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Abstract 
 
The conventional wisdom is that a big jurisdiction sets a higher tax rate than a small jurisdiction. 
We show this result arises due to simplifying assumptions that imply tax-base sensitivities are 
equal across jurisdictions. When more than two jurisdictions compete in commodity taxes, tax-
base sensitivities need not be equal across jurisdictions and a small jurisdiction can set a higher 
tax rate than a big jurisdiction. Our analysis extends to capital and profit taxes, and, more 
generally, to various types of multi-player asymmetric competition. 
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1 Introduction

The inverse elasticity rule, dating to Ramsey (1927), has been widely applied to

study taxation, regulatory policy, and the pricing of public utilities. Applied to

taxation, the Ramsey rule states that if commodity demands are independent,

optimal tax rates should be inversely proportional to the elasticities.1 A common

extension of the inverse-elasticity rule is to tax competition models where juris-

dictions set tax rates to attract a mobile tax base. In equilibrium, the revenue-

maximizing tax rate Ti in jurisdiction i is characterized by Ramsey pricing:

Ti

1+Ti
= 1

ϵi
with ϵi = − dBi(p)/dTi

Bi(p)
pi , (1)

where after normalizing producer prices to unity, pi = 1+Ti denotes the after-tax

price and Bi denotes the tax base, which depends on the vector of after-tax prices

of all jurisdictions, p. We refer to |dBi(p)/dTi| as the base sensitivity.

Much of the game theoretic tax competition literature focuses on “duopolity”

theory where two jurisdictions differ in size (Keen and Konrad 2013). These mod-

els conclude that, with mobile factors, a jurisdiction’s tax rate is positively corre-

lated with size—bigger jurisdictions set higher tax rates than smaller jurisdictions—

because, evaluating (1) at equal tax rates, bigger jurisdictions face a smaller elas-

ticity. We revisit the role of size in the context of spatial competition models

concerning the setting of commodity taxes. In the classic models of Kanbur and

Keen (1993) and Nielsen (2001), two jurisdictions differ in population, but the

population is uniformly distributed across space within each jurisdiction. Juris-

dictions compete for cross-border shoppers by setting taxes in a Nash game. The

more populated jurisdiction always sets a higher tax rate than the smaller.

However, competition does not involve only two jurisdictions nor are peo-

ple uniformly distributed across space. Most urban economics or trade models

recognize that population density differs across space and density has been shown

to be critical in the context of cross-border issues (Hindriks and Serse 2019).2

We therefore extend the classic commodity tax competition model by allowing

jurisdictions to differ in how their populations are distributed. One jurisdiction

may have many consumers who can readily cross-border shop, while the other

1The assumption that demands are independent is restrictive and makes the inverse elasticity
rule less useful for optimal policy (Scheuer and Werning 2016), but it is the basis for much of
the intuition concerning the optimal multi-jurisdictional setting of tax rates in open economies.

2Friberg, Steen and Ulsaker (2022) find a non-monotonicity in incentives to cross-border shop.
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may have most of its population far away from borders. Following Caplin and

Nalebuff (1991), we show that under mild conditions on the distribution function,

a unique Nash equilibrium exists. We first show that if maintaining the assump-

tion of two competing jurisdictions, the conventional result remains: a jurisdiction

with a larger total population will always set a higher tax rate than the smaller

jurisdiction regardless of how population is distributed.

The intuition for this stark result is that, in the case of two jurisdic-

tions, the marginal benefit of lowering taxes is the same for both the large and

small jurisdiction. Thus, the tax-base sensitivity is identical in both jurisdictions,

|dB1/dT1| = |dB2/dT2|, and the magnitude of this derivative simultaneously affects the

level—but not the pattern—of tax rates in both jurisdictions. Then, the relative

elasticity, ϵ1/ϵ2, of the tax base evaluated at identical tax rates T1 = T2, depends

only on the relative jurisdiction sizes, B1/B2. Smaller governments perceive a higher

elasticity irrespective of the distribution of individuals.

Our main contribution is then to show that relaxing both the assumption

of two jurisdictions and a uniform population distribution allows for a much richer

pattern of equilibrium tax rates that can differ significantly from the conventional

wisdom. Critically, we show that a smaller jurisdiction will set a higher rate

than a bigger jurisdiction if there are multiple competitors and if the distribution

of population is not uniform. This result arises without resorting to any other

asymmetries and without adding cross-base interdependencies.3

Simplifying to gain intuition, consider the example of Connecticut, Rhode

Island, and Massachusetts. Both Connecticut’s and Rhode Island’s borders with

Massachusetts are densely populated due to the Hartford/Springfield and Provi-

dence metropolitan areas. But the density at the Rhode Island and Connecticut

border is very low, consisting of mainly rural farmland. With multiple borders, the

sensitivity of the tax base depends on an average of the responses at both borders

of each state. As both borders with Massachusetts are the densest, Massachusetts

can attract more cross-border shoppers by lowering its tax rate compared to ei-

ther of the other states, meaning that the tax-base sensitivity in Massachusetts,

|dBMA/dTMA|, is larger in absolute value than the tax-base sensitivity in either of

the other states, |dBRI/dTRI| , |dBCT/dTCT |. Thus, even though the tax base of Mas-

sachusetts is the largest, if its sensitivity is sufficiently larger in absolute value than

3Most other models of asymmetric tax competition focus on size differences (Bucovetsky 1991;
Haufler and Wooten 1999). The theoretical literature acknowledges that other asymmetries such
as preferences for public goods matter (Haufler 1996; Nielsen 2002).
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the other two sensitivities, Massachusetts’ elasticity will be larger. Accordingly, in

the presence of multiple jurisdictions, differences in the elasticity of the tax base

now depends both on population size and the distribution of residents across space.

There are numerous examples where smaller jurisdictions set higher tax rates than

bigger jurisdictions. In the U.S., where counties can set local taxes, we document

using data from Agrawal (2014) that only in 16% of cases does the county that sets

the highest tax rate compared to its neighbors also have the largest population.

Tax competition remains an important determinant of consumption and

excise taxes, even though capital and labor are regarded as more mobile. First, for

smaller governments such as states, counties, or towns (or potentially even small

countries), cross-border shopping remains important. Second, unlike capital which

is globally mobile, consumption tax bases are only locally mobile via cross-border

shopping.4 States, localities and even countries have a small number of neighbors,

so that game theoretic interactions become important. Finally, numerous empirical

studies document the existence of strategic tax competition in commodity taxes.

Given technological change and globalization have arguably made capital

and labor relatively more footloose, we show that our main results are applicable

to models of tax competition for corporate profits and capital, which seemingly

differ in important ways from the spatial commodity tax model. First, our results

generalize to models of tax competition with profit shifting (Keen and Konrad

2013), which traditionally impose restrictions on the cost of shifting profits to

another country. In addition, these models generally assume that multinational

firms shift profits to a single low-tax country, but, in reality, profit shifting can

occur between many country pairs. The curvature of the shifting cost function

to the firm has the same qualitative implications on the relationship between tax

rates and size as the density function does in the commodity tax setting.

Second, analyzing competition for capital, Mongrain and Wilson (2018)

obtain the standard size result when firms have heterogeneous costs of moving. We

show the distribution of moving costs plays the same role as the density of people

in commodity tax competition models. If moving costs are uniformly distributed,

then the size effect dominates because the number of firms that are indifferent

between moving and not moving are the same for the two regions. If moving

costs are not uniformly distributed and there are more than two jurisdictions, the

4However, e-commerce and digital services allow households to consume goods from all over
the world, potentially making the tax base more mobile.
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results from our commodity tax model extend to capital tax competition.

Our results also have implications for industrial organization and political

economy. A strand of industrial organization focuses on spatial price compe-

tition with heterogeneous consumers and shows that the distribution of prefer-

ences affects firm competition (Neven 1986; Anderson and Goeree 1997; Bloch

and Manceau 1999; Calvó-Armengol and Zenou 2002). A similar mechanism is

in the spatial voting literature (Bagh 2023) where candidates announce platforms

and heterogeneously distributed voters choose the platform closest to their prefer-

ences. If candidates view winning as a means to policy, there is a trade-off between

the probability of winning and the implementation of the preferred party policy

if elected; this trade-off can be influenced by the distribution of voter preferences

(Wittman 1983). Both industrial organization and political economy typically

restrict attention to duopolistic or symmetric oligopolistic competition, while we

show that the implication of consumer density may qualitatively change price-

setting behavior with asymmetric oligopolistic competition.5

2 A General Model of Tax Competition

The result that a bigger jurisdiction sets a higher tax rate than a smaller ju-

risdiction is common among commodity tax competition models (Kanbur and

Keen 1993; Lockwood 1993; Trandel 1994; Nielsen 2001; Wang 1999; Ohsawa and

Koshizuka 2003). We expand the classic model of commodity tax competition of

Nielsen (2001)6 and Kanbur and Keen (1993).7 In the typical model, consumers

5Chen and Riordan (2008) compare monopoly pricing to symmetric duopolistic competition
and find that prices under duopoly may be higher. Because a duopolist has a smaller base,
duopoly prices tend to be lower. However, the price sensitivity is lower in a duopoly, which leads
to comparably higher prices under duopoly. The reason for the latter effect is that a duopolist
can only increase the market share by attracting consumers from the competitor, whereas the
monopolist can increase the market share by extending market coverage.

6Nielsen (2001) normalizes density to be unity across both jurisdictions, allowing him to focus
on size differences (area and population) by assuming that one jurisdiction is longer than the
other. Given jurisdictions are characterized by two parameters, density and length, and because
uniform density is imposed throughout both jurisdictions, the model does not actually allow for
a change in one jurisdiction’s population unless you are willing to change area and population
jointly at same time. In particular, increases in population in both jurisdictions (via an increase
in density) holding market area constant has no effect on tax rates. However, an increase in
market area, holding constant population (i.e., reducing density) increases tax rates.

7Kanbur and Keen (1993) normalize area (length) across both jurisdictions allowing them to
talk about differences in population even though they have differences in density across countries
but not within countries. Because Kanbur and Keen (1993) features a discontinuity in the density
at the border, unlike the Nielsen (2001) model, it allows for specific country perturbations.
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are uniformly distributed within jurisdictions. Because commodity tax models are

closer to a Ramsey framework than capital tax models, we start here.

2.1 Non-uniform Distribution with Two Jurisdictions

Before analyzing the implications of a non-uniform distribution of residents, we

adjust the standard linear Hotelling model by locating two jurisdictions on a circle.

Transitioning to a circle will allow us to generalize the model to more than two

jurisdictions, with each jurisdiction having the same number of borders.8 We nor-

malize total population to 1 and the circumference of the circle to 1. Jurisdiction

1 ranges from l21 to l12; jurisdiction 2 ranges from l12 to l21 + 1.

Each jurisdiction’s government levies an origin-based commodity tax, where

we denote the tax rate of jurisdiction i by Ti. Tax rates are chosen in a Nash

game to maximize tax revenue. Firms are potentially located anywhere on the

circumference and sell the good in a perfectly competitive environment resulting

in producer prices equating to marginal costs, which we normalize to 1. Individuals

reside along the circumference and wish to purchase one unit of a composite good

from firms. Irrespective of the individuals’ residence, the maximum willingness

to pay is V , meaning that individual demand is zero if the total price exceeds

V . We assume V is large enough to ensure full market coverage, that is, larger

than the highest gross price inclusive of transportation costs. This upper limit on

willingness to pay bounds tax rates from above at a maximum rate T .

Although demand is perfectly inelastic, individuals have choice over where

to buy the good. A purchase at home incurs no transport costs because the

individual shops at the firm located at the point where she resides, thus paying

the tax rate there. Instead, if the individual purchases the good in the neighboring

jurisdiction—doing so at the first store after crossing the border—she pays the tax-

inclusive price in the neighboring jurisdiction, but incurs transportation costs δ

per unit of distance traveled to the nearest border from her home.

We generalize the standard model by allowing individuals to be non-uniformly

distributed.9 Let x denote the clockwise distance from the border l21, which starts

An increase in population (also density) increases tax rates. An increase in area but holding
population constant (lowering density also) decreases tax rates. However, these two shocks are
isomorphic in this model because the ratio of population and area is all that matters.

8The use of a circle follows the industrial organization literature (Salop 1979). In public
finance, Trandel (1992) and Agrawal (2015) use a circle with uniformly distributed consumers
and no differences in jurisdiction sizes.

9In Nielsen (2001) and Kanbur and Keen (1993), once area and population are known, density
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at point 0 on the circle. Residents are distributed on the circle according to a con-

tinuous and differentiable probability density function (pdf), f(x) with f(x) > 0,

on the interval [0, 1]. It has a cumulative distribution function denoted by F (x).

Populations are given by P1 =
´ l12
0

f(x)dx and P2 =
´ 1
l12

f(x)dx.

A consumer will purchase the good in the neighboring jurisdiction if the

tax savings (the tax differential) are greater than or equal to the cost of travel to

the nearest border (δ times distance to the respective border). For each border,

the location of the marginal individuals that are indifferent between shopping at

home and in the neighboring jurisdiction, are given by:

x12(T1, T2, l12) = l12 − T1−T2

δ
, x21(T1, T2, l21) = l21 − T2−T1

δ
. (2)

We normalize l21 to be point 0 so that x represents distance from this border. Indi-

viduals located within the (clockwise) range enclosed by the points x21(T1, T2, l21)

and x12(T1, T2, l12) purchase the good in jurisdiction 1, whereas the remaining in-

dividuals shop in jurisdiction 2. The model does not presuppose any pattern on

tax rates: these cutoff rules encompass both cases where T1 > T2 and T1 ≤ T2.

Figure 1 summarizes the geography of the model for one case.

For notational convenience, due the possibility that x21 < 0 if T2 > T1, we

define the density function over the interval x ∈ [−1, 1], where 1 is the length of

the circumference. For the same reason, we assume f(x) is periodic with a period

of 1, which implies that for any x < 0, we have f(x+1) = f(x). This allows us to

integrate over a range containing negative values of x, thus expressing the revenue

functions elegantly. These assumptions are not critical to derive any results.

The revenue (payoff) functions are the tax rate times the tax base, Bi (T1, T2):

R1 ≡ T1B1 (T1, T2) = T1

 x12ˆ

x21

f (x) dx

 = T1 [F (x12)− F (x21)] ,

R2 ≡ T2B2 (T1, T2) = T2

1− x12ˆ

x21

f (x) dx

 = T2 [1− F (x12) + F (x21)] ,

where x12 and x21 are the locations of the marginal consumers as defined in (2),

is irrelevant. Trandel (1994) realizes this issue and allows density to vary across space, but does
so in a linear manner and with two jurisdictions. A linearly increasing distribution implies that
density near the border and population are always positively correlated.
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Figure 1: Model structure with two jurisdictions when T1 > T2

This figure shows the geographic layout. Consumers are located on the circumference of a circle
where jurisdiction 1 ranges from l21 to l12 and jurisdiction 2 ranges from l12 to l21 + 1. We
normalize l21 = 0. For illustrative purposes, we show the case where T1 > T2. Individuals
located within the (clockwise) range enclosed by the points x21 and x12 purchase the good in
jurisdiction 1, whereas the remaining individuals shop in jurisdiction 2.

suppressing the functional notation for convenience.

Differentiating tax revenues to solve the revenue-maximization problem

yields the first-order conditions for T1 and T2, respectively:

∂R1

∂T1

= F (x12)− F (x21)− T1
f (x12) + f (x21)

δ
= 0, (3)

∂R2

∂T2

= 1− F (x12) + F (x21)− T2
f (x12) + f (x21)

δ
= 0. (4)

To prove existence and uniqueness of a Nash equilibrium in the tax competition

game, we make the following assumption after defining β(x) = f ′(x)/f(x):

Assumption 1. (log-concavity) The distribution f(x) is log-concave and, there-

fore, the ratio β(x) = f ′(x)/f(x) is non-increasing on [0, 1].

The assumption of log-concavity is frequently used in studies that have

a non-linear distribution of consumers (Anderson, de Palma and Nesterov 1995;

Bloch and Manceau 1999). Caplin and Nalebuff (1991) show that log-concavity is a

sufficient condition for the existence of equilibrium in a general class of games. As

noted in Caplin and Nalebuff (1991), the class of log-concave densities covers many

frequently used probability distribution functions such as the normal, exponential,

7



gamma, beta, Weibull, logistic, Laplace, and uniform distributions.

Remark 1. Although many log-concave pdfs have supports larger than [0, 1], we

can always truncate a pdf with support larger than [0, 1] by defining the truncated

pdf f̃ = f(x)/[F (1)−F (0)] with support [0, 1]. As shown in Bagnoli and Bergstrom

(2005), when f is log-concave, its truncation f̃ will also be log-concave.

Thus, Assumption 1 allows for a large variety of distribution functions.

Remark 2. As shown in Bagnoli and Bergstrom (2005), the log-concavity f(x)

implies the log-concavity of F (x), that is, f(x)/F (x) is also non-increasing on [0, 1].

We need an additional technical assumption for existence. Define ρ = δ/T .

Assumption 2. (Technical) The distribution f(x) satisfies f ′(0)
f(0)

< δ
T
≡ ρ.

Remark 3. This condition is about the growth rate of f at zero. It will hold

if—near zero—the graph of f is below the graph of the function h(x) = f(0)eρx.

As long as f(x) is below h(x) near zero, the slope of f will be less than h

and f ′(0) < h′(0). Therefore, f ′(0)
f(0)

< ρf(0)eρ·0

f(0)
= ρ. Since h grows exponentially,

the condition is not very restrictive, allowing for a wide variety of pdfs. While ρ

can theoretically take on any finite number, as a matter of practicality, we can

think of a reasonable range for ρ. If taxes are expressed in ad valorem form, tax

rates are usually bound above by one. With respect to δ, if distance is measured

in time (hours), then δ is proportional to the opportunity value of time (wages)

plus driving costs (gasoline). Thus, ρ need not be small.

There are numerous examples of log-concave distribution functions—or

their truncation over [0, 1]—for which Assumption 2 holds. This includes: the

uniform distribution for any value of ρ; the exponential distribution f(x) = λe−λx

truncated over [0, 1] satisfies f ′(0)
f(0)

= −λ < ρ for all values of ρ; and the normal

distribution’s truncation over [0, 1] with parameters µ and σ has f ′(0)
f(0)

= 2µ
σ
, which

will be smaller than any ρ for a small enough µ or large enough σ. With the

normal distribution, for µ = 0, the condition will hold for any ρ and any σ.

We can now state:

Proposition 1. (Existence & Uniqueness) Suppose Assumptions 1 and 2 hold.

A Nash equilibrium exists and is unique.

Proof. See Appendix A.1.
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This Nash equilibrium is characterized by

TN
1 = − B1(T

N
1 , TN

2 )
∂B1

∂T1
(TN

1 , TN
2 )

=
F
(
xN
12

)
− F

(
xN
21

)
[f(xN

12)+f(xN
21)]/δ

, (5)

TN
2 = − B2(T

N
1 , TN

2 )
∂B2

∂T2
(TN

1 , TN
2 )

=
1− F

(
xN
12

)
+ F

(
xN
21

)
[f(xN

12)+f(xN
21)]/δ

, (6)

where we define xN
21 ≡ x21(T

N
1 , TN

2 , 0) and xN
12 ≡ x12(T

N
1 , TN

2 , l12) as the values of

the cutoff rules evaluated at the Nash tax rates. Assuming f(x) follows a uniform

distribution implies that, after accounting for the second border, the optimal tax

rates align with those in Nielsen (2001). Further, dividing both sides of each

equation by 1+TN
i yields the standard inverse elasticity formulation given by (1):

TN
i

1 + TN
i

=
1

ϵi
with ϵi = −

∂Bi

∂Ti

(
TN
1 , TN

2

)
Bi(TN

1 , TN
2 )

(
1 + TN

i

)
(7)

The numerators in the right-hand-side of (5) and (6) are i’s equilibrium tax base;

in the case of jurisdiction 1 this is F
(
xN
12

)
−F

(
xN
21

)
. And the (absolute value of)

changes in the tax base, ∂Bi

∂Ti

(
TN
1 , TN

2

)
< 0, which are the denominators the right-

hand side, are i’s equilibrium tax-base sensitivity ; in the case of two jurisdictions,

this term is identical:
∣∣∣ ∂Bi
∂Ti

(TN
1 ,TN

2 )
∣∣∣=[f(xN

12)+f(xN
21)]/δ.

Based on equations (5) and (6), we establish the following result:

Proposition 2. (Two Jurisdictions & Tax Rates) Suppose Assumptions 1

and 2 hold. The unique Nash equilibrium satisfies TN
1 > TN

2 if and only if P1 > P2.

Proof. Given the denominators are equal in (5) and (6), the pattern of tax rates

depends on the relative sizes of the tax bases in the numerator:

TN
1 > TN

2 ⇐⇒
[
F
(
xN
12

)
− F

(
xN
21

)]
>

[
1− F

(
xN
12

)
+ F

(
xN
21

)]
. (8)

If TN
1 > TN

2 , then P1 > F (xN
12) − F (xN

21), because some individuals residing in

jurisdiction 1 cross-border shop into jurisdiction 2. For the same reason, it must

be that 1−F (xN
12)+F (xN

21) > P2. Then (8) implies that P1 > F
(
xN
12

)
−F

(
xN
21

)
>

1− F
(
xN
12

)
+ F

(
xN
21

)
> P2. Thus, T

N
1 > TN

2 ⇒ P1 > P2.

We show P1 > P2 implies TN
1 > TN

2 by contradiction. Let TN
2 > TN

1 despite

P1 > P2. Then by (8), P2−CBSN > P1+CBSN , where CBSN denotes the total

number of cross-border shoppers evaluated at the Nash tax rates. If TN
2 > TN

1 ,

then it must be that CBSN > 0. Given equality of denominators, for TN
2 > TN

1

9



to arise, it must be that P2 − CBSN > P1 + CBSN , which is impossible given

that P1 > P2 and CBSN > 0. Thus, P1 > P2 ⇒ TN
1 > TN

2 .

This classic result—previously derived in more stylized models—has led to

the the intuition underlying many tax competition models. Intuitively, starting

from equal tax rates, a change in a jurisdiction’s own-tax rate will have a smaller

percent change on its tax base if the jurisdiction is larger. Thus, the larger jurisdic-

tion perceives a smaller elasticity, which under the inverse-elasticity rule implies its

optimal tax rate must rise relative to the jurisdiction with the smaller population.

At first glance, it may appear surprising that the large jurisdiction always

sets the higher tax rate even in the extreme case when almost all of its popula-

tion is located directly at its borders, while the small jurisdiction’s population is

concentrated at its interior. One might initially think that the jurisdiction with

its population at its interior is more inelastic. The reason for this stark result,

however, originates from the fact that the tax-base sensitivity is identical for both

jurisdictions: they are competing for the same marginal individuals irrespective

of how these individuals are distributed, i.e.
∣∣∣∂B1

∂T1

(
TN
1 , TN

2

)∣∣∣ = ∣∣∣∂B2

∂T2

(
TN
1 , TN

2

)∣∣∣ =
[f(xN

12)+f(xN
21)]/δ. In other words, the density of the marginal consumers at xN

ij is

identical for both jurisdictions, implying that any marginal change in the tax dif-

ferential results in the same tax-base change for each jurisdiction. Accordingly,

differences in relative elasticities, and thus tax rates, are solely determined by

relative differences in the size of the tax bases across the jurisdictions.

2.2 Non-uniform Distribution with Three Jurisdictions

In this section, we analyze whether the previously derived result extends to a

setup with more than two jurisdictions. While all of the basic assumptions remain

unaltered, we modify the setup by adding a third jurisdiction. Specifically, juris-

diction 1 ranges from l31 to l12, jurisdiction 2 ranges from l12 to l23, and jurisdiction

3 ranges from l23 to l31 + 1. The cut-off rules for the marginal individuals are:

x12(T1, T2, l12) = l12 − T1−T2

δ
, x23(T2, T3, l23) = l23 − T2−T3

δ
, x31(T1, T3, l31) = l31 − T3−T1

δ
.

(9)

Individuals located within the range enclosed by the points x31 and x12 purchase

the good in jurisdiction 1, individuals located between x∗
12 and x∗

23 shop in juris-

diction 2, and the remaining individuals buy the good in jurisdiction 3. Again, we

10



Figure 2: Model structure with three jurisdictions when T1 > T2 > T3

This figure shows the geographic layout of a three jurisdiction model. Consumers are located on
the circumference of a circle where jurisdiction 1 ranges from l31 to l12, jurisdiction 2 ranges from
l12 to l23, and jurisdiction 3 ranges from l23 to l31 + 1. We normalize l31 = 0. For illustrative
purposes, we show the case where T1 > T2 > T3. Individuals located within the (clockwise)
range enclosed by the points x31 and x12 purchase the good in jurisdiction 1, individuals located
within the (clockwise) range enclosed by the points x12 and x23 purchase the good in jurisdiction
2, and the remaining individuals shop in jurisdiction 3.

normalize l31 to be 0. Figure 2 displays the geography of the model.

As previously, we can express the revenue functions as:

R1 ≡ T1B1 (T1, T2, T3) = T1

 x12ˆ

x31

f(x)dx

 = T1 [F (x12)− F (x31)]

R2 ≡ T2B2 (T1, T2, T3) = T2

 x23ˆ

x12

f(x)dx

 = T2 [F (x23)− F (x12)]

R3 ≡ T3B3 (T1, T2, T3) = T3

1− x12ˆ

x31

f(x)dx−
x23ˆ

x12

f(x)dx

 = T3 [1− F (x23) + F (x31)] .

Then, proceeding as previously, we can show:

Remark 4. Suppose Assumptions 1 and 2 hold. A Nash equilibrium with three

jurisdictions again exists (and is unique). The proof is a straightforward extension

of that for Proposition 1, but is presented in Appendix A.2.

11



The optimal tax rates, can be express as:

TN
1 = − B1(T

N
1 , TN

2 , TN
3 )

∂B1

∂T1
(TN

1 , TN
2 , TN

3 )
=

F
(
xN
12

)
− F

(
xN
31

)
[f(xN

31)+f(xN
12)]/δ

=
P1 − CBSN

12 − CBSN
31

[f(xN
31)+f(xN

12)]/δ
,(10)

TN
2 = − B2(T

N
1 , TN

2 , TN
3 )

∂B2

∂T2
(TN

1 , TN
2 , TN

3 )
=

F
(
xN
23

)
− F

(
xN
12

)
[f(xN

12)+f(xN
23)]/δ

=
P2 + CBSN

12 − CBSN
23

[f(xN
12)+f(xN

23)]/δ
,(11)

TN
3 = − B3(T

N
1 , TN

2 , TN
3 )

∂B3

∂T3
(TN

1 , TN
2 , TN

3 )
=

F
(
xN
31

)
− F

(
xN
23

)
[f(xN

23)+f(xN
31)]/δ

=
P3 + CBSN

23 + CBSN
31

[f(xN
23)+f(xN

31)]/δ
,(12)

where, again, we simplify notation by letting a superscript N on the cut-off rules

denote that they are evaluated at the Nash tax rates. On the right-most side of

the equations, we rewrite the tax base as the jurisdictions’ population adjusted

for cross-border shopping. Specifically, population sizes are P1 = F (l12) − F (0),

P2 = F (l23) − F (l12), and P3 = F (1) − F (l23), while the cross-border shoppers

evaluated at the Nash equilibrium tax rates are given by CBSN
12 = F (l12)−F

(
xN
12

)
,

CBSN
31 = F

(
xN
31

)
−F (l31), and CBSN

23 = F (l23)−F
(
xN
23

)
. As previously, dividing

by 1 + TN
i yields the standard inverse-elasticity formulation given by (7).

To determine if, and under what conditions, a smaller jurisdiction will set a

higher tax rate, we proceed in two steps. In a first step, we rely on the simplifying

assumption of symmetry between two of the three jurisdictions, as this allows

us to prove our claim in an easy and elegant way. In a second step, we relax

the symmetry assumption and show that a smaller jurisdiction can set a higher

tax rate than the larger jurisdiction under a very general population distribution,

albeit at the cost of more involved proofs.

First, in a very general, but symmetric setting, we can always find a range of

jurisdictional boundaries such that, in equilibrium, at least one smaller jurisdiction

posts a higher tax rate than a larger jurisdiction.

Proposition 3. (Overturn Classic Result with Symmetry) Suppose As-

sumptions 1 and 2 hold. Assume that f(x) = f(1 − x), so that the distribution

is symmetric about x = 0.5. Let l12 = l and l23 = 1 − l so that jurisdiction 1

and 3 are symmetric. Then we have values of l where P1 < P2 and TN
1 > TN

2 .

That is, there exist distribution functions and jurisdiction lengths where the Nash

equilibrium is such that a bigger population jurisdiction sets a strictly lower tax

rate than at least one smaller jurisdiction.

Proof. The value of l that gives us P1 = P2 = P3 is obtained by solving F (l) = 1
3
,

which has a unique solution denoted by l̄. Using (10)-(12) and imposing symmetry,

12



i.e. TN
1 = TN

3 , f(l) = f(1−l), and F (1−l) = 1−F (l), yields the Nash equilibrium

TN
1 = TN

3 =
δF (xN

12)

f(0)+f(xN
12)

and TN
2 =

δ[1−2F (xN
12)]

f(xN
23)+f(xN

12)
. The value of l that then gives

TN
1 = TN

2 = TN
3 , denoted by l, is given by solving

G(l) ≡ 2f(l)F (l)

f(0) + f(l)
= 1− 2F (l) ≡ H(l) (13)

where G′(l) > 0 while H ′(l) < 0. Furthermore, H(0) = 1, H(0.5) = 0 and

G(0) = 0. Therefore, (13) has a unique solution 0 < l < 0.5. Therefore, for any

l < l < l̄ or we have TN
1 > TN

2 despite P2 > P1.

The symmetry invoked to derive this proposition is a powerful tool to show

that there exist parameter constellations of jurisdiction boundaries such that a

smaller jurisdiction will set a higher tax rate than a larger jurisdiction. Thus, in

a very general, but symmetric setting, we can always find a range of jurisdictional

boundaries such at least one jurisdiction posts higher tax rate than a smaller sized

jurisdiction. Interestingly, if f(0) = 0 the values l and l̄ satisfy F−1
(
1
4

)
< l <

F−1
(
1
3

)
, though in this case, because Assumption 2 does not hold, it would also

need to be verified that the revenue functions are quasi-concave for existence. To

derive a precise analytical solution, we use a triangular distribution as an example.

Example 1. (Triangular Distribution and Symmetric Jurisdictions) Ju-

risdictions 1 and 3 are symmetric, and range from [0; l] and [1− l; 1], respectively.

The rest of the circumference encloses jurisdiction 2. The distribution of popula-

tion is triangular, symmetric around its maximum at x = 1
2
, and with slopes of

m and −m, respectively. It satisfies f(0) = α > 0 with 4α +m = 4 in order for

the area under f to integrate to one. Thus, the density is f(x) = mx+ 1− m
4
for

x ≤ 1
2
and f(x) = −mx + 1 + 3m

4
for x > 1

2
, with F (x) = m

2
x2 +

(
1− m

4

)
x for

x ≤ 1
2
and F (x) = −m

2
x2 + (1+ 3

4
m)x− m

4
for x > 1

2
. Then, focusing on a specific

example by letting m = 2 and assuming ρ > 4, if
√
73
16

− 3
16

< l <
√
57
12

− 1
4
, we have

P2 > P3 = P1, but T
N
2 < TN

3 = TN
1 , i.e., the bigger jurisdiction 2 sets the lower

tax rate, overturning the classic result.

Proof. We could proceed by explicitly solving for the Nash equilibrium and then

comparing relative tax rates and populations. Alternatively, we can apply Propo-

sition 3 by using the the functional form given in Example 1, noting that both

Assumption 110 and 2 are satisfied when m = 2 and ρ > 4. Then, F (l) < 1
3

10Our triangular pdf is log-concave but is not differentiable at 1/2, as it has a sharp peak at
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becomes l2 + 1
2
l < 1

3
implying we must have l < l̄ =

√
57
12

− 1
4
≈ 0.379. Further,

(13) implies l > l =
√
73
16

− 3
16

≈ 0.347. Thus, if l < l, then P2 > P3 = P1 and

T2 > T3 = T1, i.e., the bigger jurisdiction 2 sets the higher tax rate. If l̄ < l, then

P3 = P1 > P2 and TN
3 = TN

1 > TN
2 , i.e., the bigger jurisdictions 1 and 3 set the

higher tax rate. However, if l < l < l̄, then P2 > P3 = P1, but T
N
3 = TN

1 > TN
2 ,

so that the bigger jurisdiction sets the lower tax rate.

While these symmetric examples are sufficient to make the claim that there

exist distribution functions that allow the smaller jurisdiction to set the higher tax

rate, one may wish to determine if the result is due to the symmetry assumption or

if a more general result is available. Next, we generalize to an asymmetric setting.

To formalize this strategy of proof, we start by embedding f(·), the pop-

ulation pdf, within a family of pdfs—perturbations—f(·, ε) where ε ∈ [0, ν]. In

the unperturbed (original) game, ε = 0, and we drop it from our notation, e.g.,

f(·, 0) = f(·). The corresponding family of cdfs will be denoted by F (·, ε) with

F (·, 0) = F (·). We will consider games with a perturbed pdf f(·, ε) and param-

eters l12 and l23. We denote such a game by G(ε, l12, l23). The corresponding

population sizes and equilibrium—when it exists—will be respectively denoted by

Pi(ε, l12, l23), and TN
i (ε, l12, l23), for i = 1, 2, 3.

The strategy of our proof relies on small—but very specific— perturbations

of the density function that change the populations of jurisdictions while leaving

taxes unchanged. Generally, different distributions of individuals can directly af-

fect tax rates in potentially two ways: through alterations in the size of the tax

bases and modifications in the tax-base sensitivity. This means that arbitrary

changes in the distribution function will usually have an ambiguous effect on ju-

risdictions’ tax rates. Thus, we will consider a specific perturbation. First, the

perturbation cannot affect the number of marginal cross-border shoppers at any

xN
ij , which ensures that tax-base sensitivities remain unaffected. Second, to ensure

that tax bases remain unchanged, changes in a jurisdiction’s population that orig-

inate from the perturbation need to be appropriately matched by changes in the

number of non-marginal cross-border shoppers from another jurisdiction because

a jurisdiction’s tax base is its population adjusted for cross-border shoppers.

Suppose without loss of generality, l12 and l23 are such that P1 = P2 > P3

and that Assumptions 1 and 2 hold such that a Nash equilibrium exists. In the

main text, we focus on the most challenging case to prove our result—where that

1/2, but we can “smooth out” this peak over an interval that is arbitrarily small around 1/2.
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Nash equilibrium is:11

TN
1 = TN

2 > TN
3 (14)

We define a population perturbation. First, let (a, b) be an open subinterval

of (0, 1) with 0 < a < 1 and l23 < b < 1; (a, b) must be picked so that it contains

xN
12, x

N
23 and xN

31, that is, the cut-off rules evaluated at the Nash equilibrium before

the perturbation. We introduce a population redistribution of size ε from juris-

diction 3 to jurisdiction 1 around the outside of the interval (a, b) in the following

manner. Consider intervals (a1, b1) and (a2, b2) such that the first interval satisfies

0 < a1 < b1 < a and the second interval satisfies b < a2 < b2 < 1. Define two

continuous functions g1 and g2 where g1 ≥ 0 and it is zero outside (a1, b1) whereas

g2 ≤ 0 and is zero outside (a2, b2). We define the perturbed function, f(x, ε), as:

f(x, ε) = f(x) + g1(x) + g2(x).

Assume further that g1 and g2 are chosen such that i) f(x, ε) ≥ 0 on [0, 1] and

ii)
´ b1
a1

g1(x) dx = ε and
´ b2
a2

g2(x) dx = −ε. Our assumptions on g1 and g2 imply

that f(·, ε) is a pdf on [0, 1]. Figure 3 shows the construction of f(·, ε) graphically.
Visually, we can see that the above re-distribution moves a population of size ε

from jurisdiction 3 to jurisdiction 1. However, the population we move continues

to shop in jurisdiction 3. Therefore, for small enough ε, we expect the above

population re-distribution to—very slightly—increases the population in jurisdic-

tion 1 without impacting the tax bases or sensitivities, and thus not changing the

equilibrium conditions or the pre-redistribution equilibrium tax rates.

Indeed, Lemma 1 will be used to show that specific population movements

to/from particular points will yield the same equilibrium tax rates.

Lemma 1. (Perturbations and Equilibrium) Let g : [0, T ] → R be a contin-

uous function. Let z∗ be the unique maximizer of g over [0, T ]. We can embed g

into a family of perturbations g(·, ε) with ε ≥ 0 such that g(z, 0) = g(z) for all

z ∈ [0, T ]. Assume further that:

i) there exists an open interval S that is a subset of [0, T ] and that contains

z∗ such that for all z ∈ S and all ε, we have g(z, ε) = g(z) .

ii) for all z ∈ [0, T ] and all ε ∈ [0, ε], we have |g(z, ε)− g(z)| < ε.

There exists ε̃ such that ∀ ε < ε̃, z∗ is the unique maximizer of g(·, ε) over [0, T ].

11The other two cases can be shown trivially to lead to our desired result (Appendix A.5).
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Figure 3: Graphical Representation of Perturbation

The horizontal x axis shows an interval (a, b) relative to the borders and the cutoff rules for
an initial equilibrium corresponding to TN

1 = TN
2 > TN

3 . This figure then shows the specific
perturbation to the distribution functions given by the continuous functions g1 and g2, which
equal zero for all x other than the where the functions are nonzero. The shaded area of g1 is ε
while it is −ε for g2. The perturbations are amplified graphically. The shape of the distribution
function, position of cut-off rules, and jurisdiction borders are not drawn to scale.

Proof. See Appendix A.3.

Intuitively, given a function with a unique maximizer z∗ over some compact

interval, we can introduce a “very small” perturbation that occurs “far enough”

from z∗. After such perturbation, z∗ continues to be a unique maximizer for the

perturbed function. We will apply the above lemma to the payoffs functions R1,

R2, and R3 and to specific perturbations of the underlying population distribution.

This will allow us to show in Appendix A.5 that the equilibrium of the original

unperturbed game (with a population distribution satisfying Assumptions 1 and

2) is also an equilibrium to a perturbed game (with a population distribution that

may fail to satisfy Assumptions 1 and 2).12

However, this perturbation alone does not yield our result, but now must

also be combined with changes in jurisdiction boundaries. With this new popula-

12For small enough ε, the solution of the unperturbed problem is an equilibrium for the
perturbed problem. However, the perturbed problem may have additional equilibria. This
possibility in the perturbed game does not invalidate the subsequent proposition because we are
claiming the existence of a game with at least one equilibrium that has specific properties.
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tion distribution, starting from the boundaries such that TN
1 = TN

2 , we can then

make sufficiently small changes in jurisdictional boundaries such that TN
1 < TN

2

without changing the inequality on the relationship between populations.

Lemma 2. (Comparative Statics) Suppose Assumptions 1 and 2 hold. The

equilibrium of the game G(l12, l23) satisfies

∂(TN
1 −TN

2 )

∂l12
> 0

∂(TN
1 −TN

3 )

∂l12
> 0

∂(TN
2 −TN

3 )

∂l12
< 0

∂(TN
1 −TN

2 )

∂l23
< 0

∂(TN
1 −TN

3 )

∂l23
> 0

∂(TN
2 −TN

3 )

∂l23
> 0

. (15)

Proof. See Appendix A.4.

Intuitively, focusing on the case of l12, if l12 increases clockwise, all else

equal, the tax differential TN
1 −TN

2 increases because the direct effect of an increase

in length of jurisdiction 1 (simultaneously shrinking 2’s size) is to raise the tax

base in 1 and decrease tax base in 2. Further, jurisdiction 3 shrinks in size relative

to jurisdiction 1 but increases in relative size compared to jurisdiction 2, and tax

rates follow these relative patterns. We further prove in the Appendix that this

lemma will hold for the perturbed game G(ε, l12, l23) as well.

Under the new perturbed distribution corresponding to the specific pertur-

bation ε̃, we have that the population of jurisdiction 1 is larger than that of juris-

diction 2, but the Nash tax rates of the two jurisdictions are unchanged, and thus

the equality in (14) still holds. Thus, in the final step of the proof, we move l12 to a

slightly lower level, l̃12. Then by Lemma 2, we obtain TN
1 (ε̃, l̃12, l23) < TN

2 (ε̃, l̃12, l23)

while P1(ε̃, l̃12, l23) > P2(ε̃, l̃12, l23), overturning the classic result.

Alternatively, we could have started from P1 = P2 > P3, moved some pop-

ulation from jurisdiction 1 to jurisdiction 3 without changing taxes, and then in-

creased l12 slightly. This would yield TN
1 (ε̃, l̃12, l23) > TN

2 (ε̃, l̃12, l23) while P1(ε̃, l̃12, l23) <

P2(ε̃, l̃12, l23). We can state:

Proposition 4. (Three Jurisdictions & Tax Rates) Suppose Assumptions

1 and 2 hold. There exist ε̃, l̃12, and l23 and a population distribution f(x, ε̃)

such that in the game G(ε̃, l̃12, l23), the populations of the jurisdictions and the

Nash equilibrium are such that P1(ε̃, l̃12, l23) > P2(ε̃, l̃12, l23) and TN
1 (ε̃, l̃12, l23) <

TN
2 (ε̃, l̃12, l23). Alternatively, we can find a population distribution with P1(ε̃, l̃12, l23) <

P2(ε̃, l̃12, l23) and TN
1 (ϵ̃, l̃12, l23) > TN

2 (ϵ̃, l̃12, l23). That is, a smaller jurisdiction can

set a higher tax rate than the next largest jurisdiction.
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Proof. See Appendix A.5.

The reason why Proposition 2 can be overturned is based on the fact that

with three jurisdictions, a jurisdiction can attract cross-border shoppers from

two—instead of one jurisdiction—at different magnitudes and sensitivities. Specif-

ically, for jurisdiction 1 to set a higher tax rate than jurisdiction 2 it must be that:

TN
1 > TN

2 ⇐⇒ P1 − CBSN
12 − CBSN

31

[f(xN
31)+f(xN

12)]/δ
>

P2 + CBSN
12 − CBSN

23

[f(xN
12)+f(xN

23)]/δ
.

If the tax-base sensitivities,
∣∣∣∂Bi

∂Ti

(
TN
1 , TN

2 , TN
3

)∣∣∣, are the same for all jurisdictions—

as is the case under a uniform distribution—a jurisdiction would set a higher tax

rate if and only if it was the larger jurisdiction (for the same reasons as in Propo-

sition 2). To see this, if TN
1 > TN

2 we have CBSN
12 > 0 and the only way the

classic result can be overturned, i.e., when P2 > P1, is if CBSN
23 − CBSN

31 > 0. In

the case of the uniform distribution these magnitudes are simply proportional to

the cutoff rule’s tax differential, and it can easily be seen that CBS31 < 0 requires

TN
1 < TN

3 while CBS23 > 0 requires TN
2 > TN

3 , which contradicts TN
1 > TN

2 .

Similarly, if CBS23 > 0, but CBS31 > 0, for TN
1 > TN

2 to arise it must be that

CBS31 > CBS23, which contradicts that CBSN
23 − CBSN

31 > 0. When density is

non-uniform, the tax rate in jurisdiction 1 can indeed be larger than in jurisdic-

tion 2 if
∣∣∣∂B2

∂T2

(
TN
1 , TN

2 , TN
3

)∣∣∣ is sufficiently larger than
∣∣∣∂B1

∂T1

(
TN
1 , TN

2 , TN
3

)∣∣∣ in order

to compensate for the fact that P1 < P2 and thus that the tax base in 2 may

be larger. To see this, suppose that the numerators of the prior conditions are

approximately equal. Then, the relative relationship between f
(
xN
31

)
and f

(
xN
23

)
determines the relationship above.

The prior results in Proposition 4 focused, without loss of generality, on

comparing jurisdictions 1 and 2 (a smaller jurisdiction with a larger jurisdiction).

But the results can easily be extended to other pairwise comparisons of tax rates

(including comparing the smallest jurisdiction with the largest). We can compare

jurisdiction 1 and 2, 1 and 3, and 2 and 3. This can easily be seen by example.

Example 2. (Triangular Distribution and Asymmetric Jurisdictions) In

this example, we revisit Example 1. Let l̂ be a value that satisfies
√
73
16

− 3
16

<

l <
√
57
12

− 1
4
. Then, l12 = l̂ and l23 = 1 − l̂. Given the results of Example 1, we

already know that at such a value of l̂, P3 = P1 < P2 and TN
1 = TN

3 > TN
2 . In

this example, we fix l12 = l̂ and increase l23 from 1 − l̂ to 1 − l̂ + ε, with ε very
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small, thus breaking the symmetry of the jurisdictions. Then, the equalities in

Example 1 can be replaced with inequalities such that pairwise comparisons of

two jurisdictions, can yield the smallest setting a rate higher than the largest.

We state this result as:

Proposition 5. (Smallest versus Largest Jurisdiction) Suppose Assumptions

1 and 2 hold. There exists distribution functions such that, in the Nash equilib-

rium, the smallest jurisdiction can set a tax rate that is higher than the largest

jurisdiction, that is, where P3 < P1 < P2 and TN
3 > TN

2 .

Proof. To show there exist such a distribution, start with the scenario in the

example. The ε increase in l23 raises the population of jurisdiction 2 at the expense

of 3. By Lemma 2 we know the effect of this on relative tax differentials. Thus,

when l12 = l̂ and l23 = 1− l̂ + ε, we have:

P3 < P1 < P2 (16)

and

TN
1 > TN

3 > TN
2 . (17)

Armed with these additional pairwise comparisons, we next pursue the

question of whether it is possible to have a full reversal of tax rates where pop-

ulations and taxes have the opposite rank orderings for all three jurisdictions.

Without loss of generality, we focus on the case where P1 < P3 < P2. Using a

similar strategy of shifting populations with taxes unchanged and changing border

lengths, as in Proposition 4, we can show:

Proposition 6. (Three Jurisdictions & Complete Ordering of Tax Rates)

Suppose Assumptions 1 and 2 hold. There exist a distribution function and values

of l12 and l23 such that TN
2 < TN

3 < TN
1 despite P2 > P3 > P1.

Proof. Start with P2 > P3 = P1, but T
N
3 = TN

1 > TN
2 , which we know is possible

by Example 1. As in the proof of Proposition 4, we introduce a specific population

move ε from jurisdiction 2 to jurisdiction 3, while maintaining the old equilibrium.

This will give a new ordering P2 > P3 > P1 with the same equilibrium TN
3 = TN

1 >

TN
2 . Finally, imposing Assumption 2 on our population distribution, we apply
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the second set of inequalities in Lemma 2 and increase l23 slightly to maintain

P2 > P3 > P1 and obtain the final equilibrium rates TN
2 < TN

3 < TN
1 .

Proposition 6 not only shows that a smaller jurisdiction can set the higher

tax rate, but that the full ranking of tax rates follows the reverse order of popu-

lations. Proposition 6 follows from the pairwise comparisons of tax rates between

jurisdictions 1 and 2 and between jurisdictions 2 and 3 following Example 2 and

Proposition 5. We conclude that with multiple competitors and a general popula-

tion distribution, many different parameter values can yield interjurisdictional tax

differentials where larger jurisdictions set lower rates than smaller jurisdictions.

3 Broadening the Model to Other Settings

While the focus of our previous analysis was on commodity taxation, this sec-

tion highlights that the setup—and main message of our paper—can be easily

applied to corporate or capital taxation. Size matters in these contexts as well.13

Although models of corporate/capital tax competition do not generally rely on

Hotelling-style models used in the commodity tax competition literature, the spa-

tial dimension can be reinterpreted in terms of profit shifting or capital mobility.

3.1 Profit Shifting

Keen and Konrad (2013) have already shown that the spatial commodity tax

framework can be used to study international profit shifting by redefining the travel

costs that individuals incur to cross-border shop as profit shifting costs.14 More

specifically, they consider a representative multinational enterprise that earns fixed

profit Πi, i = 1, 2 in each jurisdiction in the absence of profit shifting. The multina-

tional enterprise can shift an amount xij (Ti, Tj) between countries i and j in order

to minimize its overall tax payments. The extent of profit shifting depends on the

difference in tax rates between the two jurisdictions. For notational convenience,

we drop the arguments in xij (Ti, Tj) and use xij. Note xij > 0 if Ti > Tj and

xij ≤ 0 if Ti ≤ Tj. However, like cross-border shopping, profit shifting is costly,

13Wilson (1991) and Bucovetsky (1991) find that in a two-jurisdiction economy, the small
jurisdiction is better off than the larger jurisdiction under tax competition, because its low tax
rate is increasing its tax base at the expense of the large jurisdiction.

14Other extensions of the spatial tax competition framework to profit shifting include Agrawal
and Wildasin (2019) and Hebous and Keen (2023).
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which Keen and Konrad (2013) assume to be of the quadratic form C (xij) =
δ
2
x2
ij.

The assumption of quadratic shifting costs imply an optimal amount of shifted

profits similar to the cut-off rule for cross-border shopping given by (2).15

To align our commodity tax framework with the profit shifting model, we

have to extend the Keen and Konrad (2013) adaptation to include a third juris-

diction to which the multinational firm can shift profits. This adds an element of

realism to the model as firms generally have multiple subsidiaries located across

different countries. To ensure that the multinational firm does not shift profits

to only one jurisdiction, we assume shifting costs are bilateral, that is, Cij (xij).
16

The assumption of bilateral costs maps to placing jurisdictions along a circle.

Next, to map the commodity tax model to profit shifting, we show how

the population distribution function relates to the shifting cost function. Like

density, the shape of the shifting cost function has important implications for

tax competition. Analogous to the assumption of uniform density, the prior lit-

erature has assumed the cost function is quadratic. We allow for a more gen-

eral form where shifting costs are strictly convex i.e., sign
(

∂Cij

∂xij

)
= sign (xij) ,

sign
(

∂mCij

∂xm
ij

)
= sign (|xij|) and

∂nCij

∂xn
ij

> 0, 1 < m < n, where n denotes the

highest-order derivative. This says that the sign of the first derivative is either

positive or negative depending on the tax differential, the signs of all higher-order

derivatives are non-negative, and the sign of the highest-order derivative is strictly

positive. For simplicity, assume n = 3. Relaxing the assumption about the third

derivative of the shifting costs is the linking element between the profit shifting

model and our commodity tax model. The multinational’s after-tax profits are:

(1− T1) (Π1 − x12 − x13)+(1− T2) (Π2 + x12 − x23)+(1− T3) (Π3 + x13 + x23)−C12−C13−C23,

which yields the following optimal levels of profit shifting:

∂Cij

∂xij

= Ti − Tj, j = {2, 3}, i = {1, 2}, j ̸= i. (18)

15The reason is that the marginal benefits/costs of cross-border activity becomes the same in
the two models. In the commodity tax model, a consumer living z units away from the border
will purchase abroad if the cost of traveling δz is smaller than the tax savings given by the the
tax rate differential Ti − Tj . In the profit-shifting model, a company will shift additional units

of profit as long as the marginal cost of shifting ∂C(x)
∂x is smaller than the tax savings given by

the tax rate differential Ti−Tj . If shifting costs are quadratic then ∂C(x)
∂x = δx, which resembles

the cost of traveling in the commodity-tax framework.
16See Huizinga, Laeven and Nicodème (2008) and van’t Riet and Lejour (2018) for empirical

evidence showing that multinational firms base their decisions on bilateral costs.
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Denoting x∗
ij(Ti, Tj) as the optimal levels of shifting implied by (18), we

derive the sensitivity of profit shifting:

∂x∗
ij

∂Ti

= −∂x∗
ij

∂Tj
=

1
∂2Cij

∂x2
ij

, j = {2, 3}, i = {1, 2}, j ̸= i.

The tax-sensitivity of profit shifting depends on the magnitude of
∂2Cij

∂x2
ij

and thus ultimately on the shape of the shifting cost function. Based on the

multinational firm’s trade-offs, we can formulate the jurisdictions’ tax revenues as

R1 = T1 [Π1 − x∗
12 − x∗

13] ,

R2 = T2 [Π2 + x∗
12 − x∗

23] ,

R3 = T3 [Π3 + x∗
13 + x∗

23] .

Differentiating Ri with respect to Ti implicitly determines the optimal taxes, where

we let x∗
ij(T

N
i , TN

j ) ≡ xN
ij and

∂2Cij

∂x2
ij

≡ c
′′
ij:

TN
1 = − Π1 − xN

12 − xN
13

−∂x12

∂T1
(TN

1 , TN
2 )− ∂x13

∂T1
(TN

1 , TN
3 )

=
Π1 − xN

12 − xN
13(

c
′′
12 (T

N
1 , TN

2 )
)−1

+
(
c
′′
13 (T

N
1 , TN

3 )
)−1 ,

TN
2 = − Π2 + xN

12 − xN
23

∂x12

∂T2
(TN

1 , TN
2 )− ∂x23

∂T2
(TN

2 , TN
3 )

=
Π2 + xN

12 − xN
23(

c
′′
12 (T

N
1 , TN

2 )
)−1

+
(
c
′′
23 (T

N
2 , TN

3 )
)−1 ,

TN
3 = − Π3 + xN

13 + xN
23

∂x13

∂T3
(TN

1 , TN
3 ) +

∂x23

∂T3
(TN

2 , TN
3 )

=
Π3 + xN

13 + xN
23(

c
′′
13 (T

N
1 , TN

3 )
)−1

+
(
c
′′
23 (T

N
2 , TN

3 )
)−1 .

The optimal corporate tax rates have the same structure as the equations

(10)-(12), where the exogenous firm profits Πi play the same role as the exogenous

population size Pi. Profit shifting, xN
12, x

N
13 and xN

23, is analogous to cross-border

shopping, CBSN
12, CBSN

31 and CBSN
23. The functional form of the shifting costs

Cij affects the tax-base sensitivity in a similar fashion as the functional form of the

population distribution f(x), where f
(
xN
12

)
, f

(
xN
23

)
and f

(
xN
31

)
in the commodity

tax model matches
(
c
′′
12

(
TN
1 , TN

2

))−1
,
(
c
′′
23

(
TN
2 , TN

3

))−1
,
(
c
′′
13

(
TN
1 , TN

3

))−1
in the

profit shifting model. If the cost function is quadratic, these terms are all equal,

yielding the standard result that bigger jurisdictions set higher rates. For ease of

exposition, we focus on illustrating how our result in Proposition 3 can be derived

in the profit shifting model. Note that we can define the allocation of real profits

across countries as Π1 = l12Π, Π2 = (l23 − l12)Π, and Π3 = (1− l23)Π, where Π
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Figure 4: Eliminating Discontinuities in Capital Tax Models

(a) Model setup in Mongrain and Wilson (2018)

(b) Adjusted Model Setup without Discontinuities
Panel A shows the setup of Mongrain and Wilson (2018), including a discontinuity in the dis-

tribution. Panel B shows how we eliminate the discontinuity to simplify the problem, but still

preserving all qualitative results of the model. For illustrative purposes, the Figure depicts a

cut-off rule if T1 > T2.

denotes worldwide profits and l12, (l23 − l12) and (1− l23) are the exogenous shares

of multinational’s production in each country, with 0 < l12 < l23 < 1, where due

to symmetry l12 = l and l23 = 1− l. Then it becomes clear that if Π1 < Π2 there

exist cost functions such that TN
1 > TN

2 if and only if l < l < l̄.

3.2 Capital Mobility

Next, we demonstrate similarities with models of capital mobility by drawing

on Mongrain and Wilson (2018), which analyzes tax competition in a setting

where firms face heterogeneous moving costs. More specifically, there are two

jurisdictions i = 1, 2 and a mass of firms of 2N . Jurisdictions may differ in

their size, that is, jurisdiction 1 is assumed to be the larger jurisdiction with

initially N1 = n2N firms, whereas jurisdiction 2 comprises N1 = (1− n) 2N ,

where n ∈ [1/2, 1). Firms generate exogenous profits γ > 1 and can relocate

to the other jurisdiction, which results in idiosyncratic moving costs ĉ ∈ [0, 1]

distributed according to a cumulative distribution function F (ĉ), with density

f (ĉ). Tax competition arises because firms are taxed depending on where they

are located, that is, each jurisdiction levies a source-based tax Ti.

Figure 4a illustrates the situation of T1 > T2, which implies that some

firms with moving costs ĉ ≤ c12 ≡ γ (T1 − T2) initially located in jurisdiction
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1 relocate to jurisdiction 2, so that the tax bases in jurisdictions 1 and 2 are

given by γN1 [1− F (c12)] and γN2 + γN1F (c12). The setup described in Figure

4a is identical to the setup in Kanbur and Keen (1993) and therefore implies

that the reaction function of the small jurisdiction, here jurisdiction 2, features a

discontinuity. This feature could considerably complicate our analysis.

For this reason, we modify the Mongrain and Wilson (2018) model to elim-

inate the discontinuity in the best response function without affecting the model’s

results in a qualitative manner. Our model circumvents the discontinuity by alter-

ing the length of the jurisdictions (instead of the height) to make one bigger than

the other. After applying this adjustment to the Mongrain and Wilson (2018)

model, the model setup can be summarized in the Figure 4b. Figure 4b illus-

trates the situation of T1 > T2, which implies that some firms with moving costs

ĉ ≤ c12 ≡ γ (T1 − T2) initially located in jurisdiction 1 relocate to jurisdiction 2,

with the difference that there is no discontinuity at the border and, in turn, in the

small jurisdiction’s tax reaction function. The tax bases in jurisdictions 1 and 2

are now given by γ [N1 − F (c12)] and γ [N2 + F (c12)].

Based on these adjustments, we extend the Mongrain and Wilson (2018)

model to three jurisdictions. To align the capital-mobility model with the commodity-

tax model, we need a few additional assumptions. First, following Janeba and

Schulz (2023) and Fuest and Sultan (2019), there are three industries but each in-

dustry links only two countries, i.e., industry ij links countries i and j. Firms in in-

dustry ij can only locate in these two countries because firms cannot change indus-

tries. The idea that countries differ in industries is consistent with the Ricardian

idea of specialization resulting from regulatory or technological differences across

countries. Second, firms draw an industry-specific moving cost ĉij ∈ [0, 1] from

an industry-specific cumulative distribution function Fij (ĉij) with density fij (ĉij).

Firms located in jurisdiction i will move to jurisdiction j if ĉij ≤ cij ≡ γ (Ti − Tj),

where the cost without the “hat” denotes the optimal cutoff rule.

Based on these assumptions, we can formulate the jurisdictions’ revenues:

R1 = T1 [N1 − F12 (c12)− F13 (c13)] ,

R2 = T2 [N2 + F12 (c12)− F23 (c23)] ,

R3 = T3 [N3 + F13 (c13) + F23 (c23)] ,

where N1 = l12N , N2 = (l23 − l12)N and N3 = (1− l23)N with N denoting the
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total number of firms and l12, (l23 − l12) and (1− l23) denoting the exogenous

shares of initial firms in each country (0 < l12 < l23 < 1). Differentiating the

revenue functions Ri implicitly determines the optimal taxes

TN
1 =

N1 − F12

(
cN12

)
− F13

(
cN13

)
γ [f12 (cN12) + f13 (cN13)]

,

TN
2 =

N2 + F12

(
cN12

)
− F23

(
cN23

)
γ [f12 (cN12) + f23 (cN23)]

,

TN
3 =

N3 + F13

(
cN13

)
+ F23

(
cN23

)
γ [f13 (cN13) + f23 (cN23)]

,

where cNij are the optimal cutoff rules evaluated at Nash tax rates.

Again, the structure of the optimal tax rates is qualitatively the same as

(10)-(12), where the initial number of firms located in a jurisdiction, Ni, plays

the same role as the exogenous population size Pi. The number of firms moving,

F12

(
cN12

)
, F13

(
cN13

)
and F23

(
cN23

)
corresponds to the number of cross-border shop-

pers CBSN
12, CBSN

31 and CBSN
23, and the distribution of moving costs, fij

(
cNij

)
,

plays the same role as the distribution of population, f
(
xN
ij

)
. If we assume sym-

metry in the same way as under Proposition 3, then it is clear that if N1 < N2

there exists moving-cost distributions such that TN
1 > TN

2 if and only if l < l < l̄.

4 Conclusions

Declining mobility costs, technological change, and reductions in border controls

pose substantial challenges to the design of tax policies in an open economy. Many

standard strategic tax competition models assume duopolistic competition leading

to the conventional view that bigger jurisdictions set higher tax rates. However,

in reality, competition for mobile tax bases is usually not just a bilateral, but a

multilateral matter. We show that allowing for oligopolistic competition can lead

to fundamentally different outcomes in the tax competition game irrespective of

whether jurisdictions compete for cross-border shoppers, capital, or profits. In

the commodity tax setting, the shape of the distribution of residents is critical. In

companion work (Agrawal and Mardan 2023), using data on the distribution of

households within jurisdictions, we empirically show that increases in the density

of marginal households near the border is negatively correlated with a jurisdiction’s

sales tax rate and negatively correlated with it being higher tax than its neighbors.
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Our analysis focuses on a single-tax policy. However, an important feature

of a tax system is that jurisdictions decide on multiple tax policies. In the case

of commodity taxes, for example, governments may set different excise tax rates

on products that may be complements or substitutes (Hoyt 2017).17 We could

extend our model to multiple excise taxes on different products (e.g., beer, wine,

and spirits). To do so, we would need to relax the assumption of inelastic de-

mand following Devereux, Lockwood and Redoano (2007), and then add a second

commodity that influences demand for the first. We have focused on the case in

which tax-base interdependencies play a subordinate role. In a quasi-linear model

with two goods and two tax rates, if consumption of one commodity is indepen-

dent of consumption of the other commodity—consumer utility is separable in the

commodities—cross-price elasticities of demand are zero and our results would

carry through. However, Scheuer and Werning (2016) note that the inverse elas-

ticity rule may provide little guidance for policy when cross-price elasticities are

not zero. Concerning the results of our model, this implies that the conventional

view that bigger jurisdictions set higher tax rates may no longer hold even in

the two-jurisdiction case. Future research might explore the role of such tax-base

interdependencies more thoroughly in order to think about tax competition as it

relates to the tax system—not just to a specific tax instrument in isolation.

Although our focus is on competition between governments, our framework

shares important commonalities with industrial organization models that consider

price competition with more than two firms (Aoyagi and Okabe 1991; Caplin and

Nalebuff 1991 Chen and Riordan 2007; Zhou 2017; Tarbush 2018) or price compe-

tition in networks (Bloch and Querou 2013; Mossay and Picard 2011; Ushchev and

Zenou 2018), “spatial” voting models, where voters differ in preferences (Wittman

1983), and the role of border-effects in trade (Anderson and van Wincoop 2003;

Evans 2003) and in urban economics (Holmes 1998).

With reference to border-effects in urban economics, our model implies that

the population distribution is critical for the elasticity of the tax base. While it

is reasonable to believe that sales-tax differentials are not a major determinant

of housholds’ (residential) migration decisions, jurisdictions have alternative in-

struments that influence where people live. For example, land use and zoning

regulations may allow jurisdictions to influence the distribution of firms and indi-

17More generally, as noted in Slemrod (2019) and Keen and Slemrod (2017), a tax system
consists of more than tax bases and rates, with remittance rules, enforcement policies, and
information exchange potentially influencing the elasticity of the tax base
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viduals and thus choose the elasticity of the tax base, as in Slemrod and Kopczuk

(2002), to maximize tax revenues. Indeed, Jacob and McMillen (2015) document

that commercial and industrial parcels are significantly more likely to be located

near municipal boundaries, which reduces the likelihood of own-residents shopping

in the neighboring jurisdiction and, at the same time, increases the likelihood of

attracting neighboring cross-shoppers due to reduced travel times. Whether such

a policy is desirable from a welfare perspective needs to be evaluated in a general

equilibrium model that takes into account repercussions on, inter alia, the housing

market—again highlighting the role of cross-price elasticities.

A Appendix: Proofs

A.1 Proof of Existence and Uniqueness (2 Jurisdictions)

The game is supermodular if the strategy set is compact and the payoff functions

display strategic complementarity in the taxes (Rota-Graziosi 2019). The strategy

set is the compact set [0, T ].

The FOCs are given by (3) and (4). We can rewrite (3) as:

∂R1

∂T1

= F (x12)[1−
T1

δ

f(x12)

F (x12)
]︸ ︷︷ ︸

A

−F (x21)[1 +
T1

δ

f(x21)

F (x21)
]︸ ︷︷ ︸

B

(A.1)

Taking the derivative of term A with respect to T2 yields

A′ =
f(x12)

δ

[
1− T1

δ

f ′(x12)

f(x12)

]
. (A.2)

Then using our assumptions, we have:

f ′(z)

f(z)
≤ f ′(0)

f(0)
<

δ

T
, ∀ z ∈ [0, 1] (A.3)

where the first inequality follows from the log-concavity of f and the second in-

equality follows from Assumption 2. Thus, A′ in positive for all T2. By the

log-concavity of f and the definitions in (2), term A is strictly increasing in T2,

where the strict condition follows from the from the strict inequality in (A.3). As

shown in Bagnoli and Bergstrom (2005), the log-concavity of f implies that F is

also log-concave and therefore f(x21)
F (x21)

is weakly decreasing in x. By (2), x21 de-
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creases in T2 and therefore term B is a product of two positive weakly decreasing

functions in T2. Thus, combined with the fact that A strictly increases in T2, we

can conclude that the right hand side of (A.1) is strictly increasing in T2. There-

fore, ∂2R1

∂T2∂T1
> 0. Applying the same argument to R2, we conclude that

∂2R2

∂T1∂T2
> 0.

Hence, the game is supermodular and has an equilibrium (Topkis 1979).

Furthermore, we can make use of the dominant diagonal argument to prove

uniqueness of the equilibrium (Vives 1999, page 47). We can compute

Φ1 ≡
∂2R1

∂T 2
1

+
∂2R1

∂T2∂T1

= −f (x12) + f (x21)

δ
< 0.

Similarly, we have

Φ2 ≡
∂2R2

∂T 2
2

+
∂2R2

∂T1∂T2

< 0.

Thus, the equilibrium in unique.18

A.2 Proof of Existence and Uniqueness (3 jurisdictions)

Focusing on jurisdiction 1, differentiating the revenue functions yields:

∂R1

∂T1

= F (x12)

[
1− T1

δ

f (x12)

F (x12)

]
︸ ︷︷ ︸

A

−F (x31)

[
1 +

T1

δ

f (x31)

F (x31)

]
︸ ︷︷ ︸

C

. (A.4)

Term A is identical to that in (A.1) and thus we can repeat the argument in

Appendix A.1 to show it is strictly increasing in T2. This proves the claim for T2

as x31 is unaffected by T2. Similarly, we know that x31 decreases in T3,which means

that term C decreases in T3 because the log-concavity of f in Assumption 1 implies

that F is also log-concave. Hence, the negative second term of jurisdiction 1’s first-

order condition becomes less negative as T3 increases, which proves the claim for

T3 as x12 is unaffected by T3. Thus
∂2R1

∂T1∂T2
> 0 and ∂2R1

∂T1∂T3
≥ 0. Applying this logic

to all jurisdictions implies that the game is supermodular under Assumption 1.

With respect to uniqueness, for i ∈ {1, 2, 3}, let

Φi ≡
∂2Ri

∂T 2
i

+
∑
j ̸=i

∂2Ri

∂Tj∂Ti

.

18The definition of Φ1, the fact that Φ1 < 0, and the supermodularity of the game imply that
the second partial of R1 with respect to T1 is strictly negative and R1 is strictly concave in T1.
Therefore, the best response is single-valued. The same is true for the second jurisdiction.

28



We compute the elements of the Hessian matrix:

γ1 =
∂2R1

∂T 2
1

= −1

δ
[f (x12) + f (x31)]− (γ2 + γ3) < 0,

γ2 =
∂2R1

∂T2∂T1

=
1

δ

[
f (x12)−

T1

δ
f ′ (x12)

]
> 0,

γ3 =
∂2R1

∂T3∂T1

=
1

δ

[
f (x31) +

T1

δ
f ′ (x31)

]
≥ 0,

γ4 =
∂2R2

∂T1∂T2

=
1

δ

[
f (x12) +

T2

δ
f ′ (x12)

]
≥ 0,

γ5 =
∂2R2

∂T 2
2

= −1

δ
[f (x12) + f (x23)]− (γ4 + γ6) < 0,

γ6 =
∂2R2

∂T3∂T2

=
1

δ

[
f (x23)−

T2

δ
f ′ (x23)

]
> 0,

γ7 =
∂2R3

∂T1∂T3

=
1

δ

[
f (x31)−

T3

δ
f ′ (x31)

]
> 0,

γ8 =
∂2R3

∂T2∂T3

=
1

δ

[
f (x23) +

T3

δ
f ′ (x23)

]
≥ 0,

γ9 =
∂2R3

∂T 2
3

= −1

δ
[f (x23) + f (x31)]− (γ7 + γ8) < 0.

The indicated signs of these γ′s follows from the supermodularity of the payoffs

functions. It can then be immediately seen that under assumption 1 and 2, Φi < 0

for all jurisdictions, which proves uniqueness (Vives 1999).

A.3 Proof of Lemma 1

Let S = (α, β). Let M be the maximum value of g on [0, α], and let N be the

maximum value of g on [β, T ]. Since z∗ is the unique maximizer of g, we can find ε̃

to be such that g(z∗) > max{M + ε̃, N + ε̃}. Assumption (ii) and the definition of

ε̃ imply that, for all ε < ε̃, the maximum of g(·, ε) over [0, α]
⋃
[β, z] is strictly less

than g(z∗), which is equal to g(z∗, ε) by assumption (i). Moreover, assumption

(i) implies that, for all ε, g(z∗) is the maximizer of g(·, ε) over (α, β). Therefore,

for all ε < ε̃, we have g(z∗, ε) > g(z, ε), for all z ∈ [0, T ] that is different fromz∗.

Hence, z∗ is the unique maximizer of g(·, ε) over [0, T ].
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A.4 Proof of Lemma 2

Multiplying the first-order conditions of the game by delta and totally differenti-

ating yields the following system of equations:
α1 α2 α3

α4 α5 α6

α7 α8 α9

×


dT1

dT2

dT3

 =


−δα2

δα4

0

 dl12 +


0

−δα6

δα8

 dl23 +


δα3

0

−δα7

 dl31,

where αi = δγi. Using Cramer’s rule, we can derive the effect of a change in l12

on the equilibrium tax rates as follows:

dTN
1

dl12
= −α2 (α5α9 − α6α8) + α4 (α2α9 − α3α8)

δ2|Γ|
,

dTN
2

dl12
=

α4 (α1α9 − α3α7) + α2 (α4α9 − α6α7)

δ2|Γ|
,

dTN
3

dl12
= −α4 (α1α8 − α2α7) + α2 (α4α8 − α5α7)

δ2|Γ|
,

and the effect of l23 as

dTN
1

dl23
=

α6 (α2α9 − α3α8) + α8 (α2α6 − α3α5)

δ2|Γ|
,

dTN
2

dl23
= −α6 (α1α9 − α3α7) + α8 (α1α6 − α3α4)

δ2|Γ|
,

dTN
3

dl23
=

α6 (α1α8 − α2α7) + α8 (α1α5 − α2α4)

δ2|Γ|
.

where |Γ| < 0 to obtain a maximum. By Assumption 2, we have γ2, γ6, γ7 > 0,

that is, a strict inequality. Therefore, we also have α2, α6, α7 > 0. Moreover, we

can derive the following relationships:

dTN
1

dl12
− dTN

2

dl12
=

[f (x12) + f (x23)]α2α9 + [f (x12) + f (x31)]α4α9

δ2|Γ|

− [f (x23) + f (x31)] (α2α6 + α3α4)

δ2|Γ|
≡

Ω12
l12

δ2|Γ|
> 0,
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dTN
1

dl12
− dTN

3

dl12
=

[f (x23) + f (x31)]α2 (α4 + α5)

δ2|Γ|

− [f (x12) + f (x31)]α4α8 + [f (x12) + f (x23)]α2α8

δ2|Γ|
≡

Ω13
l12

δ2|Γ|
> 0,

dTN
2

dl12
− dTN

3

dl12
=

[f (x12) + f (x23)]α2α7 + [f (x23) + f (x31)]α3α4

δ2|Γ|

+
[f (x12) + f (x31)] [f (x23) + f (x31)]α4 + [f (x12) + f (x31)]α4α7

δ2|Γ|
≡

Ω23
l12

δ2|Γ|
< 0.

(A.5)

and

dTN
1

dl23
− dTN

2

dl23
=

α6 [[f (x12) + f (x31)]α7 − (α1 + α2) [f (x23) + f (x31)]]

δ2|Γ|

+
α3α8 [f (x12) + f (x23)]

δ2|Γ|
≡

Ω12
l23

δ2|Γ|
< 0,

dTN
1

dl23
− dTN

3

dl23
=

[f (x12) + f (x31)] (α5 + α6)α8 − α2α8 [f (x12) + f (x23)]

δ2|Γ|

− α2α6 [f (x23) + f (x31)]

δ2|Γ|
≡

Ω13
l23

δ2|Γ|
> 0,

dTN
2

dl23
− dTN

3

dl23
=

α1α6 [f (x23) + f (x31)]− [f (x12) + f (x31)] (α6α7 + α4α8)

δ2|Γ|

+
α1α8 [f (x12) + f (x23)]

δ2|Γ|
≡

Ω23
l23

δ2|Γ|
> 0. (A.6)

A.5 Proof of Proposition 4

A.5.1 Formalities and Outline

Given any vectors T = (T1, T2, T3) and l = (l12, l23), we define the following

quantities representing the marginal shoppers by x12(T1, T2, l12) = l12 − (T1−T2)
δ

,

x23(T2, T3, l23) = l23− (T2−T3)
δ

, and x31(T3, T1) = l31− (T3−T1)
δ

, where l31 is normalized

to zero. Under perturbation ε, we also denote the (parameterized) payoff functions:

R1(T1,T−1, ε, l12) = T1[F (x12(T1, T2, l12), ε)− F (x31(T3, T1), ε)],

R2(T2,T−2, ε, l12, l23) = T2[F (x23(T2, T3, l23), ε)− F (x12(T1, T2, l12), ε)],

R3(T3,T−3, ε, l23) = T3[1− F (x23(T2, T3, l23), ε) + F (x31(T3, T1), ε)],
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where T−i denote the actions of players other than player i (e.g. T−1 = (T2, T3)).

When ε = 0 (i.e. when we are considering a game with the original—

unperturbed—pdf and the only parameters that can take different values are l12

and l23), we simply drop ε from the notation. We write G(l12, l23) to denote

the game. We write R1(T1,T−1, l12), R2(T2,T−2, l12, l23), R3(T3,T−3, l23) for the

payoffs in G(l12, l23). We also write P1(l12), P2(l12, l23), and P3(l23); T
N
1 (l12, l23),

TN
2 (l12, l23), and TN

3 (l12, l23) to respectively denote the population sizes and equi-

librium of G(l12, l23). We proceed as follows:

Step 1: Given the population distribution f , we can find values l12, l23 and

a perturbation size ε̃ such that, in the perturbed game G(ε̃, l12, l23), we have

P1(ε̃, l12) > P2(ε̃, l12, l23) and TN
1 (ε̃, l12, l23) = TN

2 (ε̃, l12, l23).

Step 2: We move the border l12 to a slightly lower level l̃12 so that in the new game

G(ε̃, l̃12, l23), we have P1(ε̃, l̃12) > P2(ε̃, l̃12, l23) and TN
1 (ε̃, l̃12, l23) < TN

2 (ε̃, l̃12, l23).

A.5.2 Step 1

We start by assuming, without loss of generality, that the parameters l12 and l23

are such that P1(l12) = P2(l12, l23) > P3(l23).
19 As shown in Appendix A.2, a

unique equilibrium exists for the game G(l12, l23).

Case 1: If TN
3 (l12, l23) > min{TN

1 (l12, l23), T
N
2 (l12, l23)}, there is nothing to prove.

Case 2: Similarly, if TN
1 (l12, l23) < TN

2 (l12, l23), we can slightly increase l12 to a new

value l12 so that we have P1(l12) > P2(l12, l23) while the continuity of TN
1 and TN

2

with respect to l12 implies that we still have TN
1 (l12, l23) < TN

2 (l12, l23). A similar

argument can be used if TN
1 (l12, l23) > TN

2 (l12, l23).

Case 3: Therefore, the only case we need to consider in our proof is when the

equilibrium of the game G(l12, l23) is

TN
3 (l12, l23) < TN

1 (l12, l23) = TN
2 (l12, l23). (A.7)

To to deal with this case, we can find a very specific (small) population re-

distribution of size ε from jurisdiction 3 to jurisdiction 1. This will correspond

to a perturbation f(·, ε) of f that will increase the population of jurisdiction 1

by ε > 0 while keeping the population of jurisdiction 2 the same and maintain-

ing the equilibrium tax rates at their pre-perturbation levels. In other words,

in the perturbed game G(ε, l12, l23), we have that P1(ε, l12) > P2(ε, l12, l23) while

19See Lemma 3 in Appendix A.5.4 for details.
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TN
1 (ε, l12, l23) = TN

2 (ε, l12, l23) holds.

First, we simplify our notation with (TN
1 , TN

2 , TN
3 ) = (TN

1 (l12, l23), T
N
2 (l12, l23), T

N
3 (l12, l23)),

and defining xN
12 = xN

12(T
N
1 , TN

2 , l12), x
N
23 = xN

23(T
N
2 , TN

3 , l23), x
N
31 = xN

12(T
N
3 , TN

1 ).

Let (a, b) be an open subinterval of (0, 1) with 0 < a < 1 and l23 < b < 1.

Given (A.7), (a, b) must be picked so that it contains the three points xN
12, x

N
23 and

xN
31. The location of the above points relative to (a, b) is shown on Figure 3.

We introduce a population re-distribution of size ε from jurisdiction 3 to

jurisdiction 1 around the outside of the interval (a, b) in the following precise

manner. Consider intervals (a1, b1) and (a2, b2) such that the first interval is to

the left of (a, b), i.e. 0 < a1 < b1 < a, and the second interval is to the right of

(a, b), i.e. b < a2 < b2 < 1. Consider two continuous functions g1 and g2 where

g1 ≥ 0 and it is zero outside (a1, b1) whereas g2 ≤ 0 and is zero outside (a2, b2) as

depicted in the second panel of Figure 3. Define

f(x, ε) = f(x) + g1(x) + g2(x).

Assume further that g1 and g2 are chosen such that i) f(x, ε) ≥ 0 on [0, 1] and

ii)
´ b1
a1

g1(x) dx = ε and
´ b2
a2

g2(x) dx = −ε. The final panel of Figure 3 shows the

construction of f(·, ε). graphically.
Our assumptions on g1 and g2 imply that f(·, ε) is a pdf on [0, 1], and we

have the following observations:

Observation 1: f(x, ε) = f(x) on (a, b).

Observation 2: F (x, ε)− F (x′, ε) = F (x)− F (x′) for any x, x′ in (a, b).

Observation 3: |F (x, ε)− F (x)| ≤ ε on [0, 1].

Observation 3 implies the difference between the perturbed F (·, ε) and the original

F (·) can be arbitrarily small—over all of [0, 1]—by choosing ε small enough.

Moreover, the above re-distribution moves a population of size ε from juris-

diction 3 to jurisdiction 1. However, the population we move continues to shop in

jurisdiction 3. Therefore, for small enough ε, we expect the above population re-

distribution to—very slightly—increases the size of the population in jurisdiction

1 without impacting the pre-redistribution equilibrium tax rates. To see this, note

that we can find small enough open intervals S1, S2, S3 respectively containing

TN
1 , TN

2 , TN
3 such that for any T ′

1 ∈ S1, T
′
2 ∈ S2, T

′
3 ∈ S3, we have x12(T

′
1, T

′
2, l12),

x23(T
′
2, T

′
3, l23) and x31(T

′
3, T

′
1) arbitrarily close to xN

12,x
N
23, and xN

31.

Observation 4: Points x12(T
′
1, T

N
2 , l12), x23(T

N
2 , TN

3 , l23), x31(T
N
3 , T ′

1) are in (a, b).
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Observation 2 and 4 together imply that, for all T ′
1 in S1, we have

R1(T
′
1,T

N
−1, ε, l12) = R1(T

′
1,T

N
−1, l12). (A.8)

Furthermore, Observations 3 implies that we have, for all T1 on [0, T ]:

|F (x12(T1, T
N
2 ), ε)− F (x12(T1, T

N
2 , l12))| < ε (A.9)

|F (x31(T
N
3 , T1), ε)− F (x31(T

N
3 , T1))| < ε (A.10)

Since R1 = T1[F (x12)− F (x31)], this implies

|R1(T1,T
N
−1, ε, l12)−R1(T1,T

N
−1, l12)|

< T |F (x12(T1, T
N
2 , l12), ε)− F (x12(T1, T

N
2 , l12))| (A.11)

+T |F (x31(T
N
3 , T1))− F (x31(T

N
3 , T1), ε)| < 2Tε

for all T1 on [0, T ].

In other words, (A.8) implies that the perturbed R1 and the unperturbed

R1 agree on S1 and (A.11) implies that the difference between the values of the

perturbed R1 and the unperturbed R1 can be made arbitrarily small over [0, T ].

Hence, by Lemma 1, there exists ε1 such that for all ε < ε1, we have

TN
1 = argmaxR1(·,TN

−1, ε1, l12).

Using a similar argument, we show there exists ε2 such that for all ε < ε2, we have

TN
2 = argmaxR2(·,TN

−2, ε2, l12, l23).

and there exists ε3 such that for all ε < ε3, we have

TN
3 = argmaxR3(·,TN

−3, ε3, l23).

Let ε̃ = min{ε1, ε2, ε3}. Then, (TN
1 , TN

2 , TN
3 ) is an equilibrium for the game

G(ε̃, l12, l23) for all ε ≤ ε̃. In particular, in the game G(ε̃, l12, l23), the equilibrium

tax rates of jurisdictions 1 and 2 are equal and they are the same as the the

equilibrium tax rates in the unperturbed game G(l12, l23). Therefore, we have
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established that, for ε ≤ ε̃,

TN
1 (ε̃, l12, l23) = TN

1 (l12, l23) = TN
2 (l12, l23) = TN

2 (ε̃, l12, l23).

when

P1(ε̃, l12) > P2(ε̃, l12, l23).

A.5.3 Step 2

We can show that in the game G(ε, l12, l23), and for small enough ε, we have

∂[TN
1 (l12, l23, ε)− TN

2 (l12, l23, ε)]

∂l12
> 0 (A.12)

in the same manner we used to establish the corresponding inequality for the game

G(l12, l23) in Lemma 1.20 Therefore, we perturb l12 to a slightly lower level l̃12 so

that in the new game G(ε̃, l̃12, l23), we continue to have21

P1(ε̃, l̃12) > P2(ε̃, l̃12, l23),

and

TN
1 (ε̃, l̃12, l23) < TN

2 (ε̃, l̃12, l23),

which completes the proof of Proposition 4.

Alternatively, in Step 1, and starting with P1 = P2 and TN
1 = TN

2 , we

could have moved an ε̃ amount of population from jurisdiction 1 to jurisdiction

3 such that the pre-perturbation equilibrium rates are maintained. Therefore,

after perturbation, we continue to have TN
1 = TN

2 while we now have P1 < P2.

Then in Step 2, we increase l12 to a slightly higher value l̃12 such that while

P1(ε̃, l̃12) < P2(ε̃, l̃12, l23), we have TN
1 (ε̃, l̃12, l23) > TN

2 (ε̃, l̃12, l23).

A.5.4 Technical Lemmas Used in Proof

Lemma 3. Let f be a pdf with f > 0 on [0, 1]. There exist l12 and l23 such that

P1(l12, l23) = P2(l12, l23) > P3(l12, l23).

Proof. Since 0 ≤ F ≤ 1 is strictly increasing, we can choose l12 and l23 in (0, 1) such

20See Lemma 4 in Appendix A.5.4 for details.
21Suppose P1(ε̃, l̃12) > ψ > P2(ε̃, l̃12, l23). Since populations vary continuously with l12, we

can change l12 by a small amount such that we continue to have P1(ε̃, l̃12) > ψ > P2(ε̃, l̃12, l23).
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that F (l23) > 2/3 and F (l12) = 1
2
F (l23). Then, we have P1(l12, l23) = F (l12) =

1
2
F (l23) > 1

3
, P2(l12, l23) = F (l23) − F (l12) = 1

2
F (l23) > 1

3
, and P3(l12, l23) =

1− F (l23) <
1
3
. Therefore, P1(l12, l23) = P2(l12, l23) > P3(l12, l23).

Lemma 4. In game G(ε, l12, l23), for small enough ε,
∂[TN

1 (l12,l23,ε)−TN
2 (l12,l23,ε)]

∂l12
> 0.

Let f(·, ε) be obtained as in Step 1 above. The first-order conditions for the

optimal tax rates for the resulting perturbed game are:

F (x12, ε)− F (x31, ε)−
T1 [f (x31, ε) + f (x12, ε)]

δ
= 0, (A.13)

F (x23, ε)− F (x12, ε)−
T2 [f (x12, ε) + f (x23, ε)]

δ
= 0, (A.14)

1− F (x23, ε) + F (x31, ε)−
T3 [f (x23, ε) + f (x31, ε)]

δ
= 0. (A.15)

For i = 1, . . . 9, following A.2, we compute γi(ε) and αi(ε) = δγi(ε) by taking

taking the total derivative of the above FOCs and following the definitions at the

end of Section A.2. For example, for the game G(l12, l12),

γ2 =
1

δ

[
f (x12)−

T1

δ
f ′ (x12)

]
≥ 0

whereas for the game G(l12, l23, ε),

γ2(ε) =
1

δ

[
f (x12, ε)−

T1

δ
f ′ (x12, ε)

]
.

Letting TN = (TN
1 , TN

2 , TN
3 ), we have established that for ε < ε̃, an equi-

librium TN(l12, l23) of the game G(l12, l23) is also an equilibrium TN(l12, l23, ε) of

G(l12, l23, ε). Since this equilibrium is in the interval (a, b), and using Observation

1, we conclude that γ2 must be equal to γ2(ε) when evaluated at vectorsTN(l12, l23)

and TN(l12, l23, ε), respectively. Similarly, we can show for i = 1, . . . , 9, γi = γi(ε)

and αi = αi(ε) when evaluated at TN(l12, l23) and TN(l12, l23, ε), respectively.

Therefore, for small enough ε, we have

sign[
∂(TN

1 (l12, l23, ε)− TN
2 (l12, l23, ε))

∂l12
] = sign[

∂(TN
1 (l12, l23)− TN

2 (l12, l23))

∂l12
] > 0,

where the inequality involving the second term was established in the proof of

Lemma 2, and the first term is computed the way the second term is computed in

section A.4 but using αi(ε) instead of αi.
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Anderson, Simon P., André de Palma, and Yurii Nesterov. 1995.
“Oligopolistic Competition and the Optimal Provision of Products.” Econo-
metrica, 63(6): 1281–1301.

Aoyagi, Masaki, and Atsuyuki Okabe. 1991. “Existence of Equilibrium Con-
figurations of Competitive Firms on an Infinite Two-dimensional Space.” Jour-
nal of Urban Economics, 29(3): 349–370.

Bagh, Adib. 2023. “Existence and Statistical Estimation of Equilibria in Stochas-
tic Electoral Competitions.” Journal of Convex Analysis, 30(2): 481–498.

Bagnoli, Mark, and Ted Bergstrom. 2005. “Log-concave Probability and Its
Applications.” Economic Theory, 26(2): 445–469.

Bloch, Francis, and Delphine Manceau. 1999. “Persuasive Advertising in
Hotelling’s Model of Product Differentiation.” International Journal of Indus-
trial Organization, 17(4): 557–574.

Bloch, Francis, and Nicolas Querou. 2013. “Pricing in Social Networks.”
Games and Economic Behavior, 80: 243–261.

Bucovetsky, Sam. 1991. “Asymmetric Tax Competition.” Journal of Urban Eco-
nomics, 30(2): 167–181.

Calvó-Armengol, Antoni, and Yves Zenou. 2002. “The Importance of the
Distribution of Consumers in Horizontal Product Differentiation.” Journal of
Regional Science, 42(4): 793–803.

Caplin, Andrew, and Barry Nalebuff. 1991. “Aggregation and Imperfect
Competition: On the Existence of Equilibirum.” Econometrica, 59(1): 25–59.

Chen, Yongmin, and Michael H. Riordan. 2007. “Price and Variety in the
Spokes Model.” The Economic Journal.

Chen, Yongmin, and Michael H. Riordan. 2008. “Price-increasing Compe-
tition.” RAND Journal of Economics, 39(4): 1042–1058.

Devereux, Michael P., Ben Lockwood, and Michela Redoano. 2007. “Hor-
izontal and Vertical Indirect Tax Competition: Theory and Some Evidence from
the USA.” Journal of Public Economics, 91: 451–479.

Evans, Carolyn L. 2003. “The Economic Significance of National Border Ef-
fects.” American Economic Review, 93(4): 1291–1312.

37



Friberg, Richard, Frode Steen, and Simen A. Ulsaker. 2022. “Hump-
Shaped Cross-Price Effects and the Extensive Margin in Cross-Border Shop-
ping.” American Economic Journal: Microeconomics, 14(2): 408–438.

Fuest, Clemens, and Samina Sultan. 2019. “How Will Brexit Affect Tax
Competition and Tax Harmonization? The Role of Discriminatory Taxation.”
National Tax Journal, 72(1): 111–138.

Haufler, Andreas. 1996. “Tax Coordination with Different Preferences for Public
Goods: Conflict or Harmony of Interest.” International Tax and Public Finance,
3(1): 5–28.

Haufler, Andreas, and Ian Wooten. 1999. “Country Size and Tax Competition
for Foreign Direct Investment.” Journal of Public Economics, 71(1): 121–139.

Hebous, Shafik, and Michael Keen. 2023. “Pareto-Improving Minimum Cor-
porate Taxation.” Journal of Public Economics, 225: 104952.

Hindriks, Jean, and Valerio Serse. 2019. “Heterogeneity in the Tax Pass-
through to Spirit Retail Prices: Evidence from Belgium.” Journal of Public
Economics, 176: 142–160.

Holmes, Thomas J. 1998. “The Effect of State Policy on the Location of Man-
ufacturing: Evidence from State Borders.” The Journal of Political Economy,
106(4): 667–705.

Hoyt, William H. 2017. “The Assignment and Division of the Tax Base in a
System of Hierarchical Governments.” International Tax and Public Finance,
24(4): 678–704.

Huizinga, Harry, Luc Laeven, and Gaätan Nicodème. 2008. “Capital
Structure and International Debt Shifting.” Journal of Financial Economics,
88(1): 80–118.

Jacob, Benoy, and Daniel McMillen. 2015. “Border Effects in Suburban Land
Use.” National Tax Journal.

Janeba, Eckhard, and Karl Schulz. 2023. “A Theory of Economic Disintegra-
tion.” International Economic Review.

Kanbur, Ravi, and Michael Keen. 1993. “Jeux Sans Frontières: Tax Competi-
tion and Tax Coordination When Countries Differ in Size.” American Economic
Review, 83(4): 877–892.

Keen, Michael, and Joel Slemrod. 2017. “Optimal Tax Administration.”
Journal of Public Economics, 152: 133–142.

Keen, Michael, and Kai A. Konrad. 2013. “The Theory of International Tax
Competition and Coordination.” Handbook of Public Economics, 5: 257–328.

Lockwood, Ben. 1993. “Commodity Tax Competition Under Destination and
Origin Principles.” Journal of Public Economics, 52(2): 141–162.

Mongrain, Steeve, and John D. Wilson. 2018. “Tax Competition with Het-
erogeneous Capital Mobility.” Journal of Public Economics, 167: 177–189.

Mossay, Pascal, and Pierre M. Picard. 2011. “On Spatial Equilibria in a
Social Interaction Model.” Journal of Economic Theory, 146(6): 2455–2477.

Neven, Damien J. 1986. “On Hotelling’s Competition with Non-uniform Cus-
tomer Distributions.” Economics Letters, 21(2): 121–126.

38



Nielsen, Søren Bo. 2001. “A Simple Model of Commodity Taxation and Cross-
Border Shopping.” The Scandinavian Journal of Economics, 103(4): 599–623.

Nielsen, Søren Bo. 2002. “Cross-border Shopping from Small to Large Coun-
tries.” Economics Letters, 77(3): 309–313.

Ohsawa, Yoshiaki, and Takeshi Koshizuka. 2003. “Two-dimensional Fiscal
Competition.” Journal of Economic Geography, 3(3): 275–287.

Ramsey, Frank P. 1927. “A Contribution to the Theory of Taxation.” The
Economic Journal, 37(145): 47–61.
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