1)T.
An example of this construction can be seen in Fig. 1. Note that every so constructed
graph is degree-3 bounded and outerplanar.

Note that the graph G contains at least 2n spanners that do not contain the edge
{s, t}. With Observation 1, we know that for every non-dominated value vector y,
there is a Pareto-optimal spanner S of G that contains every e ∈ E with c1(e) = 0,
with f (S) = y. Define X as the set of all feasible spanners S of G, that contain every
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72 F. Bökler, H. Jasper

Fig. 1 The family of instances constructed for Fig. 1. Thick edges hold weights (0, 1)T

e ∈ E with c1(e) = 0 and do not contain the edge {s, t}. We now simplify the second
objective function f2(S), for every S ∈ X , using Lemma 5.

Lemma 6 For all spanners S ∈ X, f2(S) = maxu,v∈V
dSc2 (u,v)

dE
c2

(u,v)
= dSc2 (s,t)

dE
c2

(s,t)
.

Proof Let S ∈ X be a spanner. With Lemma 5, we know that we only have to consider
pairs of vertices u, v ∈ V with {u, v} ∈ E and {u, v} /∈ S in order to determine f2(S).
We know that {s, t} /∈ S holds. Thus,

dS
c2(s, t)

dE
c2(s, t)

≥
(∑n

i=1 c2(vi , wi )
)

+
(∑n−1

i=1 c2(wi , vi+1)
)

1
= 2n+1 + n − 3.

The only other pairs of vertices u, v ∈ V with {u, v} ∈ E for which {u, v} /∈ S might
hold are vi , wi , for every i ∈ [n]. We get

dS
c2(vi , wi )

dE
c2(vi , wi )

≤ c2(vi , v′
i ) + c2(v′

i , wi )

c2(vi , wi )
= 2 · 2i

2i
= 2 < 2n+1 + n − 3 ≤ dS

c2(s, t)

dE
c2(s, t)

.

	

With the next Lemma, we estimate how many of the spanners in X are associated

to a non-dominated value vector contained in YN .

Lemma 7 For all S, S′ ∈ X with S �= S′, S and S′ do not dominate each other and
have different value vectors.

Proof Let S, S′ ∈ X be two different spanners and assume S dominates S′. Therefore,
either f1(S) < f1(S′) or f1(S) = f1(S′) holds. We begin by considering the first
case. Let j ∈ [n] be the greatest index at which the shortest s-t-paths in S and S′
differ. Since f1(S) < f1(S′) holds, S must not contain the edge {v j , w j } while S′ has
to contain it. Let P be the remaining path that is identical for S and S′. Thus, with
Lemma 6,

f2(S
′) = dS′

c2 (s, t)

≤
⎛

⎝
j−1∑

i=1

c2(vi , v
′
i ) + c2(v

′
i , wi ) + c2(wi , vi+1)

⎞

⎠ + c2(v j , w j ) + c2(P)
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=
⎛

⎝
j−1∑

i=1

2 · 2i + 1

⎞

⎠ + 2 j + c2(P) =
⎛

⎝
j∑

i=2

2i + 1

⎞

⎠ + 2 j + c2(P)

<

⎛

⎝
j−1∑

i=1

2i + 1

⎞

⎠ + 2 j + 2 j + c2(P)

=
⎛

⎝
j−1∑

i=1

c2(vi , wi ) + c2(wi , vi+1)

⎞

⎠ + c2(v j , v
′
j ) + c2(v

′
j , w j ) + c2(P)

≤ dS
c2(s, t) = f2(S).

This contradicts the assumed domination.
Let us now consider the second case, in which f1(S) = f1(S′) holds. Then, in

order for S to dominate S′, f2(S) < f2(S′) must hold as well. By design of the c1-
edge-weights, we know that in order for f1(S) = f1(S′) to hold, it is true for every
edge {vi , wi } ∈ E that {vi , wi } ∈ S ⇔ {vi , wi } ∈ S′. This claim can be verified by
considering that every edge {vi , wi } has a unique c1-cost that cannot be reproduced
by any combination of edges e ∈ E\{vi , wi }. Consequently, the shortest s-t-paths in
S and S′ are exactly the same and therefore f2(S) = f2(S′) holds, which contradicts
the assumed domination. 	


Finally, consider that no S ∈ X can be dominated by any Ŝ /∈ X . This is clearly
the case, due to the high c1-cost of the edge {s, t}. Concluding, we have shown that
the set X contains 2n spanners, all of which have different value vectors that are not
dominated. Thus, |YN | ≥ |X | = 2n and, consequently, Theorem 1 hold.

Note that an analogous proof can be conducted for the diMSp. The only difference to
the undirected case lies in the construction of the family of instances.We turn the family
ofMSp instances into a family of diMSp instances. For every i ∈ [n], we replace edges
{vi , wi } with arcs (vi , wi ), edges {vi , v′

i } with arcs (vi , v
′
i ), edges {v′

i , wi } with arcs
(v′

i , wi ). In addition, we replace edges {wi , vi+1}with arcs (wi , vi+1), for i ∈ [n−1].
Finally, we replace {s, t} with (s, t). Every arc holds the same edge-weights as the
undirected edge it replaced.

4 Non-dominated set

In this section, we first consider the output-sensitive complexity of computing the
non-dominated set of unweighted (di)MSp instances. Afterwards, we prove that if the
(di)MSp can be solved by an output-polynomial algorithm, one can also solve the
BUCO problem in output-polynomial time. Therefore, the (di)MSp is BUCO-hard.

Observation 2 As the trivial edge-weight function only allows linear many values in
the range of either of the two objective functions, with Lemma 4, we can infer that the
non-dominated set of unweighted MSp instances is only polynomially sized.
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This observation directly infers that the non-dominated set of the (di)MSp cannot
be computed in output-polynomial time as this would enable us to solve the (directed)
t-SpannerDEC in polynomial time. Thus, Corollary 8 holds.

Corollary 8 If P �= NP, then MSp /∈ OP, even for unweighted instances.

We now study the output-sensitive complexity of degree bounded outerplanar
instances. For a set of vectors M , minM refers to its non-dominated subset.

Definition 2 (Biobjective Unconstrained Combinatorial Optimization (BUCO) Prob-
lem (Bökler 2018)) The input are vectors c1, c2 ∈ N

n . A feasible solution is an element
of {0, 1}n . The goal is to find the set of the non-dominated vectors

YN = min

{(
−c1

T

c2
T

)
x

∣∣∣∣∣ x ∈ {0, 1}n
}

.

The BUCO problem can be interpreted as an unrestricted Knapsack problem.With-
out loss of generality, we can assume c1i > 0 for every i ∈ [n], since any item that
does not contribute value is never part of a viable solution. Similarly, we can assume
c2i > 0 for every i ∈ [n].

We prove that the MSp is BUCO-hard by showing that if there is an output-
polynomial algorithm A for the MSp, we could use it to solve the BUCO problem
in output-polynomial time. We start by constructing an algorithm that transforms any
BUCO instance I into a valid MSp instance I ′ in polynomial time. Subsequently, we
show that the set of non-dominated value vectors of the constructed MSp instance
I ′, that can be found using the algorithm A, can be transformed into the set of
non-dominated value vectors of the BUCO instance I , using an output-polynomial
filter-algorithm.

This approach is an output-sensitive version of the classic Turing Reduction and
therefore works similar to the more commonly known Cook Reduction (Cook 1971).

Definition 3 (Output-Sensitive TuringReduction) Let P1, P2 be two algorithmic prob-
lems and p, q : N → N be two polynomials. Additionally, let L(J ) be the solution of
an instance J of P1, e.g., its non-dominated set.We say P1 is output-sensitive reducible
to P2, if there is an algorithm A′ for P1, that may use a (hypothetical) algorithm A
for P2 with the worst-case runtime of A′ and the number of uses in A′ of A being in
O(p(|J |, |L(J )|)) and O(q(|J |, |L(J )|)).

Note that this is a generalization of the Output-Sensitive Many-One Reduction as
described by (Bökler 2018, Definition 6.2). Thus, all previously proven reduction rela-
tions concerning the many-one reduction also apply to the Turing reduction described
above. This includes, e.g., the BUCO-hardness of the Multiobjective Spanning Tree
problem (Bökler 2018).

Let I be an instance of the BUCO problem given by c1, c2 ∈ N
n+. We construct

an instance I ′ of the MSp with a connected, undirected graph G, and edge-weight
functions c1 : E → Z and c2 : E → N+. We define the constant C := ∑n

i=1 c
1
i and

construct the graph G = (V , E) in the following way: Create vertices vi , wi and v′
i
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Fig. 2 Showing the reduction for Theorem 2. Thick edges hold weights (0, 1)T

for i ∈ [n] and connect them with edges {vi , wi } with weights (0, c2i + 2)T, edges
{vi , v′

i } with weights (0, 1)T and edges {v′
i , wi } with weights (c1i , 1)

T. Furthermore,
we add edges {wi , vi+1} with weights (0, 1)T for i ∈ [n − 1]. We define v1:=s and
wn :=t . Finally, we add the edge {s, t} with weights (C + 1, 1)T. An example of this
construction can be seen in Fig. 2.

We observe that every so constructed instance is a valid MSp instance and that all
steps can be performed in polynomial time in the size of the instance I . Clearly, the
constructed graph G is degree-3 bounded and outerplanar. In order to show that the
reduction is correct, we now have to prove that the non-dominated set YMSp

N of the
constructed MSp instance can be transformed into the non-dominated set YBUCO

N of
the initial BUCO instance in output-polynomial time with regard to the instance I .

Let x ∈ {0, 1}n be a solution of a BUCO instance given by c1, c2 ∈ N
n+ and let

z = (−c1
T
x, c2

T
x)T be the value vector that x is mapped to. There is a spanner Sx ofG

with the following properties: For every i ∈ [n], Sx contains edges {vi , wi } and {vi , v′
i }.

Furthermore, Sx contains the edge {wi , vi+1}, for every i ∈ [n − 1]. In addition, if
xi = 0: Sx contains the edge {v′

i , wi }. We observe that for every x ∈ {0, 1}n the result-
ing set of edges Sx is a feasible spanner of G and that none of these spanners contains
the edge {s, t}. Denote the set of all the spanners generated this way as X . Clearly, anal-
ogously to Lemma 6, for every spanner S ∈ X , f2(S) = maxu,v∈V

dSc2 (u,v)

dE
c2

(u,v)
= dSc2 (s,t)

dE
c2

(s,t)

holds.
We now examine how the value vector z of a BUCO solution x ∈ {0, 1}n is con-

nected to the value vector f (Sx ) of the corresponding spanner Sx .

Lemma 9 For any solution x ∈ {0, 1}n of a BUCO instance and its associated value
vector z = (−c1

T
x, c2

T
x)T, for the constructed corresponding spanner Sx ∈ X,

f1(Sx ) = C + z1 and f2(Sx ) = z2 + 3n − 1 hold.

Proof Let x ∈ {0, 1}n be a solution of a BUCO instance and let z = (−c1
T
x, c2

T
x)T

be its associated value vector. Let Sx ∈ X be the spanner in the constructed MSp
instance that is based on x . Consider the two objective functions.

f1(S
x ) =

(
n∑

i=1

c1(v
′
i , wi ) · (1 − xi )

)
=

(
n∑

i=1

c1i · (1 − xi )

)
= C +

n∑

i=1

−c1i xi

= C + z1
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Note that the shortest s-t-path in E has length 1 and uses the edge {s, t}. Furthermore,
observe that for every i ∈ [n] the shortest s-t-path in Sx uses the edge {vi , wi } if
xi = 1. If xi = 0, Sx uses the edges {vi , v′

i } and {v′
i , wi }. Additionally, for every

i ∈ [n − 1], Sx uses the edge {wi , vi+1}.

f2(S
x ) =

(
n∑

i=1

c2(vi , wi ) · xi + (c2(vi , v
′
i ) + c2(v

′
i , wi ))(1 − xi )

)
+

n−1∑

i=1

c2(wi , vi+1)

=
(

n∑

i=1

(c2i + 2)xi + (1 + 1)(1 − xi )

)
+ (n − 1) · 1

=
(

n∑

i=1

c2i xi + 2

)
+ n − 1 = z2 + 3n − 1

	

Let us now consider the relationship between spanners Sx ∈ X and spanners S with

{s, t} ∈ S.

Lemma 10 If x ∈ {0, 1}n is a Pareto-optimal solution for the BUCO instance, its
associated spanner Sx is a Pareto-optimal solution for the constructed MSp instance.

Proof Let x ∈ {0, 1}n be a Pareto-optimal solution for the BUCO instance and let
z = (−c1

T
x, c2

T
x)T be the corresponding value vector. Let Sx ∈ X be the spanner

associated to x . Assume there is a feasible spanner Ŝ that dominates Sx . It is clear
that due to the c1-cost of the edge {s, t}, if {s, t} ∈ Ŝ holds, Ŝ does not dominate Sx .
Therefore, we can assume that {s, t} /∈ Ŝ holds. Furthermore, with Observation 1 and
w.l.o.g., we can assume that Ŝ contains the edges {vi , v′

i }, {vi , wi } for all i ∈ [n] and
{wi , vi+1} for i ∈ [n − 1]. Based on these observations, we can say that Ŝ meets the
specifications for a spanner that corresponds to a BUCO solution. Let x̂ ∈ {0, 1}n be
this BUCO solution such that f (Sx̂ ) = f (Ŝ). Let ẑ be the value vector associated to
x̂ . Assume that Sx̂ dominates Sx . Then, by Lemma 9, we obtain that

ẑ1 = f1(S
x̂ ) − C ≤ f2(S

x ) − C = z1

and

ẑ2 = f2(S
x̂ ) − 3n + 1 ≤ f2(S

x ) − 3n + 1 = z2.

Since at least one of these inequalities is strict x̂ dominates x , which is a contradiction
to the Pareto-optimality of x . 	


In order to complete the verification of this reduction, we now prove that there
are only polynomially many non-dominated value vectors in the non-dominated set
of I ’that are not based on a Pareto-optimal solution of the BUCO instance. Consider
that the only way a spanner S can divert from the form of a BUCO solution based
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spanner, without its value vector being dominated, is by containing the edge {s, t}.
Hence, combining Lemma 4 with the following Lemma proves the aforementioned
claim.

Lemma 11 For every Pareto-optimal spanner S with {s, t} ∈ S and l ∈ [n] being the
index of the BUCO item with the greatest c2-weight for which {v′

l , wl} /∈ S holds,

f2(S) = dSc2 (v′
l ,wl )

dE
c2

(v′
l ,wl )

= dS
c2(v

′
l , wl).

Proof Let S with {s, t} ∈ S be a Pareto-optimal spanner and let l ∈ [n] be the index
of the BUCO item with the greatest c2-weight for which {v′

l , wl} /∈ S holds. With
Lemma 5, and since {s, t} ∈ S and Observation 1 hold, we know that in order to
determine f2(S), we only have to consider edges {v′

i , wi }, for all i ∈ [n]. Thus,

f2(S) = max
u,v∈V

dS
c2(u, v)

dE
c2(u, v)

= max
v′
i ,wi∈V

dS
c2(v

′
i , wi )

dE
c2(v

′
i , wi )

= max
v′
i ,wi∈V

dS
c2(v

′
i , wi )

1
= dS

c2(v
′
l , wl).

	

Note that there is an additional edge-case, in which the spanner S contains every

e ∈ E . Hence, there are only n+1 possible values in the range of the second objective
function if the considered spanner contains the edge {s, t}.

With Lemma 4, we infer there are only n + 1 non-dominated value vectors, in the
non-dominated set of the constructedMSp instance, that do not correspond to a Pareto-
optimal BUCO solution. Finally, we describe the algorithm that solves any BUCO
instance in output-polynomial time, assuming that there is an output-polynomial algo-
rithm A capable of solving any MSp instance.

Let I be a BUCO instance, and let A be an algorithm capable of solving an MSp
instance in output-polynomial time. We begin by using the algorithm described above
to transform I into the corresponding MSp instance I ′. Subsequently, we solve I ′
using the algorithm A and receive the set of non-dominated value vectors YMSp

N .
We know that for every Pareto-optimal solution x ∈ {0, 1}n of the BUCO instance,
the constructed MSp instance contains a corresponding Pareto-optimal spanner Sx .
Therefore, we can assume that for every such x , f (Sx ) = ( f1(Sx ), f2(Sx ))T ∈ YMSp

N
holds. Now, we have to filter out all the non-dominated value vectors that do not
correspond to a feasible BUCO solution. We do this by inspecting the y1 value for
each y ∈ YMSp

N . If y1 ≥ C + 1 holds, then the spanner corresponding to y contains
the edge {s, t} and consequently is not based on a feasible BUCO solution. If y1 ≤
C holds, we transform y according to Lemma 9, so that its values match the ones
of the corresponding BUCO solution. We construct z = (y1 − C, y2 − 3n + 1)
and add it to the set of non-dominated value vectors of the initial BUCO instance
YBUCO
N . All of these steps are output-polynomial with regard to the BUCO instance I

and therefore, the existence of an output-polynomial algorithm for the MSp directly
implies the existence of an output-polynomial algorithm for theBUCOproblem. Thus,
Theorem 2 holds.

An analogous reduction can be conducted for the diMSp, by replacing every undi-
rected edge with an arc. This transformation works similar to the one conducted at
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the end of Sect. 3. Note that the diMSp instances require an additional arc (v′
i , vi )

with edge-weights (0, 1)T, for every i ∈ [n]. These arcs ensure that the directed span-
ners constructed during the reduction are feasible. Observe that the resulting diMSp
instances remain outerplanar but are only degree-4 bounded.

5 Extreme points

In this section, we define the problem of determining the set of extreme points of a
given (di)MSp instance and consider its output-sensitive complexity.

For all y′ ∈ Y , define W (y′) as the set of vectors λ ∈ R
d≥, λ �= 0, so that

miny∈Y λT y = λT y′. A value vector y′ ∈ Y is called an extreme point if there is
a λ ∈ R

d≥, λ �= 0 with λ ∈ W (y′) and ∀y ∈ YN\{y′} : λ /∈ W (y) (Ehrgott 2005,
Definition 8.7). For an instance of the (di)MSp, we define (di)MSpY Ex to be the
problem of computing its set of extreme points YX .

We now show that if P �= NP, even the unweighted MSpYEx cannot be solved in
output-polynomial time.With Corollary 8, we know that we cannot compute the entire
non-dominated set of MSp instances in output-polynomial time. However, this does
not imply the hardness of computing their set of extreme points.

We do this by conducting an indirect reduction from3SAT.Consider Cai’s reduction
from3SAT to t-SpannerDEC (Cai 1994) for every 2 ≤ t ∈ N.We turnCai’s constructed
2-SpannerDEC instances intoMSpYEx instances and show that the initial 3SAT instance
is a yes-instance iff the yes-witness for the 2-SpannerDEC instance creates an extreme
point in the corresponding MSpYEx instance. In consideration of Observation 2, any
output-polynomial algorithm capable of solving unweighted MSpYEx instances in
output-polynomial time could solve 3SAT in polynomial time. We begin with a quick
summary of Cai’s proof for the special case of t = 2.

Revisiting Cai’s proof. Cai transforms 3SAT to 2-SpannerDEC. Let an instance
I = (U ,C) of 3SAT consisting of a set U of n distinct variables and a collection
C of m 3-element clauses over U be given. They construct a 2-SpannerDEC instance
Î , with a graph G = (V , E) and a positive integer K ∈ N+, such that G contains a
2-spanner with at most K edges if and only if C is satisfiable. They define a 2-path
as a path with 2 edges. One can force an edge to be in any minimum 2-spanner of a
graph by the addition of two distinct 2-paths between the two ends of the edge (Cai
1994, Lemma 3). This operation is called forcing an edge. Such an edge is called a
forced edge and the two 2-paths are called forcing paths. Edges lying on forcing paths
are called forcing edges.

They construct the truth-setting component T as follows: They take five ver-
tices z, the literal vertices x and x̄ , and the y-type vertices y and y′; and join z
to each of the remaining four vertices by an edge. Finally, they add forced edges
{x, x̄}, {x, y}, {x, y′}, {x̄, y}, {x̄, y′}. An example of such a component can be seen in
Fig. 3.

They assign each variable ui ∈ U , i ∈ [n] a distinct copy Ti of T and identify all
vertices zi into a single vertex z to form a subgraph T ′ of G. To finish the construction
of G, they create a new vertex vi for each clause ci ∈ C , i ∈ [m], join it to vertex z
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Fig. 3 A truth-setting component T and its symbolic representation. Thick edges indicate forced edges. For
clarity, forcing paths have been omitted from the figure

Fig. 4 The graph G for C = {{ū1, u2, u3}, {u1, u2, ū3}}. Thick edges indicate forced edges. For clarity,
forcing paths have been omitted from the figure

with an edge and add a forced edge between vi and each of the three literal vertices in
T ′ corresponding to the three literals of ci . An example of the finished construction
can be seen in Fig. 4.

They finish the construction of the 2-SpannerDEC instance, by setting K =16n+9m.
For the constructed graph G, it holds that any minimum 2-spanner S of G contains
at least K edges. Furthermore, if S contains exactly K edges, then for each Ti , i ∈
[n] exactly one of the two literal edges {z, xi } and {z, x̄i } belongs in S (Cai 1994,
Lemma 4).

Now, suppose that C is satisfiable and let φ be a satisfying truth assignment for C .
They construct a yes-witness-spanner Sw as follows: put every forced edge in Sw. For
each forcing path, put one of the two edges in Sw. Finally, for each variable ui ∈ U ,
if u is “true” under φ then put edge {z, xi }, in Sw else put edge {z, x̄i } in Sw. The
complete proof that this is a correct reduction goes beyond the scope of this paper
and can be found in the original paper (Cai 1994). Instead, let us now construct an
equivalent MSpYEx instance and prove that if the initial 2-SpannerDEC instance is a
yes-instance, the value vector of the yes-witness-spanner is an extreme point.

The Associated MSpYEx Instance. First, let I be a 3SAT instance and let
Î = (G = (V , E), K ) be the associated 2-SpannerDEC instance, constructed accord-
ing to the algorithm described in Cai’s proof. We turn Î into an instance I ′ = (G, c)
of the unweighted MSpYEx by copying G and adding the trivial edge-weight function
c : E → {(1, 1)T}, c(e) = (1, 1)T for all e ∈ E . Clearly, this can be done in poly-
nomial time. Note that I ′ is a valid, unweighted MSpYEx instance. Now, let Î be a
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yes-instance and let Sw be the yes-witness-spanner. It is clear that the same spanner
exists in I ′ and that

f1(S
w) =

∑

e∈Sw

c1(e) =
∑

e∈Sw

1 = |Sw| = K and f2(S
w) = max

u,v∈V
dSw

c2 (u, v)

dE
c2(u, v)

= 2

hold. We now show that the value vector of the yes-witness-spanner f (Sw) is an
extreme point by finding the non-dominated value vectors YN and showing that there
is a λ ∈ R

d≥, λ �= 0, so that λ ∈ W ( f (Sw)) and ∀y ∈ YN\{ f (Sw)} : λ /∈ W (y) hold.
Note that f (Sw) dominates or is equal to every value vector y ∈ Y with y1 ≥ K

and y2 ≥ 2. Let us first find the non-dominated value vectors y ∈ YN with y2 < 2. We
begin by constructing the spanner S1 ⊆ E that contains the fewest edges for which
f2(S1) < f2(Sw) = 2 holds. Consider S1 = E and observe that if we remove any
edge e ∈ E from S1, f2(S1\{e}) = 2 holds. Hence, S1 = E and we conclude that
for every feasible spanner S ⊆ E with K < f1(S) < |E |, f (Sw) dominates f (S).
Consider the amount of edges in G. For every truth-setting component Ti , i ∈ [n]
there are 20 forcing edges, 5 forced edges and 4 edges connecting to the vertex z.
Furthermore, for each clause ci ∈ C , i ∈ [m] there are 12 forcing edges, 3 forced
edges and one edge connecting to z. Hence,

f1(S
1) = |E | = 29n + 16m and f2(S

1) = 1.

We now construct a hypothetical value vector yh that either dominates or is equal
to every value vector f (S) of feasible spanners S with f1(S) < K . We begin by
constructing yh1 . Consider the number of vertices in G. For every truth-setting com-
ponent Ti , i ∈ [n] there are 10 vertices that are part of forcing paths and 4 vertices
xi , x̄i , yi , y′

i . Furthermore, for each clause ci ∈ C , i ∈ [m] there is one vertex vi
and 6 vertices that are part of forcing paths. Finally, there is the vertex z. Thus, there
are 14n + 7m + 1 vertices in the G. Therefore, for every feasible spanner S of G,
f1(S) = |S| ≥ 14n + 7m. Hence, we set yh1 = 14n + 7m. Let us now focus on yh2 .
We know that there are no spanners S that contain fewer edges than Sw for which
f2(S) ≤ 2 hold. Hence, we set yh2 = 3. Thus,

yh1 = 14n + 7m and yh2 = 3.

Clearly, for every value vector f (S) of a feasible spanner S with f1(S) < K ,
yh1 ≤ f1(S) and yh2 ≤ f2(S) hold. Hence, yh either dominates or is equal to every
such value vector and thus, for every λ ∈ R

d≥, λ �= 0, λT yh ≤ λT · f (S) holds.

Lemma 12 The value vector of the yes-witness-spanner is an extreme point.

Proof Consider the vector λ = (2, 15n + 9m)T ∈ R
d≥, λ �= 0. We show that λ ∈

W ( f (Sw)) holds and that for all y ∈ YN\{ f (Sw)} : λ /∈ W (y). Begin by considering
λT · f (S1) and λT yh .

λT · f (S1) = (
2 15n + 9m

) ·
(
29n + 16m

1

)
= 73n + 41m
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Fig. 5 The value vectors yh , f (Sw), f (S1) and slopes visualized

= (
2 15n + 9m

) ·
(
14n + 7m

3

)
= λT yh

Now, consider λT · f (Sw). We get

λT · f (Sw) = (
2 15n + 9m

) ·
(
K
2

)
= (

2 15n + 9m
) ·

(
16n + 9m

2

)

= 62n + 36m < 73n + 41m = λT · f (S1) = λT yh,

for n,m > 0. Hence, λ ∈ W ( f (Sw)) and for all y ∈ YN\{ f (Sw)} : λ /∈ W (y). 	

A sketch of the relevant value vectors can be seen in Fig. 5.
Finally, let us consider the entire reduction. Suppose there is an algorithmA capable

of solving unweightedMSpYEx instances in output-polynomial time.We know that the
initial 3SAT instance I is a yes-instance iff the 2-SpannerDEC instance Î constructed
according to Cai’s proof is a yes-instance too. Therefore, the yes-witness-spanner Sw

exists in Î and thus, also in the associated MSpYEx instance I ′. Since the value vector
f (Sw) of Sw is an extreme point, it is therefore part of the output YX of algorithmA,
when applied to I ′. In consideration of YX ⊆ YN and Lemma 4 we infer that solving
I ′ withA and checking whether f (Sw) ∈ YX holds is possible in polynomial time in
the size of I . In conclusion, if A existed, we could solve 3SAT in polynomial time.
Thus, Theorem 3 holds.

Similarly, based onCai’s reduction from 3SAT to directed 2-SpannerDEC (Cai 1994,
Section 3), we can show the same results for the diMSpYEx. The only difference to
the undirected case lies in the construction of the directed 2-SpannerDEC instance by
Cai. These differences in turn cause slightly different values in the objective functions
of the considered spanners in the diMSpYEx instance that we construct analogously
to the undirected case. It is easy to see that these differences have no influence on the
validity of the statement. Due to the analogy of the proofs, we leave the details to the
reader.

6 Conclusion

In this paper, we introduced the Multiobjective Minimum Weight Minimum Stretch
Spanner(MSp) Problem, as a multiobjective generalization of theMinimum t-Spanner
problem, and analyzed its complexity. We showed that for degree-3 bounded out-
erplanar instances the MSp is intractable and computing the non-dominated set is
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BUCO-hard. This contrasts the complexity of the Minimum t-Spanner problem, as
there are non-trivial stretch factors for which theMinimum t-Spanner problem is solv-
able in linear time under such restrictions. Additionally, we proved that if P �= NP,
the set of extreme points cannot be computed in output-polynomial time, for instances
with unit costs and arbitrary graphs. Furthermore, we showed similar results for the
directed version of the MSp.

What remains open is the output-sensitive complexity of computing the set of
extreme points for degree-3 bounded outerplanar instances as it is currently unknown
whether there is a stretch factor t , such that the t-SpannerDEC problem is NP-hard
under these restrictions. Thus, such a proof requires a different approach than the one
used in Sect. 5. Another open question is whether the MSpYEx is intractable. Future
work might include the development of approximation techniques for the MSp and
related problems, as well as investigating what existing approaches can be applied to
them.
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