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Abstract
Purpose –This study aims to examine the impact of the decision makers’ risk preference on logistics routing
problem, contributing to logistics behavior analysis and route integration optimization under uncertain
environment. Due to the unexpected events and complex environment in modern logistics operations, the
logistics process is full of uncertainty. Based on the chance function of satisfying the transportation time and
cost requirements, this paper focuses on the fourth party logistics routing integrated optimization problem
considering the chance preference of decision makers from the perspective of satisfaction.
Design/methodology/approach – This study used the quantitative method to investigate the relationship
between routedecisionmakingandhumanbehavior.The cumulativeprospect theory is used todescribe the loss, gain
and utility function based on confidence levels. A mathematical model and an improved ant colony algorithm are
employed to solve the problems. Numerical examples show the effectiveness of the proposed model and algorithm.
Findings – The study’s findings reveal that the dual-population improvement strategy enhances the
algorithm’s global search capability and the improved algorithm can solve the risk model quickly, verifying
the effectiveness of the improvementmethod.Moreover, the decision-maker ismore sensitive to losses, and the
utility obtained when considering decision-makers’ risk attitudes is greater than that obtained when the
decision-maker exhibits risk neutrality.
Practical implications – In an uncertain environment, the logistics decisionmaker’s risk preference directly
affects decision making. Different parameter combinations in the proposed model could be set for decision-
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makers with different risk attitudes to fit their needs more accurately. This could help managers design
effective transportation plans and improve service levels. In addition, the improved algorithm can solve the
proposed problem quickly, stably and effectively, so as to help the decision maker to make the logistics path
decision quickly according to the required confidence level.
Originality/value – Considering the uncertainty in logistics and the risk behavior of decision makers, this
paper studies integrated routing problem from the perspective of opportunity preference. Based on the chance
function of satisfying the transportation time and cost requirements, a fourth party logistics routing
integrated optimization problem model considering the chance preference of decision makers is established.
According to the characteristics of the problem, an improved dual-population ant colony algorithm is designed
to solve the proposed model. Numerical examples show the effectiveness the proposed methods.
Keywords Fourth party logistics, Routing optimization, Dependent-chance programming,
Ant colony algorithm, Risk attitude
Paper type Research paper

1. Introduction
With the rapid development of modern economy and e-commerce, the competition among
modern enterprises is becoming more and more fierce (Tian et al., 2022; Fu et al., 2021a, b).
As an important means of promoting enterprise industrial upgrading and enhancing core
competitiveness, logistics has attracted widespread attention from various industries
(Stodola, 2020; Goli et al., 2022). At the same time, people’s demands for logistics service
levels have continued to increase (Qian et al., 2021; Mehmann and Teuteberg, 2016),
particularly in uncertain logistics services where stable and efficient delivery is one of the
most effective ways for modern logistics companies to win customer recognition.

In order to improve logistics efficiency and core competitiveness of enterprises, most
enterprises outsource logistics business to professional third-party logistics (3PL) providers.
However, with the rapid development of modern logistics, customers’ requirements for
logistics service level are constantly increasing. Logistics decision is not only about
accomplishing transportation tasks, but also resource sharing and ability integration among
different subjects (Wang et al., 2020, 2024). Traditional 3PL providers lack supply chain
management capabilities, and the cooperation between 3PL providers is not deep enough,
and complementary resources are not fully utilized, making it difficult to meet the current
market demand for fierce competition (Zhang et al., 2021). Therefore, the industry and
academia are both focusing on fourth-party logistics (4PL) from a resource integration
perspective (Gattorna, 1998; Yao, 2010). In recent years, 4PL companies and logistics
enterprises formed and providing services based on the 4PL concept have gradually
demonstrated their strong competitiveness and influence (Huang et al., 2009).

The essential nature and core advantage of 4PL operation lie in its ability to integrate
supply chain resources (Tao et al., 2017). By cooperating with participants at various stages
within the supply chain, 4PL can facilitate mutual promotion, alleviate the phenomenon of
3PL enterprises acting alone, vicious competition in developed areas and inadequate supply
in underdeveloped areas, and effectively integrate and fully utilize social resources (Yin et al.,
2022). Many scholars at home and abroad have conducted research on issues related to 4PL,
such as supplier evaluation problems (Krakovics et al., 2008), 3PL supplier selection
(Aguezzoul, 2014), contract design (Wang et al., 2021; Huang et al., 2019), scheduling (Liu
et al., 2014), network design (Wang et al., 2021), routing problem (Zhang et al., 2005) and so on.

Route planning is one of the core factors affecting the overall efficiency of logistics (Goli
et al., 2022; Wang et al., 2023). The fourth party logistics routing optimization problem
(4PLROP) is a critical issue in modern logistics optimization (Huang et al., 2016). 4PL involves
selecting appropriate transportation routes for shipping tasks while also selecting the 3PL
suppliers who provide transportation services along that path, presenting a challenge to
traditional routing problems. Some scholars have proposed simplifying 4PLROP by using a
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descriptionmethod of a directedmultigraph. Chen et al. (2003) described each edge in a directed
multigraph as a 3PL supplier that provides transportation services along that path, providing a
clear description of 4PLROP and quickly solving small-scale problems. Cui et al. (2013)
integrated path selection and 3PL supplier selection into an undirected multigraph, also
describing each edge in the graph as a 3PL supplier, and studied the more complex 4PLROP
while considering issues such as transfer truck time and multitasking.

Most existing relevant research has focused on deterministic problems. However, due to
factors such as weather, traffic, human error and various unexpected situations, logistics
transportation processes have strong uncertainty (Huang et al., 2015), which caused
substantial losses in profits (Zhou et al., 2023; Goli et al., 2023a, b). Especially in long-distance
delivery such as cross-border transportation, there are significant disturbances in logistics
transportation time and cost due to geography, relevant systems and language reasons.
Huang et al. (2013) assumed that the 4PL system had no historical data, so the distribution of
3PL supplier transportation time could be described as a fuzzy variable by relevant experts
based on historical experience, and studied the 4PLROPwith fuzzy processing time with the
objective of minimizing total cost. However, in another scenario in logistics operations,
logistics companies have some historical data, which can be used to estimate the probability
or probability distribution of uncertain events using random variables. Moreover, with the
rapid development of e-commerce and fierce competition in the logistics industry in recent
years, traditional price competition between logistics companies has gradually shifted to
competition based on customer service levels (Fu et al., 2020, 2021a, b).

In an uncertain environment, decision-makers often hope to maximize the probability
function of event realization (Liu, 1997), rather than absolute returns, and hope to achieve
higher customer satisfaction while ensuring a certain return. In order to accurately describe
and measure the characteristics of people’s cognition, judgment and choice in uncertain
situations, Simon (1955) proposed the theory of bounded rationality. On this basis, Tversky
and Kahneman (1992) proposed the Prospect theory. Prospect theory applies psychological
research to economics and provides an effective tool for human judgment and decision
making under uncertain environment.

This study describes the transportation time and cost of 3PL suppliers as random variables
and investigates the 4PLROP in an uncertain environment. As the scheme designer, 4PL hopes
tominimize the probability of delay from the customer’s perspective, while alsominimizing the
probability of exceeding cost expectations from the perspective of the participating 3PL
suppliers. Therefore, depending on the risk attitude of the decision-maker, this study
establishes a mathematical model for the Dependent-chance based 4PL Routing Optimization
Problem (DP-4PLROP) by maximizing the total utility of the transportation time and cost
opportunity functions, taking into account attitude towards opportunities. The proposed DP-
4PLROP is an NP-hard problem, which is difficult to be solved by traditional algorithms.
Intelligent optimization algorithm is one of the effective ways to solve large-scale complex
optimization problems (Goli et al., 2023b;Wang et al., 2022). Based on the characteristics of the
problem, ant colony algorithms and dual-population improved ant colony algorithms are
designed to solve the model. The numerical examples demonstrate the rationality of the
established model and the effectiveness of the proposed algorithm.

2. Problem description
Assuming a certain company (4PL) has undertaken a supply chain logistics path integration
business, it is required to design a set of transportation plans for the client which will
transport transportation tasks from the starting point of the supply chain to the destination
node. Since 4PL is a logistics solution integrator, it is assumed that it has certain path
information and some cooperating 3PL suppliers before the task starts. The transportation
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network information and alternative 3PL suppliers’ information in the supply chain are
known, and there may be multiple 3PL suppliers that can provide transportation services
along each path. In order to describe the problemmore clearly, supplier information and path
information are integrated. The proposed DP-4PLROP can be described by a multi-graph
with multiple attributes.

An undirectedmultigraphGðV;EÞshown in Figure 1 is used to describe the proposedDP-
4PLROP. VðjVj ¼ nÞ is the set of nodes, representing cities, warehouses, processing plants
and other facilities in the supply chain; E is the set of edges, each edge represents a candidate
3PL supplier who can undertake transportation tasks on that path, and theremay bemultiple
edges between adjacent nodes. Both nodes and edges have cost and time attributes. Due to
various uncertain factors in logistics transportation, the transportation time and cost of the
3PL supplier have a certain degree of disturbance, which is described as a random variable.
The parameters and decision variables of the DP-4PLROP based on the description of the
undirected multigraph are presented in Table 1.
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Parameters
eijk Represents the kth 3PL supplier (kth edge) between nodes vi and vj, i; j∈ ð1; 2; � � � ; nÞ
rij Represents the number of 3PL suppliers (edges) between nodes vi and vj
Tijk þ tijk Represents the time between nodes vi and vj for 3PL supplier eijk to complete the transportation

task of this section. Where, Tijk is constant and represents basic time; tijk is a random variable,
representing the disturbance of time

Cijk þ cijk Represents the cost required by 3PL supplier eijk to complete this section of transportation task.
Where Cijk is constant, representing basic cost; cijk is a random variable representing the
perturbation of cost

T0i;C
0

i
Represents the time and cost required by the transportation task when it passes through node vi,
respectively

T0;C0 Respectively represents the decision-maker’s requirements on the total time and total cost of the
transportation task, that is, the total transportation time should not exceed T0 and the total
transportation cost should not exceed C0

α; β The confidence level indicating the total time and total cost thatmeet the requirements separately,
that is, in an uncertain environment, the probability that the total transportation time does not
exceed T0 and the probability that the total transportation cost is not greater than C0

R It represents a path from the starting node vs to the destination node ve of a task

Decision variable
eijkðRÞ 1 if eijk ∈R, 0 otherwise
yiðRÞ 1 if vi ∈R, 0 otherwise
Source(s): Authors’ own work

Figure 1.
Multi-graph of DP-

4PLROP

Table 1.
Mathematical notation
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Here, tijk and cijk respectively represent the disturbance of transportation time and cost of 3PL
supplier eijk. For thepurpose of expositionandnecessarymathematical simplification, it is assumed
that they follownormal distributionsNð0; σ2

ijkÞandNð0; σ2
ijkÞ, andare independent of eachother [1].

It can be seen that R is the solution to the proposed problem. In the multi-graph, each R
uniquely determines the path taken by the transportation task and the 3PL supplier who
performs the transportation task on that path. The time and cost of Rare represented byTðRÞ
and CðRÞ respectively, then:

TðRÞ ¼
Xn

i¼1

Xn

j¼1

Xrij

k¼1

ðTijk þ tijkÞxijkðRÞ þ
Xn

i¼1

T0iyiðRÞ; (1)

CðRÞ ¼
Xn

i¼1

Xn

j¼1

Xrij

k¼1

ðCijk þ cijkÞxijkðRÞ þ
Xn

i¼1

C0iyiðRÞ: (2)

Therefore, TðRÞ and CðRÞ also follow normal distributions, that is

TðRÞ∼N

 
Xn

i¼1

Xn

j¼1

Xrij

k¼1

TijkxijkðRÞ þ
Xn

i¼1

T0iyiðRÞ;
Xn

i¼1

Xn

j¼1

Xrij

k¼1

σ2
ijkxijkðRÞ

!

;

CðRÞ∼N

 
Xn

i¼1

Xn

j¼1

Xrij

k¼1

CijkxijkðRÞ þ
Xn

i¼1

C0iyiðRÞ;
Xn

i¼1

Xn

j¼1

Xrij

k¼1

σ2
ijkxijkðRÞ

!

:

The problem to be solved in this paper is to provide customerswith a transportation plan that
transports transportation tasks from the starting node to the destination node under certain
time and cost requirements. Due to the disturbance of transportation time and cost of 3PL
suppliers, the plan meets the total time and total cost requirements with a certain confidence
level, and maximizes the total utility of the confidence level while considering the decision
maker’s preference.

3. Problem formulation
For a given path R, its total time TðRÞand total cost CðRÞ satisfy the confidence levels αand β
(opportunity function) required by the customer, as shown in Eq. (3) and Eq. (4).

α ¼ Pr

(
Xn

i¼1

Xn

j¼1

Xrij

k¼1

ðTijk þ tijkÞxijkðRÞ þ
Xn

i¼1

T0iyiðRÞ≤T0

)

(3)

β ¼ Pr

(
Xn

i¼1

Xn

j¼1

Xrij

k¼1

ðCijk þ cijkÞxijkðRÞ þ
Xn

i¼1

C0iyiðRÞ≤C0

)

(4)

People often pay more attention to differences rather than absolute return values when
making decisions (Tversky and Kahneman, 1992). Therefore, we first assume that the
decision maker has expectations for the confidence levels of total time and total cost, which
are the reference points α0 and β0. For each alternative plan R, it represents a loss when the
confidence level is below the reference point, and a gain when the confidence level is above
the reference point. Thus, drawing on the value function description in cumulative prospect
theory (CPT) (Tversky and Kahneman, 1992), the utility functions of total time and total cost
can be defined as follows:
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vðαÞ ¼
�
ðα� α0Þ

γ1 ; if α ≥ α0

�λ1ðα0 � αÞγ1 ; else (5)

vðβÞ ¼
�
ðβ� β0Þ

γ2 ; if β ≥ β0

�λ2ðβ0 � βÞγ2 ; else (6)

Here, the parameters γ1 and γ2 represent the sensitivity of the decision maker to the
confidence levels of time and cost, with larger values indicating greater sensitivity.
Moreover, 0 < γ1 < 1; 0 < γ2 < 1, which reflects the general characteristic of decreasing
sensitivity of the decision maker. The parameters λ1 and λ2 are the relative sensitivity
coefficients for gain and loss, with higher values indicating a stronger aversion to losses. In
addition, the relative values of γ1, λ1 and γ2, λ2 can reflect the relative sensitivity of the
decision maker to the confidence levels of time and cost.

In an uncertain environment, the mathematical model for DP-4PLROP can be established
as follows:

maxfV ¼ vðαÞ þ vðβÞg (7)

s.t.

xijkðRÞ ¼
�
1; if eijk ∈R
0; else

(8)

yiðRÞ ¼
�
1; if vi ∈R
0; else

(9)

R ¼ ðvs; � � � ; vi; k; vj; � � � ; veÞ∈G (10)

Among them, formula (7) is the objective function, which represents maximizing the total
utility of the confidence levels for time and cost. The confidence levels α and β are expressed
in formulas (3) and (4), respectively, and the utility functions vðαÞ and vðβÞ are expressed in
formulas (5) and (6), respectively. Formulas (8) and (9) are the 0–1 decision variables of the
model, which determine the selected 3PL provider for executing the task and the nodes
passed through. Formula (10) indicates that the selected path is a route from the starting node
to the destination node.

4. Algorithm design
4.1 Design idea
It can be seen that DP-4PLROP is an extension of the Constrained Shortest Path Problem
(CSPP). CSPP is an NP-hard problem (Liu et al., 2012), and therefore DP-4PLROP is also NP-
hard, making it difficult to solve using traditional exact algorithms (Fu et al., 2022; Tian et al.,
2023). The Ant Colony Algorithm (ACA) is an intelligent algorithm that mimics the behavior
of ant colonies. It has high robustness, distributed computing and is easily combinable with
other optimization methods, especially when solving shortest path problems such as VRP
and TSP, showing unique advantages (Dorigo et al., 1996). Considering the problem of
premature convergence and stagnation in ACA during evolution, an Improved Ant Colony
Algorithm (IACA) is designed by incorporating the idea of dual-population independent
searching with periodic information exchange based on the characteristics of undirected
multigraphs.
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4.2 ACA

(1) Coding mechanism

Ris the solution to the problem, representing a path from the starting node vs to the destination
node ve in a multi-graph. It includes a set of edges and a set of nodes. From the multigraph
description, it can be seen that each edge eijk uniquely determines a pair of adjacent nodes vi
and vj in R, that is, the set of edges in Rcan uniquely determine the set of nodes. Therefore, only
the set of edges is encoded. Considering that the number of edges in each solution may vary, a
variable-length encoding mechanism is designed. NP represents the population size, and the
coding of the mth ðm ¼ 1; 2; � � � ;NPÞ ant can be represented as follows:

Rm ¼ ðesik; � � � ; ejelÞ∈G: (11)

Here, esik represents the starting node vs of Rm, ejel represents the final destination node
ve.In order to ensure the connectivity of Rm, adjacent elements (edges) must pass through the
same intermediate node, that is, the arrival node of the previous element and the entry node of
the next element are the same.

(2) Transfer probability

During the transfer process of ant m, its direction is determined based on the information on
all feasible edges and the path heuristic information. Let NGrepresent themaximumnumber
of iterations, and allowedm represent the set of all feasible edges for ant m at the current
moment. Then, the calculation method for the transfer probability pmijkðNgÞ of a certain edge
eijk in the current feasible set at the NgðNg ¼ 1; 2; � � � ;NGÞ iteration is as follows:

pmijkðNgÞ ¼

½τijkðNgÞ�ω
�
ηijk
�φ

X

arc⊂allowedm
½τarcðNgÞ�ω½ηarc�

φ

0; else

; arc∈ allowedm:

8
>>><

>>>:

(12)

Here, τijkðNgÞ represents the concentration of information pheromones on edge eijk in theNg-th
iteration, ηijk represents the path heuristic information, where ηijk ¼ 1=ðTijk þ CijkÞ. ω and φ
respectively represent the pheromone heuristic factor and path heuristic factor, reflecting the
relative importance of information pheromone concentration and path heuristic information.

(3) Pheromone updating strategy

At the beginning of algorithm execution, the same initial information pheromone
concentration P0 is assigned to each edge in the multi-graph. After every generation of
ants completes the search, the pheromone concentration is updated using the following
formula:

τijkðNgþ 1Þ ¼ ρτijkðNgÞ þ ∆τijk (13)

∆τijk ¼

8
><

>:

αþ βþ θ v
Q

; eijk ∈R

0; else

(14)

Here, τijkðNgþ 1Þ represents the concentration of information pheromones on edge eijk in the
iteration of ðNgþ 1Þ, ∆τijk represents the increment of pheromone concentration, R
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represents the current optimal solution, v represents the current optimal value and θ is a
constant when v≥ 0, but θ ¼ 0 when v < 0.

(4) Maximum and minimum ant

As the algorithm iterates, it is possible for the concentration of information pheromones on
certain paths in the multi-graph to continuously increase, while pheromones on other paths
continuously evaporate. To avoid highly concentrated pheromone levels that cause all ants
in the population to search the same path, leading to premature convergence to a local
optimum, the concentration of pheromones on each edge is limited to a certain range. When
τijkðNgÞ < τmin, τijkðNgÞ ¼ τmin; when τijkðNgÞ > τmax, τijkðNgÞ ¼ τmax.

(5) Repair strategy of illegal paths

During the ant search process, there may be a situation where the current feasible set
allowedm is empty, which means that there is no valid path to reach the destination node. In
this case, it is necessary to repair the invalid path. The traditional method is for the ant to
backtrack to the previous node and add the current path to the taboo list. However, this
method consumes a lot of computational time due to the backtracking process. Therefore,
according to the characteristics of the problem, the following method is designed for
repairing invalid paths: for the current invalid path Rm, starting from its initial node, check
whether the current node is directly connected to the destination node in themulti-graph. If it
is, randomly select an edge between the node and the destination node and add it to the
encoding; otherwise, the ant restarts the search.

4.3 IACA
ACA often shows unique advantages in solving routing problems (Dorigo et al., 1996).
However, premature convergence and stagnation often cause the algorithm to fail to obtain
optimal solutions. To address this problem and solve the proposed model quickly and
efficiently, a dual-population independent evolution approach is designed. In IACA, two
populations evolve independently and regularly interact with each other, to prevent local
convergent behavior of single-population search and improve the global search capability.

(1) The update method of pheromone for population A

In the multi-graph, each edge eijk has two types of pheromones, τAijkðNgÞ and τBijkðNgÞ, which
represent the pheromone concentration of populations A and B, respectively, in the Ng-th
generation.

Population A uses the elite strategy to update pheromones, as shown in equations (13)
and (14).

(2) The update method of pheromone for population B

In population B, pheromone is updated based on the fixed amount of pheromone left by each
ant on the path it has passed through, and the update formula is as follows:

τBijkðNgþ 1Þ ¼ ρτBijkðNgÞ þ μ∆τ; (15)

In which μ represents the number of ants passing through the edge eijk in the Ng-th
generation, and ∆τ is the pheromone left by the ants as they pass by.

(3) Pheromone interaction

When the iteration number Ng is a multiple of M, the pheromone interaction between
population A and population B is performed. The interaction method is as follows:
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τA
0

ijkðNgÞ ¼
τAijkðNgÞ þ τBijkðNgÞ

2
; (16)

τB0ijkðNgÞ ¼ τAijkðNgÞ: (17)

Where τAijkðNgÞ and τBijkðNgÞ are the pheromone concentrations of edge eijk before information
exchange for population A and population B respectively. τA0ijkðNgÞ and τB0ijkðNgÞ are the
pheromone concentrations after the information exchange.

(4) Replacement strategy of elite ants

Population A updates the path pheromone using an elite strategy. Therefore, for each
generation of population A, a replacement strategy is used for the current best solution.

For each element eijk on the current best path, it is compared with the other rij − 1 edges
between vi and vj. If a better solution is found, then the current best solution is updated.

(5) The flowchart of the IACA algorithm

The algorithm flowchart of IACA is shown in Figure 2.

5. Numerical experiments
To verify the rationality of the establishedmodel and the effectiveness of the algorithm, three
instances of different scales, namely, a 7-node (E7), a 15-node (E15) and a 30-node (E30), are
given in this section. Through specific examples, we will carry out comparative analysis
from two aspects of the model and algorithm.

The investigated algorithms are coded with Microsoft Visual Studio and run on a Intel
Core-2 Duo 3.0 GHz PC.

5.1 Example design
As is introduced previously in problem description, the proposed DP-4PLROP can be
described by an undirected multi-graph with multiple attributes. The multi-graphs are
generated randomly in a rectangle to represent examples (Chen et al., 2009; Huang et al.,
2016). Detailed steps are shown below:

Step 1. Generate n − 2 nodes (a total of n nodes including the source and destination)
randomly in a d 3 d square area. ð0; 0Þ and ðd; dÞ represent the source and destination,
respectively.

Step 2. If the Euclidean distance between two nodes is less than or equal to Ds, edges exist
between them.

Step 3. Generate a random number rij ∈ ½a1; b1� which represents the number of edges
between two nodes.

Step 4. Randomly generate cost Cijk and time Tijk for each edge, where Cijk ∈ ½a2; b2� and
Cijk ∈ ½a3; b3�.

Step 5. Randomly generate cost C0i and time T 0i for each node, where C0i ∈ ½a4; b4� and
T 0i ∈ ½a5; b5�.

To illustrate the ideas discussed above and compare more clearly, three examples of E7, E15
andE30 are generated. d ¼ 1, andDs ∈ ½0:5; 0:75�. Based on these, other parameters are set as
follows:
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a1 ¼ 2; b1 ¼ 4; a2 ¼ 6; b2 ¼ 30; a3 ¼ 2; b3 ¼ 22; a4 ¼ 5; b4 ¼ 15; a5 ¼ 4; b5 ¼ 9:

For example, the multi-graph of example E7 is shown in Figure 1.

Source(s): Authors’ own work

Figure 2.
Flowchart of the
improved dual

population ACA
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5.2 Algorithm comparison
To test the performance of the algorithm, relevant performance parameters are defined. The
algorithm is executed 100 times. “Best” represents the objective function value of the best
solution obtained in 100 runs, that is the best value. “Bad” represents theworst value, “Mean”
represents the average value, “Msd” represents the standard deviation and “Time”
represents the average time consumed by the algorithm to run once.

Msd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðVi � VmeanÞ

2

N� 1

v
u
u
u
t

; (18)

Here, N ¼ 100, Vi represents the value during the i-th execution of the algorithm, and Vmean

represents the mean value of N executions.
Let σijk ¼ σ ¼ 2:5; σijk ¼ σ ¼ 3:0. The algorithm parameter values are all chosen from a

set of parameter combinations that have been tested multiple times and shown to perform
well. For example, in the E7 instance, the parameter combinations for ACA and IACA
algorithms are:

P0 ¼ 0:9; ρ ¼ 0:9;ω ¼ 0:8;φ ¼ 1:0;Q ¼ 5:0; τmin ¼ 0:1; τmax ¼ 2:0:
P0 ¼ 0:8; ρ ¼ 0:9;ω ¼ 0:8;φ ¼ 1:0;Q ¼ 5:0; τmin ¼ 0:1; τmax ¼ 1:2; θ ¼ 1:0;

∆τ ¼ 0:01;M ¼ 5

The comparison results between ACA and IACA for E7, E15 and E30 are shown in Table 2,
where “Example” denotes three instances with different scales andAlgorithm represents the
two algorithms, ACA and IACA.

Table 2 shows that both algorithms are effective for the proposed problem especially for
small andmedium scale problems.Moreover, as the problem scale increases, IACAgradually
exhibits advantages.When the problem scale is small, bothACA and IACA can obtain stable
solutions in a short time.When the problem scale is large, IACA requires fewer iterations and
search time than ACA, and the quality and stability of the solution obtained by IACA are
higher. The dual-population IACA enhances the algorithm’s global search capability,
verifying the effectiveness of the improvement method.

5.3 Model comparison
This paper proposes a mathematical model considering decision-makers’ risk attitudes.
It can be seen that when λ1 ¼ λ2 ¼ 1; γ1 ¼ γ2 ¼ 1, the model reduces to the one that does not
consider decision-makers’ risk attitudes. In this case, the decision-maker behaves as risk-
neutral, and the proposed DP-4PLROP model will degenerate into a risk-neutral model.

Example Algorithm NP NG Best Bad Mean Msd Time

E7 ACA 100 10 0.4053 0.4053 0.4053 0 0.065s
E7 IACA 20 10 0.4053 0.4053 0.4053 0 0.052s
E15 ACA 150 15 0.3738 0.3738 0.3738 0 0.164s
E15 IACA 50 10 0.3738 0.3738 0.3738 0 0.116s
E30 ACA 400 90 �0.1518 �0.4081 �0.1672 0.0612 7.083s
E30 IACA 200 50 �0.1518 �0.1518 �0.1518 0 4.737s
Source(s): Authors’ own work

Table 2.
Comparison of ACA
and IACA
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To compare the two models and evaluate the impact of C0;T0; α0; β0 on the results, firstly, we
conduct a test using theE7 instance.The initial values forT0 ¼ 65;C0 ¼ 85;α0 ¼ 0:8; β0 ¼ 0:8,
and draw on the parameter settings of prospect theory for the general population,
λ1 ¼ λ2 ¼ 2:25; γ1 ¼ γ2 ¼ 0:88 (Tversky and Kahneman, 1992). The test results are shown in
Figures 3 and 4, where “Vu” denotes the results obtained by considering decision-makers’ risk
attitudes, and “Vn”denotes the results obtainedwhen thedecision-maker exhibits riskneutrality.

From Figure 3, it can be observed that as the requirements on total time and total cost
decrease, that is as the values of C0 and T0 increase, the overall utility value increases
continuously. Furthermore, since 0 < γ1 < 1 and 0 < γ2 < 1, when the overall utility is less
than zero, the utility obtained when considering decision-makers’ risk attitudes is less than
that obtained when the decision-maker exhibits risk neutrality. It indicates that the decision
maker is risk preference when facing losses; when the overall utility is greater than zero, the
utility obtained when considering decision-makers’ risk attitudes is greater than that
obtained when the decision-maker exhibits risk neutrality. It indicates that the decision
maker is risk averse when facing gains. Furthermore, as λ1 ¼ λ2 > 1, when the utility is less
than 0, the gap between Vu and Vn is larger, indicating that the decision-maker is more
sensitive to losses.

The value of reference points is a key factor affecting overall utility and satisfaction.
From Figure 4, it can also be seen that as the reference point (i.e. the decision-maker’s
requirement) increases, the overall utility decreases continuously. Moreover, since α and β
always take values in the range ð0; 1Þ, the utility obtained when considering decision-
makers’ risk attitudes is greater than that obtained when the decision-maker exhibits risk
neutrality.

Figure 3.
The effect of C0 and T0

on the results

Figure 4.
The effect of reference
points α0 and β0 on the

results
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5.4 Effect of risk attitude coefficient on the results
In the above experiments, the utility function parameters λ1; λ2; γ1 and γ2 are set to values
based on prospect theory for the general population (Tversky and Kahneman, 1992), that is
λ1 ¼ λ2 ¼ 2:25; γ1 ¼ γ2 ¼ 0:88. In actual logistics operations, different customers and
partners may have different risk attitudes, and the values of their risk attitude coefficients
could vary significantly. Therefore, under the condition that other parameters remain
unchanged, the influence of λ1; λ2; γ1 and γ2 on the results is tested separately. The test results
are shown in Figures 5 and 6 when T0 ¼ 55;C0 ¼ 85;α0 ¼ 0:8 and β0 ¼ 0:8.

The relative values of λ1 and λ2 represent the sensitivity relative coefficient of decision-
makers for cost and time respectively, and with higher values indicating a stronger aversion
to losses. When λ1 and λ2 are less than 1, the decision-maker is more sensitive to gains. When
λ1 and λ2 are greater than 1, the decision-maker is more sensitive to losses. As shown in
Figure 5, as λ1 and λ2 gradually increase, the decision-maker becomesmore sensitive to losses
and the total utility value decreases. Moreover, since the solution’s time confidence level α is
slightly larger than the reference point (0.8), and the cost confidence level β is smaller than the
reference point (0.8), the total utility is greater than zero when λ1 or λ2 is relatively small.
However, as λ1 or λ2 increases, the total utility gradually becomes negative and decreases.

The parameters γ1 and γ2 are the exponents of the utility function, which reflect the
convexity or concavity degree of the S-shaped curve. As shown in Figure 6, for the proposed
problem, the total utility does not consistently increase or decrease with the increase of γ1 or
γ2. Taking γ1 as an example, when 0:1≤ γ1 ≤ 0:5, the time confidence level α ¼ 0:82 > 0:8.
Although the total utility is negative, the decision-maker perceives time as gain. As γ1
gradually increases, the total utility decreases. When 0:6≤ γ1 ≤ 1, the selected path has

Figure 5.
The effect of λ1 and λ2
on the results

Figure 6.
The effect of γ1 and γ2
on the results
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α ¼ 0:76 < 0:8. At this point, both time and cost are perceived as losses by the decision-
maker. As γ1 gradually increases, the total utility also increases.

To sum up, different parameter combinations could be set for different kinds of decision-
makers. Decision-makers’ behavioral characteristics can be presented through risk
parameters to fit their needs more accurately. To improve the overall utility of the
decision scheme, decision makers should effectively identify customer risk preferences,
estimate reference criteria and distinguish key factors such as cost and time. This could help
4PL design effective transportation plans and improve service levels.

6. Conclusions
In the complex environment, uncertainty is everywhere in the process of logistics operation.
This study investigates the integrated routing optimization problem under uncertain
environments. Considering the bounded rationality of decision makers in risk situations,
utility function of prospect theory is introduced. The transportation time and cost of the 3PL
supplier are described as random variables. Then, from the perspective of relevant
opportunities, a mathematical model of 4PL routing optimization considering opportunity
preference is established. The proposed DP-4PLROP is NP-hard. Therefore, on the basis of
designing ACA for undirected multi-graph features, the IACA is designed to solve the model
by incorporating the idea of dual-population independent searching with periodic
information exchange. Numerical examples demonstrate the effectiveness of the
descriptive approaches, the proposed models and the designed algorithms.

In an uncertain environment, the decisionmaker’s risk preference directly affects decision
making. In the proposed model, different parameter combinations can be set for decision-
makers with different risk attitudes to fit their needs more accurately. The results show that
risk behavior directly affects logistics route decision. Specifically, the decision-maker ismore
sensitive to losses, and the utility considering decision-makers’ risk attitudes is greater than
that the decision-maker exhibits risk neutrality. Furthermore, the dual-population
improvement strategy enhances the algorithm’s global search capability and the
improved algorithm can solve the risk model quickly. This could help managers design
effective transportation plans and improve service levels.

In the future, the work in this paper can be extended. This paper builds a model for
routing integration optimization problem under risk conditions based on prospect theory,
and some other classical behavior theories can also help to build the model, such as
overconfidence theory and regret theory. In addition, more uncertain factors and different
probability distributions may be considered. Moreover, the methods proposed in this paper
can also be applied to other logistics integration optimization scenarios, such as cooperative
optimization of trucks and drones, automatic vehicle scheduling problem, etc.

Note
1. Tijk and Cijk respectively represent the basic time and cost of the 3PL supplier. Therefore, assuming

that their perturbations tijk and cijk have a mean of 0. Additionally, tijkði; j∈ ð1; 2; � � � ; nÞ;
k∈ ð1; 2; � � � ; rijÞÞ are mutually independent, as are cijkði; j∈ ð1; 2; � � � ; nÞ; k∈ ð1; 2; � � � ; rijÞÞ.
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