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Enhancing pricing strategies in the
aftermarket sector with

machine learning
Mohit S. Sarode, Anil Kumar, Abhijit Prasad and Abhishek Shetty

Daimler Truck Innovation Center India, Bangalore, India

Abstract
Purpose – This research explores the application of machine learning to optimize pricing strategies in the
aftermarket sector, particularly focusing on parts with no assigned values and the detection of outliers. The study
emphasizes the need to incorporate technical features to improve pricing accuracy and decision-making.
Design/methodology/approach – The methodology involves data collection from web scraping and backend
sources, followed by data preprocessing, feature engineering and model selection to capture the technical
attributes of parts. ARandomForest Regressormodel is chosen and trained to predict prices, achieving a 76.14%
accuracy rate.
Findings –Themodel demonstrates accurate price prediction for parts with no assigned values while remaining
within an acceptable price range. Additionally, outliers representing extreme pricing scenarios are successfully
identified and predicted within the acceptable range.
Originality/value – This research bridges the gap between industry practice and academic research by
demonstrating the effectiveness of machine learning for aftermarket pricing optimization. It offers an approach
to address the challenges of pricing parts without assigned values and identifying outliers, potentially leading to
increased revenue, sharper pricing tactics and a competitive advantage for aftermarket companies.
Keywords Aftermarket, Machine learning, Price prediction
Paper type Research paper

1. Introduction
In today’s competitive business environment, pricing decisions are critical to an organization’s
financial success (Kalpana et al., 2022). Businesses aiming for competitiveness and financial
success must improve their pricing strategies. An emerging tool, machine learning-based
predictive pricing, uses historical data to quickly forecast optimal prices, assisting in setting
fair rates and adapting to changing market conditions (Banerjee and Bandyopadhyay, 2020).
This approach employs machine learning techniques to decipher massive amounts of data,

revealing intricate patterns and determining themost profitable price points based on customer
preferences, market dynamics, and corporate goals (Gupta and Pathak, 2014; Mantrala et al.,
2006). This transformative methodology enables data-driven pricing decisions, granting
organizations a competitive edge in pricing strategies.
Several studies have explored the application of machine learning for pricing optimization

in various fields. For example, traditional methods were compared against machine learning
methods such as Random Forest, Gradient Boosted Machines, and Deep Learners in the
insurance industry, highlighting the effectiveness of Gradient Boosting Methods (Spedicato
et al., 2018). Our research builds on this by applying a Random Forest Regressor model in the
aftermarket sector.
Dynamic pricing in e-commerce has been explored using Gradient Boosting Machines

(GBMs), showing superior performance in capturing complex non-linear pricing patterns
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(Youbi et al., 2023). Similarly, machine learning algorithms like Long Short-Term Memory
Networks (LSTM), Convolutional Neural Networks (CNN), and Support Vector Regression
(SVR) have been used for stock price prediction, with SVR achieving the highest accuracy
(Chen, 2020). Further studies have demonstrated the effectiveness of Random Forests and
Artificial Neural Networks (ANN) in predicting stock closing prices (Vijh et al., 2020).
The use of machine learning for property price prediction has shown that Random Forest

and GBM algorithms perform well (Ho et al., 2020). Moreover, the application of machine
learning for daily commodity price prediction has been highlighted, with ANNs showing
effectiveness but suggesting the incorporation of domain knowledge and feature engineering
for improvement (Amin, 2020).
Complex price prediction tasks involve numerous factors influencing price changes.

Traditional methods often struggle to account for these complexities, while machine learning
has shown promise in optimizing prices (Indira et al., 2023). Additionally, a model-based
pricing framework for machine learning models has been proposed to address gaps in data
market pricing, demonstrating high revenue potential and low runtime costs (Chen
et al., 2019).
Existing literature also investigates micro-marketing pricing strategies based on

supermarket scanner data (Montgomery, 1997), forecasts stock prices using various models
and data representation techniques (Patel et al., 2015), investigates pricing strategies in B2B
aftermarkets based on firm size, industry, and location (Gunaydan, 2023), and optimizes prices
in dynamic markets with limited information (Dodin et al., 2021).

1.1 Gap in literature
Although machine learning is widely used in pricing, it is still necessary to apply it in certain
industries, such as the aftermarket, which handles replacement parts and components for
goods that have already been made. The field of machine learning in pricing has been the
subject of extensive research in the literature. Spedicato et al. (2018) conducted a comparison
betweenmachine learningmodels and traditional pricing techniques. These studies do not take
into account the unique features of the aftermarket sector, where technical attributes of parts
have a significant impact on pricing, nor do they concentrate on specific methodological
procedures. This drawback may be seen in research by Youbi et al. (2023), although Youbi’s
techniqueworkswell in dynamic contexts, it is not directly applicable to the aftermarket sector
since it ignores technical factors that have a big influence on pricing decisions. Finding
irregular observations that point to mistakes, poor data quality, or unusual pricing trends is the
first step in detecting anomalies in pricing data. Similarly, outlier detection identifies data
points that differ significantly from the majority, frequently representing extreme price points
or unique market circumstances.
Furthermore, research by Indira et al. (2023) emphasizes the importance of incorporating

industry-specific data for accurate price prediction. It highlights the need for more specialized
approaches in sectors with unique characteristics, such as the aftermarket. Indira’s work points
out that existing models often fail to account for technical specifications, which are critical in
determining prices for aftermarket parts. Our study directly addresses these gaps by focusing
on the unique needs of the aftermarket industry, where the pricing of components like fuel
tanks is determined not only by market dynamics but also by technical attributes such as
material quality, size, and durability.
By offering a thorough, domain-specific technique for price prediction and anomaly

identification, our research expands on the fundamental stages presented by Spedicato et al.
(2018). Our study uses a Random Forest Regression model trained on a dataset supplemented
with technical specifications of aftermarket parts, in contrast to the generic techniques in the
literature currently in publication. This focus on technical elements distinguishes our research
from earlier studies and offers a more accurate and relevant approach for the aftermarket
sector.
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1.2 Research objectives
Ensuring customer satisfaction is critical for significant players in the trucking industry.
By ensuring parts availability at the right time, location, and price without sacrificing quality,
downtime can be reduced, and meaningful business opportunities can be retained. The
aftermarket industry, where pricing decisions directly impact revenue and profitability, can
benefit significantly from accurately forecasting optimal parts prices, striking a balance
between attracting customers and maximizing profit margins.
The primary objective of this research is to address the challenges of predicting prices for

aftermarket parts that lack assigned values and to detect anomalies and outliers by leveraging
machine learning algorithms. In line with the findings of Indira et al. (2023), our approach
emphasizes incorporating industry-specific data—specifically the technical features of
parts—to improve the accuracy of price predictions. This study aims to develop a robust
methodology that accurately forecasts optimal prices and identifies irregular pricing patterns
that could indicate errors, poor data quality, or extreme market scenarios.
To achieve this, we compiled a comprehensive dataset focusing on fuel tanks due to their

critical role in the trucking industry and their revenue potential. Given that existing
methodologies, as highlighted by Spedicato et al. (2018) and Youbi et al. (2023), did not
produce satisfactory results for our specific dataset, we adapted these techniques using our
domain knowledge to develop a self-contained methodology that is readily applicable to real-
world and industry-specific scenarios.

1.3 Research contributions and application
This study contributes to the existing body of literature by expanding on the methodologies
presented by Spedicato et al. (2018), Indira et al. (2023), and Youbi et al. (2023), addressing
their limitations by incorporating technical features that are critical for accurate pricing in the
aftermarket sector. By tackling the research question of howmachine learning algorithms can
be utilized to predict the prices of aftermarket parts with no assigned values and detect pricing
anomalies, this study provides a robust, data-driven framework that can be readily applied to
real-world scenarios in the aftermarket industry. By addressing the gaps and limitations
identified in previous studies, our research offers practical insights that enhance pricing
strategies, profitability, and competitiveness in the aftermarket sector.

2. Methodology
The first step was to gather data. The dataset was then preprocessed, and key attributes were
identified. Selected attributes were scaled, and different models were compared to determine
which model was the best. The Random Forest Regressor model was chosen, and it was then
trained and tested to predict the prices of the parts. Figure 1 depicts a block diagramof the entire

Figure 1. Block diagram of methodology
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methodology. Web scraping techniques, backend data, and part drawings were used to create
the dataset. It had hundreds of thousands of data points.However, a few thousand-part numbers
were chosen from the large dataset to focus on one specific truck assembly, the fuel tank.
To ensure data quality, attributes with insufficient data points or lacking relevant

informationwere removed. Figure 2 shows a bar chart thatwas used to calculate the percentage
of data covered in each of the remaining attributes. Attributes with less than 80% coverage in
the data were removed. Furthermore, all attribute values were cleaned of noise and
standardized to follow the same format. Numerical attributes with missing values were filled
with the median value, whereas categorical attributes were filled with the most frequently
occurring categories. The number of attributes was reduced by less than 60% as a result of this.
Figure 3 depicts the missing value matrix for these attributes, where the white spaces between
the matrix indicate the amount of missing data.
The frequency of the price points was observed using a histogram in the initial analysis.

Based on this histogram, an average range of prices was determined, with prices outside of this
range considered outliers. Figure 4 depicts the acceptable cost range and the outliers.
To investigate the impact on prices, feature engineering was carried out by calculating new

attributes such as area, mass, and volume based on existing attributes such as diameter and
length. To improve the model’s performance, new attributes such as shape and vent were
loaded and preprocessed into the dataset. Figure 5 shows a heat map created with the Seaborn
library in Python to determine the significant attributes for price prediction.
Using the Random Forest Regressor model, various feature selection techniques were

employed to evaluate the impact of attributes on price prediction. Variance Threshold,
SelectKBest, and Recursive Feature Elimination with Cross-Validation (RFECV) were the 3
techniques used to evaluate the attributes.
The Variance Threshold method, represented by Equation (i), is effective at eliminating

features with low variance, assuming they have a minimal contribution to the predictive
model. During the selection process, the method automatically identifies and removes zero
variance features.

selector ¼ VarianceThresholdðÞ (i)

Equation (ii) depicts the SelectKBest method, which uses a score function called f_regression
and a parameter k of 13. The parameter k is set to 13, indicating a preference to keep the top 13
features deemed most influential in predicting aftermarket part prices. This method assesses
the statistical relationship between each feature and the target variable, ranking them
according to their significance. The chosen parameters strike a balance between feature
richness andmodel efficiency, taking into account the linear relationship between features and
the target variable.

selector ¼ SelectKBest
�
score func ¼ f regression; k ¼ 13

�
(ii)

The RFECV method, as shown in Equations (iii) and (iv), employs the Support Vector
Regressor (SVR) as an estimator with a linear kernel. This method systematically evaluates
feature relevance by recursively removing the least informative features. The use of a linear
kernel corresponds to the assumed linear relationship between features and prices in our
dataset. Step of 1 and cv of 10were chosen as parameters to ensure thorough feature evaluation
while maintaining computational efficiency.

estimator ¼ SVRðkernel ¼linearÞ (iii)
selector ¼ RFECVðestimator; step ¼ 1; cv ¼ 10Þ (iv)

Based on our dataset, RFECV elimination produced the most favorable results, and Table 1
shows the rankings of all RFECV-calculated attributes. This information was used to conduct
trial and error tests on attributes to determine which contributed to the highest accuracy.
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Figure 2. Percentage data covered in each attribute
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Recursive Feature Elimination with Cross-Validation (RFECV) technique outperforms
SelectKBest and Variance Threshold because it can capture intricate relationships and
dependencies between features. By removing less relevant features during cross-validation,
RFECV excels at evaluating the collective impact of features in our dataset, which includes
technical attributes of automobile parts. The method retains the most relevant features,
improving accuracy and interpretability.
SelectKBest, which is efficient at selecting top features based on individual metrics, does

not consider feature interactions. Variance Threshold, which focuses on variance within
individual features, maymiss important associations required for accurate pricing predictions.

Figure 4. Price distribution including acceptable range and outliers

Figure 3. Attributes included after preprocessing
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As a result, RFECV’s consideration of feature interactions and dependencies makes it more
suitable for selecting impactful features and improving predictive model accuracy.
Feature scaling was used to ensure that the range of values was uniform. Numerical values

were normalized, and categorical data was encoded using labels. Normalization was used to
adjust numerical values such as length, diameter, area, mass, and so on to a standard scale,
eliminating potential biases caused by different measurement units or scales. Categorical data,
on the other hand, such as material, finish, shape, and so on, was encoded using labels,

Table 1. Ranking based on RFECV

Features Ranking Features Ranking

Length 2 Anti-Siphon 16
Thickness 6 GROSS_WT 3
Outer diameter 1 TOTAL_SALES_DEMAND 1
Inner diameter 1 Area 1
Material 9 Volume 11
Finish 13 Mass 8
Mounting location 12 SHAPE 10
Fuel tank capacity 4 INSTA_HEAT 14
Filler neck to end length 1 VENT 5
Baffles included 7 Integral Fuel Tank 15
Source(s): Authors’ own work

Figure 5. Heat map correlating all the attributes
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allowing for the representation of qualitative information in a numerical format suitable for
computational analysis.
Given the large volume of available data, the datasetwas divided into a 70% training set and

a 30% test set. The validation dataset was assigned a nominal amount (10%) of the training
dataset. To estimate the performance of the models, the error metric RootMean Squared Error
(RMSE) was chosen.
Because of its comprehensibility, ability to capture prediction accuracy, and emphasis on

penalizing larger errors, the Root Mean Square Error (RMSE) metric stands out as a superior
choice in various modeling scenarios. The average magnitude of the errors between predicted
and actual values ismeasured byRMSE, providing a straightforward understanding of how far
off the model’s predictions are from the true values. Furthermore, because of its squared
nature, RMSE gives significant weight to larger errors, making the metric more sensitive to
outliers or extreme deviations. Furthermore, RMSE is well-suited for regression-type
problems in which the goal is to minimize prediction errors.
A critical aspect of our methodologywas the evaluation of various regressionmodels, such

as Random Forest Regression, AdaBoost Regression, Bagging Regression, Support Vector
Regression (SVR), and K-nearest Neighbor Regression. The accuracy on the validation set,
mean RMSE score, and standard deviation were all considered when selecting a model.
Notably, the Random Forest Regressor emerged as the superior choice and this section
investigates the limitations of alternative models while explaining why the Random Forest
Regressor was chosen.

2.1 Limitations of alternative regression models
Other algorithms considered for this task had limitations, but Random Forest emerged as the
best option. AdaBoost’s sensitivity to noisy data and outliers could pose a problem for our
dataset, which may have quality variations. Bagging, while effective in reducing variance,
may impair interpretability due to its ensemble nature. Furthermore, Support Vector
Regression (SVR) necessitates meticulous hyperparameter tuning, which increases the time
required for implementation. For high-dimensional datasets, K-Nearest Neighbors (KNN) can
suffer from the “curse of dimensionality,” which can have an impact on accuracy.
When dealing with large and high-dimensional datasets, Random Forest excels at

predictive analysis, especially when there are complex interactions between features or
nonlinear relationships with the target variable. It performs well even without extensive
hyperparameter tuning and effectively handles noisy data. RandomForest appeared as the best
option among the mentioned algorithms because the goal is to obtain robust predictions while
dealing with diverse types of data and maintaining good interpretability, as shown in Table 2.
It is critical to accurately assess model performance during the development process.

Validation techniques help with this by assessing howwell the Random Forest Regressor (rfr)
model generalizes to new data. In this study, the model was trained using the expected price
range, and then its validation score was calculated. This step involved determining how well
the model predicted prices on data that had not been previously trained on. However, more

Table 2. Comparison of different models

Models Accuracy Mean RMSE score Standard deviation

RandomForestRegressor 0.717507 61.800927 14.306699
AdaBoostRegressor 0.451401 70.588170 11.112890
BaggingRegressor 0.673993 64.175979 14.116304
SVR 0.464940 113.950125 16.046542
KNeighborsRegressor 0.622910 100.102034 16.436865
Source(s): Authors’ own work
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sophisticated techniques such as Grid Search Cross-Validation (GridSearchCV) and
RandomizedSeach Cross-Validation (RandomizedSearchCV) were used to improve the
model’s performance by tuning the hyperparameters even further.
The code snippet, Equation (v), encapsulates the GridSearchCV process.

The GridSearchCV systematically explores a predefined grid of hyperparameters for the
Random Forest Regressor, assessing the model’s performance across various combinations
through cross-validation. The selected parameters, specified in the param_grid variable,
include a range of values for tuning the Random Forest Regressor, such as the number of
estimators and the tree depth. The choice of these parameters aligns with the need to strike a
balance between model complexity and performance, ensuring optimal generalization to
unseen data. The scoring metric, set as neg_mean_squared_error, aims to minimize the mean
squared error during cross-validation, guiding the grid search toward configurations that yield
the most accurate predictions.

grid search ¼ GridSearchCV
�
rfr; param grid ¼ param grid; cv

¼ 10; scoring¼‘neg mean squared error’
�

(v)

The code snippet Equation (vi) encapsulates the RandomizedSearchCV process. The use of
RandomizedSearchCVover GridSearchCVallows for a more randomized exploration of the
hyperparameter space, making it computationally less intensive while still yielding robust
results.

random search ¼ RandomizedSearchSearchCV
�
rfr; param grid ¼ param grid; cv

¼ 10; scoring¼‘neg mean squared error’
�

(vi)

The optimal hyperparameter values for the Random Forest Regressor model were determined
using these techniques to be a tree depth of 15 and an estimator size of 200. Following that,
various permutations and combinations were investigated based on the feature importance
determined by recursive feature elimination. Table 3 highlights the final list of attributes that
provided the best accuracy of 76.14% on the Random Forest Regressor model, as shown in
Table 4.

3. Results and discussion
The Random Forest Regressor model, chosen for its superior performance, predicted
aftermarket part prices with an impressive accuracy rate of 76.14%. This robust predictive
capability stands out in the context of the dataset, demonstrating its effectiveness in dealing
with the complex interactions and nonlinear relationships inherent in automotive part pricing.
The accuracy of the model in capturing underlying patterns and relationships was further

Table 3. Final list of attributes selected

Sl. No. Attribute Sl. No. Attribute

1 Length 9 Thickness
2 Volume 10 Baffles Included
3 Mass 11 TOTAL_SALES_DEMAND
4 SHAPE 12 Outer Diameter
5 Fuel Tank Capacity 13 Inner Diameter
6 Finish 14 Material
7 Area 15 VENT
8 GROSS_WT
Source(s): Authors’ own work
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validated by comparing predicted prices to actual prices, as shown in Figure 6. The scatter plot
shows a strong correlation between predicted and actual prices, indicating that the model can
provide accurate estimates.
The Random Forest Regressor was found to be the most accurate of the regression models

tested, including AdaBoost, Bagging, Support Vector Regression (SVR), and K-nearest
Neighbor Regression. The Random Forest Regressor was chosen because of its resilience in
handling diverse data types, avoidance of overfitting, and effectivemanagement of noisy data.
While each alternative model has advantages, they all have limitations that make them
unsuitable for the dataset’s specific characteristics.
The random forest regression model was also tested for its ability to detect anomalies. The

model predicted the price of each data point at zero cost at first. Figure 7 depicts a scatter plot
illustrating the relationship between predicted prices and zero-cost parts. Notably, the
predicted price range for all zero-cost components is within the acceptable range.
The machine learning insights gained from feature importance analysis and Recursive

Feature Elimination with Cross-Validation (RFECV) add significantly to existing aftermarket
pricing knowledge. The RFECV technique, which has been identified as superior in selecting
relevant features, excels in evaluating complex relationships and dependencies among
features in the dataset. This understanding is critical for the automotive industry, where feature
interactions play a critical role in pricing decisions. RFECV’s ability to eliminate less
informative features iteratively improves model accuracy and interpretability, providing a
more nuanced understanding of how technical attributes influence pricing.

Table 4. Best output given by random forest regressor model

Models RandomForestRegressor

Accuracy 0.761468
Mean RMSE score 54.192732
Standard deviation 11.211734
Source(s): Authors’ own work

Figure 6. Scatter plot of actual vs predicted prices
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As shown in Figure 8, the methodology successfully identified outliers representing
unusual pricing scenarios. The model correctly predicted prices for these outliers within the
acceptable range, demonstrating its ability to dealwith unusualmarket conditions.When faced
with atypical pricing situations, this anomaly detection capability is critical for
aftermarket businesses, allowing them to mitigate potential revenue loss and make
informed decisions.

Figure 7. Scatter plot of zero priced parts vs predicted price

Figure 8. Scatter plot of actual prices of lower and higher outliers vs predicted prices
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4. Conclusion
In conclusion, the application of machine learning techniques in the aftermarket sector yielded
key findings with significant implications for pricing strategies in this study. The Random
Forest Regressormodel predicted aftermarket part priceswith an impressive 76.14%accuracy,
providing a robust tool for businesses navigating the complex landscape of pricing decisions.
The methodology’s success in feature selection via RFECVand anomaly detection increases
its practical applicability even further.
The identified technical pricing attributes, as well as the model’s ability to handle outliers

and unique market circumstances, add valuable insights to the existing knowledge gap in
aftermarket pricing strategies. The findings of the study provide decision-makers with a more
nuanced understanding of the factors influencing pricing decisions, as well as a reliable
framework for optimizing revenue and competitiveness.

4.1 Limitations and further work
While the study has made significant progress in leveraging machine learning for pricing
optimization in the aftermarket sector, it is important to recognize some limitations that may
impact the generalizability and robustness of the findings. One limitation is the dataset’s
narrow focus, which was primarily on fuel tanks within a single truck assembly. This may
necessitate additional research to validate and extend the approach to a more diverse range of
components.
Furthermore, while the Random Forest Regressor model produced noteworthy accuracy, it

may be subject to overfitting ormay not be the best choice for all aftermarket pricing scenarios.
Model performance can vary depending on the characteristics of the data, so experimenting
with alternative models or ensemble approaches may provide a more robust understanding of
the predictive capabilities across diverse datasets. Ensemble methods, such as stacking or
blending, could be investigated to capitalize on the strengths of multiple models, reducing the
risk of relying solely on one algorithm.
Moreover, the anomalies discovered during the study, which represent irregular pricing

scenarios, can be used for more than just identification. These anomalies can help refine and
improve the machine-learning code. By assessing and understanding the underlying causes of
these anomalies, the model can be adjusted and improved, resulting in a more refined and
accurate predictive tool. An iterative process of detecting anomalies, refining the model, and
relearning from the updated dataset can help to create a constantly improvingmachine learning
system for aftermarket pricing.
In the future, potential research directions in this domain could include the incorporation of

advanced machine-learning models or ensemble techniques to improve predictive accuracy.
Furthermore, researching the dynamic nature of market conditions and howmachine learning
can adapt to real-time changes in the aftermarket sector is an exciting avenue to pursue.
Furthermore, investigating the applicability of the methodology to other technical parts of the
field could open new avenues for research and practical applications. Continuous
technological and data analysis tool advancements provide a rich landscape for future
endeavors, ensuring that the aftermarket sector remains at the forefront of innovative pricing
strategies.
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