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Abstract 
 
We examine predictive machine learning studies from 50 top business and economic journals 
published between 2010 and 2023. We investigate their transparency regarding the predictive 
performance of machine learning models compared to less complex traditional statistical models 
that require fewer resources in terms of time and energy. We find that the adoption of machine 
learning varies by discipline, and is most frequently used in information systems, marketing, and 
operations research journals. Our analysis also reveals that 28% of studies do not benchmark the 
predictive performance of machine learning models against traditional statistical models. These 
studies receive fewer citations, arguably due to a less rigorous analysis. Studies including 
traditional statistical models as benchmarks typically report high outperformance for the best 
machine learning model. However, the performance improvement is substantially lower for the 
average reported machine learning model. We contend that, due to opaque reporting practices, it 
often remains unclear whether the predictive gains justify the increased costs of more complex 
models. We advocate for standardized, transparent model reporting that relates predictive gains 
to the efficiency of machine learning models compared to less-costly traditional statistical models.  
JEL-Codes: C180, C400, C520. 
Keywords: machine learning, predictive modelling, transparent model reporting. 
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1. Introduction 

Because of its non-linear and often more complex nature, machine learning (ML) offers significant 

theoretical advantages over traditional statistical models in addressing prediction problems in business 

and economics (Athey, 2018; Athey and Imbens, 2019; Bzdok et al., 2018; Goldstein et al., 2021; Mul-

lainathan and Spiess, 2017; Varian, 2014). These advantages become particularly relevant if a mean-

ingful prediction for an economic problem requires many potentially interacting variables that are non-

linearly related to the outcome variable (Goldstein et al., 2021). ML models might uncover hidden non-

linear relationships between variables that traditional statistical models would overlook (Choudhury et 

al., 2020). Additionally, ML methods are well-suited for working with “big data”1 and effectively pro-

cessing the high-dimensional data present in large volumes of unstructured text or images (Athey, 2018; 

Gentzkow et al., 2019; Goldstein et al., 2021; Mullainathan and Spiess, 2017; Varian, 2014). It is there-

fore not surprising that researchers increasingly apply ML models to address research questions in busi-

ness and economics, as Figure 1 shows. An analysis by Currie et al. (2020) corroborates this, showing 

that mentions of ML in microeconomic articles have increased exponentially since 2010, making ML 

the most discussed new method in the field.  

[Figure 1 about here] 

At the same time, many problems are in reality rather simple and sometimes linear in nature (Athey 

and Imbens, 2019). Using ML models to approach these problems can be inefficient given the higher 

costs associated with ML models in terms of time and energy consumption compared to traditional 

regression models. Complex ML models require longer training periods on a higher number of GPUs 

and a larger amount of data. The use of additional computer resources results in higher financial costs 

in the form of hardware, electricity, and computing time in the cloud, as well as environmental costs in 

the form of CO2 emissions, all of which might economically outweigh marginal gains in predictive 

accuracy (see, e.g., Bender et al., 2021; Ebert et al., 2024; Lacoste et al., 2019; Luccioni et al., 2024; 

Schwartz et al., 2019; Strubell et al., 2019, 2020; Thompson et al., 2021).2 Further ML model costs 

arise from the lower explainability and interpretability of the results compared to those of traditional 

econometric methods (Hünermund et al., 2022; Messeri and Crockett, 2024). 

 

1 Goldstein et al. (2021) provide a definition of the term “big data” in the context of finance research that translates 

well to other business and economic disciplines. They describe three characteristics of “big data”: the pure size of 

the data set, high dimensionality (i.e., a high number of variables compared to the sample size), and complexity 

regarding the data structure. The latter refers to unstructured data sets, such as text, image, video, or audio data. 
2 Training one common natural language processing model on a GPU with parameter tuning and experiments is 

estimated to account for more than twice as much carbon emissions than the emissions of an average U.S. citizen 

per year. Training one big transformer model on a GPU, including neural architecture search, is estimated to emit 

more than 17 times as much carbon as the average U.S. citizen per year (Strubell et al., 2019). 
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Given the rapidly rising number of ML-related publications in business and economic research in 

recent years, we hypothesize that published articles in these disciplines increasingly employ ML models 

for predictive research problems that often do not have the content complexity that requires researchers 

to rely on more resource-intensive models. In such cases, these models will frequently perform only 

marginally better than conventional, less time- and energy-consuming methods. Researchers might re-

frain from reporting the predictive performance of less complex conventional methods if they yield 

similar results to ML models, given that marginal improvements might not justify the higher financial 

and environmental costs of using more complex models. Using novel ML methods might also attract 

more attention, leading to higher chances of publication and a higher number of expected citations 

(Leech et al., 2024). 

This is likely the first explorative study investigating the use of ML across the 50 high-quality 

business and economic journals comprising the Financial Times Research Rank (FT50). Specifically, 

we focus on articles that apply ML models to solve predictive research problems. We investigate 

whether these articles are transparent about the performance improvement of using more costly ML 

models compared to less complex conventional statistical methods, such as linear or logistic regression. 

Provided that the studies report comparable results for both ML and established traditional statistical 

models, we compare the reported predictive performance of both model types. Finally, we examine 

whether the transparency about and the extent of the relative performance improvement through ML 

models is associated with the impact that an article generates, as measured by its citation count.  

Results. Out of 56,262 articles published between 2010 and 2023 in journals of the FT50, we 

manually identified 1,211 articles that involve ML. The annual number of published articles applying 

ML models has increased significantly over recent years but differs between research disciplines. ML 

models are most frequently covered in information systems, marketing, and operations research jour-

nals. Measured as the share of the total number of publications, we identified considerably fewer ML-

related studies in human relations, organization studies, economics, and accounting.  

The sample for our main analysis consists of 203 studies that apply at least one ML model to 

predict a variable that is of central interest for answering one of the main research questions of the 

article. We find that more than a quarter of articles do not benchmark the predictive performance of the 

employed ML models against traditional statistical models. Neglecting to report comparable results for 

traditional statistical models makes it difficult to assess the true economic value of using a more com-

plex and resource-intensive model. We also encounter substantial differences between research disci-

plines. For example, 94% of the articles published in finance journals report the performance of tradi-

tional statistical models, whereas only 69% in information systems and 62% in marketing journals do 

so. Studies that base their prediction on text, image, or video data are, on average, 13.5% less likely to 

report results for traditional statistical models. If we exclude studies using these often highly unstruc-

tured data sets, 22% of the articles do not contain results for traditional statistical models. We find no 
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evidence that the seniority of the authors or the size of the author team affects transparency about the 

performance of traditional statistical models.  

Studies reporting results for traditional statistical models predominantly state a strong outperfor-

mance of the best-performing ML model over the best-performing traditional benchmark. However, the 

outperformance is, on average, reduced by 65%, often even turning negative, when we compare the 

average performance of all reported ML models in a study against the best traditional statistical model. 

The magnitude of the reported ML outperformance can be explained by the number of reported ML 

models and traditional statistical models. While the performance improvement of the best ML model 

over the best traditional statistical model increases with the number of reported ML models, the differ-

ence between the average ML model and the best traditional statistical model decreases with the number 

of reported traditional statistical models. This suggests that the effort of scholars to find an ML or tra-

ditional statistical model that is well-suited to their research problem will affect the reported perfor-

mance difference between the two model types.3 On average, larger author teams report noticeably more 

ML models.  

We further find that the authors’ total citation count prior to publication is positively related to the 

reported performance of ML models relative to traditional statistical models. When we measure the 

authors’ seniority by the number of previous FT50 publications or the number of years since they ob-

tained their PhD, we find a negative correlation between seniority and the reported outperformance of 

ML models. Overall, our results indicate that beating a well-established traditional statistical model in 

business and economics with ML might often require substantial effort in finding and training a pow-

erful model, while the outperformance of the average ML model is comparably low.  

Lastly, we find that the transparency of published articles about the relative performance of ML 

models compared to traditional statistical models is positively related to their citation count. Studies 

that report results for traditional benchmarks receive, on average, 2.7 to 6.8 more citations per year than 

studies that do not report such benchmark results. This effect is sizeable considering the 8.1 citations 

per year that the average article published in the journals of our sample garnered between 2018 and 

2023. We argue that studies transparently reporting benchmark results are methodically more rigorous, 

which might also be an indicator of the general quality of the study, which ultimately results in more 

citations. We also identify other factors that positively correlate with citations, such as the authors’ 

general ability to produce impactful research, or the use of innovative data sets, including texts and 

images. However, we find no convincing evidence that the reported performance improvement of ML 

over traditional statistical models is associated with an article’s number of citations. 

With regard to the increasing adoption of more complex ML models in applied empirical research, 

we expand on the claims of Hofman et al. (2017) supporting standardized reporting of predictive 

 

3 This relates to Menkveld et al. (2024), showing that the evidence-generating process chosen by researchers 

affects the outcome of a study and thereby adds uncertainty to the results.  
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performance in social sciences. Hofman et al. (2017) argue in favor of consistent evaluation of predic-

tive performance, including comparison to the best-known models and clarification of the modeling 

choices researchers have made to arrive at their results. We add to their discussion and argue that the 

predictive performance of competing models should be evaluated and reported relative to model costs. 

A relative assessment of predictive performance taking model costs into account is particularly im-

portant in light of resource-intensive deep ML models competing with less costly traditional statistical 

models.  

Indeed, the general ML literature points towards the importance of computational and energy effi-

ciency alongside predictive performance. As criticized by García-Martín et al. (2019), Schwartz et al. 

(2019), and Strubell et al. (2020), ML researchers primarily aim to increase the accuracy of prediction 

models, often without imposing constraints on computation power or energy consumption.  Strubell et 

al. (2020) stress that ML researchers should consider the accuracy of models in relation to their effi-

ciency to keep track of their carbon footprint. Bender et al. (2021) suggest putting more focus on envi-

ronmental and financial costs, particularly for large language models. Schwartz et al. (2019) and Dodge 

et al. (2019) discuss measures of model efficiency. A standardized, transparent reporting of relative 

model performance and efficiency enables fellow researchers and practitioners to understand the actual 

(i.e., not only statistical but also economical) comparative value of a more complex ML model in ad-

dressing a given research problem. If a significant advantage is evident, authors might also benefit from 

such reporting standards through higher visibility and impact of their research, as our results suggest. 

Related Literature. Our study is directly related to the literature discussing and reviewing the use 

and applications of ML in business and economic research. These studies usually focus on specific 

disciplines, such as economics (Athey, 2018; Athey and Imbens, 2019; Mullainathan and Spiess, 2017), 

entrepreneurship (Lévesque et al., 2020), finance (Goldstein et al., 2021; Kelly and Xiu, 2023), organ-

ization research (Leavitt et al., 2021), operations management (Chou et al., 2023; Kraus et al., 2020), 

strategy and management research in general (Choudhury et al., 2020), or ML in the context of elec-

tronic markets (Janiesch et al., 2021; Bawack et al., 2022). The authors of these studies evaluate the 

importance, merits, limitations, and pitfalls of ML in the respective research discipline and discuss spe-

cific methods they consider particularly promising. For example, Mullainathan and Spiess (2017) warn 

against naively employing ML methods in research just because they are easy to implement with ready-

to-use programming packages. Some articles also review existing ML studies such as in financial mar-

kets (Kelly and Xiu, 2023), operations management (Chou et al., 2023), electronic commerce (Bawack 

et al., 2022), or predictive healthcare (Heinrich and Keshavarzi, 2024). Often, the role of ML in the 

evidence-generating process beyond solving main predictive research problems is discussed, for exam-

ple for theory building (Choudhury et al., 2020; Chou et al., 2023; Leavitt et al., 2021). Many studies 

emphasize that research can benefit if ML and traditional statistical models are used in combination 

(e.g., Athey, 2018; Choudhury et al., 2020; Leavitt et al., 2021). It does not always have to be an ei-

ther/or decision but can be a question of when and for what tasks a method should be used at different 
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stages of a research project. For example, Choudhury et al. (2020) propose that ML can be applied to 

derive new hypotheses from data by capturing previously hidden patterns and then testing them using 

traditional statistical models that focus on statistical inference. However, this is not something we ad-

dress in this article. Rather, we focus on studies in which ML and traditional statistical models compete 

to solve predictive research problems.4 

Our paper is also connected to studies detecting methodological pitfalls of applying ML models to 

predictive research questions in other disciplines, such as biomedical science (Andaur Navarro et al., 

2021), neuroscience (Arbabshirani et al., 2017; Rosenblatt et al., 2024), medicine (Roberts et al., 2021; 

Vandewiele et al., 2021; Varoquaux and Cheplygina, 2022), psychology (Hullman et al., 2022), and 

political science (Kapoor and Narayanan, 2023). Kapoor et al. (2024) review the literature that addresses 

issues with validity, reproducibility, and generalizability in ML-based research. Based on their review, 

the authors derive guidelines to ensure transparency and reproducibility of ML-based research in com-

puter science, data science, mathematics, social sciences, and biomedical sciences. Gundersen and 

Kjensmo (2018), Beam et al. (2020), McDermott et al. (2021), and Pineau et al. (2021) also discuss the 

replicability of ML research. 

Contribution. We contribute to the literature on the use of ML in business and economic research. 

Other than the studies above, we approach the use of ML in business and economic research from a 

different angle. First, we do not restrict the scope of our study but rather consider all research disciplines 

in business and economics, such as finance, management, organization studies, and accounting. Second, 

the primary goal of this study is not to provide guidelines regarding when or for what tasks ML in these 

disciplines can be theoretically useful. Instead, we focus on transparency about the performance of ML 

models relative to traditional statistical models in studies addressing predictive research questions. Our 

focus on the transparent comparison of ML to traditional statistical models also sets our study apart 

from Kapoor et al. (2024) and Leech et al. (2024), who discuss good and bad practices in ML research 

in general. 

In addition to the literature directly related to our study, we add to the following research streams. 

Our study contributes to ongoing discussions on the rigor and transparency of studies from social sci-

ence, in particular business and economics, and how transparency affects the quality, credibility, and 

 

4 Like our study, Pérez-Pons et al. (2022) conduct a comparative analysis of the predictive performance of ML 

models vs. traditional statistical models. However, our study differs significantly from theirs in all essential as-

pects. Pérez-Pons et al. (2022) use search strings in major academic databases to identify ML-related studies, 

identifying 48 relevant articles with a cut-off in June 2020 without further specifying the journals in which the 

articles are published. They descriptively analyze the prediction performances by presenting whether the tradi-

tional method or the ML method achieved the highest performance in each study for which they were able to draw 

such a conclusion. The greatest difference from our study is that we mainly focus on transparency about the 

performance of the different types of models. We also quantitatively compare the prediction performances and 

explain the differences in predictive performance. Finally, our study uses a hand-collected sample of papers, ob-

tained by manually screening all FT50 articles between 2010 and 2023. Given that many relevant articles have 

been published in recent years, we have collected a significantly larger sample of articles published in top business 

and economic journals. 
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impact of research. While existing studies are concerned with the replicability of findings (e.g., Ankel-

Peters et al., 2024; Bergh et al., 2017; Brodeur et al., 2020; Camerer et al., 2016; Christensen and Mi-

guel, 2018; Fišar et al., 2024; Gundersen and Kjensmo, 2018; Pérignon et al., 2024; Serra-Garcia and 

Gneezy, 2021) and address transparency about the evidence-generating process in general (e.g., Chris-

tensen and Miguel, 2018; Maula and Stam, 2020; Miguel et al., 2014; Miguel 2021; Nosek et al., 2015), 

we specifically focus on transparency in reporting relative predictive performance when using novel, 

potentially more powerful, but also more costly prediction models.  

The final part of our analysis adds to the literature on the drivers of citations of academic publica-

tions by showing that articles with more rigorous comparisons of prediction models receive higher ci-

tations. Previous studies have found differences in citation counts depending, for example, on team size 

and the extent of collaboration between authors (e.g., Bosquet and Combes, 2013; Adams et al., 2005; 

Franceschet and Costantini, 2010; Larivière et al., 2014; Wu et al., 2019), replicability of findings 

(Serra-Garcia and Gneezy, 2021), and writing style (Boghrati et al., 2023). In a broader sense, our study 

is also connected to the literature evaluating different empirical methods in business and economic 

research (e.g., Hoetker, 2007; Papies et al., 2023; Starr, 2012; Stone and Rasp, 1991). In this respect, 

we contribute to the literature by providing an overview of the use of predictive ML models and com-

paring the reported predictive performance between ML and traditional statistical methods. 

The structure of this article is as follows. Section 2 derives our research questions. In Section 3, 

we describe the data and motivate the variables and methods we employ for our analysis. We present 

our results in Section 4. Section 5 provides a discussion of our results and implications for future re-

search. Section 6 concludes. 

2. Research Questions 

This study examines four research questions related to the adoption and use of ML in business and 

economic research. The term artificial intelligence (AI) dates back to the Dartmouth conference in 1956 

(McCarthy et al., 2006), and ML is one of its central subfields. AI and ML have since evolved through 

three major “eras” (Brynjolfsson and Li, 2024) or “waves” (Deng, 2018) from preset, hard-coded rules 

to multi-layered systems that autonomously learn patterns from vast amounts of data to make predic-

tions. The advent of deep learning models in the recent era of AI, beginning in the early 2010s, led to a 

dramatic surge in AI applications across various fields and industries. Advances in computational re-

sources and software have improved both the performance and accessibility of ML models, and enabled 

researchers to unlock new information from innovative data including texts and images (Brynjolfsson 

and Li, 2024; Deng, 2018; LeCun, 2015; Mullainathan and Spiess, 2017). As Figure 1 shows, the adop-

tion of ML as a method in business and economic research began to grow slowly in the mid-2010s 

before rapidly accelerating in recent years. To establish a general overview of the status quo and im-

portance of ML both as a topic and as a method for researchers in the realm of business and economics, 

we pose the following research question: 



8 

RQ1. How widely is machine learning discussed and applied across various business and eco-

nomic research disciplines? 

We then shift our focus to articles that employ ML models to solve predictive research problems. 

In our analysis, we distinguish between ML models, such as neural networks, and less complex, more 

traditional statistical models that have been used for decades in the literature to address predictive re-

search questions. Examples of such traditional statistical models are linear or logistic regression.5 ML 

models are not per se better suited to research questions in business and economics (Athey and Imbens, 

2019). Finding and training an ML model that significantly outperforms traditional statistical models in 

these areas can therefore be challenging. Furthermore, marginal model improvements may not justify 

using these more complex and more resource-consuming models. In recent years, however, researchers 

might have benefited from a methodological bonus point in the publication process when using ML 

techniques, with the use of ML potentially increasing the probability of getting published. ML models 

might also attract more attention in the academic community, resulting in an increased number of ex-

pected citations. If ML models perform poorly, this can entice researchers to opt against the transparent 

reporting of results for a conventional statistical benchmark due to lower chances of publication (see, 

e.g., Sculley et al, 2018; Lin, 2018). Therefore, we are interested in researchers’ transparency about the 

performance of ML models relative to traditional statistical models in studies that address predictive 

research questions in business and economics. We also examine which paper-, journal-, and author-

specific variables are associated with the probability of reporting results for traditional statistical mod-

els. We thus pose the following research questions: 

RQ2a. Do authors that apply machine learning models to solve predictive research questions con-

sistently compare their predictive performance against traditional statistical models? 

RQ2b. Which factors can explain whether studies report the benchmark results of traditional sta-

tistical models? 

Third, given that ML studies contain benchmark results for traditional statistical models, we are 

interested in the reported performance difference between ML and traditional statistical models. If ML 

models are in fact increasingly being applied to research problems that do not warrant them and can be 

sufficiently addressed using simpler traditional methods, we would, on average, observe only minor 

outperformance in favor of the ML model. We are also interested in common factors, such as specific 

data types, seniority of authors, and collaborations between multiple authors, that can explain whether 

and how strongly an ML model is reported to outperform traditional statistical models across a wide 

 

5 In section 3.1.2, we explain in more detail how we differentiate between ML and traditional statistical models. 
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variety of predictive research questions in the field of business and economics.6 Thus, we pose the 

research questions: 

RQ3a. How well do machine learning models perform relative to traditional statistical models in 

answering predictive research questions in business and economic research?  

RQ3b. Which factors can explain the magnitude of the reported performance difference between 

machine learning models and traditional statistical models? 

Finally, we examine whether (1) transparency about the performance of traditional statistical mod-

els and (2) the extent of the performance improvement by ML models influence the impact that an 

article generates, as measured by its citation count. We argue that there are two main explanations for 

why transparency about the performance of traditional statistical models might be related to the citations 

a study is able to garner. First, comparing the predictive performance of an ML model not only to that 

of another ML but also to well-established traditional statistical models adds rigor to the analysis. It 

enables other researchers to assess the comparative value of using a more complex ML model over a 

traditional model, increasing the likelihood of them citing the paper. Reporting the performance of tra-

ditional models also encourages the application of the new ML methods to similar research questions 

by other researchers, as they can assess beforehand whether it is worth spending the extra effort in 

building and training a more complex ML model. 

The second possible explanation involves an indirect effect of the transparency on the citation 

count: the article’s transparency might be an indicator of the overall quality of the article. If a study 

thoroughly assesses the performance of ML models against established traditional statistical models, it 

might be more likely that the entire study was more rigorously conducted and had gone through a more 

thorough review process. In this case, an article’s citation count might not be directly linked to the 

transparent reporting of the results of traditional statistical models, but rather from the general quality 

of the article, which may be correlated with the reporting of traditional statistical models’ performance.  

Alternatively, based on the findings of Serra-Garcia and Gneezy (2021), one might argue in favor 

of a negative link between the citations an article generates and the authors’ transparency about the 

relative performance of the ML model. Serra-Garcia and Gneezy (2021) find that non-replicable studies 

gain more citations than replicable studies. The authors hypothesize that referees may be less stringent 

if the findings appear more interesting. Similarly, studies that are not transparent about the performance 

of traditional statistical models can be published without having to compare the performance of the ML 

model with traditional statistical models if their results are more interesting. In this case, the citation 

count of less transparent studies should exceed the citation count of studies that report benchmark re-

sults for traditional statistical models. We also investigate whether a study receives more citations if it 

 

6 Section 3.2.2 contains more details on the variables that we consider ex ante as potentially relevant factors to 

explain (1) the transparency about and (2) the magnitude of the performance improvement that ML models gen-

erate compared to traditional statistical methods. 
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reports a particularly high outperformance of ML models over traditional statistical models, provided 

that at least one traditional statistical model is included. We therefore formulate our last research ques-

tions as follows: 

RQ4a. Does the decision to report benchmark results for traditional statistical models explain 

differences in the citation count of machine learning articles? 

RQ4b. Does the magnitude of the reported performance improvement by machine learning models 

explain differences in the citation count of machine learning articles? 

3. Data and Method 

3.1. Data 

3.1.1 Identification of relevant studies 

We draw our hand-collected sample from all studies published in a print issue or as an online article 

in the 50 journals of the Financial Times Research Rank between January 2010 and June 2023, thereby 

restricting our sample to research appearing in high-quality refereed academic journals. Figure 2 illus-

trates our process for manually identifying the relevant articles for our study. The article classification 

process was divided into two major phases. Phase I involved the identification of articles that are related 

to ML in general, i.e., without a specific focus on whether the studies applied predictive ML models or 

not. Two researchers independently screened the titles, abstracts, and keywords of 56,262 FT50 articles. 

Together, they identified a sample of 1,542 articles potentially related to ML.  

In Phase II, both researchers independently classified the potentially ML-related articles into four 

categories based on the full text: (1) articles that have been falsely identified as an ML-related study 

during Phase I; (2) articles that are about ML without applying ML models themselves; (3) articles that 

apply ML models for other purposes than articles of category (4); and (4) articles that apply at least one 

ML model to answer a predictive research question that is of central interest to the article.  

Articles of category (2), which are about ML without applying ML models (like the present study), 

typically review the use or discuss the role and potential applications of AI and ML in, for example, 

organizational theory (Leavitt et al., 2021), entrepreneurship (Lévesque et al., 2020), or finance (Gold-

stein et al., 2021). This category also includes articles studying firm behavior in the age of ML.7 Articles 

of category (3), which apply ML models but not to answer one of their main predictive research ques-

tions, include, among others, studies in which authors use ML models for feature extraction before 

addressing their research question using other non-ML techniques (e.g., Banerjee et al., 2023). Another 

example is given by studies that construct measures or variables via ML techniques and then use them 

 

7 For example, Cao et al. (2023) investigate whether linguistic tones in corporate disclosure have changed since 

the advent of natural language processing models such as Bidirectional Encoder Representations from Transform-

ers. Hence, the study of Cao et al. (2023) is related to ML as a topic, but the authors do not apply an ML model 

to investigate their research question. 
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as input to predict their variable of interest using a traditional statistical method such as linear regression 

(e.g., Huang et al., 2021). Articles that apply ML models for causal instead of predictive evidence also 

fall under this category (e.g., Chernozhukov et al., 2015). 

Articles of category (4), which use ML models to answer at least one of their main predictive 

research questions, are of central interest to our study, in particular to answer RQ2–RQ4. Henceforth, 

we refer to them as predictive ML studies. These studies can include, for example, predicting financial 

market variables (such as risk premia or returns), earnings, sales, fraud, as well as customer or employee 

behavior (e.g., Avramov et al., 2022; Bali et al., 2023; Cecchini et al., 2010; Chen et al., 2022; 

Choudhury et al., 2020; Cui et al., 2018; Gu et al., 2020; Ketzenberg et al., 2020; Matz et al., 2019; Xu 

et al., 2023).8 

To assign the articles to one of the four categories based on the full text, we had to remove five 

articles to which we could not obtain full paper access, leaving us with 1,537 potentially ML-related 

studies. Cohen’s Kappa of .70 indicates substantial interrater reliability for categorizing the 1,537 po-

tentially ML-related articles into categories (1)–(4), coded independently by the two researchers. Only 

considering the classification of all screened FT50 articles as ML-related studies (category (2)), we 

achieved an interrater reliability of .94. After each researcher completed Phase II, we discussed the 

differences in the rating with a third researcher and finally arrived at a total of 1,211 articles in which 

ML plays an important role. In 1,058 of 1,211 articles, the authors apply ML models. We assigned 223 

of them to category (4), meaning that the authors of these predictive ML studies use ML models to 

predict the variable of central importance to answer one of the main research questions of their article. 

[Figure 2 about here] 

3.1.2 Data extracted from relevant studies 

We are interested in the out-of-sample predictive performance of all models used in the identified 

predictive ML studies. We only collect the main prediction results regarding the main predictive re-

search question from each article. These results are usually found in the first table (or figure) of the 

results section. We do not consider any subsequent analyses like subsample tests or other robustness 

analyses. In case the results for multiple samples are displayed in the main results table, we use the 

results on the largest available sample. From each article, we extract all models and their reported pre-

dictive performance according to each measure the authors use to evaluate model performance. Only if 

the study reports multiple results for the same underlying model with various specifications (e.g., linear 

regression models with different predictor variables or neural networks with a different number of hid-

den layers), we consider them as one model and extract the minimum and maximum reported perfor-

mance for that model. This task was again independently performed by two researchers. We regularly 

 

8 More applications can be found in Table A.1, where we group the prediction objectives of the identified predic-

tive ML studies into overarching categories. 
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discussed differences in the extracted information and refined our coding method.  The correlation of 

the number of extracted models and measures per paper of both researchers was, on average, at .92 and 

.96, respectively. Given that both researchers extracted the same models and measures, the predictive 

performance was extracted identically for 85% of the models per study, on average.9 

After extracting the relevant data from the articles, we grouped the reported prediction models into 

two categories to investigate RQ2–RQ4: (1) traditional statistical models and (2) ML models. We refer 

to (1) as traditional benchmark models, as they can serve as a benchmark to the reported predictive 

performance of ML models in order to assess their performance improvement relative to the more con-

ventional models that have been used for decades in business and economic research. As Gu et al. 

(2020) point out, there is no uniform definition of what is considered ML, as it often depends on the 

context at hand. Our context is the use of ML in applied business and economic research. For example, 

many ML textbooks begin with linear and logistic regressions, which we clearly consider traditional 

statistical models in our context. Thus, our classification must be guided by what the broad business 

and economic literature views as novel ML techniques or, conversely, as traditional statistical models. 

Our differentiation mainly draws on Mullainathan and Spiess (2017), Athey (2018), Athey and Imbens 

(2019), Choudhury et al. (2020), and Kelly and Xiu (2023), who analyze the use of ML in empirical 

economics, management, and finance research, while also distinguishing ML from traditional statistical 

models. In sum, our distinction of the overall model type (ML vs. traditional statistics) is based on the 

underlying approach to modeling, the assumptions of the model, the flexibility of its functional form, 

and the emphasis placed on the interpretability of the model’s results versus predictive power. 

Traditional statistical benchmark models. These models are rooted in classical statistical and 

econometric theory. They typically rely on strong parametric assumptions (e.g., normality of the resid-

uals or linearity) and often prioritize inference and interpretability of model parameters to grasp the 

underlying relationships in the data. They usually involve explicit functional forms with an a priori 

defined relationship between input and outcome variables. The variables in models are often manually 

selected based on economic theory. Parameter estimation is usually conducted through such methods 

as ordinary least squares or maximum likelihood. Examples of traditional benchmark models include 

linear regression, logistic regression, probit regression, generalized linear models, partial least squares 

regression, principal component regression, and discriminant analysis.  

Machine learning (ML) models. ML models emphasize out-of-sample predictive accuracy and 

adaptability to complex, non-linear relationships over interpretability. They are generally non-paramet-

ric or semi-parametric, with fewer assumptions about the data structure. Instead of imposing fixed func-

tional forms, ML models are flexible in their capability to learn non-linear patterns from the data 

through training. They may be better suited for handling high-dimensional or large-scale datasets. These 

 

9 While this rate was initially at 82% for coding the first 20% of the studies of our sample, it increased to 97% for 

coding the last 20% of our sample. 
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models may involve non-linear decision boundaries (e.g., decision trees and support vector machines) 

or regularization (e.g., LASSO and ridge regression) to select the variables that maximize out-of-sample 

predictive power automatically. Examples of ML models consistent with our definition include neural 

networks, random forests, gradient boosting, bootstrap aggregation (bagging), elastic nets, support vec-

tor machines, decision trees, LASSO, and ridge regression. Mullainathan and Spiess (2017) and Athey 

and Imbens (2019) discuss ML methods they perceive as a valuable extension of the traditional statis-

tical and econometric toolset for researchers in empirical economics. The models they deem ML (as 

opposed to those of traditional statistics or econometrics in the context of the empirical economic liter-

ature) are in line with our methods for categorizing ML.10 We are nevertheless aware that opinions on 

whether to view specific models as ML or as traditional statistical models can differ. Hence, we asked 

leading researchers in the field their opinions, and discuss the robustness of our findings to an alternative 

classification of models in Section 4.5.  

Figure 3 depicts the most used traditional benchmark models and ML models in our sample. Note 

that we summarize different models using their overall model type for graphical illustration. For exam-

ple, the bar for neural networks can include different types such as feedforward, recursive, and convo-

lutional neural networks or long short-term memory networks. Likewise, the bar for linear regression 

models also includes principal component regressions. For the analysis in the following sections, we 

consider them as separate models. More than two-thirds of the studies report the predictive performance 

of neural networks. Other ML models that are often applied include random forests, support vector 

machines, and boosting algorithms, especially gradient boosting. In contrast, less than one-third of the 

studies report results for logit regressions. Results for linear regression models are reported in every 

fourth article.11 

[Figure 3 about here] 

For our analysis of the performance improvement of ML models relative to traditional benchmark 

models (RQ3 and RQ4), we group the reported evaluation measures into seven groups. At least one 

evaluation measure derived from the confusion matrix, such as accuracy or precision, is reported in 47% 

of studies. This is followed by reporting the area under the (receiver operating characteristics) curve 

 

10 For example, Kelly and Xiu (2023), reviewing the use of ML in financial markets, follow Gu et al. (2020) in 

subsuming methods they consider to be ML under the following definition: “[…] (a) a diverse collection of high-

dimensional models for statistical prediction, combined with (b) so-called ‘regularization’ methods for model 

selection and mitigation of overfit, and (c) efficient algorithms for searching among a vast number of potential 

model specifications” (p. 2,225). See section 1.4 in Kelly and Xiu (2023) for details. Our distinction between 

traditional statistics and ML models also largely aligns with the short article of Bzdok et al. (2018) on differences 

between statistics and ML in the context of biological systems. Though they acknowledge the vague boundary 

between both domains, they state: “Statistics requires us to choose a model that incorporates our knowledge of 

the system, and ML requires us to choose a predictive algorithm by relying on its empirical capabilities” (p. 4). 
11 Naive predictors include, for example, the mean or random walk forecasts. Under cluster analysis, we subsume 

methods from traditional multivariate statistics such as k-nearest neighbor, k-means, or hierarchical clustering. 
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(28%), loss functions such as the mean squared error or the mean absolute error (27%), the out-of-

sample R-squared (12%), and profit measures such as average profits or annualized returns (3%). In 

sum, 95% of studies report at least one measure that can be assigned to one of the aforementioned 

groups. We summarize the remaining measures that cannot be assigned to one of these groups as other 

measures. 

Next to the evaluated prediction models and their predictive performance, we gather the following 

data on predictive ML studies: title, authors, journal, journal impact factors, information on the data 

type that is used as an input for the prediction models (e.g., texts or images), and a description of the 

prediction objective (i.e., the thematic context of the main variable of interest that is predicted). Fur-

thermore, we gather data from Google Scholar on the citations of the articles to answer RQ4, including 

the yearly and total citations of the authors, and the title, journal, and year of all publications that the 

authors are affiliated with, which we identified through the unique Google Scholar ID. The data from 

Google Scholar was current as of August 26, 2024. Finally, we obtained the year in which the authors 

of the studies in our sample obtained their PhD, according to their personal websites or academic CVs. 

In sum, we were able to obtain the data on all variables for 203 predictive ML studies, which constitute 

our final sample.12 

3.2. Variables 

3.2.1 Dependent variables 

Whereas RQ1 is addressed by analyzing descriptive statistics, we define six dependent variables 

to answer RQ2–RQ4. For RQ2, we use the variable traditional benchmark, which is a dummy variable 

that equals one if the study reports the predictive performance for at least one traditional benchmark 

model and zero otherwise. A rigorous comparison of ML to traditional benchmark models would ideally 

involve multiple ML and multiple traditional benchmark models. Hence, as an alternative dependent 

variable for RQ2, we use n traditional models to denote the number of traditional benchmark models 

for which a study reported the predictive performance. 

The major difficulty in measuring performance differences between ML and traditional benchmark 

models for RQ3 is to make the reported performance differences comparable, given the heterogeneous 

nature of the research questions in our sample. For some research questions, an increase in accuracy 

from 96% to 98% can be economically sizeable, while the increase from 52% to 54% might be eco-

nomically insignificant for other research questions. A much lower level of predictive performance is 

considered good for some topics such as stock return predictions, while for other topics such as 

 

12 We could not extract numerical data on the predictive performance for 17 of the 223 identified predictive ML 

studies, either due to restricted access or because the performance was merely reported graphically. For three more 

studies and their authors, we were not able to attain citation data from Google Scholar. For two more studies, we 

were not able to attain data on the year in which the authors obtained their PhD. Because we only use the data on 

the year of PhD for robustness reasons, we run our baseline analysis based on 203 sample studies. 
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healthcare, more accurate predictions can or must be achieved to be economically meaningful. Another 

difficulty stems from the various measures that studies report to evaluate the models’ predictive perfor-

mance. Again, a 2% increase in the out-of-sample R-squared can tell a whole different story than a 2% 

increase in accuracy.  

To address these issues and make the results comparable across the different prediction problems, 

we measure the performance improvement of a model relative to the improvement that is usually 

achieved by using a better-suited model for this specific prediction problem. We propose the following 

method to approximate the mean improvement in the predictive performance by using a better model. 

Let 𝛼𝑖,𝑗
(𝑚)

 denote the performance measure for model 𝑗 in paper 𝑖 and 𝑚 the model type that can be either 

ML, 𝛼𝑖,𝑗
(𝑀𝐿)

, or a traditional benchmark, 𝛼𝑖,𝑗
(𝐵)

. First, we order the predictive performances of all 𝑛𝑖 mod-

els reported in paper 𝑖 such that 𝛼𝑖,1
(𝑚)

≥ 𝛼𝑖,2
(𝑚)

≥  …  ≥ 𝛼𝑖,𝑛𝑖

(𝑚)
. Now, we can compute the incremental 

performance increase from each model to the next-best model: 

 Δ𝑖 = [(𝛼𝑖,1
(𝑚)

− 𝛼𝑖,2
(𝑚)

) , (𝛼𝑖,2
(𝑚)

− 𝛼𝑖,3
(𝑚)

) , … , (𝛼𝑖,𝑛−1
(𝑚)

− 𝛼𝑖,𝑛
(𝑚)

)]
′
 (1) 

By averaging across Δ𝑖, we get an indication of the mean incremental improvement in the predictive 

performance by using the next-better-suited model. Let 𝛼𝑖,𝑚𝑎𝑥
(𝑀𝐿)

 (𝛼𝑖,𝑚𝑎𝑥
(𝐵)

) denote the performance of the 

ML (traditional benchmark) model that achieves the highest predictive performance of all ML (tradi-

tional benchmark) models reported in paper 𝑖. We measure the difference of the best-performing ML 

and the best-performing traditional benchmark model relative to the mean incremental performance 

improvement as: 

 𝑦𝑖 =
𝛼𝑖,𝑚𝑎𝑥

(𝑀𝐿)
− 𝛼𝑖,𝑚𝑎𝑥

(𝐵)

𝑚𝑒𝑎𝑛(Δ𝑖)
. (2) 

For example, 𝑦𝑖 = 2 implies that the performance improvement of the best-performing ML model rel-

ative to the best-performing traditional benchmark model in paper 𝑖 is twice as large as the incremental 

improvement that is achieved on average by using the next-best model. We exclude all papers from our 

analysis of RQ3 that only report one ML and one traditional statistical model, since we cannot measure 

the mean incremental performance in this case and 𝑦𝑖 would always be equal to one. 

Because many studies evaluate model performance using several evaluation measures, we first 

average 𝑦𝑖 across the measures within one category of evaluation measures (e.g., confusion matrix or 

loss functions) and then use only the category that is reported the most often across all studies of our 

sample (see Section 3.1.2). Thus, we would always use the average over measures derived from the 

confusion matrix, if available. If not, we would use the area under the curve, if available, and so on. 

Hence, to investigate RQ3, we use the dependent variable best ML vs. best benchmark measured as 𝑦𝑖 

averaged across the evaluation measures of the same category. The second dependent variable for RQ3 
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is given by avg ML vs. best benchmark using the difference of the average instead of the best ML model 

performance to the best traditional benchmark performance. 

Finally, we address RQ4 using the yearly citation count and total citation count generated by each 

study as of August 26, 2024.  

3.2.2 Explanatory and control variables 

This section outlines the explanatory and control variables relevant to transparency about the rela-

tive performance of ML (RQ2) and the reported performance difference from traditional benchmark 

models (RQ3). We group the variables according to whether they pertain to the paper, its author(s), or 

the journal in which it was published. At the end of the section, we outline the variables used to explain 

differences in the citation count of ML studies (RQ4). 

Paper-specific variables. Traditional statistical models might often be considered less useful than 

ML when using textual or visual data—such as images or videos—for prediction tasks. First, using 

textual or visual data often results in high-dimensional and unstructured data sets13 that might be less 

suitable for traditional statistical models without preparing the unstructured data sets and reducing the 

dimensionality beforehand through regularization or manual feature selection. ML models and particu-

larly deep learning models, such as transformer models or convolutional neural networks, are, in con-

trast, specifically designed to recognize patterns in high-dimensional text and image data by automati-

cally detecting important features during the model’s training, and subsequently using these patterns to 

generate predictions of the variable of interest (Bishop, 2006; Krizhevsky et al., 2012; Goodfellow et 

al., 2016; Gentzkow et al., 2019). Text and images can also involve highly non-linear or non-additive 

relationships between the individual features (e.g., words, phrases, sentences, pixels, coordinates) 

(Bishop, 2006; Gentzkow et al., 2019; Mullainathan and Spiess, 2017). ML models have a superior 

ability to capture these non-linear relationships, such as when predicting the sentiment from a complex 

text or using satellite images to predict economic variables (Mullainathan and Spiess, 2017).  

These considerations can lead researchers and reviewers alike to assume ML models to be the more 

appropriate model choice for such data sets.14 Hence, studies might be less likely to contain the results 

for traditional benchmark models (respectively, only for a very small number) if textual or visual data 

is involved. Furthermore, given that at least one traditional benchmark model is reported, the outper-

formance of the ML methods might be higher if ML models can better capture the patterns in textual or 

 

13 Text or words are, for example, often transformed into numerical high-dimensional vectors through word em-

beddings or transformer models including thousands of features (Gentzkow et al., 2019). As Athey and Imbens 

(2019) emphasize, ML models can be particularly superior to traditional statistical models when there is a large 

number of covariates by differentiating between relevant and less relevant variables. 
14 Mullainathan and Spiess (2017), who discuss the applications of ML in empirical economics, state that “ML 

can deal with unconventional data that is too high-dimensional for standard estimation methods, including image 

and language information that we conventionally had not even thought of as data we can work with, let alone 

include in a regression.” 
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visual data sets. The variable textual/visual data is a dummy variable that equals one if a study uses 

textual or visual data as input for predictions and zero otherwise. 

As a second paper-specific variable, we include n ML models representing the number of ML mod-

els reported in a study. For RQ2, we examine whether a higher number of ML models indicates a more 

comprehensive model comparison overall, which may increase the likelihood of reporting traditional 

benchmark models or lead to a greater number of reported traditional benchmark models. To explain 

the performance differences (RQ3), we consider n ML models and n traditional models for two reasons. 

First, reporting more models of one group might increase the probability of finding a better-performing 

model. For example, if researchers try to address their research question using a substantially higher 

number of ML models than traditional statistical models, it may increase the likelihood of identifying 

an ML model that significantly outperforms the best benchmark or vice versa, resulting in a greater 

performance difference. Second, we control for the effect the number of reported models has on our 

performance comparison via the mean incremental performance increase (see Eq. (2)).15  

Paper-specific control variables for RQ2 and RQ3 include fixed effects for the publication year. 

For RQ3, we add fixed effects for the type of measure that was used to evaluate the models’ predictive 

performance (confusion matrix, area under the curve, loss functions, out-of-sample R-squared, profit, 

other) and fixed effects for the overall context of the prediction to account for differences in the perfor-

mance of ML and traditional statistical models in different fields of application.16 

Author-specific variables. The rigor of a study, which should include the comparative value of 

the best prediction model against several other ML and traditional models, could be related to the sen-

iority level of the authors. We argue that seniority should be positively correlated with total citations 

and high-quality research output. Hence, the variable average citation count denotes the average num-

ber of total citations garnered by the authors in the years before the publication year of the predictive 

ML study.17 Because publications of lower quality can also attract many citations, we consider average 

 

15 Consider a prediction problem for which all ML models achieve similarly high accuracy, and all traditional 

benchmark models achieve similarly low accuracy. Because the performance differences within one group of 

models are small, the mean incremental performance increase would be negatively related to the number of re-

ported models. Hence, if two articles study the same prediction problem and obtain identical results, we would 

measure a higher outperformance of ML compared to traditional benchmark models for the study that reports the 

results for more models. If all ML models achieve similarly high accuracy and all traditional benchmark models 

achieve low accuracy, while the difference within the group of traditional benchmark (ML) models is high (low), 

mean incremental performance increase would be positively (negatively) related to the number of reported tradi-

tional benchmark (ML) models. We control for these effects by including the number of reported ML and tradi-

tional benchmark models in our regressions. 
16 We list the groups of research questions with a similar overall context in Table A.1, together with a short 

description and examples. We cross-validated our categorization of the predictive ML studies into groups of sim-

ilar research questions with a second independent researcher. Cohen’s Kappa was .71, indicating already substan-

tial initial agreement. We discussed differences in the coding and were able to iron out most discrepancies. After 

mutually agreeing on a category wherever possible, Cohen’s Kappa increased to .92. Our results remain qualita-

tively unchanged if we use the differing categorizations of the second researcher. 
17 We removed any citations the predictive ML study attained pre-publication from the authors’ total citation 

count. 
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FT50 publications as an additional measure of seniority. This variable represents the average number 

of studies the authors published in FT50 journals prior to the publication year. Publications in FT50 

journals can be assumed to be high-quality studies that are likely to be based on rigorous analyses. Both 

seniority measures convey different information that is potentially important to our analysis. As a third 

alternative measure of seniority, we include the average years since PhD, which we define as the aver-

age number of years between the publication year of the predictive ML study and the year in which the 

authors of the study obtained their PhD. 

Alongside the authors’ seniority, we investigate whether the team size, i.e., the number of authors, 

is positively associated with the transparency and the reported relative performance of ML to traditional 

statistical models. Franceschet and Costantini (2010) show that the quality of research can increase with 

the collaboration of multiple researchers due to increased resources, greater aggregated expertise, and 

more shared knowledge. If diversity of knowledge and expertise increases with team size, larger teams 

of authors might produce more comprehensive analyses in our context and are therefore more likely 

also to report benchmark results for traditional statistical models.18 Likewise, more knowledge and ex-

pertise might increase the probability of training a well-performing ML model, resulting in a higher 

performance difference from the traditional statistical models. 

Journal-specific variables. We use journal-specific variables as control variables. We include 

fixed effects for the journal’s research discipline to account for differences across the various business 

and economic research disciplines. We assign one of fourteen different research categories to each of 

the FT50 journals, as listed in Table A.2. We then proxy for the quality of the journal and the refereeing 

process using journal impact factor from Clarivate (2024). Journals having more rigorous review pro-

cesses might increase the probability that the predictive ML studies they publish benchmark the predic-

tive performance against traditional statistical models. We use the impact factor of the year in which a 

study was published, calculated based on the citations of all studies that were published in the journal 

over the previous two years.19 We note, however, that journal impact factor might not have a large effect 

on any of our dependent variables because we already restrict our sample to high-quality journals. 

Citation analysis. To examine potential differences in the citation count of articles with respect to 

their transparency about the relative performance of ML models and the size of the reported perfor-

mance improvement (RQ4), we use four main explanatory variables in separate regression models. We 

use the dummy variable traditional benchmark, which takes the value one if an article contains results 

for a traditional benchmark model and zero otherwise. We explore the effect of the number of reported 

traditional benchmark models using the variable n traditional models. We also use the performance 

difference between the best ML and the best traditional benchmark model (best ML vs. best benchmark) 

 

18 Researchers with a strong focus on ML may be less likely to report a large number of traditional benchmark 

models, while statisticians and economists may be more likely to advocate for the inclusion of traditional statistical 

approaches alongside ML models. 
19 See https://clarivate.com/webofsciencegroup/essays/impact-factor/. 

https://clarivate.com/webofsciencegroup/essays/impact-factor/
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as well as between the average ML and the best traditional benchmark model (avg ML vs. best bench-

mark).  

To consider other factors potentially influencing the citation count of the study, we include the 

following control variables, which can be grouped into paper-, author-, and journal-specific variables, 

as above. The number of reported ML models (n ML models) is included to analyze whether we observe 

a similar effect on citations as for the reporting of traditional statistical models. If so, this would suggest 

that the total number of reported models is generally decisive for citations and that it does not make a 

difference whether these include mostly ML models or also traditional statistical models. We also in-

clude the dummy variable textual/visual data because the use of textual and visual data sets can be 

considered innovative in business and economic research. In recent years, a rapidly growing body of 

empirical research has seized upon the increasing amount of textual data and the proliferation of pow-

erful methods for its analysis (Gentzkow et al., 2019). Consequently, results of these studies may be of 

particular interest to the academic community, potentially yielding higher citations.  

To measure the general ability of the authors to generate impactful research, we use the sum of 

total citations the team of authors garnered prior to the publication year of the predictive ML study, 

excluding pre-publication citations of the focal study. The variable total citation count also captures the 

seniority of the authors combined with their ability to produce highly cited research, meaning that the 

academic community is generally interested in their research output.20 The variable captures other au-

thor-specific variables that might affect citations, such as gender or writing style (Boghrati et al., 2023). 

The researchers’ general ability to generate impactful research is likely positively linked to future pub-

lications. The total citation count moreover captures the potential positive effects on the authors’ pub-

lications generated by their networks (Bosquet and Combes, 2013) and their efforts in marketing their 

research output, such as presenting it at conferences.  

Although the total citation count should also account for the positive effect that the size of the team 

of authors has on citations (Adams et al., 2005; Larivière et al., 2014; Wu et al., 2019), we additionally 

follow Serra-Garcia and Gneezy (2021) in controlling for the number of authors (n authors). We further 

control for the years since publication (Serra-Garcia and Gneezy, 2021), the journal impact factor, 

fixed effects for the publication year, the research discipline of the journal (RQ4a), the overall context 

of the prediction, and the type of performance measure (RQ4b). All dependent and explanatory varia-

bles described in this section are summarized in Table A.3. 

3.2.3 Summary statistics 

Table 1 provides summary statistics for all variables used in the regression models discussed in 

Sections 4.2–4.4. The majority of studies in our sample were published after 2018. On average, they 

 

20 Hence, an additional variable for the seniority of the authors, such as the number of FT50 publications, becomes 

obsolete. We measure the impact of an author’s seniority on citations more directly by just using the total previous 

citations of the author. If an author has many FT50 publications but only a few citations, this might indicate a high 

level of seniority with apparently little influence on his or her citations.  
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received 105 citations in total and 17 citations per year as of August 2024. The average number of co-

authors per study is between three and four. Prior to the publication year of a predictive ML study, the 

author teams of half of the studies had accumulated at least 1,840 citations, 5.5 FT50 publications on 

average, and 4,659 citations in total. The high number of average citations and FT50 publications sug-

gest a high seniority among the researchers who produced the studies on which our analysis is based. 

On average, the authors obtained their PhD 12.67 years before the publication year of a predictive ML 

study, which further indicates the high seniority of the researchers in our sample. The average journal 

impact factor at the time of publication was 5.5, indicating a generally high quality of papers. In addition 

to the variables, Table 1 presents our categorization of the studies according to the general research 

discipline of the journal, the thematic context of their predictive research question, and the type of 

measure used to evaluate predictive performance. Figure 5, Table A.1, and Table A.2 provide details. 

Pairwise correlations of the variables presented in Table A.4 are mostly low, suggesting that our regres-

sion models do not suffer from multicollinearity. For variables with moderate correlations, we report 

variance inflation factors when discussing the results of the respective model.  

[Table 1 about here] 

3.3 Method 

First, we show how widely ML is covered and applied in the various business and economic re-

search disciplines by analyzing descriptive statistics (RQ1). Likewise, we use descriptive statistics to 

explore the transparency of predictive ML studies about the performance of traditional benchmark mod-

els (RQ2a) and the difference between the reported performance of ML models and traditional bench-

mark models (RQ3a). Second, we use various regressions to explore the factors that are related to the 

transparency of the model reporting (RQ2b) and the magnitude of the reported performance improve-

ment of ML over traditional statistical models (RQ3b). Lastly, we test whether the transparency of the 

model reporting and the magnitude of the outperformance correlate with a study’s citation count. 

For RQ2b, we estimate the following probit model to identify factors that are associated with the 

probability of reporting the results for traditional benchmark models:  

Pr(traditional benchmark𝑖 = 1) = Φ( 𝛽0 + 𝑋𝑖
Paper

𝛽1 + 𝑋𝑖
Author𝛽2 + 𝑋𝑖

Journal
𝛽3 (3) 

 +𝛿𝑖
Journal discipline

+ 𝛿𝑖
Publication year

),   

where 𝑖 denotes the predictive ML study, 𝑋𝑖
(⋅)

 respectively denotes row-vectors of paper-, author-, or 

journal-specific variables, and 𝛿𝑖 denotes fixed effects. We also regress the variable traditional bench-

mark in a linear probability model on the same variables and fixed effects as in Eq. (3).  

Second, we estimate a Poisson regression model for the number of traditional benchmark models 

(n traditional models) for which a predictive ML study reports the predictive performance as the de-

pendent variable. We use the same variables and fixed effects as in Eq. (3). To test whether the results 
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are specific to the transparency about the reporting of traditional statistical models, we estimate the 

same regression with the number of reported ML models as the dependent variable. 

Third, we investigate whether common factors can explain the magnitude of the outperformance 

of ML models relative to traditional benchmark models across many different prediction problems 

(RQ3b). We estimate the following linear regression model to address RQ3b: 

best ML vs. best benchmark𝑖 =  𝛽0 + 𝑋𝑖
Paper

𝛽1 + 𝑋𝑖
Author𝛽2 + 𝑋𝑖

Journal
𝛽3 + 𝛿𝑖

Prediction context (4) 

 +𝛿𝑖
Performance measure + 𝛿𝑖

Publication year
+ 𝜖𝑖. 

 

Additionally, we estimate Eq. (4) using avg ML vs. best benchmark as the dependent variable. 

Finally, we model the yearly citation count of a study in a negative binomial regression using a 

random effects estimator (RQ4):  

𝐸(yearly citation count𝑖,𝑡) =  exp(𝛽0 + traditional benchmark𝑖𝛽1 + controls𝑖𝛽2 (5) 

 +years since publication𝑖,𝑡𝛽3 + 𝛿𝑖
Journal discipline

 
 

 +𝛿𝑖
Publication year

+ 𝑢𝑖),  

where controls𝑖 are the time-invariant paper-, author-, and journal-specific control variables, and 𝑢𝑖 is 

the random effect for study 𝑖. In a second analysis, we measure the transparency about the performance 

of traditional benchmark models with the number of reported benchmark models (n traditional models). 

Thereafter, we replace our explanatory variable indicating transparency about the model performance 

with the performance difference of the best or, alternatively, average ML and the best traditional bench-

mark model given that a traditional statistical model is reported. Our regression model (5) is closely 

related to the analysis of Serra-Garcia and Gneezy (2021), who examine the link between the replica-

bility of scientific studies and their citation count. Unlike Serra-Garcia and Gneezy (2021), we estimate 

a negative binomial instead of a Poisson regression model, given that citation data is usually highly 

overdispersed (see Table 1 and, e.g., Boghrati et al., 2023), but we report Poisson regression estimates 

for robustness. As in Serra-Garcia and Gneezy (2021), we also report the results for regressing the total 

citation count on the time-invariant explanatory and control variables from Eq. (5).  

4. Results 

4.1. Descriptive Analysis 

We begin this section by descriptively analyzing our data set to examine how widely ML is dis-

cussed and applied across business and economic research disciplines (RQ1), how transparent predic-

tive ML studies are about the performance of traditional benchmark models (RQ2a), and how the re-

ported performance of ML and traditional statistical models differs (RQ3a).  

Figure 4 categorizes the identified 1,211 ML-related articles published in FT50 journals between 

2010 and 2023 according to the overall research disciplines of the journals (RQ1). In terms of the pro-

portion of all publications within each discipline, ML is most frequently addressed in information 
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systems, marketing, and operations management/research journals. The majority of the publications use 

ML as a method, irrespective of the research discipline. Only a small proportion of studies discuss ML 

as a topic without applying any ML models. The share of ML-related publications in human relations, 

organization studies, psychology, economics, and entrepreneurship is small compared to management, 

finance, and consumer research journals. Despite the wide range of applications due to the abundance 

of text data, we also identify surprisingly few ML-related publications published in accounting journals. 

 [Figure 4 about here.] 

We now shift our focus to predictive ML studies. As illustrated in Figure 5, almost two out of three 

predictive ML studies in our final sample stem from information systems, operations management/re-

search, and general management journals. This is followed by publications in marketing, finance, and 

accounting journals. Studies from psychology, entrepreneurship, economics, consumer research, ethics, 

and organization science constitute only a small portion of the sample. Our sample does not entail pre-

dictive ML studies from journals focusing on topics from human relations. 

[Figure 5 about here.] 

Next, we examine the transparency of predictive ML studies in reporting benchmark results of 

traditional statistical models to address RQ2a. As Figure 6 shows, we find that 57 out of 203 articles 

(28%) do not report results for traditional benchmark models, making it difficult to assess the compar-

ative advantage of using more complex and resource-intensive ML models.21 This finding cannot be 

entirely attributed to the use of alternative types of unstructured data, such as text or images. While 

many ML prediction models can inherently handle these data types, extensive pre-processing is often 

required to use unstructured data with conventional prediction models. As a result, researchers might 

assume a significant advantage in using ML over traditional statistical models ex ante and choose not 

to compare their results with those of conventional methods. Indeed, 54% of the studies that do not 

report traditional statistical models leverage textual or visual data to address their predictive research 

questions. Conversely, two-thirds of the articles using textual or visual data also include at least one 

traditional statistical model to compare the predictive performance of ML models. If we exclude studies 

involving textual or visual data, we find that still 22% of the remaining studies do not report the bench-

mark performance of traditional statistical models. Figure 7 suggests notable differences between re-

search disciplines in reporting traditional benchmark results. For example, 94% of articles published in 

finance journals compare the ML model performance with traditional statistical models, while a mere 

69% of articles in information systems journals and 62% in marketing journals report such comparisons. 

 

21 Excluding naive prediction models (e.g., random walk or mean forecasts) that often serve as benchmarks for 

more sophisticated traditional statistical models, we find that 31% of the studies do not report the predictive per-

formance of (sophisticated) traditional statistical models. 
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[Figure 6 about here] 

[Figure 7 about here] 

The number of reported ML models and traditional statistical models per study, grouped by re-

search disciplines, are presented in Figure 8. Except for economics, predictive ML studies in all other 

disciplines report substantially more ML models than traditional models. On average, 3.2 ML models 

are reported per study, compared with 1.1 traditional statistical models. This difference is particularly 

pronounced in information systems and marketing journals. Studies that include at least one traditional 

benchmark model report on average 2.5 times as many ML models as traditional models.  

[Figure 8 about here] 

Figure 9 illustrates the performance improvement of ML models compared to traditional bench-

marks (RQ3a). We find that, on average, the difference in the predictive performance of the best-per-

forming ML and the best-performing traditional benchmark model is twice as large as the mean incre-

mental performance improvement (see Eq. (2)) across all models whose prediction results are reported. 

In 87% of studies, the best-performing ML model outperforms the best-performing traditional bench-

mark model. However, based on the mean predictive performance of all ML models reported in a study, 

ML outperforms the best traditional statistical models in only 69% of studies. The average ML outper-

formance is then reduced to .7 times the mean incremental performance improvement. As Figure 9 

shows, the distribution of the reported performance differences then becomes left-skewed towards a 

very small or even negative ML outperformance. In less than half of the studies, the worst-performing 

ML model achieves higher predictive performance than the best-performing traditional statistical model 

and underperforms the traditional benchmark model on average.  

Our analysis indicates that outperforming established traditional statistical models with ML models 

is not straightforward for many research questions in business and economics. Furthermore, researchers 

seem to experiment with many more ML models than traditional benchmarks to identify the best-per-

forming model (Figure 8). This imbalance may indicate a potentially unfair comparison between the 

two model types. Moreover, it is not unreasonable to assume that our findings may be subject to a 

publication bias (e.g., Christensen and Miguel, 2018; Stanley, 2005). It is likely that using one or more 

ML models might often be one of the main contributions of a predictive ML study given that almost 

90% of the predictive ML studies report an outperformance in favor of the best-performing ML model. 

Hence, predictive studies in which ML models do not improve upon traditional statistical models might 

not be published in the first place or do not report results of inferior ML models. On the other hand, 

authors might not report benchmark results of traditional statistical models in case of marginal improve-

ments by the ML model. Hence, these results cannot be included in our performance comparison.  
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Many studies across different scientific disciplines have also shown that studies employing ML 

prediction models often overstate their predictive performance due to methodological flaws or compar-

ison against weak benchmarks (Andaur Navarro et al., 2021; Arbabshirani et al., 2017; Kapoor and 

Narayanan, 2023; Kapoor et al. (2024); Lin, 2018; Rosenblatt et al., 2024; Sculley, 2018; Vandewiele 

et al., 2021).22 Leech et al. (2024) discuss questionable practices in ML research and disparage the 

“cherrypicking” of results, which involves the unintentional or deliberate selection and reporting of 

weak benchmarks. Also, the large number of “researcher degrees of freedom” when applying ML mod-

els can yield an overstated outperformance of ML over traditional statistical models (Leech et al. 2024; 

Simmons et al., 2011). 

In summary, all of this could cause an overestimation of the actual performance improvement that 

ML models attain on average compared to traditional statistical models. Our results are therefore con-

servative estimates. Given that the mean predictive performance of ML models is only slightly better 

than the best traditional benchmark model (compared to the performance improvement generated by 

the best ML model), we conclude from our findings that a substantial effort in terms of time and energy 

is often required to find and train an ML model that yields a significant outperformance over established 

traditional statistical models. 

[Figure 9 about here] 

4.2 Reporting benchmark results for traditional statistical models 

In this section, we examine whether we can explain the transparency of papers regarding the results 

of traditional statistical models with paper-, author-, and journal-specific variables (RQ2b). Column (2) 

of Table 2 presents the results of the probit regression model of Eq. (3), using a binary dependent vari-

able indicating whether the study contains results for at least one traditional statistical model or not. 

Column (1) refers to the same regression using a linear probability model (LPM). Our results suggest 

that papers using textual or visual data sets for prediction are less likely to report traditional benchmark 

results. This is consistent with our argumentation in Section 3.2.2. Using textual or visual data is asso-

ciated with a 13.5% lower probability of reporting traditional benchmark results. The coefficient is 

significant at the 5% (10%) level in the probit (linear probability) model. We do not find any evidence 

that the seniority of the authors, the number of authors, or the journal impact factor are related to the 

probability of reporting traditional benchmark results. Our findings do not change if we use the average 

 

22 Kapoor and Narayanan (2023), Kapoor et al. (2024), and Rosenblatt et al. (2024) point out the problem of data 

leakage, which is evident in many published ML studies across various disciplines. Data leakage refers to when a 

prediction model receives “out-of-sample” information on the data in the training phase, which can ultimately 

result in exaggerated “out-of-sample” performance. For example, Kapoor and Narayanan (2023) review twelve 

papers on civil war prediction in top political science journals. Their replication study reveals that all papers 

suggesting that ML models outperform logit regressions (which were traditionally used in the field) suffer from 

data leakage. Correcting the models for these errors suggests that ML models do not achieve a meaningful out-

performance over traditionally used logit models for civil war prediction. 
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years since the authors obtained their PhD as an alternative seniority measure. Studies that report more 

ML models are not more likely to also include at least one traditional benchmark model.23 

[Table 2 about here] 

In a second analysis, we replace the binary outcome variable with the number of reported tradi-

tional statistical models. The results in column (3) confirm the negative link between textual or visual 

data usage and the number of reported traditional statistical models. The total number of reported tra-

ditional statistical models in a study positively correlates with the number of reported ML models, 

which is significant at the 1% level. However, given the small effect size and the absence of a significant 

relation with the probability of reporting at least one traditional statistical model, we conclude that the 

number of reported ML models has a weak correlation with transparency about the performance of 

traditional statistical models. In column (4) we present the results for regressing the number of reported 

ML models on the paper-, author-, and journal-specific variables. Studies employing more traditional 

statistical models also tend to employ more ML models. While using textual or visual data negatively 

correlates with the number of reported benchmark models, this type of data is associated with an in-

crease in reported ML models. Interestingly, the number of authors is positively related to the number 

of different ML models the researchers apply to address their research question. This finding is con-

sistent with Franceschet and Costantini (2010), who argue that expertise and resources increase with 

the collaboration of researchers. Larger author teams are potentially associated with more knowledge 

about different models and more resources to apply them. However, we do not observe a link between 

team size and the reporting of traditional benchmark models. Consequently, we cannot confirm that a 

greater number of authors leads to more comprehensive and rigorous research regarding the variety of 

examined traditional and ML models. 

4.3 Performance improvement of ML models relative to traditional statistical models 

Table 3 contains the results of linear regressions regarding RQ3b, whether common paper-, author-

, and journal-specific factors can explain the magnitude of the reported outperformance of ML over 

traditional statistical models. Columns (1) and (2) refer to a performance comparison of the best ML to 

the best traditional statistical model within each study, as stated in Eq. (4). Columns (3) and (4) present 

results for the performance difference between the average ML and the best traditional statistical model 

as the dependent variable.24 

[Table 3 about here] 

 

23 The variance inflation factors of the two seniority measures (correlation of .66) are around 2.1 and between 1.2 

to 1.3 for textual/visual data and n traditional models (correlation of -.21), respectively. 
24 The variance inflation factors of the seniority measures average citation count and average FT50 publications 

(average years since PhD) are 3.6 and 2.9 (2.1 and 2.6), respectively. 



26 

The relatively high adjusted R-squared of .38 to .40 suggests that the model explains a substantial 

portion of the reported performance difference. We do not find evidence that using textual or visual 

data is per se related to a higher outperformance of ML compared to traditional statistical models. How-

ever, our results regarding the effect of textual or visual data might suffer from a potential selection 

bias. As discussed above, many studies relying on such data sets do not report benchmark results for 

traditional statistical models, as they might anticipate high outperformance. Thus, these studies are not 

included in the regression models of this section.  

We find that reporting more ML models is associated with a higher outperformance of the best-

performing ML model. As outlined in Section 3.2.2, this can be due primarily to two reasons. First, 

trying out the predictive performance of multiple ML models may increase the likelihood of finding a 

very accurate model compared to traditional statistical models, particularly if more ML models than 

traditional statistical models are reported, as suggested by Figure 8. Second, reporting more ML models 

may decrease the mean incremental performance improvement between the models under the assump-

tion that ML models generally generate a similarly high outperformance relative to reported traditional 

statistical models. Measuring the performance difference between ML and traditional statistical models 

relative to the mean incremental performance improvement would then increase our dependent variable 

for a rather technical reason. We cannot entirely disentangle these two effects. However, if the latter 

were true, we would assume to observe the same positive effect for the number of reported ML models 

on the outperformance of the average ML model. Columns (3) and (4) show that we cannot establish 

this effect for the outperformance of the average ML model. In contrast, the outperformance of the 

average ML over the best traditional statistical model is significantly negatively related to the number 

of reported traditional statistical models. This supports our first explanation that the more models of 

one type (ML or traditional) are employed, the more likely it is that more powerful models will be 

found. 

We also find that the seniority of the authors, as measured by their average citation count, is posi-

tively related to the outperformance of both the best and the average ML model. Assuming that authors 

with a higher citation count produce higher-quality research, the positive link between the outperfor-

mance and the citation count might indicate that these authors are also more skilled in training perfor-

mant ML prediction models. However, this conclusion should be taken with a grain of salt as the au-

thors’ seniority measured by the average amount of FT50 publications is negatively associated with the 

magnitude of the ML outperformance. Frequently publishing in FT50 journals might signal that these 

authors conduct very rigorous empirical analysis, leading to a smaller reported performance difference 

between ML models and traditional statistical models. Although the coefficient for the average number 

of FT50 publications is only weakly significant at the 10% level, we obtain the same finding using the 

average years since the authors obtained their PhD as explanatory variable, for which the estimated 

effect is significant at the 5% level.  
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Lastly, our results indicate that collaborations between a greater number of researchers lead to a 

higher performance of ML models. The estimated effect is only weakly significant at the 10% level 

when looking merely at team size.  

 

4.4 Citation count 

The last part of our analysis examines RQ4, which asks whether transparency about the perfor-

mance of traditional statistical models and the magnitude of the performance improvement through the 

use of ML is related to the number of citations an article is able to garner. First, we look at the correlation 

of the citation count with the transparency of the model reporting (RQ4a). Similar to Franceschet and 

Costantini (2010), who investigate the link between collaboration cardinality and citation count, Figure 

10 depicts the articles’ average number of citations per year dependent on the number of reported tra-

ditional statistical models (left panel) and the number of reported ML models (right panel).25 The graph-

ical analysis suggests a higher number of citations if an article is more transparent about the predictive 

performance of traditional statistical models. On average, articles reporting no traditional benchmark 

gather 16 citations per year, while articles reporting the results for one (more than one) traditional 

benchmark model pick up 25 (34) citations per year. In contrast, a positive relationship between the 

number of reported ML models and the citations of an article is not immediately apparent. Articles 

reporting one ML model or between four and five models generate 25 to 26 citations per year on aver-

age. Articles reporting two to three ML models garner 20 citations per year, whereas only articles with 

more than five ML models have a clearly higher mean yearly citation count of 39. 

[Figure 10 about here] 

Table 4 indicates a statistically significant and positive relation between transparency about the 

predictive performance of traditional statistical models and the impact an article generates when con-

trolling for other factors that influence citations.26 The left panel of Table 4 shows the results for the 

total citation count as the dependent variable. Articles reporting the results for at least one traditional 

benchmark model have accumulated, on average, 49 more citations than articles that entirely omit tra-

ditional statistical models, as suggested by the negative binomial regression model. We find that report-

ing one more traditional statistical model is associated with an overall increase of around 28 citations. 

The substantially lower AIC for the negative binomial regression compared to the Poisson model con-

firms that the negative binomial model is the more appropriate choice given the overdispersion in the 

 

25 The number of papers reporting no benchmark and the number of papers reporting only one ML model are 

coincidentally identical. A mere 20 articles that do not report a traditional benchmark model also present results 

for only one ML model. 
26 Although the number of ML models and whether a study employs textual or visual data sets are significantly 

related to the number of reported traditional benchmark models, variance inflation factors are well below a level 

of 2, suggesting no multicollinearity issues with our model. 
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citation count data. However, the findings are also robust to using a Poisson regression model if we 

exclude articles with more than 1,000 citations.27  

[Table 4 about here] 

The right panel of Table 4 provides the results regarding the yearly citation count using panel data 

as described in Eq. (5). Depending on the regression model that we use, studies that report traditional 

benchmark results have, on average, 2.7 to 6.8 citations more per year than studies that do not report 

traditional benchmark results. Reporting one more traditional statistical model is associated with 1.8 to 

4 more yearly citations. The estimated average marginal effects are significant at the 1% or 5% level. 

In addition, we present the 95% confidence intervals of the average marginal effects of the negative 

binomial regressions in Figure 11. Studies reporting at least one traditional statistical model (one more 

traditional statistical model) have, on average, between 0.05 and 5.4 (0.53 and 3.09) more citations per 

year. According to the Poisson regressions, as depicted in Figure B.1, the yearly difference in citations 

is between 2.52 and 11.05 (0.96 and 6.96) compared to less transparent studies. The weighted average 

five-year journal impact factor in our sample as of 2023 is 8.1, meaning that the average article pub-

lished in the journals in our sample gathered 8.1 citations per year between 2018 and 2023. Thus, the 

reported effect sizes in the negative binomial regression are considerable and, on average, comparable 

to the positive effect that an additional year after publication has on the yearly citation count. In contrast, 

the number of reported ML models per study is not related to the number of citations. 

[Figure 11 about here] 

As outlined in Section 2, our findings may have several explanations. The citation analysis might 

suggest that the academic community values the rigor of the analysis, which we argue is stronger if the 

predictive performance of novel ML models is benchmarked against well-established traditional statis-

tical models. Apart from that, if a published article benchmarks the ML performance against that of 

traditional statistical models, it might be easier for researchers to gauge the relative advantage of using 

the more complex ML model for their own future research, resulting in higher citations of the article 

proposing the model. On the other hand, reporting traditional benchmark models might positively cor-

relate with a study’s quality, which ultimately drives its citation count. Our analysis finds no evidence 

in support of the opposite hypothesis that we derived from the results of Serra-Garcia and Gneezy 

(2021). If studies that report only ML and no traditional statistical models were more interesting and 

 

27 If we exclude (two) articles with more than 1,000 citations, we find that articles reporting traditional benchmark 

results gain 46 more citations according to the negative binomial model (significant at the 1% level) or, respec-

tively, 28 more citations according to the Poisson regression (significant at the 5% level). Reporting one more 

traditional statistical model is then associated with an increase of 22 (significant at the 1% level) and 19 (signifi-

cant at the 5% level) citations according to the negative binomial and Poisson regression, respectively. 
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hence weathered the review process without having to add benchmark results for traditional statistical 

models, we should have observed a higher citation count for non-reporting articles. 

We also find that studies using textual or visual data have a significantly higher citation count than 

others. The difference in the total (yearly) citation count is estimated at 11 to 82 (0.61 to 6.13) citations, 

according to the 95% confidence intervals from the negative binomial regression. The average differ-

ence in citations between studies that use textual or visual data and those that do not is similar to the 

difference in citations between studies that report benchmark results for traditional statistical models 

and those that do not. The main reason for the positive relation might be that the handling of large, 

unstructured text or image and video data sets became more effective and convenient―or even possible 

at all―when modern ML techniques found their way into business and economic research (Gentzkow 

et al., 2019; Mullainathan and Spiess, 2017). As discussed by Gentzkow et al. (2019) and Mullainathan 

and Spiess (2017), text and other unconventional data sources such as images have gained increasing 

importance in business and economic research. Hence, it is likely that these studies and their citation 

count benefit from this trend by contributing novel methods and interesting findings. As expected, the 

ability of the authors to produce impactful research, as measured by the total citation count before the 

publication of the predictive ML study, is also positively correlated with the citation count of the ML 

study. However, estimated effect sizes are tiny. An author team with 10,000 more citations prior to 

publication receives, on average, less than one additional citation per year or, respectively, around ten 

more citations in total. Our analysis does not confirm the positive effect of the size of the research teams 

on citation count as established in prior research (e.g., Adams et al., 2005; Larivière et al., 2014; Wu et 

al., 2019). The effect of the team size on the citation count is primarily captured by our citation measure. 

As Table 5 shows, we do not find compelling evidence that the extent of the performance improve-

ment of ML over traditional statistical models is related to a higher citation count. Also, the coefficients 

for the number of traditional statistical models and the binary variable indicating the use of textual or 

visual data are positive but often insignificant, in contrast to the results presented in Table 4. Note that 

by including the performance comparison of traditional and ML models, we lose more than 40% of our 

observations associated with papers that do not report benchmark models and those that report only one 

traditional model and one ML model. For example, one-third of articles involving textual or visual data 

are omitted from this sample as they do not report traditional benchmark models. The considerably 

smaller sample size might be one of the main reasons for observing statistically weaker effects in Table 

5.  

[Table 5 about here] 

4.5 Robustness  

While we have taken a theoretical approach to classifying prediction methods into traditional and 

ML models, the assessment of what constitutes a traditional or ML model may vary among researchers. 
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For this reason, we have asked leading empirical researchers how they would classify the models. A 

total of 31 authors, who have either published the articles included in our meta-analysis or seminal 

articles that discuss the use of ML for business and economic research, classified the models in our 

sample. We find that for most models there is agreement about how they should be classified (Figure 

C.1). For example, all researchers classify artificial neural networks, random forests, and decision trees 

as ML, while more than 90% classify linear and logistic regression models as traditional methods. How-

ever, researchers disagreed about the classification of Bayesian networks, elastic nets, general additive 

models, cluster analysis, discriminant analysis, LASSO, and ridge regression.28 As a robustness test, we 

focused on the two extremes. We classified all models on which the respondents’ opinions diverged as 

traditional models. Then, we classified these models as ML models. Lastly, we classified all of the 

ambiguous models in the opposite direction compared to our initial classification; for example, LASSO 

as traditional and discriminant analysis as ML.  

We present the results of our robustness tests in Appendix C. Our findings on transparency and the 

relative performance of ML models remain qualitatively unchanged by this reclassification. If all am-

biguous models are classified as traditional, then still 21% of the studies do not report benchmark results 

for traditional statistical models. If we consider all ambiguous models as ML, 33% of the studies do not 

report traditional benchmark results. Finally, if we classify the models in the opposite direction from 

our initial classification, 24% do not report traditional benchmark results. Similar to our main analysis, 

the ML outperformance over the best traditional model is reduced by 66 to 69% for all three robustness 

tests if we consider the average instead of the best ML model performance. Importantly, our main con-

clusions from the regressions in Sections 4.2–4.4 hold, independent of the classification of ambiguous 

models. Overall, we conclude that the models with a rather ambiguous classification do not drive our 

results. 

5. Discussion 

5.1 Transparency cost trade-off 

One question that should be asked is whether the ML models with the best predictive performance 

are actually more expensive than others. We cannot test this conjecture to the cent or kilowatt hour for 

the papers in our sample, as the authors themselves most likely often do not know the exact costs and 

we would have to expect considerable measurement error. However, we can get an indication of whether 

cost-intensive models drive the relative predictive performance in ML studies by looking at the type of 

the best-performing models per paper in our sample. 

Figure 12 depicts the most used traditional statistical and ML models in the papers of our sample 

and how often they achieve the highest predictive performance in a paper relative to the total number 

 

28 For these models, less than two-thirds of the researchers classified a model as either ML or traditional, i.e., more 

than one-third either classified the model in the opposite direction or did not classify the model. 
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of papers in which these models are used. In 80% of studies that use ensemble learning techniques, an 

ensemble learning model also achieves the highest predictive performance of all reported models in 

these studies. Transformer models achieve the highest performance in 71% of the studies in which they 

are employed, while neural networks and boosting algorithms are the best-performing models in 60% 

and 48% of studies, respectively. Measured in absolute terms, neural networks are reported as the best-

performing model in 49 studies, followed by random forests (40 studies) and boosting algorithms (27 

studies). In general, due to their complexity, large number of parameters, and the need for extensive 

training data, we can assume that transformer models, neural networks, and ensemble learning tech-

niques also have, on average, the highest energy consumption among the models used in our sample. 

Boosting algorithms and random forests can also be computationally expensive, depending on the num-

ber of trees. On the other hand, models that are generally less complex and computationally demanding, 

such as LASSO, ridge, linear, and logistic regressions, are only rarely reported as the best-performing 

model in the studies of our sample.29  

While we cannot control for the actual energy consumption of the models that are used in the ML 

studies of our sample, the analysis from Figure 12 suggests that models with high energy consumption 

are also most often reported as the best-performing models. Therefore, the relationship between the 

reported relative outperformance of ML models in the studies of our sample and their energy consump-

tion is most likely positive. 

[Figure 12 about here] 

5.2 Implications for research 

Provided that the prediction of an outcome variable is more important for answering a given re-

search question than knowledge about the underlying relationships between the variables of interest, it 

is well known that ML models can be superior to traditional statistical models in achieving this task. 

However, whether complex ML models are particularly likely to outperform simpler traditional statis-

tical models depends on knowledge about functional forms and the data set that is available to the 

researcher. The model that is selected for a study is always a discretionary decision of the researchers 

conducting the study. We encourage researchers to think about the suitability of ML models for ad-

dressing a given research problem in light of the potential higher costs in terms of money, time, energy, 

and less explainability. Also, presenting a convincing motivation for why ML is ex-ante likely to per-

form better than simpler traditional statistical models and providing a transparent comparison between 

 

29 Of course, the actual energy consumption of the models can vary depending on their specific characteristics and 

the data sets used. Even a support vector machine with non-linear kernels can be computationally demanding with 

larger and more complex data sets. However, as we cannot obtain the data on the energy consumption of each 

model used in the studies of our sample, we assume the following energy consumption that these types of models 

generally have on average, as depicted in Figure 12: neural networks, transformer models (very high); boosting, 

ensemble learning (high); random forests, Bayesian nets (moderate to high); support vector machines, decision 

trees, bagging (moderate); LASSO, ridge regression (moderate to low); linear regression and logistic regression 

(low). 
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these model types can prevent publications from recommending ML models that are potentially less 

useful relative to their traditional alternatives. Similarly, Kapoor et al. (2024) recommend that ML stud-

ies should clearly articulate why ML models are used to approach the research question at hand. In this 

section, we summarize some guiding principles—among others discussed in detail in Athey and Imbens 

(2019), Kelly and Xiu (2023), Mullainathan and Spiess (2017), and Varian (2014)—regarding the cir-

cumstances under which ML models are promising. If these conditions are not met, it is all the more 

important to report the best possible traditional benchmarks or even forego cost-intensive ML models 

altogether. We also address the reporting of meaningful traditional benchmarks at the end of this sec-

tion. 

First, as stated by Kelly and Xiu (2023), “machine learning methods are explicitly designed to 

approximate unknown data generating functions” (pp. 5–6). If it is reasonable to assume that there is a 

large number of potentially relevant covariates with complex hidden relationships in the data (e.g., 

nonlinearities and many interactions) that we cannot explicitly know and model, an ML-based data-

driven approach to uncover these hidden patterns can be beneficial. In contrast, if we have a clear idea 

of the functional form, including nonlinear relationships and interactions between the variables, ML 

methods are less likely to add value over traditional statistical models. Athey and Imbens (2019) illus-

trate the absence of ML advantages with the example of earning predictions for individuals, where we 

can plausibly expect linear relationships, and where unknown higher-order interactions or nonlinearities 

are less likely to be of significant importance. Another example of ML failing to confer an advantage 

is when we can expect a specific nonlinear relationship such as the inverted U-shape between tax rates 

and tax revenues, as modeled by the Laffer curve. 

The second condition that affects the probability of an ML model outperforming traditional statis-

tical models relates to the data that is available to the researcher. ML models are well suited to handle 

high-dimensional data combining different potentially unconventional data types such as unstructured 

textual data together with classic numerical time series data. In theory, many different data sources, for 

which ML offers promising approaches, can be relevant to predict the variable of interest. On the other 

hand, complex ML models such as neural networks are generally also reliant on large-scale data sets to 

be less prone to overfitting and to deliver good out-of-sample performance, whereas the available data 

sets for many business and economic research questions are relatively small (Athey and Imbens, 2019; 

Kelly and Xiu, 2023). Note that the two major conditions—unknown functional forms and large, high-

dimensional data sets—are often mutually dependent. The data that is available to the researcher deter-

mines whether unknown hidden relationships between variables are likely to affect the predictions and 

how many potentially relevant covariates are available. The nature of the research problem, in turn, 

determines which data sets can be theoretically useful to form predictions.  

If it is likely that an ML model will outperform traditional statistical models given the research 

question and data of a study, the researchers should still transparently report benchmark results for 

traditional statistical models. For example, Chen et al. (2024) examine the impact of model design 
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choices on the performance of ML-based stock return predictions—an ex ante promising area for ML 

applications given potentially large-scale data sets that can be useful to form predictions of returns of 

financial assets, and a priori unknown functional forms (Gu et al. 2020; Kelly and Xiu, 2023). However, 

Chen et al. (2024) find that one-third of the tested composite ML models for stock return prediction end 

up with lower economic gains (in terms of portfolio returns) than comparable OLS models with identi-

cal design choices. To evaluate the true relative advantage of an ML model, the strongest well-estab-

lished traditional statistical models should be chosen as benchmarks to avoid “cherrypicking” or 

“benchmark hacking,” which would overstate the relative ML performance, as emphasized by Leech et 

al. (2024). Reporting a meaningful traditional benchmark also implies that the traditional model gener-

ates predictions based on the same data as the ML model.  

If ML models are trained on richer data sets that have more predictive value than the data that is 

fed into the traditional statistical model, the actual ML outperformance might be overstated.30 For ex-

ample, if the data set is too high-dimensional to work well with a simple linear regression model, the 

covariates can be based on principal components (see, e.g., Gu et al., 2020) instead of a very limited 

number of preselected predictor variables. The study by Chen et al. (2024) can serve as a best-practice 

example of transparent comparison between the predictive performance of ML and that of traditional 

statistical models. The authors compare ML models with their OLS counterparts based on the exact 

same design choices. They also transparently derive from this comparison the conditions under which 

ML models are likely to outperform the traditional statistical benchmark in stock return prediction, and 

those where the traditional benchmark is likely to perform better. Likewise, Leech et al. (2024) under-

line the importance of not only reporting the performance of a “single run” of an ML model, as this 

does not allow for assessing the uncertainty underlying the ML model’s performance. Kapoor et al. 

(2024) provide further guidance on how to choose appropriate baselines in ML-based scientific research 

and quantify the uncertainty underlying the reported ML model performance. 

Alongside performance-wise comparison, we recommend evaluating performance relative to 

model costs in order to achieve an even more transparent evaluation of economically meaningful im-

provements through the use of more costly ML models over simpler traditional statistical models. This 

would ideally include the measurement of energy consumption, environmental costs, and the loss of 

explainability or interpretability of the results. We briefly address existing frameworks and efforts to 

capture the different types of model costs in Section 5.3. 

5.3 Limitations and future research 

Ideally, the performance of ML and traditional statistical models should be compared separately 

for individual research questions by including studies that use only traditional statistical models in the 

absence of ML. While meta studies with a focus on the comparison between ML and traditional 

 

30 We thank one of the survey participants for this comment. 
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statistical models within a homogeneous set of research question present an interesting avenue for future 

research, such a study is beyond the scope of the present article, given the variety of heterogeneous 

research questions. As an alternative to meta studies, we propose that future studies can comprehen-

sively analyze the predictive performance of ML and traditional statistical models for individual re-

search questions to investigate the conditions under which ML outperforms and when traditional statis-

tical models are superior (e.g., Chen et al., 2024). For example, Bianchi et al. (2024) find that many 

recent studies propose predicting equity risk premia using novel flexible statistical techniques (includ-

ing ML), but these studies rarely benchmark the model performance against well-established econom-

ically motivated regression models with a restricted set of predictors. Consequently, Bianchi et al. 

(2024) compare the predictive performance of both model types and find that economically motivated 

regression models outperform various flexible ML techniques such as LASSO and random forests. Such 

analyses will enable a clearer view of the true advantages afforded by ML models, depending on the 

research topic. 

Future research is also needed to develop standardized frameworks for reporting the economic 

benefits of models in comparison to model costs. There is increasing demand in the broader ML litera-

ture for standards that frame the performance gains of ML models in terms of their efficiency (Strubell 

et al., 2020). For reporting frameworks that consider model costs, researchers would need to be aware 

of the energy consumption of the models they use. While the precise calculation of energy use and 

environmental impact is not the main focus of this study, Cai et al. (2017), Dodge et al. (2022), García-

Martín et al. (2019), Lacoste et al. (2019), and Luccioni et al. (2024) provide interesting approaches. 

Alternatively, reporting computing resources and the time to run the code for the empirical analysis—

ideally broken down for each of the employed models—can give an indication of associated energy 

consumption and financial costs. Kapoor et al. (2024) also recommend transparently describing the 

hardware, software, and computational resources available to the researchers when using ML models. 

Reporting details about the data and code to journals is already requested by the Data and Code Avail-

ability Standard,31 which is endorsed by many economic journals, such as those of the American Eco-

nomic Association. The focus of these reporting standards, however, is more on the replicability of a 

study’s results than on a comparison of model performance and costs.  

Along with financial and environmental costs, model costs in terms of sacrifices in explainability 

and interpretability in exchange of higher predictive performance should be considered. The degree of 

explainability is particularly relevant for many research problems regarding managerial decision-mak-

ing, which requires causal knowledge of the underlying relationships between variables (Hünermund et 

al., 2022). An approach to evaluating the predictive performance of models relative to an interpretability 

score is provided in Kruschel et al. (2024). 

 

31 The Data and Code Availability Standard and the list of endorsing journals is accessible on the website 

https://datacodestandard.org./ 

https://datacodestandard.org/
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6. Conclusion 

Our study investigates the adoption of predictive ML models in high-quality business and eco-

nomic research. We find that papers do not consistently report benchmark results for less complex con-

ventional statistical models that have been traditionally used in the literature to answer predictive re-

search questions. However, considering traditional statistical models can be particularly important for 

assessing whether a statistical improvement in predictive accuracy through the use of a more complex 

ML model translates into economically significant insights. Overall, our results indicate that, for the 

average ML model, there is often relatively little gain in predictive performance over traditional bench-

mark models. Time and energy seem to be required to achieve considerably improved predictions with 

well-trained ML models. Whether this improvement is always economically significant enough to war-

rant higher model costs in terms of increased effort, time, and energy consumption remains an open 

question. Future research needs to develop standardized frameworks in business and economic research 

for reporting predictive gains of ML models relative to their efficiency. The relative model performance 

should be compared against well-established and usually less expensive traditional statistical models in 

that field to evaluate the true economic benefits and relative advantages of more complex, resource 

hungry models. 
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Figures 

 

 

Figure 2: Identification of relevant studies and identified number of studies that involve ML in general (ML-related 

studies), studies in which the authors apply ML models (applied ML studies), and studies in which the authors 

predict the variable of interest with at least one ML model in order to answer a research question that is of central 

importance to their study (predictive ML studies). 

Figure 1: Number of publications in journals from the Financial Times Research Rank (FT50), in which the authors 

apply ML models for their empirical analysis. We collected studies published between 2010 and June 2023. The 

expected number of publications for 2023 (2023e) is based on 204 studies we identified that were published in 

print or online issues between January and June 2023. 
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Figure 3: Share of predictive ML studies that cover the most reported models in our sample grouped by (a) ML 

models and (b) traditional statistical models considered as benchmarks in our paper. 

Figure 4: Share (number) of ML-related studies grouped by the research discipline of the journal and categorized 

into articles that apply at least one ML model to answer a predictive research question that is of central interest to 

the study (predictive ML studies), articles that apply ML models for other purposes, and articles that are about ML 

without applying ML models themselves. The categorization of FT50 journals by research discipline is described 

in Table A.2. 
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Figure 6: Share of predictive ML studies that report the predictive performance of at least one traditional bench-

mark model and those that do not report the predictive performance of traditional benchmark models (n=203). 

Figure 5: Number of predictive ML studies in our sample grouped by the research discipline of the journals in 

which they are published (n=203). 
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Figure 7: Share of predictive ML studies that report the predictive performance for at least one traditional bench-

mark model grouped by the research discipline of the journals in which they are published (n=203). 

Figure 8: Number of traditional benchmark and ML models for which predictive ML studies report predictive 

performance grouped by the research discipline of the journals in which they are published. The group “Other” 

includes the research disciplines: Entrepreneurship, Ethics, Organization, Psychology, and Consumer Research. 
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Figure 9: Absolute performance difference of the (a) best and (b) average ML model over the best-performing 

traditional benchmark model relative to the mean incremental performance increase as described in Eq. (2). The 

histogram in panel (a) includes the prediction results of 116 studies, while the histogram in panel (b) includes 

results of 105 studies since those that only report one ML model were removed. We only take studies into account 

that report the results for more than two models in order to calculate the mean incremental performance increase. 

Figure 10: Average number of citations per year of predictive ML studies depending on the number of reported 

traditional benchmark (left panel) or respectively ML (right panel) models. The number of studies per group is 

denoted by n. 
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Figure 11: Confidence intervals of estimated average marginal effects (95%) for the total citation count (left plots) 

and the yearly citation count (right plots) based on the negative binomial regressions presented in Table 4. The 

upper plots (panel a) present the results if we measure the transparency of the reporting of traditional benchmark 

results with a binary variable (Benchmark reported). The lower plots (panel b) show the results if we use the 

number of reported traditional benchmark models (n traditional models) as the explanatory variable to estimate 

the relation of transparency and citation count. We omit the remaining, insignificant control variables for graphical 

illustration. 
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Figure 12: Models with the highest predictive performance per paper and assumed average energy consumption. 

This chart shows the share of papers in which a certain model type achieves the highest predictive performance 

(for at least one evaluation measure) of all models reported in a paper relative to all papers that use this model 

type. The size of the circles is determined by the absolute number of papers in which the model type achieves the 

highest predictive performance according to at least one evaluation measure. We define the average energy con-

sumption per model type according to their general computational intensity from low (= simple models with 

minimal computational effort) to very high (= models with complex architectures, extensive parameters, requir-

ing high-dimensional and large-scale data sets). This figure only includes the most used model types in our sam-

ple and papers that report the results for at least two models. 
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Tables 

 

Table 1: Summary statistics of the identified predictive ML studies. 

 Obs. Mean S.D. Median Min Max 

Dependent variables       

Transparency about the model performance       

Traditional benchmark 203 0.719 0.450 1.000 0.000 1.000 

n traditional models 203 1.113 1.011 1.000 0.000 5.000 

Performance difference       

Best ML vs. best benchmark 116 2.097 2.000 2.000 −2.769 7.000 

Avg ML vs best benchmark 105 0.696 1.992 0.697 −5.487 4.933 

Citation analysis       

Total citation count 203 105.409 208.129 37.000 1.000 1942.000 

Yearly citation count 1,371 16.689 36.616 5.000 0.000 573.000 

Paper-specific variables       

n ML models 203 3.182 2.032 3.000 1.000 12.000 

Textual/visual data 203 0.424 0.495 0.000 0.000 1.000 

Years since publication 1,371 1.207 3.018 1.000 −7.000 14.000 

Publication year       

= 2010 2      

= 2011 1      

= 2012 1      

= 2013 1      

= 2014 2      

= 2015 4      

= 2016 10      

= 2017 3      

= 2018 7      

= 2019 16      

= 2020 29      

= 2021 28      

= 2022 57      

= 2023 42      

Author-specific variables       

Average citation count / 1000 203 4.394 11.162 1.840 0.002 146.706 

Total citation count / 1000 203 11.887 19.680 4.659 0.002 146.706 

Average FT50 publications 203 10.006 11.640 5.500 0.000 93.000 

Average years since PhD 201 12.670 6.935 11.500 1.000 49.500 

Team size 203 3.360 1.183 3.000 1.000 8.000 

Journal-specific variables       

Journal impact factor 203 5.545 2.076 5.000 1.683 11.775 

Notes: The dependent variables traditional benchmark, n traditional models, best ML vs. best benchmark, and avg ML 

vs. best benchmark are also used as explanatory variables in other regression models. Definitions of the variables are 

provided in Table A3. 
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Table 2: Transparency about the predictive performance of traditional benchmark models (RQ2b). This 

table shows coefficient estimates (1) and average marginal effects (2)–(4) for regressing a variable indicating 

whether a traditional benchmark was reported or not (1)–(2), the number of reported traditional benchmark models 

(3), and the number of reported ML models (4) on paper-, author-, and journal-specific variables.  

 y: benchmark reported (1/0)  y: n traditional (I) / ML (II) models  

 (1) LPM  (2) Probit   (3) Poisson I  (4) Poisson II  

Paper-specific variables          

Textual/visual data −0.133 * −0.135 **  −0.436 *** 0.715 *** 

 (0.073)  (0.063)   (0.150)  (0.275)  

n ML models 0.025  0.029   0.096 ***   

 (0.019)  (0.018)   (0.035)    

n traditional models        0.399 *** 

        (0.140)  

Author-specific variables          

Seniority          

Average citation count / 1000 −0.002  −0.002   −0.015  −0.000  

 (0.004)  (0.003)   (0.020)  (0.014)  

Average FT50 publications 0.005  0.005   0.012  −0.014  

 (0.004)  (0.004)   (0.009)  (0.014)  

Team size −0.006  −0.010   −0.075  0.261 ** 

 (0.032)  (0.029)   (0.057)  (0.115)  

Journal-specific variables          

Journal impact factor −0.009  −0.010   −0.008  −0.063  

 (0.028)  (0.027)   (0.057)  (0.112)  

          

Intercept 0.976 *** Yes   Yes  Yes  

 (0.239)         

Fixed effects          

Journal discipline Yes  Yes   Yes  Yes  

Publication Year Yes  Yes   Yes  Yes  

          

Observations 203  196   203  203  

Adj. R2 0.0002         

Pseudo R2   0.1140       

AIC 273.84  257.78   558.92  807.77  

LL −109.92  −103.89   −250.46  −376.89  

Notes: Fixed effects include the research discipline of the journal in which a study was published and the year the 

study was published. Asterisks indicate the significance of the estimated parameters at the ***1%, **5%, and *10% 

level. Robust standard errors are shown in parentheses. 
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Table 3: Reported performance difference of ML and traditional benchmark models (RQ3b). This table 

shows OLS coefficient estimates for regressing the performance difference of the best-performing ML (1)–(2) or, 

respectively, the average ML model (3)–(4) to the best-performing traditional benchmark model on paper-, author-

, and journal-specific variables. The performance difference is measured relative to the mean incremental perfor-

mance increase of all reported models in a study as described in Eq. (2). 

 y: Best ML vs. best benchmark  y: Avg. ML vs. best benchmark 

 (1)  (2)   (3)  (4)  

Paper-specific variables          

Textual/visual data 0.391  0.308   0.644  0.627  

 (0.524)  (0.547)   (0.583)  (0.609)  

n ML models 0.574 *** 0.548 ***  0.139  0.122  

 (0.113)  (0.114)   (0.135)  (0.141)  

n traditional models −0.248  −0.320   −0.714 *** −0.716 *** 

 (0.252)  (0.237)   (0.242)  (0.267)  

Author-specific variables          

Seniority          

Average citation count / 1000 0.166 *** 0.138 ***  0.178 *** 0.158 *** 

 (0.057)  (0.047)   (0.065)  (0.054)  

Average FT50 publications −0.054 *    −0.056 *   

 (0.028)     (0.031)    

Average years since PhD   −0.074 **    −0.069 ** 

   (0.030)     (0.034)  

Team size 0.407 * 0.419 *  0.443 * 0.438 * 

 (0.215)  (0.223)   (0.240)  (0.249)  

Journal-specific variables          

Journal impact factor 0.078  −0.017   0.171  0.069  

 (0.149)  (0.156)   (0.173)  (0.195)  

          

Intercept 0.372  4.134   −2.203  0.292  

 (3.747)  (2.997)   (2.192)  (2.128)  

Fixed effects          

Journal discipline Yes  Yes   Yes  Yes  

Prediction context Yes  Yes   Yes  Yes  

Performance measure Yes  Yes   Yes  Yes  

Publication Year Yes  Yes   Yes  Yes  

          

Observations 114  113   103  102  

Adj. R2
 0.3970 

 0.3880 
  0.3890 

 0.3780 
 

AIC 441.57  435.83   401.34  397.15  

LL −184.79  −182.91   −165.67  −164.58  

Notes: Fixed effects include the research discipline of the journal in which a study was published, the thematic 

context of the variable that is predicted (see Table A.1), the type of measure that was used in the study to evaluate 

the predictive performance, and the year the study was published. Asterisks indicate the significance of the esti-

mated parameters at the ***1%, **5%, and *10% level. Robust standard errors are shown in parentheses. 
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Table 4: Citation analysis (RQ4a). This table shows average marginal effects for regressing the total (left panel) and yearly (right panel) citation count of predictive ML studies 

on the transparency about the performance of traditional benchmark models. 

 𝑦: Total citation count  𝑦: Yearly citation count 

 (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II   (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II  

Transparency about the model performance                  

Benchmark reported 7.709  49.000 ***      6.783 *** 2.710 **     

 (18.210)  (15.430)       (2.176)  (1.358)      

n traditional models     29.610 * 27.690 **      3.960 ** 1.811 *** 

     (16.380)  (10.760)       (1.531)  (0.654)  

Paper-specific controls                  

n ML models 4.471  5.295  1.229  3.830   0.835  0.007  0.627  −0.119  

 (3.537)  (4.239)  (3.628)  (4.091)   (0.593)  (0.325)  (0.574)  (0.327)  

Textual/visual data 28.040  46.800 ** 44.090 *** 48.530 ***  6.811 *** 3.369 ** 7.092 *** 3.817 *** 

 (19.430)  (18.120)  (16.050)  (17.980)   (2.521)  (1.407)  (2.506)  (1.418)  

Author-specific controls                  

Total citation count / 1000 0.941 ** 1.044 * 1.255 *** 1.007 **  0.146 ** 0.079 ** 0.142 ** 0.090 ** 

 (0.385)  (0.541)  (0.469)  (0.498)   (0.073)  (0.035)  (0.068)  (0.035)  

Team size 12.110 * 7.511  12.030  9.480   1.180  0.311  1.417  0.338  

 (7.182)  (7.883)  (7.306)  (7.707)   (1.165)  (0.620)  (1.133)  (0.610)  

Journal-specific controls                  

Journal impact factor −1.302  −11.800  0.786  −10.040   −1.706  −0.025  −1.450  −0.048  

 (5.681)  (7.451)  (5.954)  (7.162)   (1.045)  (0.427)  (1.004)  (0.422)  

Other controls                  

Years since publication 23.900 *** 30.730 *** 23.170 *** 27.100 ***  3.914 *** 2.663 *** 3.438 *** 2.599 *** 

 (4.382)  (8.513)  (4.335)  (6.848)   (1.101)  (0.450)  (0.882)  (0.436)  

Fixed effects                  

Journal discipline Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Publication Year No  No  No  No   Yes  Yes  Yes  Yes  

                  

Observations 203  203  203  203   1335  1335  1335  1335  

AIC 19026.28  2127.82  17478.54  2125.41   11876.60  8095.19  11872.61  8090.68  

LL −9495.14  −1045.91  −8721.27  −1044.70   −5904.30  −4012.59  −5902.30  −4010.34  

Notes: Fixed effects include the research discipline of the journal in which a study was published and the year the study was published. All models include an intercept. Panel regressions (y: yearly 

citation count) employ a random effects estimator. Asterisks indicate the significance of the estimated parameters at the ***1%, **5%, and *10% level. We report robust standard errors except for 

the negative binomial panel regressions. Standard errors are shown in parentheses. 



53 

Table 5: Citation analysis (RQ4b). This table shows average marginal effects for regressing the total (left panel) and yearly (right panel) citation count of predictive ML studies 

on the reported performance difference between ML and traditional benchmark models. 

 𝑦: Total citation count  𝑦: Yearly citation count 

 (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II   (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II  

Performance improvement by ML models                  

Best ML vs. best traditional 15.460 ** 9.732       1.430  0.239      

 (6.089)  (6.802)       (0.934)  (0.723)      

Avg ML vs. best traditional     10.650  7.800       1.165  0.402  

     (6.675)  (7.431)       (1.031)  (0.767)  

Paper-specific controls                  

n traditional models 47.460 *** 11.820  45.880 ** 1.278   1.847  3.236 ** 0.355  2.541  

 (17.200)  (13.740)  (22.090)  (16.650)   (1.964)  (1.526)  (2.390)  (1.789)  

n ML models 0.039  −3.432  8.640  5.983   −0.378  −0.795  0.951  −0.337  

 (6.470)  (7.031)  (7.482)  (6.616)   (0.976)  (0.754)  (0.930)  (0.778)  

Textual/visual data 22.540  45.620  39.160  52.790   6.368  6.681 * 7.422  5.810  

 (32.820)  (32.870)  (36.770)  (35.620)   (4.542)  (3.552)  (5.015)  (3.561)  

Author-specific controls                  

Total citation count / 1000 −1.195  0.687  −1.101  0.944   0.094  0.123  0.128  0.118  

 (0.817)  (0.960)  (0.965)  (0.993)   (0.133)  (0.110)  (0.137)  (0.114)  

Team size 42.900 *** 26.090 * 43.560 *** 20.970   3.651 * 3.386 ** 3.019  3.079 ** 

 (13.030)  (14.900)  (14.770)  (14.870)   (2.047)  (1.498)  (2.058)  (1.545)  

Journal-specific controls                  

Journal impact factor −12.750  −5.978  −12.480  −5.474   −0.929  −0.240  −0.865  −0.068  

 (9.395)  (6.978)  (8.720)  (7.144)   (0.992)  (0.822)  (1.030)  (0.849)  

Other controls                  

Years since publication 19.050 *** 33.000 *** 18.410 *** 32.460 ***  4.120 *** 2.862 *** 4.083 *** 2.733 *** 

 (6.738)  (8.759)  (6.377)  (8.585)   (1.131)  (0.837)  (1.136)  (0.829)  

Fixed effects                  

Journal discipline Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Prediction context Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Performance measure Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Publication Year No  No  No  No   Yes  Yes  Yes  Yes  
                  

Observations 114  114  103  103   756  756  681  681  

AIC 7617.29  1256.58  6619.15  1135.32  
 7353.86  4830.41  6594.66  4346.44  

LL −3777.65  −597.29  −3280.57  −538.66   −3627.93  −2365.20  −3251.33  −2126.22  

Notes: The performance improvement by ML models is calculated as the performance difference of the best-performing ML or, respectively, the average ML model to the best-performing traditional 

benchmark model relative to the mean incremental performance increase of all reported models in a study as described in Eq. (2). Fixed effects include the research discipline of the journal in which 

a study was published, the thematic context of the variable that is predicted (see Table A.1), the type of measure that was used in the study to evaluate the predictive performance, and the year the 

study was published. All models are estimated with an intercept. Panel regressions (y: yearly citation count) employ a random effects estimator. Asterisks indicate the significance of the estimated 

parameters at the ***1%, **5%, and *10% level. We use robust standard errors except for the negative binomial panel regressions. Standard errors are shown in parentheses. 



54 

Online Appendix 

A. Supplementary Tables 

Table A.1: Categories of the thematic context of the variable that is predicted in a study to group studies with 

research questions from similar topics, and the number (share) of predictive ML studies assigned to the categories. 

Category Description and examples Number 

Corporate Finance & 

Lending 

Audit and corporate finance-related topics as well as 

crowdfunding like loan defaults, start-up valuations, sur-

vival rates, funding 

24 

(11.8%) 

Customer Behavior Predict the behavior or characteristics of customers such as 

purchase decisions, customer churn 

29 

(14.3%) 

Cybersecurity Detect cyber threats, e.g., phishing, malware, spam detec-

tion  

10 

(4.9%) 

Employee Behavior Predict the behavior or characteristics of employees such as 

turnover, performance, job search status, value of education 

11 

(5.4%) 

Financial Markets Predict financial market variables, e.g., asset (stocks, 

bonds, options) returns, volatility, financial risk 

18 

(8.9%) 

Fraud Detect fraud such as accounting fraud, financial fraud, 

fraudulent behavior 

10 

(4.9%) 

Healthcare Predict healthcare-related variables such as new infections 

of a disease, hospital length of stay, cancer, patient behav-

ior 

23 

(11.3%) 

Human Behavior Predict the behavior of humans (if not assignable to cus-

tomer or employee behavior) like outcome of bargaining, 

social preferences, emotions 

8 

(3.9%) 

Sales, Price, & Demand Predict sales and earnings of companies, prices (except for 

financial assets) or demand for goods and related topics 

such as the forecasting of macroeconomic variables 

27 

(13.3%) 

Text & News Sentiment Predict the sentiment of text, news, and reviews, and other 

related topics such as the detection of fake news 

25 

(12.3%) 

Transportation & Logistics Predicting variables that are related to transportation and 

logistics, e.g., travel-time, driving crashes, inventory 

7 

(3.4%) 

Notes: This table describes the categories used to group studies with similar predictive research questions. We 

categorized 203 predictive ML studies of which 11 studies (5.4%) are assigned to the residual category Other. 

Note that we use the most specific category that can be assigned to a given research problem if it potentially 

would fit to multiple categories. For example, if a study is about predicting fraudulent behavior on crowdfunding 

platforms, it could be potentially assigned to the categories Corporate Finance & Lending, Human Behavior, and 

Fraud. The category that would describe the research problem most specifically would be Fraud in this case. 



55 

Table A.2: Journals listed in the Financial Times Research Rank (FT50) classified by their research discipline. The 

assigned research disciplines of the journals are used as fixed effects in the regression models. 

Journal discipline Assigned FT50 journals 

Accounting Accounting, Organizations and Society; Contemporary Accounting 

Research; Journal of Accounting and Economics; Journal of Ac-

counting Research; Review of Accounting Studies; The Accounting 

Review 

Consumer Research Journal of Consumer Psychology; Journal of Consumer Research 

Economics American Economic Review; Econometrica; Journal of Political 

Economy; Quarterly Journal of Economics; Review of Economic 

Studies 

Entrepreneurship Entrepreneurship Theory and Practice; Journal of Business Ventur-

ing; Strategic Entrepreneurship Journal 

Ethics Journal of Business Ethics 

Finance Journal of Finance; Journal of Financial and Quantitative Analysis; 

Journal of Financial Economics; Review of Finance; Review of Fi-

nancial Studies 

Human Relations Human Relations; Human Resource Management 

Information Systems Information Systems Research; Journal of Management Information 

Systems; MIS Quarterly 

Management Academy of Management Journal; Academy of Management Re-

view; Harvard Business Review; Journal of Management; Journal of 

Management Studies; Management Science; Sloan Management Re-

view; Strategic Management Journal 

Marketing Journal of Marketing; Journal of Marketing Research; Journal of the 

Academy of Marketing Science; Marketing Science 

Interdisciplinary Journal of International Business Studies; Research Policy 

Operations Mgmt./Research Journal of Operations Management; Manufacturing and Service Op-

erations Management; Operations Research; Production and Opera-

tions Management 

Organization Studies Administrative Science Quarterly; Organization Science; Organiza-

tion Studies; Organizational Behavior and Human Decision Pro-

cesses 

Psychology Journal of Applied Psychology 
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Table A.3: Variable definitions. 

Variable Definition 

Dependent variables  

Traditional benchmark Binary variable indicating whether the predictive performance for at 

least one traditional statistical model is reported (=1) or not (=0) 

n traditional models The number of traditional statistical models for which the predictive 

performance is reported 

Best ML vs. best benchmark The absolute performance difference between the best ML and the 

best traditional statistical model relative to the mean incremental in-

crease of all models reported in a paper as described in Eq. (2) 

Avg ML vs. best benchmark The absolute performance difference between the mean predictive 

performance of all ML models and the best traditional statistical 

model relative to the mean incremental increase of all models re-

ported in a paper as described in Eq. (2) 

Total citation count The total number of citations on Google Scholar that a predictive ML 

study gathered as of August 26, 2024 

Yearly citation count The number of citations on Google Scholar per year that a predictive 

ML study gathered as of August 26, 2024 

Explanatory and control variables  

Journal impact factor The journal impact factor in the publication year according to Clari-

vate (2024) 

n ML models The number of ML models for which the predictive performance is 

reported 

Seniority: average citation count The total number of citations on Google Scholar averaged over the 

authors prior to the publication year without pre-publication citations 

of the predictive ML study 

Seniority: average FT50 publications The total number of publications in journals listed in the Financial 

Times Research Rank averaged over the authors prior to the publica-

tion year 

Seniority: average years since PhD The average difference in years between the publication year and the 

year in which the authors obtained their PhD 

Team size The number of authors 

Textual/visual data Binary variable indicating whether the prediction models use textual 

or visual (image, video) data as input (=1) or not (=0)  

Total citation count The sum of total citations on Google Scholar of all authors prior to 

the publication year without pre-publication citations of the predic-

tive ML study 

Years since publication The number of years since the publication year. For cross-sectional 

data, the years since publication are measured by the number of years 

between 2024 and the publication year 

Fixed effects  

Journal discipline Overall research discipline of the journal as listed in Table A.2 

Prediction context The thematic context of the variable that is predicted as listed in Ta-

ble A.1 

Publication year The year in which the study was published 

Performance measure The type of measure that was used to evaluate the models’ predictive 

performance (confusion matrix, area under the curve, loss functions, 

out-of-sample R-squared, profit, or other) 

Notes: The dependent variables traditional benchmark, n traditional models, best ML vs. best benchmark, and avg ML vs. 

best benchmark are also used as explanatory variables in other regression models. 
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Table A.4: Pearson correlations of all dependent, control, and explanatory variables used in the regression models 

presented in section 4. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

(1) Traditional benchmark 1               

(2) n traditional models .69 1              

(3) Best ML vs. best benchmark  −.15 1             

(4) Avg ML vs best benchmark  −.29 .84 1            

(5) Total citation count .06 .21 .09 .01 1           

(6) Yearly citation count −.01 .11 .11 .06 .68 1          

(7) n ML models .08 .13 .48 .05 .02 .00 1         

(8) Textual/visual data −.15 −.21 .11 .07 −.02 .01 .12 1        

(9) Average citation count / 1000 .02 −.04 .21 .25 .07 .06 −.03 .04 1       

(10) Total citation count / 1000 −.07 −.12 .18 .18 .20 .16 .03 .02 .78 1      

(11) Average FT50 publications .08 .04 .04 .12 .05 .04 −.05 .00 .66 .55 1     

(12) Average years since PhD .05 −.04 −.02 .01 −.04 −.06 .02 −.12 .27 .40 .45 1    

(13) Team size .00 −.04 .18 .16 .03 −.02 .14 .04 .00 .25 −.02 .11 1   

(14) Journal impact factor −.07 −.09 .06 .11 −.05 .01 .08 .01 .18 .27 −.06 .04 .16 1  

(15) Years since publication −.02 .04 −.12 −.19 .17 .24 −.10 .00 −.04 −.06 −.02 −.00 −.05 −.32 1 

Notes: A grey cell indicates that these variables do not occur together as covariates in any of our regression models. 
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B. Supplementary Figures 

Figure B.1: Confidence Intervals of estimated average marginal effects (95%) for the total citation count (left plots) 

and the yearly citation count (right plots) based on the Poisson regressions presented in Table 4. The upper plots 

(panel a) present the results if we measure the transparency of the reporting of traditional benchmark results with 

a binary variable (Benchmark reported). The lower plots (panel b) show the results if we use the number of reported 

traditional benchmark models (n traditional models) as the explanatory variable to estimate the relation of trans-

parency and citation count. Due to robustness reasons, the average marginal effects are presented for using the full 

sample of studies (solid line) and only for studies with less than 1,000 citations (dotted line). We omit the remain-

ing, insignificant control variables for graphical illustration. 
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C. Robustness to a different classification of models into machine learning and traditional statis-

tical models 

 

 

 

 

 

Figure C.1: Classification of the most used models in our sample into ML and traditional statistical models by 

survey respondents. In total, 31 authors of the studies in our sample or of studies that discuss the use of ML in 

business and economic research participated in our survey. 
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Figure C.2: Share of predictive ML studies that report the predictive performance of at least one traditional bench-

mark model and those that do not report the predictive performance of traditional benchmark models if (1) we 

classify all ambiguous models in the opposite direction to our initial classification, (2) we classify all ambiguous 

models as traditional statistical models, and (3) we classify all ambiguous models as ML. Ambiguous models 

according to the results of our survey (Figure C.1) include Bayesian networks, elastic nets, general additive mod-

els, cluster analysis, discriminant analysis, LASSO, and ridge regression. 
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Figure C.3: Absolute performance difference of the (a) best and (b) average ML model over the best-performing 

traditional benchmark model relative to the mean incremental performance increase as described in Eq. (2) if (1) 

we classify all ambiguous models in the opposite direction to our initial classification, (2) we classify all ambigu-

ous models as traditional statistical models, and (3) we classify all ambiguous models as ML. Ambiguous models 

according to the results of our survey (Figure C.1) include Bayesian networks, elastic nets, general additive models, 

cluster analysis, discriminant analysis, LASSO, and ridge regression. We only take studies into account that report 

the results for more than two models in order to calculate the mean incremental performance increase. 
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Table C.1: Robustness of the results regarding the transparency about the predictive performance of traditional benchmark models (RQ2b, Table 2) to alternative classifications of 

prediction models. This table shows coefficient estimates (1) and average marginal effects (2)–(4) for regressing a variable indicating whether a traditional benchmark was reported 

or not (1)–(2), the number of reported traditional benchmark models (3), and the number of reported ML models (4) on paper-, author-, and journal-specific variables.  

 y: benchmark reported (1/0)  y: n traditional (I) / ML (II) models 

 (a) ML ↔ traditional  (b) ML → traditional  (c) ML ← traditional  (a) ML ↔ traditional  (b) ML → traditional  (c) ML ← traditional 

 (1) LPM  (2) Probit   (1) LPM  (2) Probit   (1) LPM  (2) Probit   (1) Poisson I  (2) Poisson II   (1) Poisson I  (2) Poisson II   (1) Poisson I  (2) Poisson II  

Textual/visual data −0.093  −0.104   −0.120 * −0.127 **  −0.120  −0.122 *  −0.490 ** 0.668 **  −0.499 ** 0.683 ***  −0.440 *** 0.661 ** 

 (0.073)  (0.064)   (0.071)  (0.060)   (0.078)  (0.068)   (0.194)  (0.303)   (0.202)  (0.256)   (0.147)  (0.328)  

n ML models                0.072     0.151 ***    0.027    

                (0.045)     (0.053)     (0.029)    

n traditional models                  0.205 *    0.326 ***    0.165  

                  (0.116)     (0.103)     (0.150)  

Team size                  0.242 **    0.243 **    0.249 * 

                  (0.119)     (0.104)     (0.130)  

                              

Other controls Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  

Intercept Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  

Fixed effects Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  
  

 

    

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

Observations 193  184   193  184   203  196   193  193   193  193   203  203  

Adj. R2 −0.0113     0.0018     −0.0038                   

Pseudo R2   0.1144     0.1361     0.0920                 

AIC 242.96  229.29   224.70  214.45   293.07  276.15   596.78  756.24   617.03  724.08   529.93  840.51  

LL −94.48  −90.65   −85.35  −83.22   −119.53  −113.07   −268.39  −351.12   −278.52  −335.04   −235.97  −393.25  

Notes: This table shows coefficient estimates for (a) classifying all ambiguous models in the opposite direction to our initial classification, (b) classifying all ambiguous models as traditional statistical models, and (c) 

classifying all ambiguous models as ML. Ambiguous models according to the results of our survey (Figure C.1) include Bayesian networks, elastic nets, general additive models, cluster analysis, discriminant analysis, 

LASSO, and ridge regression. This table only displays the coefficient estimates and corresponding robust standard errors in parentheses for variables with p-values below .1 and for variables with p-values below .1 in the 
baseline regression (Table 2). All other variables are included in the regression model. Other controls include: average citation count, average FT50 publications, journal impact factor. Fixed effects include the research 

discipline of the journal in which a study was published and the year the study was published. Asterisks indicate the significance of the estimated parameters at the ***1%, **5%, and *10% level. 
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Table C.2: Robustness of the results regarding the reported performance difference of ML and traditional benchmark models (RQ3b, Table 3) to alternative classifications of 

prediction models. This table shows OLS coefficient estimates for regressing the performance difference of the best-performing ML (1)–(2) or, respectively, the average ML model 

(3)–(4) to the best-performing traditional benchmark model on paper-, author-, and journal-specific variables. The performance difference is measured relative to the mean incre-

mental performance increase of all reported models in a study as described in Eq. (2). 

 y: Best ML vs. best benchmark  y: Avg. ML vs. best benchmark 

 (a) ML ↔ traditional  (b) ML → traditional  (c) ML ← traditional  (a) ML ↔ traditional  (b) ML → traditional  (c) ML ← traditional 

 (1)   (2)   (1)   (2)   (1)  (2)   (3)  (4)   (3)  (4)   (3)  (4)  

n ML models 0.614 *** 0.620 ***  0.518 *** 0.531 ***  0.585 *** 0.570 ***                

 (0.128)  (0.131)   (0.118)  (0.120)   (0.133)  (0.329)                 

n traditional models                −0.407  −0.428   −0.182  −0.220   −0.906 ** −0.823 ** 

                (0.320)  (0.332)   (0.229)  (0.235)   (0.343)  (0.357)  

Avg citation count /1000 0.016  0.015   0.033  0.022   0.210 *** 0.198 ***  0.027  0.019   0.029  0.013   0.247 *** 0.227 *** 

 (0.047)  (0.047)   (0.044)  (0.042)   (0.065)  (0.058)   (0.053)  (0.052)   (0.049)  (0.047)   (0.068)  (0.055)  

Avg FT50 publications −0.010     −0.014     −0.471     −0.018     −0.021     −0.068 **   

 (0.022)     (0.022)     (0.308)     (0.025)     (0.027)     (0.031)    

Avg years since PhD   −0.019     −0.015     −0.079 **    −0.022     −0.016     −0.092 *** 

   (0.030)     (0.029)     (0.036)     (0.033)     (0.033)     (0.033)  

Team size 0.516 ** 0.508 **  0.537 ** 0.529 **  0.379  0.379   0.462 * 0.444 *  0.479 ** 0.466 **  0.415  0.403  

 (0.229)  (0.234)   (0.207)  (0.211)   (0.256)  (0.258)   (0.237)  (0.242)   (0.226)  (0.231)   (0.262)  (0.266)  

                              

Other controls Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  

Intercept Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  

Fixed effects Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes   Yes  Yes  
  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

Observations 115  114   120  119   99  98   103  102   106  105   93  92  

Adj. R2 0.4138  0.4025   0.4175  0.4040   0.4457  0.4453   0.2447  0.2288   0.263  0.244   0.3937  0.3933  

AIC 446.74  442.19   454.15  450.29   390.10  382.81   412.80  408.71   425.27  421.85   366.36  360.22  

LL −189.37  −188.10   −192.08  −191.15   −161.05  −158.41   −172.40  −171.35   −177.63  −176.92   −149.18  −147.11  

Notes: This table shows coefficient estimates for (a) classifying all ambiguous models in the opposite direction to our initial classification, (b) classifying all ambiguous models as traditional statistical models, and (c) 
classifying all ambiguous models as ML. Ambiguous models according to the results of our survey (Figure C.1) include Bayesian networks, elastic nets, general additive models, cluster analysis, discriminant analysis, 

LASSO, and ridge regression. This table only displays the coefficient estimates and corresponding robust standard errors in parentheses for variables with p-values below .1 and for variables with p-values below .1 in the 

baseline regression (Table 3). All other variables are included in the regression model. Other controls include: textual/visual data, journal impact factor. Fixed effects include the research discipline of the journal in which a 
study was published, the thematic context of the variable that is predicted (see Table A.1), the type of measure that was used in the study to evaluate the predictive performance, and the year the study was published. Asterisks 

indicate the significance of the estimated parameters at the ***1%, **5%, and *10% level. 
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Table C.3: Robustness of the results regarding the citation analysis (RQ4a, Table 4) to alternative classifications of prediction models. This table shows average marginal effects 

for regressing the total (left panel) and yearly (right panel) citation count of predictive ML studies on the transparency about the performance of traditional benchmark models. 

 𝑦: Total citation count  𝑦: Yearly citation count 

 (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II   (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II  

Panel A: ML ↔ traditional                   

Benchmark reported 10.306  40.534 **      5.566 ** 1.974      

 (20.732)  (16.694)       (2.350)  (1.468)      

n traditional models     17.806  24.926 **      3.524 ** 0.942 * 

     (12.065)  (9.873)       (1.397)  (0.519)  
                  

Controls and fixed effects Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Observations 193  193  193  193   1,273  1,273  1,273  1,273  

AIC 18222.66  2033.56  17346.13  2027.99   11477.83  7776.56  11469.87  7774.90  

LL −9093.33  −998.78  −8655.06  −995.99   −5704.92  −3853.28  −5700.94  −3852.45  

Panel B: ML → traditional                  

Benchmark reported 11.597  51.537 ***      7.080 *** 3.270 **     

 (21.613)  (16.092)       (2.271)  (1.472)      

n traditional models     19.247  25.474 ***      3.594 ** 1.153 ** 

     (11.738)  (9.354)       (1.322)  (0.514)  
                  

Controls and fixed effects Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Observations 193  193  193  193   1,273  1,273  1,273  1,273  

AIC 18228.93  2031.80  17267.53  2027.37   11475.67  7773.93  11469.09  7773.25  

LL −9096.47  −997.90  −8615.76  −995.69   −5703.83  −3851.96  −5700.54  −3851.63  

Panel C: ML ← traditional                  

Benchmark reported 3.810  41.017 ***      5.642 ** 2.184 *     

 (15.870)  (15.891)       (2.236)  (1.307)      

n traditional models     28.571  27.750 **      3.962 ** 1.465 ** 

     (17.628)  (11.505)       (1.639)  (0.653)  
                  

Controls and fixed effects Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Observations 203  203  203  203   1,335  1,335  1,335  1,355  

AIC 19023.01  2129.52  17578.43  2125.65   11878.78  8096.04  11872.98  8093.52  

LL −9493.50  −1046.76  −8771.22  −1044.83   −5905.39  −4013.02  −5902.49  −4011.76  

Notes: This table shows coefficient estimates for (Panel A) classifying all ambiguous models in the opposite direction to our initial classification, (Panel B) classifying all ambiguous models as traditional 

statistical models, and (Panel C) classifying all ambiguous models as ML. Ambiguous models according to the results of our survey (Figure C.1) include Bayesian networks, elastic nets, general additive 
models, cluster analysis, discriminant analysis, LASSO, and ridge regression. Fixed effects include the research discipline of the journal in which a study was published (all regression models) and the year 

the study was published (only panel regressions; y: yearly citation count). All models include an intercept. Controls include: n ML models, textual/visual data, total citation count, team size, journal impact 

factor, years since publication. Panel regressions (y: yearly citation count) employ a random effects estimator. Asterisks indicate the significance of the estimated parameters at the ***1%, **5%, and *10% 
level. We report robust standard errors except for the negative binomial panel regressions. Standard errors are shown in parentheses. 
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Table C.4: Robustness of the results regarding the citation analysis (RQ4b, Table 5) to alternative classifications of prediction models. This table shows average marginal effects 

for regressing the total (left panel) and yearly (right panel) citation count of predictive ML studies on the reported performance difference between ML and traditional benchmark 

models. 

 𝑦: Total citation count  𝑦: Yearly citation count 

 (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II   (1) Poisson I  (2) NB I  (3) Poisson II  (4) NB II  

Panel A: ML ↔ traditional                   

Best ML vs. best traditional 12.742 * 11.212       1.558  0.967      

 (7.011)  (7.179)       (0.977)  (0.684)      

Avg ML vs. best traditional     1.120  7.056       0.969  0.458  

     (4.983)  (6.175)       (0.829)  (0.598)  
                  

Controls and fixed effects Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Observations 115  115  103  103   766  766  685  685  

AIC 6730.70  1245.51  3895.96  1115.10   7467.13  4878.59  6764.34  4358.28  

LL −3335.35  −594.76  −1919.98  −529.55   −3683.56  −2388.29  −3335.17  −2131.14  

Panel B: ML → traditional                  

Best ML vs. best traditional 18.290 ** 14.139 *      2.035 ** 1.332 *     

 (7.454)  (7.413)       (1.019)  (0.727)      

Avg ML vs. best traditional     6.082  11.190 *      1.599 * 0.915  

     (5.266)  (6.345)       (0.871)  (0.626)  
                  

Controls and fixed effects Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Observations 120  120  106  106   795  795  695  695  

AIC 6906.12  1300.35  4211.43  1151.34   7703.88  5063.68  6625.75  4406.68  

LL −3422.06  −621.17  −2076.72  −546.67   −3801.94  −2480.84  −3265.88  −2155.34  

Panel C: ML ← traditional                  

Best ML vs. best traditional 0.222  3.036       0.412  −0.060      

 (7.363)  (7.530)       (1.041)  (0.741)      

Avg ML vs. best traditional     0.521  3.655       0.502  0.173  

     (6.047)  (7.959)       (1.107)  (0.727)  
                  

Controls Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  

Observations 99  99  93  93   646  646  605  605  

AIC 5626.77  1078.83  4934.11  1012.40   6195.71  4100.25  5708.86  3806.05  

LL −2784.38  −511.41  −2439.06  −478.20   −3048.85  −2000.13  −2808.43  −1856.02  

Notes: This table shows coefficient estimates for (Panel A) classifying all ambiguous models in the opposite direction to our initial classification, (Panel B) classifying all ambiguous models as traditional 

statistical models, and (Panel C) classifying all ambiguous models as ML. Ambiguous models according to the results of our survey (Figure C.1) include Bayesian networks, elastic nets, general additive 
models, cluster analysis, discriminant analysis, LASSO, and ridge regression. The performance improvement by ML models is calculated as the performance difference of the best-performing ML or, 

respectively, the average ML model to the best-performing traditional benchmark model relative to the mean incremental performance increase of all reported models in a study according to Eq. (2). Fixed 

effects include the research discipline of the journal in which a study was published, the thematic context of the variable that is predicted, the type of measure that was used to evaluate predictive performance 
(all regression models), and the year the study was published (only panel regressions; y: yearly citation count). All models include an intercept. Controls include: n traditional models, n ML models, 

textual/visual data, total citation count, team size, journal impact factor, years since publication. Panel regressions (y: yearly citation count) employ a random effects estimator. Asterisks indicate the 
significance of the estimated parameters at the ***1%, **5%, and *10% level. We report robust standard errors except for the negative binomial panel regressions. Standard errors are shown in parentheses. 

 


