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This paper studies how dynamic changes in the search environment affect consumer search and 
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1 Introduction

In markets ranging from real estate to travel accommodations to automobiles, con-

sumers often conduct a search prior to making a purchase decision. The extent to which

a consumer searches thus determines the consumer’s purchase choice set. As a result, any

search frictions that affect a consumer’s search also affect the set of options the consumer

has to choose from when making a purchase decision.

Furthermore, in many scenarios, the search environment changes over time as prices

fluctuate, new products enter the market, or existing products exit the market. For ex-

ample, consumers searching for a car during the COVID-19 pandemic faced rapid price

increases and volatile dealer inventories. Homebuyers shopping during the 2022–2023

U.S. real estate market saw significant increases in mortgage rates. Consumers planning

vacations during peak travel times may experience rapid changes in the availability of ac-

commodations and travel services. The real estate market is also dynamic, with property

availability and prices changing over time.

In this paper, we study how dynamic changes in the search environment affect con-

sumer search and purchase decisions. Consider a scenario where product availability

changes over time due to product entry and exit. While a more extensive search expands

a consumer’s choice set and may lead her to a more suitable product, a longer search

runs the risk that her most preferred option among the previously searched products may

no longer be available. Additionally, if the prices of new products increase over time,

expanding one’s choice set by searching longer to discover new products may offer little

benefit, leading to a reduced incentive to search. Overall, dynamic changes in the search

environment affect consumer search and purchase behavior.

We develop a dynamic model with a non-stationary search environment. The model has

two key features. First, consumers in our model make both search and purchase decisions,

and both decisions are dynamic. Specifically, consumers observe a set of product char-

acteristics before searching, search to learn about a consumer-specific match value, and

choose a product among the searched products that are available at the time of purchase.

The purchase decision is dynamic because consumers can choose to buy immediately or

wait. The search decision is also dynamic because more searches in a given time period

lead to a larger choice set and a higher value of buying now but a smaller set of unsearched

products and a lower value of waiting. Second, the search environment in our model is

non-stationary. In particular, existing products may exit the market, new products may en-

ter the market, and the prices of new products entering the market at different times may

vary. Our model allows consumers to take into account the changing market environment
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in both their search and purchase decisions.

To the best of our knowledge, this paper is the first to incorporate a non-stationary

environment into a dynamic search model. Although our model is developed in the con-

text of housing search, it can also be used to study other settings where consumers make

dynamic search and purchase decisions in a changing environment. Search models that

do not incorporate the dynamics of the search environment can lead to biased estimates

of search costs. For example, if both search costs and search environment dynamics con-

tribute to limiting consumer search, ignoring the latter may lead to an overestimate of

search costs. Similarly, models that ignore search environment dynamics can also result in

incorrect policy evaluations, especially when the policy of interest may affect the dynamics

of the environment.

Our empirical setting is the Beijing housing market between August 1, 2015 and July

31, 2016. This setting is ideal for studying how the dynamics of the search environment

affect consumers’ search and purchase decisions for two reasons. First, the Beijing housing

market experienced a rapid price increase during the sample period. For example, the

average list price of new listings increased by more than 30% during the sample period.

Second, the dataset we use for our analysis is novel in that it contains complete and de-

tailed information on consumers’ search activities. Specifically, our data come from the

largest real estate agency in Beijing. For each consumer in our sample, the dataset pro-

vides a complete record of the consumer’s search and purchase behavior, including when

the consumer starts searching, when she stops searching, how many and which properties

she visits in each period, and which property she eventually purchases.

Estimating our dynamic search and purchase model presents two challenges. First,

our model allows for product characteristics that are known to economic agents but un-

observable to researchers. This model feature is important because it is often difficult for

researchers to obtain complete data on all product characteristics observable to consumers

and relevant for their decisions (see, for example, Berry, Levinsohn and Pakes (1995)

and many subsequent papers on differentiated products). At the same time, this feature

introduces an endogeneity problem: the price of a product is likely to be correlated with

unobservable product characteristics. Therefore, we need to address this endogeneity issue

in estimating our model. Second, the vector of state variables has a very high dimension

because it includes the characteristics of both searched and unsearched products as well

as the match values of searched products. Moreover, this dimensionality changes endoge-

nously over time, as a consumer’s search decision affects the sizes of the searched and the

unsearched product sets. Therefore, we also need to address this dimensionality issue.

We address these two challenges with a two-step estimation procedure in which we
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back out the mean utility of each property by matching the observed share of visits that

a property receives before estimating the dynamic model.1 The first step requires an ex-

tension of the standard invertibility result, as consumers in our setting typically visit a set
of properties in each period. To this end, we derive the probability that a set of proper-

ties is sampled and extend the contraction mapping result in Berry, Levinsohn and Pakes

(1995). This two-step procedure allows us to estimate parameters embedded in the mean

utility before estimating the dynamic model. As a result, we can include a large num-

ber of fixed effects in our utility function specification without significantly increasing the

computational burden, and we can further address the price endogeneity issue using an

instrumental variable approach. Moreover, the procedure allows us to reduce the number

of state variables by replacing a vector of characteristics with the scalar mean utility for

each property in estimating the dynamic model.

Our estimation yields intuitive results. We find that consumers prefer larger and newer

properties with more living rooms and bedrooms, located on higher floors, and close to a

subway station. The estimated standard deviation of match values is equivalent to a value

of CN¥96,966, or $14,545 using an exchange rate of 0.15. This value is about 2.5% of

the average list price and more than 150% of the annual per capita disposable income in

Beijing in 2016.2 This indicates a significant benefit of searching to learn match values.

We also find that consumers incur an average search cost of CN¥3,067, which amounts to

an average search cost of CN¥457 per search visit.

In contrast, a static search model estimated using the same dataset yields an unrea-

sonably large search cost, highlighting the importance of accounting for dynamics in our

setting. A static search model yields an estimated search cost of about CN¥44,000, or

$6,600 per visit, which is almost two orders of magnitude higher than the estimate from

our dynamic model. This is because a static search model ignores the dynamics in the

search environment and thus must rely on very high search costs to explain the observed

number of searches.

Based on the estimated dynamic search model, we conduct counterfactual simulations

to quantify how the dynamics of the environment affect consumer behavior and welfare.

We find that consumers search longer, visit more properties, and purchase properties that

generate higher utility when new listing prices increase more slowly, new listings are more

1Many papers use a similar sequential estimation procedure, where certain model features are estimated
before others. Examples include Eizenberg (2014), Fan and Yang (2020), and Fan and Yang (2024) for
estimating multi-stage static models, and Hendel and Nevo (2006), Chatterjee, Fan and Mohapatra (2024),
Bodéré (2023), and Elliott (2024) for estimating dynamic models.

2The annual per capita disposable income is CN¥57,275. See “the 2017 Beijing Statistical Yearbook,
9-14 Basic Data on Urban Households” (https://nj.tjj.beijing.gov.cn/nj/main/2017-tjnj/zk/e/indexeh.htm).
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frequent, and listing exit rates are lower. Examining the trade-off between the resulting

higher search and waiting costs and the higher utility from finding a more desirable prop-

erty, we find that the average net gain per consumer is CN¥111,012 when consumers face

half the new listing price increase speed,3 CN¥81,756 when the new listing arrival rate

is doubled, and CN¥41,013 when the listing exit rate is halved. These increases in utility

are significant compared to Beijing’s annual per capita disposable income of CN¥57,275

in 2016.

To quantify the relative importance of search environment dynamics versus traditional

search frictions such as search costs, we conduct a counterfactual simulation in which

we halve the search cost per visit. Unsurprisingly, consumers search longer, visit more

properties, and purchase properties with higher utility. The average net gain per consumer

is CN¥90,666, which is similar in magnitude to the net gain per consumer from varying

the dynamics of the search environment studied above (i.e., reducing the speed of price

increase and increasing the arrival rate for new listings).

We also study the effects of housing policies designed to increase housing supply and

find that they can significantly benefit consumers through influencing dynamics of the

search environment. Housing policies such as taxing vacant properties encourage new

listings and slow down price increases for these listings, which, in turn, encourages con-

sumers to search longer and visit more properties, leading to higher search and waiting

costs, but better purchase outcomes. We find the net effect to be positive. Specifically,

doubling the new listing arrival rate and halving the new listing price increase results in

an average net gain of CN¥270,800 per consumer, or about 7% of the average transaction

price. A decomposition shows that about 72% of the consumer gain comes from searching

longer and visiting more properties, while the remaining 28% is mechanically due to the

slower price increase.

This paper contributes to the empirical literature on consumer search. Examples of this

literature include Honka (2014) and Murry and Zhou (2020) for simultaneous search mod-

els, Hodgson and Lewis (2023) and Moraga-Gonzalez, Sándor and Wildenbeest (2023) for

sequential search models, and Santos, Hortaçsu and Wildenbeest (2012) for testing simul-

taneous versus sequential models. Other examples include Kim, Albuquerque and Bron-

nenberg (2010), Allen, Clark and Houde (2019), and Brown and Jeon (2024). While the

existing papers consider a stable search environment, our paper studies consumer search

in a non-stationary search environment where both product availability and price can vary

3In the counterfactual scenario where the price increase is halved, consumer welfare increases mechani-
cally due to lower prices. We use actual prices (rather than counterfactual prices) in calculating net gains to
remove such a mechanical effect and thereby isolate the effect of inducing more searches.
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over time. Our results indicate that search environment dynamics have significant effects

on consumers’ search and purchase behavior as well as consumer welfare.

This paper also contributes to the empirical literature on search in general. A large

branch of this literature focuses on how individuals conduct a job search (see Eckstein

and Van den Berg (2007) and French and Taber (2011) for reviews of the literature).

Again, the existing literature studies search behavior in a stationary search environment,

with the exception of Arcidiacono, Gyetvai, Maurel and Jardim (2022), which estimates a

continuous-time non-stationary search model. Moreover, similar to the consumer search

literature, the job search literature also assumes no unobservable job characteristics and

thus no wage endogeneity. In contrast, we study search in a non-stationary search envi-

ronment and consider price endogeneity.

The remainder of the paper is organized as follows: Section 2 describes the data. Sec-

tion 3 develops our dynamic search and purchase model. Section 4 explains our estimation

procedure, while Section 5 presents the estimation results. Section 6 compares our estima-

tion results with those of a static search model. Section 7 quantifies the effects of search

environment dynamics and search costs, while Section 8 quantifies the effects of housing

supply policies. A final Section 9 concludes the paper.

2 Data

2.1 Data Description

Our data come from Lianjia, the largest brokerage company in the second-hand residen-

tial housing market in Beijing.4 The dataset provides information on 225,608 properties

listed for sale on Lianjia between August 1, 2015 and July 31, 2016, across all six urban

districts of Beijing. These six urban districts are: Chaoyang, Dongcheng, Fengtai, Haid-

ian, Shijingshan, and Xicheng. The dataset also includes the complete property visit and

purchase records of 455,774 consumers registered on Lianjia who were actively searching

during our sample period.

To construct our sample, we exclude properties with a list price higher than CN¥10

million or less than CN¥1 million, as well as properties with a size of less than 25 square

meters as these properties are likely to belong to a separate market than properties in

4The market share of Lianjian, as measured by the share of total second-hand residential property trans-
actions in Beijing, was 54% in the first half of 2016. In contrast, the market shares of the second, third, and
fourth real estate companies were 13%, 5%, and 4%, respectively (https://m.sohu.com/n/458280155/).

Using publicly-available data on Lianjia.com, Habib, Peng, Wang and Wang (2023) and Peng (2023)
study how macroeconomic conditions affect the Chinese housing market.
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our sample. Accordingly, we drop consumers who visited these excluded properties. We

also drop consumers who searched across multiple districts. The vast majority (more than

93%) of consumers searched within one district.5 Note that the districts in Beijing are

quite large. For example, Chaoyang District covers 470.8 square kilometers (181.8 square

miles) compared to 59 square kilometers (22.7 square miles) for Manhattan. Finally, we

drop the 4% of properties that were never visited by any consumer in our sample. In the

end, our sample consists of 202,845 properties and 414,166 consumers.

For each property in our sample, we observe its list price, address, year of construction,

floor level, property size, number of living rooms, and number of bedrooms. We define 221

exclusive segments based on neighborhood and list price range, and assign each property

to a segment.6 In addition to these property characteristics, we also observe the transaction

dates and prices for properties sold before the end of the sample period.

A novel feature of our data is that for each consumer in our sample, we have a complete

record of all her property visits until she purchases a property or until the end of the

sample period. The search record is complete because all consumers in the sample sign

a sole agency agreement with Lianjia. Moreover, there are no open houses in China.

That is, consumers must work with a realtor agent to visit properties. For each property

visit, we observe the date of the visit and the identity of the property. In addition, if a

consumer purchases a property during the sample period, we also observe which property

she purchases and the transaction date.

2.2 Summary Statistics

2.2.1 Properties

Table 1 presents the summary statistics for the properties in our sample. From Table 1,

we can see that the average list price is CN¥4 million ($604,000). In the Chinese housing

market, the most salient price is the price per square meter, which averages CN¥49,302

($18,029) per square meter. Residential properties in Beijing are typically apartments in

high-rise buildings. The average property in our sample is 18 years old, 84 square meters

in size, with 2 bedrooms and 1 living room. More than 30% of the properties are located

on the 10th floor or above. About 80% of the properties are located within 1 km of a

5Including the small share of consumers who search in multiple districts increases the computational
burden significantly. This is because, in our estimation, we invert the mean utilities district by district. If
we were to include consumers who searched in multiple districts, we would have to do the inversion for all
districts at once.

6Lianjia defines a property’s neighborhood based on its location. Neighborhoods differ in terms of trans-
portation, amenities, etc. We consider four price ranges: lower than 3 million, between 3 and 4.5 million,
between 4.5 and 6 million, and higher than 6 million CN¥.
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subway station, a criterion we use to define our indicator variable of whether a property is

close to a subway station.

Of the 202,845 properties in our sample, 85,696 (42%) are sold during our sample

period. On average, a property stays on the market for approximately 8 weeks. The

average transaction price is CN¥3.7 million ($555,000) with a unit transaction price of

CN¥48,367 ($17,501) per square meter.

Table 1: Summary Statistics of Properties

Mean SD
List price (million CN¥) 4.024 1.962
List price per m2 (CN¥) 49,302 18,029
Property size (m2) 83.707 35.903
Property age (year) 18.151 8.994
Bedrooms 1.997 0.777
Living rooms 1.142 0.547
Above 10th floor 0.316 0.465
Close to a subway station 0.797 0.402
Indicator of being sold 0.422 0.494
Weeks on market 8.193 7.402
Transaction price (million CN¥) 3.702 1.760
Transaction price per m2 (CN¥) 48,367 17,501

2.2.2 New Listings, Transactions, and Prices Over Time

Both the number of new listings and the number of transactions are relatively stable

over the sample period, as shown in Figure 1(a). In this figure, we omit the eight weeks

around the Chinese New Year because, during the Chinese New Year, many economic activ-

ities are put on hold as a large number of Chinese return to their hometowns to celebrate

and resume economic activities only afterward. For example, 2.9 billion passenger trips

were made during the 2016 holiday (Zhou (2016)).7

However, both the average list price and the average transaction price increase rapidly

during the sample period, as shown in Figure 1(b). For each week in our sample, we

calculate the average list price across all new listings in that week and the average trans-

action price across all transacted properties in that week, and then plot them in Figure

1(b). Since the most salient price in the Chinese housing market is the unit price per

square meter, we plot prices in CN¥ per square meter. For this figure, we can see that the
7In Supplemental Appendix SA, we plot the number of new listings and transactions during the eight

weeks around the Chinese New Year in early 2016. It shows that during these eight weeks, both numbers
initially drop to zero and then rise rapidly to about double their pre-holiday levels.
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Figure 1: New Listings, Transactions, and Prices by Week

(a) New Listings and Transactions (b) List Prices and Transaction Prices

average list price increases from CN¥44,417 to CN¥57,993 per square meter, represent-

ing an annual increase of approximately 30% and an average weekly increase of CN¥261

per square meter during the sample period. For an average-sized property (of 84 square

meters), this weekly increase is equivalent to CN¥21,924, or about 40% of the annual

per capita disposable income in Beijing in 2016. Figure 1(b) also shows that the average

transaction price closely tracks the evolution of the average list price with a stable gap of

around CN¥3,000 per square meter.

2.2.3 Consumer Search and Purchase Behavior

In our sample, 39,500 consumers start a search and make a purchase during the sample

period. Among them, 26,543 consumers either end their search before the Chinese New

Year holiday or start their search after the holiday. For these consumers, we observe their

complete search record from the beginning to the end of their search.

Specifically, we observe these consumers’ overall search duration and total number of

property visits. Regarding search duration, Figure 2(a) shows that 41% search for one

week, 19% search for two weeks, 10% for three weeks, and 30% for more than three

weeks. Regarding the number of properties they visit, Figure 2(b) shows that 49% visit

five or fewer properties, 32% visit more than five but no more than ten, and 18% visit

more than ten properties before making a purchase. The average number of search weeks

and property visits are 3.5 weeks and 6.6 visits, respectively. In comparison, U.S. home-

buyers, on average, search for 8.2 weeks and visit 10 properties, according to the National

Association of Realtor’s survey of 2,372 homebuyers from 1987 to 2007 (Genesove and

Han (2012)).
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Figure 2: Histogram of Search Duration and Total Visits

(a) Search Duration (b) Total Visits

A unique and important feature of our data is that we observe not only the total num-

ber of visits, but also the dynamic characteristics of consumers’ searches (i.e., their search

duration and search intensity in each week of the search process). Figure 3 shows the

average number of visits by search week. “Search week” refers to the week since a con-

sumer’s first property visit. For each search week t, we compute the number of visits a

consumer makes in that search week averaged over consumers who search for t or more

weeks. From Figure 3, we can see that search intensity decreases over search weeks, from

an average of 3.61 visits in the first search week, to 1.81 visits in the second search week,

to less than 1 visit after five weeks of searching.

Figure 3: Average Number of Visits by Search Week

In addition to a complete search record for each consumer, we also observe which
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property a consumer purchases and when. In our sample, some consumers purchase a

property that they searched for in the current period, while others purchase a property

that they searched for in a previous period. We call this latter action a recall. The share of

recalls in our sample is 17.6%.

Finally, for each consumer, we define her search market as the union of the segments

in which she searches. On average, a consumer searches in two segments. The average

consumer search market consists of 654 properties in a given week, has 29 new listings

per week, and experiences an average weekly exit rate of 12%.

3 Dynamic Search Model

In this section, we develop a model to describe consumers’ search and purchase deci-

sions in a non-stationary search environment. Each consumer i arrives exogenously. To

simplify the notation, we use t (without the subscript i) to denote the week since a con-

sumer’s arrival, which we refer to as the “search week.” We use j to denote a property and

m(j) to represent the segment to which property j belongs.

In each period t, consumer i first decides on the number of properties to visit in the

current period and then, after visiting properties, decides whether to purchase a property

(thus ending the search) and, if so, which one to purchase. In what follows, we first

describe the primitives of the model and then explain these consumer decisions.

3.1 Primitives

3.1.1 Utility

The utility that consumer i derives from property j is as follows:

uijt = xjβ + αpjt + ξj + vij, (1)

where the vector xj represents observable property characteristics, such as the property

size and the number of bedrooms. The term ξj captures property characteristics that are

known to consumers but are unobservable to researchers. For example, while consumers

can infer whether a property receives a lot of natural light from listing photos on Lianjia’s

website, such information is difficult for researchers to obtain.

The price pjt is the sum of an expected transaction price (pej) and a shock (ηjt). The

expected transaction price incorporates the list price as well as an expectation of the dif-

ference between the transition and list price. Specifically, pej = plj+gm(j)x1j, where plj is the

10



list price, gm(j) is the average price difference per square meter for a property in segment

m(j), and x1j is the property size. While pej is time invariant, the price shock ηjt is assumed

to be i.i.d. across both properties and time and follows a normal distribution with mean 0

and variance equal to its empirical variance.

The idiosyncratic term vij in (1) captures the match value of property j for consumer

i, which consumer i learns after visiting property j. It captures the consumer-specific taste

for a product. For example, it includes consumer i’s preferences for a particular aspect of

the property’s floor plan or a particular amenity in the neighborhood. We assume that vij
is i.i.d. and follows a normal distribution with mean 0 and variance σ2

v .

We can rewrite the utility as

uijt = δj + αηjt + vij (2)

by collecting the property j-specific terms in

δj = αpej + xjβ + ξj, (3)

which we label as the mean utility of property j.

3.1.2 Search Costs and Waiting Costs

We assume that the cost of searching n properties at time t is Cit(n) − ϑitn, where the

search cost shock ϑitn is i.i.d. and follows a type-1 extreme value distribution with location

parameter 0 and scale parameter κ. The deterministic component Cit(n) is given by

Cit(n) =
(
γ0 + (γ1 + γ2mit)n+ γ3n

2
)
1(n > 0), (4)

where γ0 captures the baseline cost of searching (as opposed to no searching). The

marginal search cost is γ1 + γ2mit + 2γ3n, which depends on the cumulative number of

searches before time t (denoted by mit). We include the quadratic term n2 in (4) to cap-

ture potential nonlinearity in search costs.

Consumer i also incurs a waiting cost wit in each period in which she does not make

a purchase. This waiting cost may reflect psychological stress related to not being able

to provide a home in a timely manner. For example, in China, it is a culture norm for the

groom’s family to purchase a home—or at least find one and make the down payment—for

the newlyweds prior to marriage (Wei and Zhang (2011)). We assume that wit is i.i.d. and

follows a normal distribution with mean w and variance σ2
w.
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3.1.3 Search Set Conditional on the Number of Visits

In each period t, consumer i optimally decides on the number of properties to visit

(denoted by nit). We assume that, conditional on nit, the exact set of properties she visits

in that period is exogenously drawn. This assumption is similar to that in Hortaçsu and

Syverson (2004) and implies that a consumer’s decision is the number, rather than the set,

of properties to visit. This exogeneity assumption does not mean that the set of properties

that a consumer visits is completely random. On the contrary, the sampling probability we

specify below ensures that a property with a higher mean utility has a higher probability

of being sampled. This assumption simply means that the consumer and her agent do not

have full control over the set of properties they can visit at a particular time, and that

there are exogenous factors influencing whether a consumer can or cannot to visit a given

property at a particular time.8

Specifically, let Ait denote the set of properties in consumer i’s search market that she

has not visited by time t (here, A stands for “Available for search”) and let Cn(Ait) represent

the collection of all subsets of Ait of size n. For a given number of visits n, we assume that

the probability of a particular set N ∈ Cn(Ait) being sampled depends on the mean utilities

{δj : j ∈ Ait} as follows:

Pr(N|Ait, n) =
n∑

k=1

(−1)k−1
∑

B∈Ck(N )

∑
l∈B exp(δl)∑

l∈(A\N )∪B exp(δl)

 . (5)

This sampling probability has several desirable features. First, it is consistent with an

extended Logit model. In Appendix A, we extend a discrete choice model from a setting

where a consumer chooses a single option to a setting where a consumer chooses n ≥ 1

options. Though seemingly complicated, the expression in (5) is a direct application of the

analytic expression for the choice probability in a standard Logit model and the inclusion-

exclusion principle.

Second, as we show in Appendix A, the sampling probability in (5) for a set of properties
8This assumption simplifies both the consumer’s decision problem and our estimation. First, if a con-

sumer were to choose the set of properties to visit, she would have Cnit

Ait
such sets to choose from, where Ait

is the number of properties available for consumer i to search. The cardinality Cnit

Ait
can be very large. For

example, if Ait = 15 and nit = 8, then consumer i has Cnit

Ait
= 6, 435 possible sets to choose from in period

t. It seems overly demanding for our model to explain why consumer i chooses a particular set of properties
out of the 6,435 possible sets. Second, as explained in Appendix B, this assumption allows us to estimate our
model parameters in two steps, which helps address a price endogeneity issue and estimate a large number
of fixed-effect parameters.
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N ⊂ Ait implies the following sampling probability for a particular property j ∈ Ait:

Pr(j|Ait, n)

=


0 if n = 0

1 if n = Ait∑n−1
k=0

[
(−1)k

∑
B∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈B exp(δl)+exp(δj)

)]
if 0 < n < Ait,

(6)

where Ait = #Ait. This probability itself has the following three intuitive features: (i)

it is increasing in δj and decreasing in δj′ for j′ ̸= j, i.e., property j is more likely to

be sampled when its own mean utility increases or other properties’ mean utilities de-

crease; (ii) when n = 1, it becomes the choice probability in a standard Logit model, i.e.,
exp(δj)∑

l∈Ait
exp(δl)

; and (iii) the sum of this sampling probability over all possible j in Ait is n,

i.e.,
∑

j∈Ait
Pr(j|Ait, n) = n.

3.1.4 Timing

In each period, a consumer makes two decisions: a search decision and a purchase

decision. When making these decisions, a consumer considers both the set of properties

she has visited and the set of those she has not. We denote the set of properties that

consumer i visits before time t and that are still available at time t by Rit (where R stands

for “Recall”). As mentioned, we denote the set of properties she has not visited by time t

by Ait (where A stands for “Available for search”).

The timing is as follows:

• At the beginning of the period, consumer i observes δj for properties in both Rit and

Ait as well as the match value vij for properties in her recall set Rit. Consumer i also

observes the search cost shocks ϑitn for n = 0, ..., n̄, where n̄ is the maximum number

of searches in a period. She decides how many properties to search in time t, which

is denoted by nit, an integer between 0 and n̄.

• A search set Nit ∈ Cnit(Ait) is sampled according to the probability in (5). Here, N
stands for “Newly searched.”

• After visiting the properties in Nit, consumer i observes the price shock ηjt and the

match value vij for all properties in Rit∪Nit. She now also observes her waiting cost

wit. She decides whether to purchase a property in Rit∪Nit or to continue searching.

We denote this decision by yit.
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3.1.5 Transition of the Environment

The search environment is non-stationary. Specifically, from time t to time t + 1, there

are three changes in consumer i’s search market. Because consumers differ in their search

markets, these changes are also consumer-specific.

First, some properties may exit the market at the end of time t. We assume that the

exit rate in consumer i’s search market is χi and use EXIT it to denote the set of exited

properties in consumer i’s search market at time t.

Second, new properties may enter the market at the beginning of time t + 1. We

assume that the number of new listings in consumer i’s search market follows a Poisson

distribution with an arrival rate λi and use NEW it+1 to denote the set of new listings in

her search market at the beginning of time t + 1. We further assume that the mean utility

of a newly-listed property in consumer i’s search market follows a normal distribution

N(µnew
it , (σnew

i )2).

Third, list prices of new listings in time t + 1 may be higher than those of new listings

in time t. We assume that the trend in the list price of new properties in consumer i’s

search market is ρi. Therefore, in forming an expectation about the next period, consumer

i considers the transition of µnew
it to be µnew

it+1 = µnew
it + αρi.

The above three changes determine the transition of consumer i’s information set

over time. Specifically, at the beginning of time t, consumer i’s information set is

({δj}j∈Ait
, {δj, vij}j∈Rit

, µnew
it ,mit, ϑitn). Among these variables, ϑitn is the i.i.d. search cost

shock, while Ωit = ({δj}j∈Ait
, {δj, vij}j∈Rit

, µnew
it ,mit) follows a transition determined by

the following: the available-to-search set Ait+1 = Ait\Nit\EXIT it ∪ NEW it+1, the recall

set Rit+1 = Rit ∪ Nit\EXIT it, the average mean utility of new listings µnew
it+1 = µnew

it + αρi,

and the cumulative number of searches mit+1 = mit + nit.

3.2 Consumer Decisions

Having described the model primitives, we now describe how consumers make deci-

sions. We describe consumer i’s problem in each period backwards: first, we describe her

purchase decision after searching, and then we describe her search intensity decision.

3.2.1 Purchase Decision

After visiting properties in the newly-searched set Nit in time t, consumer i observes the

match values of the properties in her newly-searched set {vij}j∈Nit
in addition to those in

her recall set {vij}j∈Rit
(from the information set Ωit). She also observes the price shocks
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of all properties in her choice set {ηjt}j∈Rit∪Nit
, as well as her waiting cost wit. At this point,

the choices for consumer i consist of the following options: recalling a property from the

previously searched set Rit, purchasing a property from the newly-searched set Nit, or

continuing to search. In other words, her optimization problem at the purchase-decision

stage is as follows:

Γi(Ωit, {vij}j∈Nit
, {ηjt}j∈Rit∪Nit

, wit) (7)

= max{ max
j∈Rit

δj + αηjt + vij︸ ︷︷ ︸
recall

, max
j∈Nit

δj + αηjt + vij︸ ︷︷ ︸
buy a newly-searched property

, Ei [Vi(Ωit+1)|Ωit, {vij}j∈Nit
]− wit︸ ︷︷ ︸

wait

},

where Ei [Vi(Ωit+1)|Ωit, {vij}j∈Nit
] denotes the expected value of continuing to search. This

expectation depends on both her information set Ωit and the match values of her newly-

searched properties {vij}j∈Nit
.9 Her purchase decision (denoted by yit) is the optimizer of

the above optimization problem.

3.2.2 Search Decision

A consumer’s optimal search intensity in each period, i.e., the number of properties

to search (nit), depends on the results from her comparison of the benefits and costs of

searching. We specified the search costs in Section 3.1. We now explain the search benefits.

Specifically, the benefit of searching nit properties is that consumer i learns about the nit

newly-searched properties and expands her choice set at the purchase stage from the recall

set (Rit) to the union of the recall set and the newly-searched set (Rit ∪Nit).

Formally, the expected benefit of searching n properties, conditional on the information

set Ωit, is:

EBi(n|Ωit) (8)

=
∑

N∈Cn(Ait)

E({vij}j∈N ,{ηjt}j∈Rit∪N ,wit) [Γi(Ωit, {vij}j∈N , {ηjt}j∈Rit∪N , wit)]× Pr(N|Ωit, n),

where the first term E... [Γi(Ωit, ...)] is the expected value of searching a sampled set N
and the second term Pr(N|Ωit, n) is the probability that a particular set N is sampled,

conditional on both the information set Ωit and the number of searches n. Here, with

a slight abuse of notation, we rewrite Pr(N|Ait, n) in (5) as Pr(N|Ωit, n) to reflect its

dependence on {δj}j∈Ait
, which is a subset of the information in Ωit.

In deciding on her search intensity, consumer i chooses nit to maximize her net gain

9The expectation is consumer-specific because the transition of Ωit may differ across consumers.
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from searching. That is, the optimal search intensity nit is the solution to the following

optimization problem:

max
0≤n≤n̄

[EBi(n|Ωit)− C(n|Ωit) + ϑitn] , (9)

where, again with a slight abuse of notation, we use C(n|Ωit) to denote the search cost

function Cit(n) in (4), reflecting its dependence on mit in Ωit.

3.3 Bellman Equation

We define the ex ante value function as the expectation of the maximum in (9) over the

search cost shocks ϑitn. Since ϑitn follows a type-1 extreme value distribution with scale

parameter κ, we have:

Vi(Ωit) =E(ϑitn,n=0,...,n̄){ max
0≤n≤n̄

[EBi(n|Ωit)− C(n|Ωit) + ϑitn]} (10)

=κ ln

(
n̄∑

n=0

exp

(
EBi(n|Ωit)− C(n|Ωit)

κ

))
+ κτ,

where τ is the Euler constant. Therefore, by plugging Γi(Ωit, {vij}j∈N , {ηjt}j∈Rit∪N , wit)

from (7) into EBi(n|Ωit) in (8), and then plugging EBi(n|Ωit) into (10), we obtain the

Bellman equation.

3.4 Discussions

We conclude this section with a discussion of three simplifications we have made in our

model. First, we assume that there is no correlated learning. In particular, we assume that

visiting one property does not allow consumers to learn about other properties. In con-

trast, Hodgson and Lewis (2023) allow for correlations among unobservable match values

in their model, with a stronger correlation between products more similar in observable

characteristics. As a result of such correlations, consumer search in their model exhibits a

spatial learning pattern, meaning that a consumer’s search tends to converge to the chosen

product in the product characteristics space. We assume no correlated learning because

we do not observe clear evidence of such a pattern in our setting. For example, in On-

line Supplemental Appendix SA, we plot the probability that a consumer visits a property

within the same residential complex as her final purchase and show that this probability

does not increase as she approaches the end of her search. In other words, consumers’

searches do not necessarily converge to the property they purchase in terms of location.
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Another reason we assume away correlated learning is that it implies dynamic learning,

which would make it computationally infeasible to include both search environment dy-

namics and dynamic learning in our model. Given the focus of the paper (i.e., the effect of

search environment dynamics) and the lack of clear evidence on correlated learning, we

retain the former and abstract away the latter in our model.

Second, we do not model sellers’ decisions. In reality, sellers also make strategic deci-

sions. For example, Merlo, Ortalo-Magné and Rust (2015) study sellers’ dynamic decisions

regarding initial list prices, list price revisions, and offer acceptance. However, incorpo-

rating both sellers’ and buyers’ dynamic decisions in a non-stationary search environment

would be challenging. Instead, we capture the effects of seller decisions in a somewhat

reduced-form way. Regarding list prices, we use an instrumental variable approach to ad-

dress list price endogeneity concerns. Regarding list price revisions, we note that list price

revisions in our sample are rare, reducing our concern about not including this seller de-

cision in our model. As for the offer acceptance decision, we capture its effect in the price

shock term ηjt. For example, if a seller is more willing to accept a low offer, the price shock

may be negative. Conversely, if a seller is currently considering a higher offer, the price

shock will be positive and large.

Third, we do not model buyer competition. In reality, multiple buyers may bid simul-

taneously for the same property. However, we do not observe the number of bids or the

bid amounts. In our model, the price shock term ηjt captures buyer competition to some

extent, as intense buyer competition would be reflected by a large price shock.

4 Estimation

The estimation consists of two steps. In the first step, we estimate the parameters of the

utility function (α,β) by matching the observed share of visits that each property receives.

We refer to these parameters as the static parameters because they are estimated without

solving the dynamic model. We use all properties and consumers in our sample in this step

of the estimation.

In the second step, we estimate the remaining parameters which govern a consumer’s

dynamic search and purchase decisions. These parameters include the search cost param-

eters (γ, κ), the waiting cost parameters (w, σw), and the standard deviation of the match

values (σv). We refer to these parameters as the dynamic parameters. In this estimation

step, we use a random sample of 1,000 consumers whose entire search record falls within
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the sample period.10

Appendix B provides a discussion of our two-step estimation procedure, highlighting

its advantages (e.g., allowing for price endogeneity and a large set of fixed effects and ad-

dressing the issue of high dimensionality of the state space) and clarifying the assumptions

needed. Supplemental Appendix SB further provides details on the estimation procedure.

4.1 Static Parameters (α,β)

We estimate the parameters in the utility function (α,β) by matching the observed

share of visits that each property receives. Specifically, we first invert out the mean utility

of each property based on the visit shares and then regress the mean utility of a property

on its price and characteristics to obtain estimates for (α,β). In our sample, all consumers

search within one district. Therefore, we partition the sample into six districts and carry

out the inversion district by district. Let Jd and Id represent the set of properties in district

d and the set of consumers searching in district d, respectively.

For a property j in district d, its share of visits according to our model is

s̃j(δd) =

∑
i∈Id

∑Ti

t=1 Pr(j|Ait, nit)∑
i∈Id

∑Ti

t=1 nit

, (11)

where δd = (δj, j ∈ Jd) represents the mean utilities of properties in district d. In (11), nit

is the observed number of properties that consumer i visits at time t. Pr(j|Ait, nit) is the

probability that consumer i visits property j at time t, where Ait is the set of properties

available for consumer i to search. This probability is 0 for j ̸∈ Ait and is given by (6) for

j ∈ Ait. The sum is taken over all consumers searching in district d (indexed by i ∈ Id)

and all periods during a consumer’s search (indexed by t = 1, ..., Ti), where Ti is the search

duration of consumer i.

The empirical counterpart of this share of visits is:

sj =
Nj∑

j∈Jd
Nj

, (12)

10We consider only consumers who begin their search after the start of our sample period because we
need to know mit, the cumulative number of searches before time t, and Rit, the set of properties that
consumer i visits before time t and that are still available at time t. However, strictly speaking, we do not
need to restrict our sample to those who purchase before the end of the sample period. We do so in our
baseline estimation due to the concern that consumers who do not make a purchase during the sample
period may not be seriously searching in the housing market. Nevertheless, as a robustness check, we repeat
our estimation, including consumers who do not purchase a property before the end of the sample period,
in Supplemental Appendix SC, and show that our estimation results are robust.
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where Nj is the number of visits that property j receives in the sample. Note that the

denominators in (11) and (12) are the same and that both represent the sum of the visits

that properties in district d receive.

We invert out the mean utilities δd by matching the model visit shares to their empirical

counterparts, i.e.,

s̃j(δd) = sj, j ∈ Jd. (13)

In Appendix A, we extend the contraction mapping result in Berry, Levinsohn and Pakes

(1995) for a single discrete choice model to our setting where a set of options is sampled.

This extension allows us to show that the system of equations in (13) has a unique solution.

Since
∑

j∈Jd
sj = 1, we normalize one dimension of δd in each district d to 0. As a result,

all inverted mean utilities are relative to that of the normalized property.

To estimate (α,β), we regress the inverted δj on the expected price pei and property

characteristics xj according to equation (3).11 Because the price of a property is likely to be

correlated with unobservable property characteristics, the expected price is endogenous.

We address this endogeneity issue by using an instrumental variable approach. Specifically,

we construct the instrumental variable as the transaction price of properties in the same

segment averaged across transactions that occur within the three weeks prior to property

j’s listing. This instrumental variable is relevant because property owners and their agents

are likely to choose list prices based on historical transaction prices in the same area and

price range. At the same time, it is reasonable to assume that the transaction prices of

properties sold in the last three weeks before a property is listed are uncorrelated with the

unobservable characteristics of the property.

4.2 Dynamic Parameters (γ, κ, w, σw, σv)

We estimate the dynamic parameters (γ, κ, w, σw, σv) using maximum likelihood esti-

mation. For each consumer i, we observe her search duration Ti. In addition, for each

search week t = 1, ..., Ti, we observe her search intensity (i.e., the number of visits nit)

and her purchase decision (i.e., yit = recall – to purchase a previously visited property,

yit = j ∈ Nit – to purchase property j which is newly visited by her in the current period,

11Since δj is relative to the mean utility of the normalized property, the regressors are pej−pe
jd0

and xj−xjd0
,

where jd0 is the normalized property in district d.
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or yit = wait – to search longer).12

Letting θ = (γ, κ, w, σw, σv) summarize the dynamic parameters in our model, the like-

lihood of observing the search and purchase path {nit, yit}Ti
t=1 for consumer i is:

li(θ) =

∫ ( Ti∏
t=1

[Pri(nit|Ωit; θ) · Pri(yit|Ωit, {vij}j∈Nit
; θ)]

)
dFv({{vij}j∈Nit

}Ti
t=1; θ), (14)

where Pri(nit|Ωit; θ) and Pr(yit|Ωit, {vij}j∈Nit
; θ) are, respectively, the probability that con-

sumer i searches nit properties and the probability that she makes the purchase decision

yit, both of which we derive below. In (14), Fv({{vij}j∈Nit
}Ti
t=1; θ) represents the distribu-

tion of the match values of all properties that consumer i has ever visited.13 We integrate

out these match values because they are unobservables in the probabilities. Note that,

after recovering δj in the first step of the estimation, we observe {δj}j∈Ait
and {δj}j∈Rit

in

Ωit. The only unobservable variables are {vij}j∈Rit
(i.e., the match values of properties in

the recall set, which are embedded in Ωit in both probabilities), and {vij}j∈Nit
(i.e., the

match values of newly-searched properties). Since {{vij}j∈Rit∪Nit
}Ti
t=1 = {{vij}j∈Nit

}Ti
t=1, by

integrating out the match values of all properties that consumer i has visited, we integrate

out all unobservables in the probabilities.

To derive the probability of the search decision, Pri(nit|Ωit; θ), we note that consumer

i chooses nit to maximize her net gain from searching, as described in the optimization

problem in (9), after observing Ωit and the search cost shocks ϑitn. Given that the search

cost shock ϑitn follows a type-1 extreme value distribution with scale parameter κ, the

probability that consumer i searches nit properties is:

Pri(nit|Ωit; θ) =
exp{[EBi(nit|Ωit; θ)− C(nit|Ωit; θ)]/κ}∑n̄
n=0 exp{[EBi(n|Ωit; θ)− C(n|Ωit; θ)]/κ}

, (15)

where we add the parameter vector θ to both the expected search benefits EBi(n|Ωit; θ)

and the search costs C(n|Ωit; θ) to make their dependence on the parameters explicit.

To derive the probability of the purchase decision, Pr(yit|Ωit, {vij}j∈Ait
; θ), we note that,

after visiting nit properties, consumer i observes the original information set Ωit, the match

12We observe the identity of a consumer’s purchased property regardless of whether it belongs to the recall
set Rit or the newly-searched set Nit. However, our likelihood function captures whether a consumer recalls
a property, rather than which specific property she recalls. This is because the probability of purchasing a
particular property in the recall set depends on δj + vij for all j ∈Rit (as well as {δj}j∈Ait

), resulting in
high-dimensional state variables. In contrast, the probability of recalling a property depends on a summary
statistic, maxj∈Rit

(δj + vij) (along with {δj}j∈Ait
). Therefore, for computational reasons, we do not use

information on which property a consumer recalls in the estimation.
13It is

∏
j∈Nit

∏Ti

t=1 Φ(vij/σv), where Φ(·) is the standard normal distribution function.
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values of the newly-searched properties {vij}j∈Nit
, the price shock ηjt, and her waiting cost

ωit. She then makes a purchase decision according to the optimization problem in (7).

Therefore, the choice probabilities are:

Pri(yit = recall|Ωit, {vij}j∈Nit
; θ) (16)

=E{ηjt}j∈Rit∪Nit

{
1

(
max
j∈Rit

[δj + αηjt + vij] ≥ max
j∈Nit

[δj + αηjt + vij]

)

× Φ

({
max

j∈Rit∪Nit

[δj + αηjt + vij]− Ei [Vi(Ωit+1; θ)|Ωit, {vij}j∈Nit
] + w

}
/σw

)}
,

Pri(yit = j ∈ Nit|Ωit, {vij}j∈Nit
; θ) (17)

=E{ηjt}j∈Rit∪Nit

{
1

(
δj + αηjt + vij ≥ max

j∈Rit∪Nit

[δj + αηjt + vij]

)

× Φ

({
max

j∈Rit∪Nit

[δj + αηjt + vij]− Ei [Vi(Ωit+1; θ)|Ωit, {vij}j∈Nit
] + w

}
/σw

)}
,

Pri(yit = wait|Ωit, {vij}j∈Nit
; θ) (18)

=E{ηjt}j∈Rit∪Nit

{
Φ

({
Ei [Vi(Ωit+1; θ)|Ωit, {vij}j∈Nit

]− w − max
j∈Rit∪Nit

[δj + αηjt + vij]
}
/σw

)}
,

where Φ(·) is the distribution function of the standard normal distribution.

We estimate θ using maximum likelihood estimation, where the log-likelihood function

is L(θ) =
∑I

i=1 ln li(θ). To compute the likelihood function, we need to compute the value

function Vi(Ωit; θ) as a solution to the Bellman equation.

The dimension of the vector of the state variables Ωit is high and changes over

time both exogenously and endogenously. This is because the state variables Ωit =

({δj}j∈Ait
, {δj, vij}j∈Rit

, µnew
it ,mit) include the mean utilities of the properties available to

search ({δj}j∈Ait
) as well as both the mean utilities and the match values of the properties

available to recall ({δj, vij}j∈Rit
). Thus, the state space is large. Moreover, the sizes of both

the available-to-search set Ait and the recall set Rit change over time due to new listing

entries and current listing exits. These sizes are also influenced by consumer i’s endoge-

nous decision regarding the number of searches per period. To address this dimensionality

issue, we follow much of the literature on dynamic estimation (e.g., Sweeting (2013) and

Hodgson (2024)) and approximate the value function of high-dimensional state variables
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with a function of the statistics of these variables. We provide more details on dynamic

estimation in Supplemental Appendix SB.

Identification The standard deviation of the match value (σv) is identified by both the

static and dynamic features of consumer purchase patterns. Statically, we observe which

property each consumer purchases. This information helps identify σv because the gap

between the mean utility of a consumer’s purchased property and the highest mean util-

ity in the consumer’s choice set at the time of purchase informs us about the importance

of match values. A larger gap implies a larger standard deviation for match values. Dy-

namically, we observe when a consumer visits the property she ultimately purchases. This

information also helps identify σv because if a consumer purchases a property that she

visits in an earlier period (i.e., recalling the property), her continued searching reflects her

belief that there is a good chance of getting a better draw of the match value in the future.

Therefore, a larger recall share also indicates a larger standard deviation of match values.

The search cost parameters (γ, κ) are identified by the mean and variance of the search

intensity. Recall that the deterministic component of the search cost is (γ0+(γ1+γ2mit)n+

γ3n
2)1(n > 0). While the fraction of observations with zero searches identifies γ0, the

variation in the fraction of n searches across n identifies γ1 and γ3. Similarly, the way

search intensity varies with mit identifies γ2. Finally, the scale parameter of the search cost

shock κ is identified by the observed variance in the search intensity.

The waiting cost parameters (w, σw) are identified by the observed search duration. In

particular, the overall level of search duration identifies the mean parameter w while the

variance in search duration across consumers identifies the variance of the waiting cost

shock σ2
w.

5 Estimation Results

5.1 Estimates of the Static Parameters

We estimate the parameters of the utility function (α,β) by regressing the inverted

mean utility δj on the expected price and property characteristics. The results are pre-

sented in Table 2, with the OLS estimates reported in column (I) and the IV regression

estimates in column (II). Since properties that are more attractive to consumers in ways

unobservable to researchers may have higher prices, prices are potentially endogenous,

leading to an upward bias for the price coefficient in the OLS regression. Consistent with

this intuition, we find that the IV regression indeed yields a more negative price coefficient.
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In the following, we focus on the IV regression results.

Overall, the estimation yields intuitive results. Consumers prefer newer, larger proper-

ties with more bedrooms and more living rooms, especially those located on the 10th floor

or higher and close to a subway station. For example, on average, an extra bedroom with

an average size of 20 square meters is valued at 0.3 (=(0.356+0.047×20)/4.559) million

CN¥. Similarly, an additional living room with an average size of 30 square meters is val-

ued at 0.5 (=(1.065+0.047×30)/4.559) million CN¥. Locating on the 10th floor or above

is worth CN¥34,900 more than locating below the 10th floor. As a robustness analysis,

in Supplemental Appendix SC, we allow the price coefficient to vary by district. We find

some heterogeneity in price sensitivity among consumers searching in different districts,

though the estimates for parameters common in the baseline and robustness specifications

are close.

Table 2: Estimates of Parameters in Mean Utility

(I) OLS (II) IV
Est SE Est SE

Expected price (million CN¥) -0.192∗∗∗ (0.006) -4.559∗∗∗ (0.143)
Property age (year) -0.031∗∗∗ (0.001) -0.009∗∗∗ (0.001)
# Bedrooms 0.206∗∗∗ (0.007) 0.356∗∗∗ (0.016)
# Living rooms 0.530∗∗∗ (0.008) 1.065∗∗∗ (0.025)
Property size (m2) 0.005∗∗∗ (0.000) 0.047∗∗∗ (0.001)
Above 10th floor 0.089∗∗∗ (0.007) 0.159∗∗∗ (0.017)
Close to a subway station -0.029∗∗ (0.010) 0.209∗∗∗ (0.023)
Neighborhood FE yes yes
∗∗∗ p < 0.01, ∗∗ p < 0.05.

5.2 Estimates of the Dynamic Parameters

Table 3 reports the estimation results for the dynamic parameters, including the stan-

dard deviation of the match values (σv), the waiting cost parameters (w, σw), and the

search cost parameters (γ, κ).

From Table 3, we see a significant benefit of searching to learn about the match value.

The estimated standard deviation of the match value is 0.442. Based on the estimated

price coefficient (-4.559), this estimated standard deviation corresponds to a value of

CN¥96,966 (=0.442/4.559×106), or about 2.5% of the average list price and 169% of

the annual per capita disposable income in Beijing in 2016.

From Table 3, we can also see that the waiting cost is, on average, 0.047, which is

equivalent to CN¥10,407 (=0.047/4.559×106) per week. This relatively high waiting
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cost is consistent with the observation that consumers search for 3.5 weeks on average

before purchasing a property. That being said, in relative terms, this average waiting cost

is only 0.26% of the average list price.

Finally, we see from Table 3 that the baseline search cost (γ̂0) is CN¥1,150

(=5.242×0.001/4.559×106) and that the marginal search cost increases with the cumu-

lative number of searches a consumer has made in the previous weeks (γ̂2 > 0). The

marginal cost also increases with the current number of searches (γ̂3 > 0), implying that

the search cost is convex in the number of searches. On average, consumers incur a total

search cost of CN¥3,067. Given that the average consumer visits 6.7 properties in total,

this corresponds to an average search cost of CN¥457 per visit.

Table 3: Estimates of Dynamic Parameters

Est SE
SD of match value (σv) 0.442∗∗∗ (0.027)
Mean waiting cost (w) 0.047∗∗ (0.019)
SD of waiting cost shock (σw) 0.043∗ (0.022)
Search cost: (0.001)

const. (γ0) 5.242∗∗∗ (0.110)
n (γ1) 3.146∗∗∗ (0.113)
(past searches)×n (γ2) 3.372∗∗∗ (0.156)
n2 (γ3) 0.150∗∗∗ (0.014)
scale parameter (κ) 6.280∗∗∗ (0.093)

∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

5.3 Model Fit

To assess how well our estimated model fits the data, we simulate each consumer’s

decision “path”, which describes her search duration, weekly number of visits, and the

property she purchases. We simulate 50 such paths for each consumer. Details on the

simulation are provided in Supplemental Appendix SD.

Table 4 reports the summary statistics for the observed and simulated search and pur-

chase outcomes. The first two columns summarize the observed data, with the summary

statistics taken across consumers, while the last two columns summarize the simulated re-

sults, with the summary statistics taken across both consumers and simulations. The rows

correspond to the summary statistics for search duration, total visits, recall share (i.e., the

share of consumers who purchase a previously searched property), and the utility of the
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purchased property.14

From Table 4, we can see that the estimated model fits the data fairly well. For exam-

ple, the simulated average search duration and total visits are 3.5 weeks and 6.7 visits,

respectively, while their observed counterparts are 3.4 weeks and 6.7 visits. Similarly, the

simulated recall share is 14.7%, compared to the observed recall share of 15.5%. The

mean and standard deviation of the utility of the purchased property are (2.852, 1.805) in

the simulation and (2.844, 1.945) in the data.

Table 4: Model Fit: Summary Statistics – Data vs. Simulation

Data Model Simulation
Mean SD Mean SD

Search duration (weeks) 3.448 3.900 3.516 3.001
Total visits 6.710 5.116 6.700 4.270
Recall share 0.155 0.147
Utility of the purchased property 2.844 1.945 2.852 1.805

Our estimated model also successfully captures the dynamic patterns of consumer

search in the data. Figure 4 shows how the number of searches varies over search weeks

according to both the data and our simulations. According to the data, consumers visit an

average of about 4 properties in the first week, with a sharp decline in the second week

and a continued decline over time.15 Our simulation based on the estimated model tracks

this dynamic pattern well.

Overall, our estimated dynamic search model fits the data well in both the static and

the dynamic aspects of the data.

6 Comparison to a Static Search Model

In this section, we estimate a static search model and show that ignoring the dynamics

of the search environment leads to unreasonably large search cost estimates. Specifically,

we estimate a static simultaneous search model and compare the estimation results to

those based on our dynamic model. Note that a model ignoring search environment dy-

namics typically endogenizes the total number of searches and the property purchased, but
14For the summary statistics of the utility of the purchased property, we report the average of δj(i) across

consumers in the first column, where j(i) indicates the property purchased by consumer i in the data. We
report the standard deviation of δj(i)+vij(i), which is the square root of var(δj(i))+σ̂2

v , in the second column.
We report the mean and standard deviation of δjr(i) + vijr(i), where jr(i) indicates the purchased property
of consumer i in a simulation indexed by r, in the third and fourth columns.

15The average number of visits in the nth week is calculated over consumers who search for n weeks or
longer.
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Figure 4: Model Fit: Visits by Search Week – Data vs. Simulation

ignores the number of searches in each period and the timing of purchases. There are two

types of models with these features in the literature: the simultaneous search model and

the sequential search model. In a simultaneous search model, a consumer searches a set of

properties all at once and then purchases one from the searched set. In a sequential search

model, a consumer searches one property at a time and decides whether to continue the

search after each visit. As pointed out by Santos, Hortaçsu and Wildenbeest (2012), in a

classic sequential search model, a consumer purchases the last property visited and does

not recall (unless she visits all properties). Since more than 15% of the consumers in our

data recall, the simultaneous search model provides a more appropriate comparison for

our study.

6.1 A Static Search Model

The static model is similar to our dynamic search model except for two key differences.

First, consumers in the static model choose the total number of visits instead of the number

of visits per period and the duration of the search. Second, the deterministic component

of the search cost in the static model is C(n) = γ1n+ γ2n
2, which omits the constant term

γ01(n > 0). This is because all consumers in the sample choose n > 0, where n in the static

model represents the total number of visits, rather than the number of visits per period.

This specification of the search cost also omits the covariate mit, the cumulative number

of searches prior to time t, which is undefined in the static model.

The timing of the static model is the same as in the stage game of our dynamic model.

First, consumer i observes the mean utilities of properties in consumer i’s search market
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{δj}j∈Ai
and the search cost shocks (ϑin, n = 0, ..., n̄), and decides on the number of visits

ni. Then, a search set Ni ∈ Cni(Ai) is sampled according to the probability given in (5)

except that the subscript t is dropped for the static model. After visiting the properties in

the search set Ni, consumer i observes the match values for properties in the searched set,

i.e., {vij}j∈Ni
. Finally, given {δj}j∈Ai

and {vij}j∈Ni
, consumer i decides which property to

purchase.

We estimate the search cost parameters (γ1, γ2, κ) and the standard deviation of match

values (σv) using maximum likelihood estimation. Let θ represent these parameters. The

likelihood of observing that consumer i searches ni properties and purchases property j

out of her searched properties in Ni is given by:

li(θ) = Pr(ni|{δj}j∈Ai
; θ) · Pr(j|{δj}j∈Ni

; θ), (19)

where the probability that consumer i purchases property j is

Pr(j|{δj}j∈Ni
; θ) = Pr(δj + vij ≥ max

j′∈Ni

[δj′ + vij′ ]).

The probability that consumer i searches ni properties is similar to that in (15):

Pr(ni|{δj}j∈Ai
; θ) =

exp {[EB(ni|{δj}j∈Ai
; θ)− C(ni; θ)] /κ}∑n̄

n=0 exp {[EB(n|{δj}j∈Ai
; θ)− C(n; θ)] /κ}

,

where the expected benefit of searching n properties is

EB(n|{δj}j∈Ai
; θ) =

∑
N∈Cn(Ai)

E{vij}j∈N

{
max
j∈N

[δj + vij]
}
×Pr(N|Ai, n).

6.2 Estimation Results Based on the Static Search Model

Table 5 reports the estimation results for the static search model. We have two findings

from comparing these results with those from our dynamic model.

First, the static model yields a smaller estimate of the standard deviation of the match

value, implying a smaller benefit from searching for a given set of available properties. The

estimated standard deviation of match values from the static model is 0.235 compared

to 0.442 in the dynamic model. These estimates correspond to values of CN¥51,546

and CN¥96,966, respectively. Since greater variance in match values leads to a greater

benefit from searching, the estimated static model implies a smaller benefit from searching

compared to the dynamic model, for a given set of available properties.

The static model yields a smaller estimate of σv than the dynamic model because it does
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Table 5: Estimates of the Static Search Model

Est SE
SD of match values (σv) 0.235∗∗∗ (0.014)
Search cost: (0.001)

n (γ1) 301.994∗∗∗ (3.672)
n2 (γ2) -9.489∗∗∗ (0.086)
scale parameter (κ) 53.192∗∗∗ (0.449)

∗∗∗ p < 0.01.

not exploit as much variation in the data to identify σv. In the static model, σv is identified

by comparing the mean utility of the purchased property to the highest mean utility among

all searched properties. In the dynamic model, the parameter σv is identified not only

by which property is purchased (a static comparison), but also by when the purchased

property is visited (a dynamic feature of the data). In particular, as explained in Section

4, a larger recall share (the share of consumers who purchase a property they previously

searched for) implies a larger variance of the match value. In our estimation sample, the

recall share is larger than 15%. As a result, our dynamic model yields a larger estimate of

the variance of match values than the static model, which ignores this dynamic aspect of

the data.

Second, and perhaps more importantly, the static model gives a much higher estimate

of search costs, which we believe is unreasonably high. According to the estimated static

model, a consumer pays an average search cost of CN¥296,347, almost two orders of

magnitude higher than in the dynamic model (CN¥3,067). Given that a consumer in

our estimation sample visits an average of 6.7 properties before purchasing, the average

search cost per visit is approximately CN¥44,000, or $6,600 according to the estimated

static model. We find this estimate unreasonably high.

The static model yields unreasonably high search costs because it does not account for

the dynamics in the search environment. It pools properties on the market across time,

ignoring the possibility of exits and the fact that some properties enter the market only

later. By mistakenly considering all these properties as available for search, it overstates

the benefits of searching (despite underestimating the variance of match values). As a

result, the static model can explain the observed number of searches only by inflating the

estimate of search costs.
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7 Effect of Search Environment Dynamics and Search

Costs

Having established the importance of considering dynamics in our setting, we now

quantify how search environment dynamics (i.e., changes in the search environment over

time) affect consumers’ search and purchase decisions. The search environment can ex-

perience three types of changes over time: new listing price increases, new listing entries,

and existing listing exits. We examine the effects of each change through three respective

counterfactual simulations (CF1, CF2, CF3). To quantify the relative importance of search

environment dynamics versus traditional search frictions such as search costs, we consider

another counterfactual scenario (CF4) to assess the effect of search costs and compare

these results with those in CF1–CF3.

In each counterfactual simulation, we simulate 50 decision paths for each consumer

and report the mean and standard deviation of the outcome variables that capture con-

sumer search behavior (search duration and total number of property visits), purchase

choice (utility of the purchased property), and costs (both search and waiting costs). De-

tails of the simulation are provided in Supplemental Appendix SD.

7.1 Effect of Search Environment Dynamics

To examine the effect of new listing price increases, we consider a counterfactual sce-

nario CF1 in which the rate of increase in the list price of new listings is halved. To quantify

the effect of new listing entries, we consider a counterfactual scenario CF2 in which the

entry rate (i.e., the arrival rate of new listings) is doubled. Finally, to quantify the effect

of existing listing exits, we consider a counterfactual scenario CF3 in which the exit rate

(i.e., the probability that an existing listing will exit in a week) is halved.

Table 6 reports the average of the main endogenous outcomes in these counterfactual

simulations in columns (II)–(IV). For comparison, we also include the outcomes under the

actual search environment dynamics in column (I).

We find that, as the price change becomes slower, consumers search longer, visit more

properties before purchasing, and purchase properties that generate higher utilities. Com-

paring columns (I) and (II) of Table 6, we see that the average search duration increases

from 3.4 at the observed price increase rate to 4.3 at half the actual price increase rate

(row (1)). Similarly, the average total number of visits increases from 6.7 to 7.4 (row

(2)). As consumers increase their search duration and number of properties visited, they

end up purchasing a property that generates higher utility. Specifically, row (3) shows
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that the average utility of the purchased property increases by 1, which is equivalent to

an increase in value of CN¥210,792. Part of this increase in utility comes mechanically

from a lower price. To remove such a mechanical increase in utility, thus isolating the

increase in utility due to searching longer and visiting more properties, we also report in

row (3’) what the utility of the purchased property would be at the observed price. Under

the actual price increase rate in column (I), rows (3) and (3’) are identical. At half the

price increase rate, the utility in row (3’) is, unsurprisingly, smaller than that in row (3).

However, even ignoring the mechanical increase in utility, there is an increase in utility

equivalent to CN¥118,886 according to row (3’). In other words, searching longer and

visiting more properties contributes 56% of the increase in utility when the price change

is halved.

While a longer search and a higher number of property visits yields higher utility for

a purchased property, doing so also entails higher search and waiting costs. Specifically,

the sum of search and waiting costs increases on average by CN¥7,874 (rows (4) and

(5)), which is about 7% of the gain from searching longer and visiting more properties

(CN¥118,886, row (3’)). Therefore, on balance, consumers are better off with a slower

price change, even when excluding the mechanical gain from lower prices.

Table 6: Counterfactual Simulation Results

(I) Actual (II) CF1 (III) CF2 (IV) CF3 (V) CF4
Half Price Double Half Half

Increase Rate Arrival Rate Exit Rate Search Costs
(1) Search duration (week) 3.448 4.305 4.773 3.918 3.793
(2) Total visits 6.710 7.424 7.961 7.120 9.826
(3) Utility 2.844 3.805 3.275 3.049 3.269
(3’) at the observed price 3.386
(4) Search cost (CN¥) 3,067 3,672 4,145 3,413 3,080
(5) Waiting cost (CN¥) 15,460 22,729 27,164 19,067 18,003

Turning to the effect of new listing entries, we find that when consumers anticipate

more new listings in the future, they also search longer, visit a greater number of prop-

erties before making a purchase, and ultimately purchase properties that generate higher

utilities. Specifically, the average search duration increases from 3.4 in column (I) to 4.8

in column (III), and the average number of properties visited increases from 6.7 to 8. As

a result, the consumer utility obtained from a purchased property increases by 0.4, which

is equivalent to an increase in value of CN¥94,538. Meanwhile, the average search cost

increases by CN¥1,078 and the average waiting cost increases by CN¥11,704. Overall,

consumers are better off.
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Similarly, comparing column (I) and column (IV), we see that decreasing the exit rate

for existing listings leads to an increase in search duration as well as higher utility from a

purchased property. Overall, the average increase in utility is equivalent to CN¥44,966,

which more than offsets the average respective increases in search costs of CN¥346 and

waiting costs of CN¥3,607.

In summary, while the comparison with the static search model in the previous section

demonstrates the importance of considering dynamics in estimations, the counterfactual

simulations in this section highlight the economic significance of search environment dy-

namics. We find that search environment dynamics have significant effects on consumer

behavior and outcomes, mainly because they influence consumers’ incentives to search

longer and visit more properties.

7.2 Effect of Search Costs

We quantify the effects of search costs by simulating a counterfactual scenario where

we halve the search cost function Cit(n) in CF4. The results are reported in column (V) of

Table 6.

We find that when consumers face a lower search cost per visit, they unsurprisingly

extend their search duration by 0.3 weeks and visit 3.1 more properties on average. With

more searches, consumers find properties that generate higher utility for them. The av-

erage increase in utility is equivalent to CN¥93,222. Interestingly, despite the reduced

search cost per visit, consumers end up incurring slightly higher search costs due to more

searches. However, the increased search costs (by CN¥13) and the increased waiting costs

(by CN¥2,543) are dominated by the increased utility.

Table 7 summarizes and compares the average net gain per consumer to show the

relative importance of search environment dynamics versus search costs. To compute the

average net gain per consumer, we first compute the changes in average utility, search

costs, and waiting costs from the actual scenario (column (I) in Table 6) to a counterfactual

scenario (columns (II)–(V) in Table 6) and then calculate (change in utility)/α̂−(change in

search cost and waiting cost). Table 7 shows that the average net gain per consumer due to

a reduction in search costs by half is CN¥90,666. This compares to an average net gain of

CN¥111,012 when consumers face half the price increase speed (where utility is calculated

based on actual prices), CN¥81,756 when the new listing arrival rate is doubled, and

CN¥41,013 when the exit rate is halved.

Overall, these results show that, while search costs affect consumers’ search and pur-

chase decisions, search environment dynamics also have significant effects on consumers’
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Table 7: Average Net Gain Per Consumer

CF1: (II)-(I) CF2: (III)-(I) CF3: (IV)-(I) CF4: (V)-(I)

Net Gain (CN¥) 111,012 81,756 41,013 90,666

search and purchase behavior and consumer welfare. At least for the same percentage

change (halving or doubling), varying the dynamics of the search environment, especially

in terms of the speed of price increase and the rate of arrival of new listings, has a compa-

rable impact as varying search costs.

8 Effect of Housing Supply Policies

Many cities around the world, particularly those experiencing a housing crisis, have

implemented policies to encourage new listings in order to increase the supply of hous-

ing and address their housing shortages. For example, Melbourne’s Vacant Residential

Property Tax, Oakland’s Vacant Property Tax, Toronto’s Vacant Home Tax, and Vancouver’s

Empty Homes Tax all aim to increase the supply of housing. These policies are likely to

both increase the number of new listings and slow down price increases. In other words,

they influence the search environment dynamics. In this section, we simulate the effects

of such policies by simulating the outcomes under different new listing arrival rates and

price trends. Specifically, we scale up the arrival rate of new listings by ϕ1 ≥ 1 and scale

down the weekly increase in the list price of new listings by ϕ2 ≤ 1.

Figure 5 presents the simulation results in terms of average search duration and number

of property visits, showing that as ϕ1 increases and ϕ2 decreases, consumers on average

search longer and visit more properties before purchasing. Specifically, panel (a) shows

that when the price increase trend is reduced from the original rate (ϕ1 = 1 and ϕ2 = 1)

to half the original rate (ϕ1 = 1 and ϕ2 = 0.5), the average search duration increases

from 3.52 to 4.30 (top row of panel (a)). Similarly, when the new listing arrival rate is

doubled, i.e., from (ϕ1 = 1 and ϕ2 = 1) to (ϕ1 = 2 and ϕ2 = 1), the average search

duration increases to 4.77 (rightmost column of panel (a)). A combination of an increase

in the new listing arrival rate and a decrease in the price trend (ϕ1 = 2 and ϕ2 = 0.5)

can increase the average search duration to 5.91. Moreover, these two changes reinforce

each other: increasing the new listing arrival rate has a stronger effect when the price

increase is slower, and conversely, reducing the speed of the price increase has a stronger

effect when the new listing arrival rate is higher. For example, as ϕ1 increases, the average
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search duration increases by 1.25 weeks (from 3.52 to 4.77) when ϕ2 = 1 and by 1.61

weeks (from 4.30 to 5.91) when ϕ2 = 0.5. Regarding the total number of visits, panel

(b) shows that as ϕ1 increases and ϕ2 decreases, consumers visit more properties before

purchasing one. This is largely because they search for a longer period of time (panel (a)),

rather than visiting more properties per period. In fact, the average number of visits per

week is rather stable, varying between 2.07 and 2.44.

Figure 5: Effects of Housing Supply Policies: Average Search Duration and Total Visits

(a) Search Duration (b) Total Visits

Figure 6 shows that, as ϕ1 increases and ϕ2 decreases, the increased search duration

and number of visits lead to higher search costs (panel (a)) and waiting costs (panel (b))

but better purchase outcomes (panel (c)). In particular, the average search cost increases

from CN¥3,070 to CN¥5,010 and the average waiting cost increases from CN¥15,460 to

CN¥38,520 when the new listing arrival rate is doubled and the price trend is halved. At

the same time, consumers end up purchasing properties that generate higher utility.

Examining the net effects, panel (a) of Figure 7 shows a positive net effect, with the

gains from searching longer and visiting more properties outweighing the increases in

search and waiting costs. If the arrival rate is doubled and the price increase is halved, the

average net gain per consumer can be as high as CN¥270,800, or about 7% of the average

transaction price.

There are potentially three channels through which consumers benefit from such poli-

cies. First, consumers are mechanically better off because there are more properties for

them to choose from. Second, consumers benefit from lower prices. Third, consumers are

better off because their search behavior changes. In our setting, since consumers choose

only from properties they have visited, the mere presence of more listings does not nec-
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Figure 6: Effects of Housing Supply Policies: Average Search Costs, Waiting Costs, and
Utility

(a) Search Costs

(1,000 CN¥)

(b) Waiting Costs

(1,000 CN¥)

(c) Utility from

Purchased Property

essarily increase consumer welfare without a corresponding change in search behavior.

However, both the second and third channels are present in our context. To assess their

relative importance, we recompute utility using the prices observed in the data,16 as shown

in panel (b) of Figure 7.

Comparing panels (a) and (b) of Figure 7, we see that consumer gains come mainly

from the third channel, i.e., from searching longer and visiting more properties. For

example, when (ϕ1 = 2, ϕ2 = 0.5), the average net gain per consumer in panel (b) is

CN¥194,600, which accounts for 72% of the total net gain in panel (a).

Overall, these simulations suggest that housing supply policies can significantly ben-

efit consumers if they increase the supply of new listings and slow down price growth.

This impact is mainly due to their influence on the dynamics of the search environment,

which incentivizes consumers to search longer, visit more properties, and ultimately find

properties that generate higher utility.

9 Conclusion

In this paper, we study how dynamics in the search environment affect consumers’

search and purchase decisions and welfare. We present a dynamic model in which con-

sumers make search and purchase decisions in a non-stationary search environment. We

develop a feasible estimation routine to estimate our model and apply it to the Beijing

16For a simulated property j that does not appear in the data (for example, in a counterfactual simula-
tion with a higher arrival rate of new listings), we adjust its price by subtracting (1 − ϕ2)ρi(EntryWeekj −
SampleStartWeek) from its simulated price, where (1−ϕ2)ρi represents the difference in the weekly increase
in the list price between the data and the counterfactual scenario.

34



Figure 7: Effects of Housing Supply Policies: Average Net Gain Per Consumer

(a) Net Gains (1,000 CN¥) (b) Net Gains at Observed Prices (1,000 CN¥)

housing market between 2015 and 2016. We find that search environment dynamics

have a significant effect on consumers’ search and purchase decisions and welfare. We

also find that a static search model would yield an unreasonably high estimate of search

costs. Finally, we find that housing supply policies that increase the number of new listings

and slow down price increases benefit consumers, primarily because these changes in the

search environment dynamics lead to longer search durations and more property visits.

While our model is developed in the context of the housing market and the estimation

approach is used to study the Beijing housing market, both the model and the estimation

approach are potentially applicable to many settings where consumers make purchase

decisions after searching and the search environment changes over time. Moreover, the

extension of a discrete choice model from a single-option choice to a set-of-options choice,

which we need in our estimation procedure, is also generalizable to other settings where

consumers choose a set of products instead of a single product.
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Appendices

A Micro Foundation for Sampling Probabilities

We have three goals in this section. First, we show that the sampling probability

Pr(N|Ait, n) in (5) can be derived from an extension of a discrete choice model from a

single-option choice to a set-of-options choice. Second, we show that this sampling prob-

ability implies a probability for each option j, i.e., Pr(j|Ait, n) in (6). Third, we show that

there is a unique vector of mean utilities that solve the search share equations in (13). In

fact, we show that the mapping used to invert out the mean utilities in Berry, Levinsohn

and Pakes (1995) is a contraction mapping even in our extension.

In Sections A.1 and A.2, which correspond to the first two goals, we suppress the

subscripts i and t for simplicity.

A.1 Micro Foundation for the Sampling Probability Pr(N|A, n)

In this section, we show that the sampling probability Pr(N|A, n) in (5) is consistent

with an extension of a Logit model from choosing a single option to choosing n ≥ 1
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options.17 In this probability, A represents the set of all options and N ⊆ A represents a

subset of A of size n. Let Cn(A) be the collection of all subsets of A of size n.

We assume that the value associated with an option j in A is δj+ϵj, where ϵj is i.i.d. and

follows a type-1 extreme value distribution. We further assume that the n highest-valued

options are sampled. In other words, N ∈ Cn(A) is sampled if and only if min
j∈N

(δj + ϵj) ≥
max
h∈A\N

(δh + ϵh). Therefore,

Pr(N|A, n) = Pr(δj + ϵj ≥ max
h∈A\N

(δh + ϵh), ∀j ∈ N ).

In Supplemental Appendix SE, we show that Pr(N|A, n) in (5) can be derived based

on the analytic expression for the choice probability in a standard Logit model and the

inclusion-exclusion principle.

A.2 Implied Pr(j|A, n) and its Properties

A.2.1 The Analytic Expression for Pr(j|A, n)

The sampling probability Pr(N|A, n) implies the probability that a particular single

option is sampled: Pr(j|A, n) =
∑

N∈Cn(A):j∈N Pr(N|A, n). When n = 0, Pr(j|A, n) = 0.

When n = A = #A, Pr(j|A, n) = 1. When 0 < n < A, we show in Supplemental Appendix

SE that:

Pr(j|A, n) =
n−1∑
k=0

(−1)k
∑

B∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈B exp(δl) + exp(δj)

) . (A.1)

The intuition behind this analytic expression is based on two key points. First, option j

is sampled if its rank, determined by the value δj+ ϵj, is within the top n among all options

in A. In other words, Pr(j|A, n) =
∑n−1

k=0 Pr(j’s rank is n − k). Second, the probability

that j has a particular rank is tied to the probability that j is the best among a subset of

options. Correspondingly, in (A.1), the term exp(δj)∑
l∈B exp(δl)+exp(δj)

represents the probability

that j is the best in the subset B ∪ {j}. In Supplemental Appendix SE, we use a simple

example to illustrate these two points and derive the proof for (A.1).

17An alternative expression of this probability is given in Moraga-Gonzalez, Sándor and Wildenbeest
(2024), which can be derived from a model where a consumer chooses a sampled set N to maximize “(In-
clusive Value of Set N )−(Logit Error)iN ”, where the Logit error term is i.i.d. and varies at the set level.
We choose our model because we think Logit errors corresponding to overlapping sets are unlikely to be
independent and those corresponding to sets of different sizes are unlikely to be identically distributed.
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A.2.2 Three Properties of Pr(j|A, n)

We now show the three intuitive properties of Pr(j|A, n).

Property 1. Pr(j|A, n) is increasing in δj and decreasing in δk for k ̸= j.

Pr(j|A, n) is increasing in δj because option j is sampled if and only if δj + ϵj is among

the top n highest values in {δj′ + ϵj′}j′∈A and an increase in δj leads to an increase in the

probability that option j is among the top-n options. Similarly, since an increase in δk

for k ̸= j leads to a decrease in the probability that option j is among the top-n options,

Pr(j|A, n) is decreasing in δk for k ̸= j.

Property 2. Pr(j|A, n) becomes the standard Logit choice probability when n = 1.

When n = 1, Pr(j|A, n) in (A.1) becomes

Pr(j|A, 1) =
∑

B∈CA−1(A\j)

(
exp(δj)∑

l∈B exp(δl) + exp(δj)

)
=

exp(δj)∑
l∈A exp(δl)

,

because CA−1(A\j) has a singleton element, which is A \ j.

Property 3. The sum of Pr(j|A, n) across j in A is n, i.e.,
∑

j∈A Pr(j|A, n) = n.

When n = A, Pr(j|A, A) = 1 and, therefore,
∑

j∈A Pr(j|A, A) = A = n. We now consider

the case where n < A.

∑
j∈A

Pr(j|A, n) =
∑
j∈A


n−1∑
k=0

(−1)k
∑

B∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈B exp(δl) + exp(δj)

)
=

n−1∑
k=0

(−1)k

∑
j∈A

 ∑
B∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈B exp(δl) + exp(δj)

)
 .

Let D represent B ∪ {j}. Since B ∈ CA−n+k(A \ j) and {j} do not intersect, we can rewrite

the above equation as

∑
j∈A

Pr(j|A, n) =
n−1∑
k=0

(−1)k

 ∑
D∈CA−n+k+1(A)

{∑
j∈D

(
Ck

A−n+k−1exp(δj)∑
l∈D exp(δl)

)} ,
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which can be further simplified as follow:

∑
j∈A

Pr(j|A, n) =
n−1∑
k=0

(−1)k

 ∑
D∈CA−n+k+1(A)

Ck
A−n+k−1

 (A.2)

=
n−1∑
k=0

(−1)kCA−n+k+1
A Ck

A−n+k−1

= n.

We provide a proof of the last equality, i.e.,
∑n−1

k=0(−1)kCA−n+k+1
A Ck

A−n+k−1 = n, in Supple-

mental Appendix SE.

A.3 System s̃j(δd) = sj, j ∈ Jd has a Unique Solution

In this section, we show that, under certain regularity conditions, the system of equa-

tions (s̃j(δd) = sj, j ∈ Jd) has a unique solution δd = (δj, j ∈ Jd). Recall that the search

share function is:

s̃j(δd) =

∑
i∈Id

∑Ti

t=1 Pr(j|Ait, nit)∑
i∈Id

∑Ti

t=1 nit

.

The regularity conditions are:

1. 0 < sj <
∑

i∈Id

∑Ti
t=1 1(j∈Ait)∑

i∈Id

∑Ti
t=1 nit

.

2. #{δj : j ∈ Ait, δj = ∞} ≤ nit for ∀it.

3. #{δj : j ∈ Ait, δj = −∞} ≤ Ait − nit for ∀it.

Condition 1 imposes a constraint on the observed search share sj. It means that each

property is visited at least once (sj > 0) but not to the extent that it is visited whenever

it is in a consumer’s available-to-search set (sj <
∑

i∈Id

∑Ti
t=1 1(j∈Ait)∑

i∈Id

∑Ti
t=1 nit

). This condition is an

extension of the condition of 0 < sj < 1 in a single discrete choice model. Conditions

2 and 3 impose constraints on nit in the data. They imply that a consumer always visits

properties with a mean utility of ∞ and never visits properties with a mean utility of −∞.

In what follows, we suppress the subscript d for simplicity. Moreover, because we

normalize the mean utility of the first property in a district d to 0, we use J to represent

Jd\{1}, and use J to denote the cardinality of J . Following Berry, Levinsohn and Pakes

(1995), we define a mapping f : RJ → RJ as

fj(δ) = δj + ln sj − ln s̃j(δ) (A.3)
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for j ∈ J . We show that this mapping is a contraction mapping in Supplemental Appendix

SE. Therefore, its fixed point is the unique solution to the system of equations s̃j(δ) =

sj, j ∈ J .

B Discussion of the Two-Step Estimation Procedure

In our two-step estimation procedure, we first back out the mean utilities and estimate

the static parameters in the utility function and then estimate the dynamic parameters.

For this two-step procedure to work, we need to be able to write down the model impli-

cation of search shares without solving the dynamic search model. We can do so because

we assume that, while consumers decide how many properties to search in each period,

the specific set of properties they visit is exogenous. A similar exogeneity assumption is

made in, for example, Hortaçsu and Syverson (2004). We extend their specification of the

sampling probability for a single product to the sampling probability for a set of products.

According to our sampling probability specification, properties with higher mean utilities

have a higher probability of being sampled. Thus, the exogeneity assumption simply means

that a consumer and her agent do not have full control over the set of properties they can

visit in a given period. Instead, certain random factors also play a role in determining the

set of sampled properties, and these random factors are unknown to the consumer and

thus exogenous. We believe that this exogeneity assumption is justified in our setting.

The advantage of the two-step estimation procedure is threefold. First, it accommo-

dates unobservable property heterogeneity (i.e., ξj in the utility function) and price endo-

geneity. If we were to estimate the utility parameters along with the dynamic parameters

using maximum likelihood estimation, we would either have to assume no unobservable

property heterogeneity (and no price endogeneity) or we would have to model how prices

correlate with unobservable property heterogeneity in order to control for price endogene-

ity.18 In contrast, in our two-step procedure, ξj is absorbed in δj, which is backed out in

the first step of the estimation and treated as an observable in the dynamic estimation.

Second, this procedure allows us to include a large set of neighborhood fixed effects

in the utility function without significantly increasing the computational burden. This is

because these parameters are estimated in the first stage without solving the dynamic

model. While we have data on a number of observable property characteristics, collecting

detailed data on neighborhood amenities is difficult. Therefore, it is important to include

18This is because consumers’ search and purchase decisions depend on the unobservable ξj ’s, so the
likelihood function would require an integral over the distribution of ξj ’s conditional on the observed prices,
necessitating a model to describe this conditional distribution.
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neighborhood fixed effects to control for such property heterogeneity at the neighborhood

level.

Third, this procedure helps us address the challenge of high dimensionality in the

state variables. In our model, the state variables vector includes characteristics of all

unsearched properties, as well as the characteristics and match values of all searched

properties, resulting in a high-dimensional state space. The dynamic demand literature

(e.g., Gowrisankaran and Rysman, 2012) tackles this by reducing the state space to a one-

dimensional inclusive value and assuming that the inclusive value evolves according to a

stationary Markov process. However, unlike a dynamic demand model, where the state

variables describe the choice set and the choice set evolves exogenously, in our model

with both dynamic search and dynamic demand, the state variables describe two sets (the

searched and unsearched sets), both of which evolve endogenously. Thus, it would be in-

appropriate to assume that the inclusive value of each set in our model evolves according

to a stationary Markov process. We address the issue of high dimensionality by estimating

the mean utilities of properties “offline” (i.e., before estimating the dynamic parameters)

and replacing a vector of property characteristics by a scalar mean utility for each prop-

erty. We further reduce the state space by considering state variables to include the mean

utilities of the top properties, the average mean utility of the remaining properties, and

the number of properties.
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Supplemental Appendix

SA Additional Figures

Figure SA.1 plots the number of new listings, the number of transactions, the average

list price, and the average transaction price by week, including the eight weeks around the

Chinese New Year. The figure shows that, over the course of these eight weeks, both new

listings and transactions initially fall to zero and then quickly rise to around double their

pre-holiday levels.

Figure SA.1: New Listings, Transactions, and Prices by Week

(a) New Listings and Transactions (b) List Prices and Transaction Prices

Figure SA.2 plots the probability that a consumer visits a property within the same res-

idential complex as her final purchase against the search percentile. To generate this plot,

we first define two variables 1(Same Complex as Purchased)ij and (Search Percentile)ij
for each (i, j) combination where consumer i searches property j in the data. The

dummy variable 1(Same Complex as Purchased)ij takes the value of 1 if property j is

in the same residential complex as the property that consumer i purchases, and 0 oth-

erwise. The variable (Search Percentile)ij is defined as follows. Suppose consumer i

searches for Ti weeks, visits (ni1, ni2, ..., niTi
) properties in each week, and visits prop-

erty j in search week t. Then the search percentile of property j for consumer i is

(Search Percentile)ij = (
∑

τ≤t niτ )/(
∑

τ≤Ti
niτ ).

We then run a kernel regression of 1(Same Complex as Purchased)ij on

(Search Percentile)ij and plot the smoothed values in the solid line and the 95%

confidence interval using the shaded band in Figure SA.2. In this regression, we exclude

the purchased property for each consumer as well as properties visited by the consumer

in a week when there is no available property in the same complex as the purchased

property.
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This figure supports our assumption of no learning. If a consumer were able to learn

about a property by visiting another property in the same area, her search would become

more concentrated in the area where her final purchase is located. However, Figure SA.2

shows that the probability of a searched property being in the same complex does not

monotonically increase. In fact, this probability fluctuates as the consumer approaches the

end of her search. For instance, the probability is roughly the same at search percentiles

of 20%, 60%, and 85%. Additionally, this probability remains below 40% even at the 90%

search percentile.

Figure SA.2: How Pr(Same Complex as Purchased) Varies During the Search Process

SB Estimation Details

SB.1 Details on Each Consumer’s Search Environment

Consumer i’s search environment is characterized by the new listing arrival rate λi, the

listing exit rate χi, the trend in the list price of new listings ρi, as well as the mean and

standard deviation of a new listing’s mean utility (µnew
it , σnew

i ).

To define (λi, χi, ρi, µ
new
it , σnew

i ), we first define them at the segment level and then take

a weighted average across segments within consumer i’s search market, where the weight

is consumer i’s search share in each segment. We define the segment-level new listing

arrival rate λm as the average number of new listings in segment m per week. Similarly,

we define the segment-level exit rate χm as the average ratio of the number of exits to the

2
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number of listings, averaged across weeks.1 To define ρm, we first calculate the average

list price of new listings in segment m in each week and then define ρm as the linear

trend in this average price. In other words, ρm is the average weekly change in segment

m. To define µnew
mt , we first calculate the average mean utility of new listings in segment

m at the beginning of the sample and then define µnew
mt as the sum of this average and

αρm(t − SampleStartWeek), where, with a slight abuse of notation, t here represents a

calendar week (instead of a search week). Finally, the standard deviation σnew
m is the

standard deviation of mean utilities of all new listings in segment m.

SB.2 Value Function Approximation

The vector of state variables in the value function Vi(Ωit; θ), i.e., Ωit =

({δj}j∈Ait
, {δj, vij}j∈Rit

, µnew
it ,mit), is high dimensional. In addition, its dimension changes

over time both exogenously and endogenously. To address this dimensionality issue, we

approximate the value function Vi(Ωit; θ) by a function of fewer state variables. Specifically,

we first define a set of reduced state variables Ω̃it, then solve the value function at a set

of randomly-drawn grid points for Ω̃it, and finally interpolate the value function at other

points with a polynomial of Ω̃it (see, for example, Keane and Wolpin (1994), Crawford

and Shum (2005), and Sweeting (2013).)

We define the reduced state variables Ω̃it as follows. First, we define u∗
it = maxj∈Rit

(δj+

vij) and replace {δj, vij}j∈Rit
by u∗

it. Second, we assume that, instead of tracking δj

for all properties in Ait, a consumer tracks the mean utilities of the top K proper-

ties and the average mean utility of the remaining properties. In other words, we re-

place {δj}j∈Ait
by {δ(1)it , ..., δ

(K)
it , δ̄

(K+1)
it , Ait}, where (δ

(1)
it , ..., δ

(K)
it ) represents the highest K

mean utilities among {δj}j∈Ait
; δ̄

(K+1)
it denotes the average of δj for properties outside

the top K in the set Ait, and Ait = #Ait is the number of properties available for

search. In practice, we set K = 5. In the end, the vector of reduced state variables is

Ω̃it = {δ(1)it , ..., δ
(K)
it , δ̄

(K+1)
it , Ait, u

∗
it, µ

new
it ,mit}.

SC Robustness

In this section, we report the results from two robustness analyses.

In the first robustness analysis, we allow the price coefficient to differ for consumers

who search in different districts. Specifically, in Table SC.1, we report the results from

1A property is considered to have exited in a particular week if it is either sold in that week or has not
been visited within the two weeks prior to that week.
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regressing the mean utility of a property on its characteristics, where the price coefficient

is district specific. The regression results show some heterogeneity in the price coefficient.

The parameters common in this robustness specification (Table SC.1) and the baseline

specification (Table 2) are close.

Table SC.1: Estimates of Parameters in Mean Utility: District-Specific Price Coefficient

(I) OLS (II) IV

Est SE Est SE

Expected price (million CN¥)

Dongcheng -0.275∗∗∗ (0.015) -5.155∗∗∗ (0.217)

Xicheng -0.189∗∗∗ (0.015) -3.806∗∗∗ (0.151)

Chaoyang -0.220∗∗∗ (0.009) -5.195∗∗∗ (0.136)

Haidian -0.523∗∗∗ (0.006) -3.312∗∗∗ (0.161)

Fengtai -0.445∗∗∗ (0.014) -4.634∗∗∗ (0.127)

Shijingshan -0.461∗∗∗ (0.026) -4.983∗∗∗ (0.153)

Property age (year) -0.005∗∗∗ (0.001) -0.016∗∗∗ (0.002)

# Bedrooms 0.258∗∗∗ (0.007) 0.364∗∗∗ (0.016)

# Living rooms 0.378∗∗∗ (0.008) 1.094∗∗∗ (0.022)

Property size (m2) 0.005∗∗∗ (0.000) 0.050∗∗∗ (0.001)

Above 10th floor 0.087∗∗∗ (0.007) 0.160∗∗∗ (0.017)

Close to a subway station 0.118∗∗∗ (0.010) 0.227∗∗∗ (0.024)

Neighborhood FE yes yes
∗∗∗ p < 0.01.

In the second robustness analysis, we no longer restrict the sample to consumers who

purchase a property before the end of the sample in estimation. Specifically, we now

include consumers who do not make a purchase during the sample period but visit at least

one property during the last four weeks before the end of the sample period.2 Table SC.2

reports the estimation result using this larger sample. The comparison to Table 3 shows

that our main results are robust to including these non-buyers.

2We add this restriction to rule out inactive consumers.
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Table SC.2: Estimates of Dynamic Parameters: Using a Sample Including Non-Buyers

Est SE

SD of match value (σv) 0.438∗∗∗ (0.009)

Mean waiting cost (w) 0.057∗∗∗ (0.004)

SD of waiting cost shock (σw) 0.040∗∗∗ (0.010)

Search cost: (0.001)

const. (γ0) 5.285∗∗∗ (0.240)

n (γ1) 3.270∗∗∗ (0.135)

(past searches)×n (γ2) 3.384∗∗∗ (0.099)

n2 (γ3) 0.143∗∗∗ (0.015)

scale parameter (κ) 6.240∗∗∗ (0.087)
∗∗∗ p < 0.01.

SD Simulation Details

SD.1 Model Fit Simulation

To simulate a path (indexed by r) for each consumer, we first draw match values v
(r)
ij

for all properties in consumer i’s search market. We then conduct a forward simulation as

follows. In the description below, a notation with a superscript (r) indicates a simulated

outcome while a notation without this superscript represents the observed outcome in the

data.

At t = 1, the recall set is Ri1 = ∅. Therefore, the vector of state variables is Ωi1 =

({δj}j∈Ai1
, µnew

i1 ,mi1), where Ai1 is the observed available-for-search set and the number

of past searches mi1 is 0. We simulate the number of searches n
(r)
i1 and the purchase

decision y
(r)
i1 in the following three steps: (i) we compute Pri(n|Ωi1; θ̂) according to (15)

for n = 0, ..., n̄ and simulate n
(r)
i1 based on these probabilities; (ii) we draw N (r)

i1 based

on Pr(N|Ai1, n
(r)
i1 ) in (5); and (iii) we compute the probability of purchasing a newly-

searched property Pri(yi1 = j ∈ N (r)
i1 |Ωi1, {v(r)ij }

j∈N (r)
i1
; θ̂) according (17) and the probability

of waiting Pri(yi1 = wait|Ωi1, {v(r)ij }
j∈N (r)

i1
; θ̂) according to (18) and simulate y

(r)
i1 based on

these probabilities. If y(r)i1 ̸= wait, the path ends. Otherwise, we continue to t = 2.

At t = 2, the recall set is updated to R(r)
i2 = Ri1∪N (r)

i1 \EXIT i1, the available-for-search

set is updated to A(r)
i2 = Ai1\N (r)

i1 \EXIT i1 ∪ NEW i2, and the number of past searches is

updated to m
(r)
i2 = n

(r)
i1 . The state variables are Ω

(r)
i2 = ({δj}j∈A(r)

i2
, {δj, v(r)ij }

j∈R(r)
i2
, µnew

i2 ,m
(r)
i2 ).

We simulate (n
(r)
i2 , y

(r)
i2 ) following the same steps as for t = 1 except that, in step (iii), we
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additionally consider the probability of recall according to (16). If y(r)i2 ̸= wait, the path

ends. Otherwise, we continue to t = 3 and repeat the process until y(r)it ̸= wait.

SD.2 Counterfactual Simulations

The simulation procedure for the counterfactual simulations is similar to that for the

model-fit simulation, with three differences.

First, instead of using the estimated value function, we solve for the value function in

a counterfactual scenario and compute Pri(n|Ω(r)
it ; θ̂) and Pri(yit|Ω(r)

it , {v
(r)
ij }

j∈N (r)
it
; θ̂) based

on the recomputed value function.

Second, in counterfactual scenarios with a different new listing arrival rate from that

in the data, we replace the observed NEW it with the simulated NEW(r)
it and the observed

EXIT it with the simulated EXIT (r)
it . We simulate NEW(r)

it as follows. Let λCF
i (> λi)

denote the arrival rate of new listings in consumer i’s search market in a counterfactual

scenario. We draw a set of additional new listings by first drawing an integer add(r)it from a

Poisson distribution with arrival rate λCF
i − λi and then drawing δ

(r)
j from N(µnew

it , (σnew
i )2)

for each of the add
(r)
it additional new listings. We add these additional new listings (de-

noted by ADD(r)
it ) to the observed NEW it to obtain the simulated NEW(r)

it . To simu-

late EXIT (r)
it , we draw a set of exited properties from ∪τ<tADD(r)

iτ \EXIT (r)
iτ based on a

Bernoulli distribution with a probability of χi. We add these additional exited properties

to the observed EXIT it to define EXIT (r)
it .

Third, in counterfactual scenarios with a different exit rate from that in the data, we

replace the observed EXIT it with the simulated EXIT (r)
it . We simulate EXIT (r)

it as fol-

lows. Let χCF
i (< χi) denote the exit rate in consumer i’s search market in a counterfactual

scenario. We draw a subset of properties from the observed EXIT it based on a Bernoulli

distribution with a probability of χi − χCF
i and define EXIT (r)

it as the difference between

EXIT it and this subset.

SE Proofs

Throughout this section, we suppress the subscripts i and t for simplicity.

SE.1 Proof for Pr(N|A, n) in Equation (5)

We derive Pr(N|A, n) based on the inclusion-exclusion principle and the choice proba-

bility in a standard Logit model.

6
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We first apply the inclusion-exclusion principle. The probability that N is not chosen,

i.e., 1 − Pr(N|A, n), is the probability that there is at least one option j ∈ N such that

maxh∈A\N (δh + ϵh) > δj + ϵj. This probability reflects the inclusion and exclusion of the

following probabilities:

• include the probability that this inequality holds for one option in N

• exclude the probability that this inequality holds for two options in N

• include the probability that this inequality holds for three options in N

• so on and so forth

In other words,

1− Pr(N|A, n) =
n∑

k=1

(−1)k−1
∑

B∈Ck(N )

Pr( max
h∈A\N

(δh + ϵh) > δl + ϵl, l ∈ B)

 .

We then derive the analytic expression for Pr( max
h∈A\N

(δh + ϵh) > δl + ϵl, l ∈ B) using the

choice probability in a standard Logit model as follows:

Pr( max
h∈A\N

(δh + ϵh) > δl + ϵl, l ∈ B) =
∑

h∈A\N

Pr(δh + ϵh ≥ δl + ϵl, l ∈ (A\N ) ∪ B)

=
∑

h∈A\N

exp(δh)∑
l∈(A\N )∪B exp(δl)

.

Combining the above two steps yields

Pr(N|A, n) = 1−
n∑

k=1

(−1)k−1
∑

B∈Ck(N )

∑
h∈A\N exp(δh)∑

l∈(A\N )∪B exp(δl)

 ,

7
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which can be further simplified as follows:

Pr(N|A, n) = 1−
n∑

k=1

(−1)k−1
∑

B∈Ck(N )

(
1−

∑
l∈B exp(δl)∑

l∈(A\N )∪B exp(δl)

)
= 1−

n∑
k=1

(−1)k−1Ck
n +

n∑
k=1

(−1)k−1
∑

B∈Ck(N )

∑
l∈B exp(δl)∑

l∈(A\N )∪B exp(δl)


=

n∑
k=1

(−1)k−1
∑

B∈Ck(N )

∑
l∈B exp(δl)∑

l∈(A\N )∪B exp(δl)

 .

The last line holds because setting x = −1 in the binomial theorem (1 + x)n =
∑n

k=0C
k
nx

k

yields
∑n

k=1C
k
n(−1)k−1 = 1.

SE.2 Intuition and Proof for Pr(j|A, n) in Equation (6)

Intuition In Appendix A.2.1, we provide the intuition for the analytical expression for

Pr(j|A, n) in (6). The intuition is based on two points. We now use a simple example

where j = 1, A = {1, 2, 3, 4}, and n = 2 to illustrate these two points. In the context of this

example, the first point is:

Pr(1|{1, 2, 3, 4}, 2) = Pr(1’s rank is 1) + Pr(1’s rank is 2).

To see the second point, note that

Pr(1’s rank is 1) = Pr(1 is the best in {1, 2, 3, 4}).

To derive Pr(1’s rank is 2), we first note that

Pr(1 is the best in {1, 2, 3})

=Pr(1 is the best in {1, 2, 3, 4})

+Pr(4 is the best in {1, 2, 3, 4} and 1 is the best in {1, 2, 3}),

Pr(1 is the best in {1, 3, 4})

=Pr(1 is the best in {1, 2, 3, 4})

+Pr(2 is the best in {1, 2, 3, 4} and 1 is the best in {1, 3, 4}),

8
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Pr(1 is the best in {1, 2, 4})

=Pr(1 is the best in {1, 2, 3, 4})

+Pr(3 is the best in {1, 2, 3, 4} and 1 is the best in {1, 2, 4}).

Therefore, a summation of the above three equations yields:

Pr(1 is the best in {1, 2, 3}) + Pr(1 is the best in {1, 3, 4}) + Pr(1 is the best in {1, 2, 4})

=3Pr(1’s rank is 1) + Pr(1’s rank is 2),

which counts Pr(1’s rank is 2) once but Pr(1’s rank is 1) three times.

In other words,

Pr(1’s rank is 2) =
∑

B∈C2({2,3,4})

Pr(1 is the best in B ∪ {1})− 3Pr(1’s rank is 1).

These two points explain why the probability in (6) depends on exp(δj)∑
l∈B exp(δl)+exp(δj)

, which

reflects Pr(j is the best among B∪{j}), and constant Ck
A−n+k−1, which is used to adjust for

double-counting.

Proof We derive the analytical expression for Pr(j|A, n) in (6) when 0 < n < A based on

Pr(N|A, n) in (5).

Plugging Pr(N|A, n) from (5) into Pr(j|A, n) =
∑

N∈Cn(A):j∈N Pr(N|A, n) yields

9
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Pr(j|A, n) =
∑

N∈Cn(A):j∈N

n∑
k=1

(−1)k−1
∑

B∈Ck(N )

∑
l∈B exp(δl)∑

l∈(A\N )∪B exp(δl)


=

n∑
k=1

(−1)k−1
∑

N∈Cn(A):j∈N

∑
B∈Ck(N )

∑
l∈B exp(δl)∑

l∈(A\N )∪B exp(δl)

 (SE.1)

=
n∑

k=1

(−1)k−1
∑

D∈CA−n(A\j)

∑
B′∈Ck−1(A\D)

∑
l∈B′ exp(δl) + exp(δj)∑

l∈D∪B′ exp(δl) + exp(δj)

 (SE.2)

+
n−1∑
k=1

(−1)k−1
∑

D∈CA−n(A\j)

∑
B∈Ck(A\D\j)

∑
l∈B exp(δl)∑

l∈D∪B exp(δl)

 (SE.3)

=
n∑

k=1

(−1)k−1
∑

F∈CA−n+k−1(A\j)

∑
D∈CA−n(F)

∑
l∈F\D exp(δl) + exp(δj)∑
l∈F exp(δl) + exp(δj)

 (SE.4)

+
n−1∑
k=1

(−1)k−1
∑

F∈CA−n+k(A\j)

∑
B∈Ck(F)

∑
l∈B exp(δl)∑
l∈F exp(δl)

 . (SE.5)

From (SE.1) to the sum of (SE.2) and (SE.3), we replace A\N by D (so that∑
N∈Cn(A):j∈N becomes

∑
D∈CA−n(A\j)) and decompose

∑
B∈Ck(N ) into two summations: one

over B that includes j (in line (SE.2)), and another over B that excludes j (in line (SE.3)).

In (SE.2), we use B′ to represent B\j. In (SE.3), the summation goes to n− 1 instead of n

because, when k = n, B ∈ Ck(N ) excluding j does not exist.

From (SE.2) to (SE.4), we use F to represent D∪B′. Because D and B′ do not intersect,

the double summation over D and B′ in (SE.2) is equivalent to a double summation over

F and subsets of F (i.e., D ∈ CA−n(F)). We do the same to obtain line (SE.5) from line

(SE.3).
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Line (SE.4) can be further expressed as:

n∑
k=1

(−1)k−1
∑

F∈CA−n+k−1(A\j)

∑
D∈CA−n(F)

(
1−

∑
l∈D exp(δl)∑

l∈F exp(δl) + exp(δj)

) (SE.6)

=
n∑

k=1

(−1)k−1
∑

F∈CA−n+k−1(A\j)

CA−n
A−n+k−1 −

∑
D∈CA−n(F)

∑
l∈D exp(δl)∑

l∈F exp(δl) + exp(δj)


=

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n

A−n+k−1

−
n∑

k=1

(−1)k−1
∑

F∈CA−n+k−1(A\j)

CA−n−1
A−n+k−2

∑
l∈F exp(δl)∑

l∈F exp(δl) + exp(δj)

 (SE.7)

=
n∑

k=1

(−1)k−1CA−n+k−1
A−1 CA−n

A−n+k−1

−
n∑

k=1

(−1)k−1
∑

F∈CA−n+k−1(A\j)

{
CA−n−1

A−n+k−2

(
1− exp(δj)∑

l∈F exp(δl) + exp(δj)

)}
=

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n

A−n+k−1 (SE.8)

−
n∑

k=1

(−1)k−1CA−n+k−1
A−1 CA−n−1

A−n+k−2 (SE.9)

+
n∑

k=1

(−1)k−1CA−n−1
A−n+k−2

∑
F∈CA−n+k−1(A\j)

(
exp(δj)∑

l∈F exp(δl) + exp(δj)

) ,

where line (SE.7) holds because each term exp(δl) in the numerator in (SE.6) is repeated

C#D−1
#F−1 times in the summation over D ∈ CA−n(F) and C#D−1

#F−1 = CA−n−1
A−n+k−2.

Similarly, line (SE.5) can be further simplified as:

n−1∑
k=1

(−1)k−1
∑

F∈CA−n+k(A\j)

Ck−1
A−n+k−1

 =
n−1∑
k=1

(−1)k−1CA−n+k
A−1 Ck−1

A−n+k−1. (SE.10)

In Supplemental Appendix SE.4, we show that line (SE.8) = 0, line (SE.9) = −1, and

line (SE.10) = 1. Therefore, combining the above simplified expressions for (SE.4) and
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(SE.5) yields:

Pr(j|A, n) =
n∑

k=1

(−1)k−1CA−n−1
A−n+k−2

∑
F∈CA−n+k−1(A\j)

(
exp(δj)∑

l∈F exp(δl) + exp(δj)

)
=

n−1∑
k=0

(−1)k
∑

F∈CA−n+k(A\j)

(
Ck

A−n+k−1exp(δj)∑
l∈F exp(δl) + exp(δj)

) .

SE.3 Proof for the Contraction Mapping in Equation (A.3)

In this section, we first show that the mapping in (A.3) has the following four features:

(1) ∂fj
∂δk

≥ 0 for any j, k; (2)
∑

k∈J
∂fj
∂δk

< 1 for any j; (3) There is a value δ such that if δj < δ,

then fj(δ) > δj; and (4) there is a value δ̄ such that if δj > δ̄, then fj(δ) < δj. We then

show that these features imply that a truncated version of the mapping is a contraction

mapping, which implies that the mapping has a unique fixed point.

(1) ∂fj
∂δk

≥ 0 for any j, k

We prove this inequality in three steps.

Step 1. We show ∂ Pr(j|A,n)
∂δj

< Pr(j|A, n) using induction. When n = 1, Pr(j|A, 1)

is the choice probability in a standard Logit model. As a result, ∂ Pr(j|A,1)
∂δj

=

Pr(j|A, 1) (1− Pr(j|A, 1)) < Pr(j|A, 1).

To show that ∂ Pr(j|A,n−1)
∂δj

< Pr(j|A, n− 1) implies ∂ Pr(j|A,n)
∂δj

< Pr(j|A, n) for any n ≥ 2,

we first note that option j is sampled if and only if its rank in terms δj + ϵj is no more than

n. Therefore,

Pr(j|A, n) = Pr(j|A, n− 1) + Pr(j’s rank is n),

where Pr(j’s rank is n) is the probability that some options (j1, · · · , jn−1) are the top n− 1

options while j is the nth best option. In other words,

Pr(j’s rank is n) (SE.11)

=
∑

{(j1,··· ,jn−1):jl ̸=j,l=1,...,n−1} [Pr(j1|A, 1)× · · · × Pr(jn−1|A\{j1, · · · , jn−2}, 1)

×Pr(j|A\{j1, · · · , jn−1}, 1)] .

Since the probabilities in (SE.11) are choice probabilities in a standard Logit model,

we have ∂ Pr(jl|A\{j1,··· ,jl−1},1)
∂δj

< 0 and ∂ Pr(j|A\{j1,··· ,jn−1},1)
∂δj

< Pr(j|A\{j1, · · · , jn−1}, 1). There-

12
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fore, ∂ Pr(j’s rank is n)
∂δj

< Pr(j’s rank is n). As a result, ∂ Pr(j|A,n−1)
∂δj

< Pr(j|A, n − 1) implies
∂ Pr(j|A,n)

∂δj
< Pr(j|A, n).

Step 2. We show ∂ Pr(j|A,n)
∂δk

< 0 for any k ̸= j. Since Pr(j|A, n) is the probability that

δj + ϵj is among the top n highest values in {δj′ + ϵj′}j′∈A, it decreases as δk increases for

any k ̸= j.

Step 3. We show ∂fj
∂δk

≥ 0 using the results from Steps 1 and 2. For k = j, the result in

Step 1 implies

∂s̃j(δ)

∂δj
=

∑I
i=1

∑Ti

t=1 nit
∂ Pr(j|Ait,nit)

∂δj∑I
i=1

∑Ti

t=1 nit

<

∑
i∈I
∑Ti

t=1 Pr(j|Ait, nit)∑
i∈Id

∑Ti

t=1 nit

= s̃j(δ).

Therefore,
∂fj
∂δj

= 1− 1

s̃j(δ)

∂s̃j(δ)

∂δk
> 0.

For k ̸= j, the result in Step 2 implies

∂s̃j(δ)

∂δk
=

∑I
i=1

∑Ti

t=1 nit
∂ Pr(j|Ait,nit)

∂δk∑I
i=1

∑Ti

t=1 nit

< 0.

Therefore,
∂fj
∂δk

= − 1

s̃j(δ)

∂s̃j(δ)

∂δk
> 0.

These three steps complete the proof that ∂fj
∂δk

≥ 0 for any j, k.

(2)
∑

k∈J
∂fj
∂δk

< 1 for any j

Because increasing the mean utility of every option (including δ1) by the same amount

does not change the sampling probabilities, ∂s̃j(δ)

∂δ1
+
∑

k∈J
∂s̃j(δ)

∂δk
= 0, which implies that∑

k∈J
∂s̃j(δ)

∂δk
= −∂s̃j(δ)

∂δ1
> 0. As a result,

∑
k∈J

∂fj
∂δk

= 1− 1
s̃j(δ)

∑
k∈J

∂s̃j(δ)

∂δk
< 1.

(3) There is a value δ such that if δj < δ for any j ∈ J , then fj(δ) > δj.

Given Condition 2 in Section A.3, δj = −∞ implies Pr(j|Ait, nit) = 0 and thus s̃j(δ) = 0.

In other words, limδj→−∞ fj(δ) = ∞. By continuity of fj(δ), there exists δj such that

fj(δ) > δj for any δ where δj < δj. Let δ = minj δj.
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(4) There is a value δ̄ such that if δj > δ̄ for any j∈ J , then fj(δ) < δj.

Given Condition 3 in Section A.3, δj = ∞ implies Pr(j|Ait, nit) = 1 and thus s̃j(δ) =∑I
i=1

∑Ti
t=1 1(j∈Ait)∑I

i=1

∑Ti
t=1 nit

. According to Condition 1 in Section A.3,
∑I

i=1

∑Ti
t=1 1(j∈Ait)∑I

i=1

∑Ti
t=1 nit

> sj. Therefore,

limδj→∞ fj(δ) < δj. By continuity of fj(δ), there exists δ̄j such that fj(δ) < δj for any δ

where δj > δ̄j. Let δ̄ = maxj δ̄j.

Features (1)–(4) imply that f(δ) has a unique fixed point.

First, we show δ < δ̄ by contradiction. Suppose δ = δ̄. Then features (3) and (4)

contradict each other. Suppose δ̄ < δ. Then, feature (3) implies that fj(δ̄) > δj, which

contradicts feature (4).

Then, we define another mapping f̂(δ) : [δ, δ̄]J → [δ, δ̄]J as

f̂j(δ) = max{δ, min{fj(δ), δ̄}}.

For any δ, δ′ ∈ [δ, δ̄]J−1, we define ϑ = ||δ − δ′||. We then have

f̂j(δ
′)− f̂j(δ) ≤ f̂j(δ + ϑ)− f̂j(δ) ≤ fj(δ + ϑ)− fj(δ) =

∫ ϑ

0

∑
k∈J

∂fj(δ + z)

∂δk
dz ≤ ςϑ,

where ς = maxj maxδ∈[δ,δ̄]J−1

∑
k∈J

∂fj(δ)

∂δk
. The first inequality holds because of feature (1).

The second inequality holds because f̂ is a truncated version of f .

By feature (2), ς < 1. Therefore, f̂ is a contraction mapping and has a unique fixed

point. Since features (3) and (4) imply that the fixed point of f is in f̂ ’s domain, f also

has a unique fixed point.
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SE.4 Proof of the Combinatorial Identities3

In this section, we prove that, for A > n > 1,

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n

A−n+k−1 = 0 in line (SE.8),

n∑
k=1

(−1)k−1CA−n+k−1
A−1 CA−n−1

A−n+k−2 = 1 in line (SE.9),

n−1∑
k=1

(−1)k−1CA−n+k
A−1 Ck−1

A−n+k−1 = 1 in line (SE.10),

n−1∑
k=0

(−1)kCA−n+k+1
A CA−n−1

A−n+k−1 = n in line (A.2).

First, we note that line (SE.10) can be rewritten as
∑n−1

k=1

[
(−1)k−1CA−n+k

A−1 CA−n
A−n+k−1

]
and, therefore, can be proved by replacing n in line (SE.9) by n− 1.

To prove the three identities in (SE.8), (SE.9), and (A.2), we rewrite them as

m∑
h=r

(−1)h−rCh
mC

r
h = 0, (SE.12)

m∑
h=r+1

(−1)h−r−1Ch
mC

r
h−1 = 1, (SE.13)

m∑
h=r+2

(−1)h−rCh
mC

r
h−2 = m− r − 1, (SE.14)

using the change of variables (m=A − 1, r=A − n, h=A − n + k − 1) in the first identity,

(m=A− 1, r=A− n− 1, h=A− n+ k− 1) in the second identity, and (m=A, r=A− n− 1,

h=A− n+ k + 1) in the third identity.

To prove the first identity (SE.12), we take the rth-order derivative of the equation

(1 + x)m =
∑m

h=0C
h
mx

h, which yields

Cr
mr!(1 + x)n−r =

m∑
h=r

Ch
mC

r
hr!x

h−r.

3We thank Pierre-Louis Blayac and Sergey Fomin at the University of Michigan for recommending “Tables
of Combinatorial Identities Based on Seven Unpublished Manuscript Notebooks of Henry Gould” edited by
Jocelyn Quaintance (https://math.wvu.edu/˜hgould/Vol.2.PDF). The first identity (SE.12) is an application
of equation (1.23) in Table II. The proof of the other two identities (SE.13) and (SE.14) is inspired by the
proof for this equation.
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Setting x = −1 leads to the first identity.

To prove the second identity (SE.13), we take the rth-order derivative of the equation
(1+x)m

x
= 1

x
+
∑m

h=1 C
h
mx

h−1. The derivative of the LHS is the sum of terms like a(1 + x)bx−c

where b > 0. Therefore, its value at x = −1 is 0. The derivative of the RHS at x = −1 is

dr

dxr

(
1

x
+

m∑
h=1

Ch
mx

h−1

)∣∣∣∣∣
x=−1

=

[
r!(−1)rx−1−r +

m∑
h=r+1

Ch
mC

r
h−1r!x

h−1−r

]
x=−1

= r!

[
−1 +

m∑
h=r+1

Ch
mC

r
h−1(−1)h−1−r

]
.

Therefore, −1 +
∑m

h=r+1C
h
mC

r
h−1(−1)h−1−r = 0, which implies the second identity.

To prove the third identity (SE.14), we take the rth-order derivative of the equation
(1+x)m

x2 = 1
x2 +

m
x
+
∑m

h=2 C
h
mx

h−2. The derivative of the LHS evaluated at x = −1 is again 0.

The derivative of the RHS is

dr

dxr

(
1

x2
+

m

x
+

m∑
h=2

Ch
mx

h−2

)∣∣∣∣∣
x=−1

=

[
(r + 1)!(−1)rx−2−r +mr!(−1)rx−1−r +

m∑
h=r+2

Ch
mC

r
h−2r!x

h−2−r

]
x=−1

.

Its value at x = −1 is r![(r + 1)−m+
∑m

h=r+2 C
h
mC

r
h−2r!(−1)h−r]. Therefore,

(r + 1)−m+
m∑

h=r+2

Ch
mC

r
h−2r!(−1)h−r = 0,

which implies the third identity.
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