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Nonlinear price transmission and asynchronous price 
bubbles: empirical evidence from China’s agricultural futures 
and spot markets
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ABSTRACT
Previous studies on commodity price bubbles mainly focused on 
futures markets and ignored the performance of spot markets. 
Using the price data for corn and soybeans in China, this study 
identifies the exact bubble dates for the futures and spot markets, 
and finds asynchronous price bubbles between these two markets. 
Bubbles are more frequent for commodity spot prices, while the 
corresponding futures prices still dominate the process of price 
discovery. Further analysis reveals that, the lack of (immediate) 
linear transmission between the cointegrated prices may have 
inhibited bubble synchronization, and caused more spot price 
bubbles. The nonlinear transmission effects between the futures 
and spot prices suggest the existence of speculative storage and 
market power. This may further explain why spot price bubbles 
cannot be arbitraged away.
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1. Introduction

The controversy on price bubbles in commodity futures markets is long lasting 
(Gutierrez, 2013). Price bubbles associated with rapid and persistent price increases 
could distort market trades since prices are the most important signals for traders 
(Phillips et al., 2012). Meanwhile, price bubbles in agricultural commodity markets 
could generate devastating consequences. For instance, in 2007–2008, the nominal prices 
of almost all food commodities increased by more than 50% and 130 million people in 
developing countries fell into extreme poverty (World Bank, 2008). The impacts of food 
price bubbles mainly hurt the poor, who spend large shares of their income on staple 
foods (Tadesse et al., 2014). The public and some scholars tend to think that agricultural 
price bubbles are caused by aggressive financialization of commodity futures markets 
(Basak & Pavlova, 2016; Master, 2008, 2009; Tang & Xiong, 2012). They argue that too 
many institutional funds have taken long positions in agricultural futures markets 
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without considering the fundamental value of agricultural commodities, and drive 
agricultural commodity prices up; this further distorts price expectation by commercial 
traders in futures markets, who aim to hedge against price risks in spot markets.

Limited evidence has been found to support the mispricing effects on futures markets 
caused by over-financialization (Bohl et al., 2021; Boyd et al., 2018); however, policymakers 
still tend to restrain the speculative trades in commodity futures markets, when commodity 
prices increase rapidly (Mao et al., 2021). Meanwhile, much of the related literature overlooks 
the price bubbles taking place in spot markets, and provides no basis for the synchronization 
(or asynchronization) of bubbles between agricultural futures and spot markets. Are there 
synchronous price bubbles between agricultural futures and spot markets? If not, what may 
have caused price bubbles in agricultural spot markets? This study seeks to close the research 
gap by identifying the exact price bubble dates first, and then investigating the interaction 
mode between agricultural futures and spot prices during their bubble periods. We extend the 
existing empirical literature on agricultural commodity price bubbles by highlighting the role 
of nonlinear transmission effects across agricultural futures and spot markets. More impor
tantly, from the estimates of nonlinear price transmission effects, researchers often make 
inferences as to the existence of market power or speculative storage controlled by some 
market participants (such as retailers, wholesalers or producers) (Assefa et al., 2017; Loy et al.,  
2018; Nakamura & Zerom, 2010; Sexton, 2013; Sexton & Zhang, 2001). Thus, to identify and 
analyze commodity price bubbles, more attention should be paid to the pricing behaviour 
and structure of spot markets.

Futures markets serve important functions in price discovery and hedging for agricultural 
commodities. The theory of storage predicts that the futures and spot prices should be 
cointegrated with each other (Pindyck, 1992; Telser, 1958; Working, 1948), which has been 
verified by numerous empirical studies (Crain & Lee, 1996; Garbade & Silber, 1983; 
Hernandez & Torero, 2010; Mattos & Garcia, 2004). Thus, when it comes to commodity 
price bubbles, a seemingly plausible deduction is that bubbles synchronize between the 
futures and spot markets.

Nevertheless, the non-linearity of price transmission within and across markets calls the 
synchronization of bubbles between the futures and spot prices into question. Cointegration 
relationship indicates a common stochastic trend between price series (Engle & Granger,  
1987). The tight connection between commodity futures and spot prices is based on the 
hypothesis of linear transmission between them. However, the immediate and linear trans
mission between cointegrated prices has long been challenged in real markets (Loy et al.,  
2018).

Some studies have theoretically proven that a cointegration relationship between 
prices remains even for bubbles that occur within one of the cointegrated price series 
(Engsted, 2006; Magdalinos & Phillips, 2009; Nielsen, 2010). In the case of nonlinear 
convergence between cointegrated price series, prices may even experience an explo
sive behaviour within a band of inaction (Fan & Wei, 2006). Alexakis et al. (2017) 
also doubt the direct transmission of price bubbles within the context of the hog 
supply chain (hog, corn and soybeans). Based on the cointegration residuals among 
these three commodity prices, they find that bubbles in feed prices and lack of 
associated bubbles in hog prices do not affect the long-run cointegration relationship 
and that the hog prices will even drag the other explosive price episodes back to 
normal. Esposti and Listorti (2013) consider price bubbles as exogenous structural 
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breaks, finding that price bubbles only have very limited effects on the cointegrated 
international and Italy domestic grain prices. Adämmer and Bohl (2015) and 
Gutierrez (2013) find that speculative price bubbles can affect the relationship 
between spot and futures prices. Li and Xiong (2019) even find that the performance 
of price discovery in commodity futures market is better during bubble periods, 
compared with that of non-bubble periods.

Above all, we aim to provide new insights into the formation of price bubbles in agricul
tural commodity markets by highlighting the nonlinear transmission effects. We first detect 
the bubble dates and measure the degree of the bubble synchronization across the futures and 
spot markets of corn and soybeans in China. Then, we use the unit root test based on 
momentum-threshold autoregressive model (M-TAR), the threshold Vector Error- 
Correction Model (VECM) and the time-varying partially cointegrated Vector Error- 
Correction Model (TV-PC-VECM) to estimate the non-linear transmission effects and 
identify the interaction mode between the futures and spot prices that relates with frequent 
bubbles.

Our study is closely related to the literature on the relationship between financializa
tion of commodities and price bubbles (Etienne et al., 2015, 2017; Irwin & Sanders, 2012; 
Mao et al., 2020; Sanders et al., 2010). In contrast, we extend the study to the commodity 
spot markets which have been ignored in previous research, and find that a relatively less 
efficient spot market may have resulted in more frequent bubbles. Our findings are also 
related to the literature of nonlinear price transmission along supply chain (Azzam, 1999; 
Bachmeier & Griffin, 2003; Bacon, 1991; Benzarti et al., 2020; Loy et al., 2015, 2016,  
2018). We point out that speculative storage and market power suggested by nonlinear 
transmission effects could prevent the spot price bubbles from being arbitraged away.

The structure of the paper is as follows: Section 2 introduces the theoretical framework 
of this paper, including the definition of bubbles and the nonlinear transmission effect on 
bubbles. Section 3 introduces the bubble testing method, the unit root tests based on 
M-TAR model, and the TV-PC-VECM model. Section 4 describes the data. Section 5 
presents the main estimation results. In section 6, we summarize the main findings and 
present some conclusion.

2. Theoretical framework

2.1. The definition of price bubbles

To define price bubbles, we follow the study of Blanchard and Watson (1982). The price 
process of one asset should be: 

where Pt represents the price at time t, Dt represents the dividend or payoff of the asset at 
time t, rf is the risk-free interest rate and Et �½ � is the expectation based on the information set 
at time t. Take the convenience yields as the dividends for commodities, equation (1) can also 
be used to explain the formation of commodity futures price (Pindyck, 2001). Forward 
iterating equation (1) to infinite periods, we can get the fundamental price of the commodity: 
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only when the transversality condition is fulfilled, namely the price at the infinite future 
point is zero: 

equation (2) is the unique solution of equation (1). However, when equation (3) does not 
hold, equation (2) will no longer be the unique solution. Consider a bubble component Bt 
with the property: 

adding this Bt into equation (2) will also satisfy equation (1). That is 

In this case, the bubble component grows at rate rf and the cross-period non-arbitrage 
condition still holds. Thus, the rational expectation of investors is not biased and this 
kind of price bubbles is called as rational price bubbles.

Moreover, under the plausible assumption that the dividends would follow a random 
walk with a drift μ. 

where εt is a white noise process. Substituting equation (6) into equation (2), we get 

The first term of the right side of equation (7) is constant, while the second term is a random 
walk based on equation (6). Thus, equation (7) shows that the fundamental price of the 
commodity should follow a random walk, while equation (5) shows that the price would 
become an explosive process when there is a bubble component Bt . For more details, please 
refer to the study of Blanchard and Watson (1982), Gürkaynak (2008) and Miao (2014).

2.2. Nonlinear price transmission and asynchronous price bubbles

As mentioned above, the aggressive financialization of the commodity futures markets 
has long been considered to induce price bubbles (Basak & Pavlova, 2016; Master, 2008,  
2009; Tang & Xiong, 2012). Too many speculators enter the futures market and take long 
positions of the futures contracts without considering the fundamental value of the 
underlying commodities, which may further distort the pricing signal and generate 
bubbles for futures prices. These studies focus on commodity futures markets and 
assume that the spot price will simply follow the futures price process.

Specifically, the fundamental values of commodity futures price in equation (2) and 
(7) follow a random walk process (integrated of order one, I(1)). When assuming no 
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arbitrage condition between the futures and spot prices of the same commodity, the 
theory of storage, or the cost of carry theory indicates that (Yang et al., 2001, 2021) 

where pf
t and ps

t are the (log) futures and spot prices, β0 is the constant term which could 
reflects all kinds of storage costs including transportation, warehousing, and insurance costs, 
and β1 is the slope parameter. ect is the residual part and becomes the error-correction term 
in the VECM representation when pf

t and ps
t are cointegrated with each other: 

where Δ is the first difference operator, αf and αs are the long-run adjustment parameters 
which control how quickly the pf

t and ps
t adapt to deviations from their long-run equilibrium 

relationship. Bi is the matrix of the short-run adjustment coefficients. vf
t and vs

t are white noise 
process.

Therefore, linear transmission between pf
t and ps

t suggested by time-invariant β0 and 

β1 in equation (8), or αf

αs

� �

and Bi in equation (9) means that the spot price ps
t would 

follow the process of pf
t tightly. This further implies bubble synchronization between the 

futures and spot prices.
However, the assumption of linear transmission has long been in doubt. For instance, 

the “rockets and feathers” pricing behaviour, i.e., prices rise like rockets but fall like 
feathers, has been confirmed for many markets (Bacon, 1991; Loy et al., 2015; Tappata,  
2009). The direction (sign) of price changes could lead to various dynamic price reactions 
with respect to the speed of adjustment and the magnitude of the long-run price 
equilibrium. Thus, nonlinear price transmission would complicate the relationship 
between the futures and spot prices of the same commodity.

Previous studies on commodity price bubbles mainly focus on the futures price 
bubbles and explore the relationship between bubbles and speculation (Etienne et al.,  
2015, 2017; Mao et al., 2021; Sanders & Irwin, 2017). This ignores the performance of 
commodity spot markets. However, given the possible nonlinear transmission effect, 
bubbles may not synchronize between the futures and spot markets. Especially, the 
asymmetric transmission effect between the futures and spot prices may lead to bubbles 
in spot markets only. One possible case can be described by the following equation: 

where the error correction term ect is split into three regimes by two thresholds θ� and 
θþ. I1

t , I2
t and I3

t are dummy variables. I1
t ¼ 1 if ect� 1 < θ� and zero otherwise; I2

t ¼ 1 if 
θ� < ect� 1 < θþ and zero otherwise; I3

t ¼ 1 if ect� 1 > θþ and zero otherwise. Equation (10) 
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is commonly used to capture the asymmetric cost pass-through effect measured by the 
difference between αs

þ than αs
� , where αs

þ measures the adjustment speed of the spot 
price toward the long run equilibrium when the futures price increases, and αs

� measures 
the adjustment speed of the spot price toward the long run equilibrium when the futures 
price decreases (Loy et al., 2015, 2016; Tappata, 2009).

If the future price reflects the fundamental value of the underlying commodity and 
follows a random walk as in equation (2) and (7), the spot price may deviate from a random 
walk and experience bubbles due to the asymmetric transmission effect. Higher absolute 
value of αs

þ than αs
� means that the spot price would adjust faster when the futures price 

rises compared with when it falls. This may suggest more bubbles for the spot price, because 
the growth of the spot price tends to last longer and deviates from the fundamental value of 
the underlying commodity.

From the estimates of nonlinear price transmission effects and the theory of “con
jectural variations”, researchers often make inferences to the existence of market power 
or speculative storage controlled by some market participants (such as retailers, whole
salers or producers) (Assefa et al., 2017; Loy et al., 2018; Nakamura & Zerom, 2010; 
Sexton, 2013; Sexton & Zhang, 2001; Verreth et al., 2015). Specifically, focusing on the 
German pork supply chain with farmers, slaughterhouse, and retailers, Assefa et al. 
(2017) find that when reacting to export prices derived from competitive markets, the 
market power of domestic slaughterhouse would enable themselves to increase domestic 
pork prices when competitive export prices increase, but avoid a large domestic price 
drop in times of low export prices.

This same logic could also be applied to the relationship between the futures price and 
local spot prices in the corn and soybeans markets in China. The futures price emerges 
from bidding by all kinds of traders nationwide. When there are no price bubbles, the 
futures price can be considered as an competitive external price for any local spot 
markets. Given that the inventory of corn and soybeans is to a large extent under the 
control of local state-owned companies (SOCs) in China (Gale, 2013), these local SOCs 
may have certain market power over the supply chain and affect the timely and effective 
adjustment of spot prices to the future price. This may further lead to temporary 
deviations of the spot prices from the long run equilibrium and make room for bubble 
occurrences.

3. Methodology

3.1. Bubble testing method

The definition of price bubbles above provides the basis for the right-tailed unit 
root test to identify bubbles. Phillips et al. (2012, 2015). develop the Generalized 
Supremum-ADF (GSADF) test to date-stamp price bubbles, which has been 
widely accepted to detect price bubbles in various markets (Caspi & Graham,  
2018; Engsted et al., 2016; Etienne et al., 2015; Tsvetanov et al., 2016). Compared 
with other bubble testing methods (such as the sequential Chow-test and CUSUM 
test), the advantages of the GSADF method are that it can identify the points of 
origination and termination of a bubble. Moreover, it works satisfactorily for price 
series with structural breaks and will not suffer from reduced power when 
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detecting the periodically collapsing bubbles (Harvey et al., 2016; Homm & 
Breitung, 2012; Mao et al., 2021).

According to Phillips et al. (2015), the GSADF test applies the ADF-test to sequential 
subsets (rolling windows) of the entire sample. Suppose that the rolling window runs from 
the rth

1 fraction of the total sample (T) to the rth
2 fraction, where r2 ¼ r1 þ rw and rw > 0 is 

the fractional window size of the regression. Equation (8) shows the empirical model: 

where pt is the price series and k is the lag length. The ADF-statistic value based on this 
regression is denoted as ADFr2

r1
. The GSADF relies on the repeated estimation of the ADF 

test on the subsamples of price data. It varies the endpoint of the ADF regression r2 from r0 
(the minimum window width) to 1, and it allows the starting point r1 to change within 
a feasible range, that is, from 0 to r2 � r0. The GSADF-test statistic of r2 is then obtained as 
the supreme value of the corresponding ADF-statistic sequence (see Equation (9)). 

The number of observations in the model is TW ¼ Trw, where :j j is the floor function (given 
the integer part of the argument). The origination date of a bubble Tre is calculated as the first 
chronological observation with a GSADF-statistic above the critical value. The calculated 
origination date is denoted by Tbre

. The estimated termination date of a bubble Tbrf 
is the first 

chronological observation after Tbre
þ LT with a GSADF-statistic below the critical value. The 

bubble duration must exceed the length of log Tð Þ. This requirement helps to exclude short 
lived blips in the fitted autoregressive coefficient (Phillips et al., 2012). For the sample under 
study, we calculate log 460ð Þ ¼ 2:66. Thus, the bubble duration should at least be 3 weeks. 
Gutierrez (2013) and Harvey et al. (2016) suggest to use the wild bootstrap method to 
calculate the critical values, which will consider the underlying structural break of the time 
series. The number of iterations of wild bootstrapping in this paper is set at 2000.

3.2. Unit root tests based on Momentum-Threshold Autoregressive Model (M-TAR)

In order to test the asymmetric adjustment effects for individual price series, we adopt the 
unit root tests based on Momentum-Threshold Autoregressive Model (M-TAR). 
According to the work of Enders and Granger (1998), the model is listed as follows: 

where, 

As explained by Enders and Granger (1998), if ρ1

�
�
�
�< ρ2

�
�
�
�, the M-TAR model exhibits 

little decay for positive price returns (Δpt� 1 > 0) but substantial decay for negative price 
returns (Δpt� 1 < 0). Namely, for ρ1

�
�
�
�< ρ2

�
�
�
�, it means that price increases tend to persist 
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but decreases tend to revert quickly toward the long run equilibrium. The opposite 
results appear when ρ1

�
�
�
�> ρ2

�
�
�
�.

3.3. Time-varying partially cointegrated Vector Error-Correction Model (TV-PC- 
VECM)

To account for possible time-varying basis between the future and spot prices (such as time- 
varying transportation and storage costs), we test whether there is a partial cointegration 
relationship between the futures price pf

t and spot price ps
t (Clegg & Krauss, 2018): 

where the vector [1, � β1] represents the partial cointegration relationship, similar to the 
standard cointegration. However, the residual part Wt contains a permanent part Rt and 
a transient part Mt. Compared with the constant term β0 in equation (8), the permanent 
part Rt follows a random walk and denotes the time-varying basis between the futures and 
spot prices. It may include time-varying transportation, warehousing and insurance costs. 
The transient part Mt follows a stationary autoregressive process of order 1 (AR(1) process) 
with coefficient ρ. The innovations εM;t and εR;t are assumed to be independent of each 
other and follow normally distributed white noise processes.

Clegg and Krauss (2018) develop a two-step likelihood ratio test procedure for this 
partial cointegration relationship. The first step is to test whether Wt follows a pure 
random walk (null hypothesis HR

0 : no cointegration). If the null hypothesis HR
0 is rejected, 

we find either a standard cointegration relationship (if Wt follows a pure AR(1) process) 
or a partial cointegration relationship (if Wt follows a partial AR(1) process). The second 
step tests whether Wt follows a pure AR(1) process (the null hypothesisHM

0 ). If HR
0 and 

HM
0 are both rejected, there would be a partial cointegration relationship.
If pf

t and ps
t are found to be partially cointegrated, we use the time-varying VECM 

model developed by Vollmer et al. (2020) to rewrite equation (9): 

Since 1 � β1½ �
pf

t� 1
ps

t� 1

� �

� Rt� 1

� �

¼ Mt� 1, the error correction term of the model only 

contains the transient part Mt� 1. The Akaike Information Criterion (AIC) is used to 
determine the lag length k.
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To obtain time-varying estimates of the parameters, we transform equation (19) into 
the state-space form:

Observation equation: 

State equation: 

where Pt ¼
Δpf

t
Δps

t

� �

is the left-hand side vector of price changes in equation (19); Zt 

arrays the right-hand side variables of the VECM equations in block diagonal form; I is 
the identity matrix of dimension 2� 2kþ 1ð Þ, which corresponds to the column dimen
sion of Zt and the row dimension of �t . εt and vt are serially uncorrelated error terms with 
zero mean and covariance matrices �t and Φt . Applying the Kalman filter produces 
optimal estimates of the state variables �t at each time t (Adämmer & Bohl, 2018).

Specifically, the state variables �t contain both the estimated long run adjustment parameters 

αf
t

αs
t

� �

and short run adjustment parameters Bi;t ¼
b1;ff

t b1;fs
t

b1;sf
t b1;ss

t

" #

; ifthelaglengthk ¼ i ¼ 1 at 

each time t. These time-varying parameters together reflects the interaction mode between the 
futures and spot prices for each commodity at time t. This enables us to measure the nonlinear 
transmission effect between the futures and spot prices in a more flexible way.

Moreover, we could use the logit model to account for the possible effects of various 
variables on price bubbles. Apart from the speculation intensity in the futures market, the 

time-varying adjustment parameters αf
t

αs
t

� �

and Bi;t can further be introduced to the logit 

model to directly measure the effect of nonlinear transmission on bubbles, 

where Bubblest is a dummy variable and equals one if there is a spot price bubble at time t, 
Speculation ¼ TradeVolume

OpenInterest is the ratio between trade volume and open interest of the 
corresponding futures contract at time t and measures the speculative intensity in the 
futures market (Wellenreuther & Voelzke, 2019; Yang et al., 2021). TVt is the trade 
volume of the futures contract and measures the market liquidity at time t. αs

t is the long 
run adjustment parameter for the spot price; while b1;sf

t and b1;ss
t are the short run 

adjustment parameters for the spot price. αs
t, b

1;sf
t and b1;ss

t together reflect the adjustment 
process of the spot price toward the long run equilibrium with the futures price.

For better understanding the nonlinear transmission effects on the spot price, we 
further calculate the orthogonal impulse response function (OIRF). Intuitively, the 
OIRF indicator reflects the response of one price series to the orthogonal shocks from 

its own or another price series. Due to that the adjustment parameters αf
t

αs
t

� �

and Bi;t 

are time-varying, the OIRF value we estimate is also different at each time t. We 

JOURNAL OF APPLIED ECONOMICS 9



replace the adjustment parameters (αs
t, b1;sf

t , and b1;ss
t ,) in the logit model with the 

OIRF to measure the direct response of the spot price to the orthogonal shocks from 
its own changes and the futures price. Compared with the time-varying long run and 
short run parameters, the OIRF could give a more intuitive way to measure the 
interaction mode between the futures and spot prices. Substitute the OIRF into the 
logit model, we get 

where ORIFt stof represents the response of the spot price to its orthogonal 
futures price shocks at time t, and ORIFt stos represents the response of the spot 
price to its own price shocks at time t. A significant and positive γ6 suggests that 
price bubbles are more likely to occur when the response of the spot price to 
future price shocks is larger, while a significant and positive γ7 implies that price 
bubbles are more likely occur when the response of the spot price to its own 
shocks is larger.

4. Data

The present paper concentrates on price bubbles of corn and soybeans markets in China. 
The rising food production and consumption from China have profound effects on the 
world food balance and trade patterns and are often taken as the main source of global 
commodity price spikes. It is important for China to maintain its food safety and stable 
agricultural markets.

We collect weekly price data on Mondays from two datasets. The sample period starts 
4 January 2009 and ends 31 December 2017, including 460 observations. We first obtain the 
“National Wholesale Price Index” of each commodity as the spot price. By wholesale prices, 
we mean the price charged by wholesalers to the downstream manufactures or processors. 
The “National Wholesale Price Index” is compiled by the China Grain Reserves Group, Ltd., 
which collects the price data of agricultural commodities from major local markets 
nationwide.

Futures prices come from the Dalian Commodity Exchange (DCE).1 We use 
(rolling) nearby futures contract prices. Each commodity has six futures contracts 
every year, namely the contracts starting in January, March, May, July, September 
and November. Each futures contract lasts for 12 months, not including the delivery 
month. The price data of the last two months for each contract are used to build the 
nearby futures price.2 We use the logarithmic transformation of all prices, unless 
otherwise specified.

1We collect the “National Wholesale Price Index” and the futures price data from the Wind commercial database (https:// 
www.wind.com.cn/).

2Since we use the wild bootstrap method to calculate the critical values for GSADF method, the breaks generated by 
rolling the nearby futures contracts would not affect our bubble testing results. Similarly, the partial cointegration test 
we use allows for structural breaks within the cointegration relationship.

10 Q. MAO ET AL.
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5. Results

5.1. Bubble testing results

Table 1 presents the descriptive statistics of price returns (Δpt). The futures price returns 
exhibit lower mean value (though not significant) than that of spot price returns. The 
median value is significantly lower for corn futures price returns, whereas it is higher for 
soybeans futures price returns. The comparison of the maximum (minimum) values and 
standard deviations suggest that the futures price returns have a larger range (absolute 

Table 1. Summary statistics for daily price returns (Δpt).
Corn price returns: Soybeans price returns:

Futures 
Δpf

t

Spot 
Δps

t

t-test 
p-value

Futures 
Δpf

t

Spot 
Δps

t

t-test 
p-value

Statistics
Mean*1000 0.0459 0.4973 0.8390 −0.4415 0.3106 0.7902
Median*1000 0.0000 2.5143 0.0930 1.0096 0.8855 0.0272
Maximum 0.3047 0.0363 — 0.2251 0.2798 —
Minimum −0.2809 −0.1252 — −0.1984 −0.3025 —
|Max-Min| 0.5856 0.1615 — 0.4235 0.5823 —
Std. Dev. 0.0446 0.0166 — 0.0427 0.0430 —
Skewness −0.3157 −2.3565 — −0.1518 −0.3143 —
Kurtosis 16.2430 14.5997 — 6.4541 20.5056 —
Jarque-Bera test statistics 3369.0308 2998.1710 — 230.4412 5868.3166 —
p-value of Jarque-Bera test 0.0000 0.0000 — 0.0000 0.0000 —
Number of obs. 460 460 — 460 460 —

Both the mean and median values are multiplied by 1000. Original price data without logarithmic transformation has 
been normalized into [0,1] before summary statistics. 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.

Figure 1. Corn: price bubble periods for the futures and spot prices. Source: own calculations based on 
data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. Original price data without 
logarithmic transformation has been normalized into [0,1].

JOURNAL OF APPLIED ECONOMICS 11



value, |max-min|) than spot prices. The results of the skewness and the Jarque-Bera test 
further show that price returns do not follow a normal distribution.

We use the GSADF method to detect bubbles in each price series. The futures and spot 
prices indicate asynchronous bubbles shown in Figures 1 and 2. Regardless of the com
modity species, spot prices have more frequent and durable bubbles than futures prices. For 
corn, 73 of 460 weeks (15.87 %) indicate bubble periods for spot prices, while only 7 of 460  
weeks (1.52 %) show bubble periods for futures prices. The spot price has seven bubble 
episodes, while the corn future price shows two short bubble episodes and only one of them 
synchronizes with the spot price bubbles. In the case of soybeans, 54 of 460 weeks (11.73 %) 
show bubble periods for spot prices, while only 10 of 460 weeks (2.17 %) for future prices. 
The spot price of soybeans shows nine bubble episodes, while its futures price has three 
bubble episodes. Again, we find only one synchronous bubble episode for soybeans. Fewer 
and shorter bubbles for the futures prices suggest that compared with the spot markets, the 
futures markets timely and efficiently incorporate all the relevant market information into 
the futures price signals and reflect the fundamental value of the commodity. 

We apply another measure to quantify the degree of bubble synchronization across two 
price series. When estimating the degree of price synchronization and staggering among 
different prices, prior studies would compare the standard deviations of the actual proportion 

Figure 2. Soybeans: price bubble periods for the futures and spot Prices3 Source: own calculations 
based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15. Original price data 
without logarithmic transformation has been normalized into [0,1].

3There are two reasons why we don’t consider the multiple bubbles in a row between 2013 and 2015 as a single price 
bubble. The first reason is that we use weekly price data for the futures and spot prices. The time length is relatively 
long between each observations. Taking the multiple bubbles in a row between 2013 and 2015 as a single price bubble 
would suggest that the bubbles could last a year long. This is unrealistic in real markets. The second reason is that we 
use the Time-varying Partially Cointegrated VECM model to measure the nonlinear effect at each time point. Thus, we 
need to identify the bubble periods accurately, otherwise, it may affect our estimation results in the following sections. 
We thank the referee for pointing out this problem.
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of price changes in each period with the standard deviations of perfect price synchronization 
or staggering (Fisher & Konieczny, 2000). Similarly, if the bubble periods for futures and spot 
prices are perfectly staggered, the proportion of bubble occurrences in any period would be 
equal to the average proportion of bubble periods over time. However, if the bubbles are 
perfectly synchronized, the proportion of bubbles in any period would be either 0 or 1. For 
instance, the number of corn (futures and spot) price bubbles is 76 out of 460 observations. In 
this case, assuming perfect synchronization, the standard deviation is computed from a series 
of 76 ones and 384 zeros. Table 2 shows the main result of the standard deviations for these 
two cases. The final row of differences from perfect staggering indicates the extent of 
deviation from perfect staggering. When this term is below 50 %, the actual data are closer 
to the perfect staggering situation.4

In Table 2, even though most observations indicate no bubble periods (384 weeks, 83.5 % 
of the sample observations) for corn futures and spot prices, we find that the deviation from 
perfect staggering is below 50 %. The same applies to the case of soybeans. Bubbles for the 
futures and spot prices are hardly synchronized. Considering that spot prices have more 
frequent and persistent bubbles, this result is consistent with the evidence that cointegrated 
prices may show asynchronous bubble periods (Alexakis et al., 2017; Esposti & Listorti, 2013).

5.2. Nonlinear price transmission and bubbles

5.2.1. Asymmetric transmission effect within and between price series
We start with conventional tests on the concerned price series. The results of normal ADF- 
test and KPSS-test indicate that the price series are integrated of order one I(1) and become 
stationary after first differencing (see Table A1 in the Appendix). Moreover, through the 
conventional cointegration and Granger-causality tests. The futures and spot prices are 
cointegrated for both commodities, indicating a long-run equilibrium relationship. The 

Table 2. Comparing standard deviations of different cases.
Standard Deviation Corn Soybeans

In actual data 0.2009 0.1852
Assuming perfect staggering 0.1859 0.1686
Assuming perfect synchronization 0.3718 0.3371
Difference from perfect staggering 8.0689% 9.8516%

The synchronization level is measured by the standard deviations of the actual proportion of price changes for each 
commodity. For a certain timing point, the proportion of price changes will be (n/460), if n price series change their own 
values at this timing point. Therefore, if prices are perfectly staggered among different spot markets, the proportion of 
price changes in any period would be equal to the average proportion of price changes over time and the standard 
deviation should be close to zero. If prices were perfectly synchronized, the proportion of price series in any period 
would be either 0 or 1 and the standard deviation should be close to 0.5 (Loy & Weiss, 2002). 

The standard deviations when ‘assuming perfect staggering’ or ‘perfect synchronization’ are calculated from the actual 
number of bubbles for each commodity. The degree of ‘Difference from perfect staggering’ Calculated as 
ðσst � σdÞ= σst � σsy

� �
� 100%, where σd , σst and σsy are the standard deviations in the data, the standard deviation 

under the assumption of perfect staggering, and the standard deviation under the assumption of perfect synchroniza
tion, respectively. 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.

4When more individual price series are available, a formal χ2 test could be used to judge the significance level of the 
deviation from perfect staggering formally.
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Granger-causality tests only find that the lagged values of futures price returns predict spot 
price returns (see Table A2 in the Appendix). Based on these conventional tests, the futures 
market first discovers prices and then transmits the signals to the spot market.

However, these results cannot explain why there are more frequent bubbles for spot prices. 
Ghoshray (2018) and Enders and Granger (1998) point out that the standard ADF test 
assumes symmetric adjustments and cannot identify asymmetric features within time series 
data. They suggest using the unit root test based on the Momentum-Threshold 
Autoregressive Model (M-TAR) to measure the asymmetric adjustments for individual 
price series. Our results of M-TAR based unit root test are listed in Table 3. Based on the 
results of F-test, all price return series are stationary and the values of ρ1 and ρ2 are all 
significantly different from zero.5 For the futures price returns of corn and soybeans (the first 
and third column in Table 3), it shows that ρ1

�
�
�
� > ρ2

�
�
�
�, which means that price decreases 

would persist but price increases would revert quickly toward the long run equilibrium; while 
for the spot price returns (the second and fourth column in Table 3), the result ρ1

�
�
�
�< ρ2

�
�
�
�

means that price increases would persist but price decreases would revert quickly toward the 
long run equilibrium. Thus, we find asymmetric adjustment effects both for the futures and 
spot prices, but in different directions. The longer lasting upward movement of the spot 
prices may have resulted in more spot price bubbles for corn and soybeans.

Moreover, through threshold estimation on equation (10), we measure the asymmetric 
transmission effect between the futures and spot prices, based on the values of the long run 
adjustment parameters αs at different intervals. The results are presented in Table 4. For 
both commodities, the absolute values of αþs are higher than those of α�s , implying that the 
spot price of either commodity adjusts faster when its futures price increases compare with 
the time when the futures price falls.

Table 3. TAR based unit root test.
M-TAR based Unit Root Test

Corn: Soybeans:

　
Futures Price Returns: 

Δpf
t� 1

Spot Price Returns: 
Δps

t� 1

Futures Price Returns: 
Δpf

t� 1

Spot Price Returns: 
Δps

t� 1

Region 1: (It ¼ 1)
ρ1 (coefficient of lag. 

price pt� 1)
0.0300 

(0.0210)
−0.0050* 
(0.0030)

−0.0430* 
(0.0230)

−0.0070 
(0.0080)

constant −0.1050 
(0.068)

0.0110* 
(0.0060)

0.1560* 
(0.0840)

0.0140 
(0.0160)

Region 2: (It ¼ 0)
ρ2 (coefficient of lag. 

price pt� 1)
−0.0220*** 

(0.0080)
−0.0210*** 

(0.0080)
−0.0090 
(0.0110)

−0.1030*** 
(0.0290)

constant 0.0750*** 
(0.0250)

0.0400** 
(0.0170)

0.0340 
(0.0410)

0.2080*** 
(0.0580)

F-Test 10.8500*** 9.8400*** 4.1500** 13.5000***

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant 
at 10% confidence level. The critical values of F-test are obtained from Enders and Granger (1998) and they were found 
to have better power than the T-test statistics. 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.

5The critical values of F-test are obtained from Enders and Granger (1998) and they were found to have better power than 
the T-test statistics. Thus, based on the F-test, the values of ρ1 and ρ2 in Table 3 are all significantly different from zero.
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Combining with the results from the M-TAR based unit root tests, the upward 
movement of the spot price tends to adjust faster and last longer, compared with its 
downward movement. If the futures price reflects the fundamental value of the under
lying commodity and follows a random walk process, the asymmetric transmission effect 
suggests that the spot price would deviate from the futures price. This may further lead to 
asynchronous bubbles between them.

5.2.2. Time-varying price transmission and bubbles
Results from previous sections suggest a possible link between the more frequent bubbles 
for commodity spot prices and the asymmetric transmission effect (within and between 
price series). To test whether the nonlinear transmission effect directly relates with spot 
price bubbles, we continue to adopt the TV-PC-VECM model to derive the time-varying 
adjustment parameters and orthogonal impulse response functions (OIRF), and use the 
logit model to estimate the interaction mode between the futures and spot prices during 
the bubble periods.

We first implement the partial cointegration test on the futures and spot prices for 
each commodity. Based on the results listed in panel A of Tables 5 and 6, there is no 
partial cointegration relationship between the futures and spot prices. Thus, the perma
nent part Rt between the futures and spot prices in equation (15) tends to remain 
constant over time. This indicates that the deviations of the spot price from the long 
run equilibrium are unlikely to be explained by time-varying storage or transportation 
costs. Meanwhile, since there is no partial cointegration relationship, the Mt term in the 
TV-PC-VECM model of equation (19) and (20) will become the normal error-correction 
term ect of the VECM model.

Still, combining the VECM model of equation (9) with the state space method  

in equation (21), we can derive the time-varying adjustment parameters αf
t

αs
t

� �

and  

Bi;t . Specifically, the time-varying adjustment parameters αs
t, b1;sf

t , b1;ss
t , b2;sf

t , and 
b2;ss

t for the spot prices are presented in Figures 3 and 4.6 These time-varying 

Table 4. Threshold VECM model.

Asymmetric effects: Δps
t ¼ I1

t αs
� ect� 1 þ I2

t αs
0ect� 1 þ I3

t αs
þect� 1 þ

Pk

i¼1
Bi

Δpf
t� i

Δps
t� i

� �

þ vs
t 

Corn: Soybeans:

Down interval 
(ect� 1 < θ� ):

α�s −0.0340*** 
(0.0116)

α�s 0.0211 
(0.0280)

Middle interval 
(θ� < ect� 1 < θþ):

α0
s −0.0100 

(0.0237)
α0

s −0.0795** 
(0.0396)

Up interval 
(ect� 1 > θþ):

αþs −0.0441** 
(0.0206)

αþs −0.1468*** 
(0.0263)

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant 
at 10% confidence level. 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.

6The lag length of the short run adjustment parameters k = 2 is determined by AIC. The time-varying adjustment 
parameters αf

t , b1;ff
t , b1;fs

t , b2;ff
t , and b2;fs

t for the futures prices are presented in Figures A1 and A2 in the Appendix.
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parameters together reflect the dynamic interaction process between the futures and spot 
prices. For instance, the time-varying values of αs

t in the first graph of Figures 3 and 4 
indicate unsteady movement of the spot price toward the long run equilibrium. For better 
and intuitive understanding the response of the spot price to its own and futures price 
shocks, we calculate the OIRF for each time point t, see Figures 5 and 6. “OIRF_stof” 
refers to the response of the spot price to the futures price shocks and “OIRF_stos” refers 
to the response of the spot price to its own price shocks. Comparing the values between 
the “OIRF_stof” and “OIRF_stos”, we can easily see that the response of the spot price to 
its own shocks are always larger than that to its futures price shocks.

With these time-varying parameters, we first use the logit model to test whether the 
nonlinear transmission effect directly relates with the spot price bubbles. The results of 
the logit model are presented in panel B of Tables 5 and 6. We first find no effects of the 
speculation on the spot price bubbles for both commodities and higher liquidity tends to 
reduce price bubbles for corn. This is consistent with the evidence from experimental 
economics which shows that futures markets dampen, though do not eliminate price 
bubbles (Porter & Smith, 2003).

Meanwhile, the effects of these time-varying parameters are significant, but difficult to 
interpret. For corn, the long run adjustment parameter αs

t has a significant positive effect 
on its spot price bubbles, while the αs

t for soybeans has no significant effects. The short 

Table 5. TV-PC-VECM model for corn.
Partial cointegration test for corn futures and spot prices: Test statistics p-value

Panel A:
HR

0: residual series follows a pure unit root process (no cointegration) −20.3200 0.0000***
HM

0 : residual series follows a pure AR(1) process (linear cointegration) −1.0300 0.1526

Logit model for spot price bubbles

Bubble Bubble Bubble Bubble

Panel B:
Constant −1.4892*** 

(0.5123)
−0.7313*** 

(0.2644)
−0.9080*** 

(0.2929)
−0.9100*** 

(0.2919)
Speculationt −0.3999 

(0.3466)
−0.6205 
(0.4170)

−0.4652 
(0.3871)

−0.4660 
(0.3882)

ln Tradevolumetð Þ −0.1724*** 
(0.0413)

−0.1165*** 
(0.0361)

−0.1314*** 
(0.0382)

−0.1310*** 
(0.0380)

αs
t 429.1173**** 

(150.9391)
b1;sf ;t −10.4752*** 

(2.1626)
b1;ss;t 3.3089* 

(1.6969)
b2;sf ;t 11.4598*** 

(3.471038)
b2;ss;t −18.1662*** 

(2.4944)
OIRFt_stof 

(response of spot price to futures shocks)
−3.1908 

(11.4757)
1.2804 

(11.8599)
OIRFt_stos (response of spot price to own shocks) 17.4735*** 

(4.1894)
17.5108*** 

(4.2307)
Observations 456 456 456 456

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant 
at 10% confidence level. The lag length of price returns are determined by information criteria (AIC). 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.
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run adjustment parameters b1;sf
t , b1;ss

t , b2;sf
t , and b2;ss

t show more complicated effects for 
both commodities. Thus, we replace these parameters with the OIRF, which is a more 
intuitive indicator of the nonlinear effects.

For corn, the results in the second and fourth column of panel B in Table 5 show that 
the OIRF caused by futures price shocks has no significant effects on the spot price 
bubbles, while the OIRF caused by spot price own shocks has significant positive effects 
on bubbles. This suggests that the (orthogonal) futures price shocks at least don’t 
contribute to spot price bubbles. In other words, futures price increases alone cannot 
lead to more spot price bubbles, while higher response of the spot price to its own shocks 
contributes to more spot price bubbles. Moreover, previous results from the M-TAR 
based unit root tests and the threshold VECM model indicate that the spot price increases 
tend to adjust faster and last longer when the future price increases. Our results based on 
the logit model further prove the nonlinear adjustment effect is significant in explaining 
the origin of spot price bubbles. Thus, the spot price fails to follow with the futures price 
tightly. Once a upward trend or momentum is established for the spot price, it is more 
likely to continue in that direction than to move against the trend.

For soybeans, we find almost the same results as corn, except that the coefficients of 
the OIRF caused by spot price own shocks are positive, but it is only very close to the 10% 

Table 6. TV-PC-VECM model for soybeans.
Partial cointegration test for soybeans futures and spot prices: Test statistics p-value

Panel A:
HR

0: residual series follows a pure unit root process (no cointegration) −11.2400 0.0000***
HM

0 : residual series follows a pure AR(1) process (linear cointegration) −0.0000 1.0000

Logit model for spot price bubbles

Bubble Bubble Bubble Bubble

Panel B:
Constant −4.1051*** 

(0.6487)
−1.9670*** 

(0.3106)
−2.0238*** 

(0.3079)
−2.0111*** 

(0.3102)
Speculationt 0.0090 

(0.0372)
−0.0444 
(0.0697)

−0.0426 
(0.0607)

−0.0438 
(0.0632)

ln Tradevolumetð Þ 0.0158 
(0.0636)

−0.0043 
(0.0459)

0.0047 
(0.0449)

−0.0002 
(0.0463)

αs
t 96.2165 

(125.3267)
b1;sf

t
9.3231*** 
(2.9634)

b1;ss
t

−6.9644*** 
(1.4290)

b2;sf
t

−7.5480** 
(2.9519)

b2;ss
t

3.3498* 
(1.7940)

OIRFt_stof 
(response of spot price to futures shocks)

−2.0693 
(1.6469)

1.8019 
(1.6922)

OIRFt_stos 
(response of spot price to own shocks)

5.3931 
(3.7605)

4.8610 
(3.8646)

Observations 456 456 456 456

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant 
at 10% confidence level. The lag length of price returns are determined by information criteria (AIC). 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.
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Figure 3. Corn: time-varying long run and short run adjustment parameters for the spot price. Source: 
own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.

Figure 4. Soybeans: time-varying long run and short run adjustment parameters for the spot price. 
Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 
15.
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significance level. Future study using more detailed or disaggregated price data may be 
needed to identify and analyze the reasons for soybeans price bubbles.

These results above indicate that the adjustment effect of spot prices toward the long- 
run equilibrium becomes weak when spot price bubbles occur. Spot prices can hardly 
adjust to a new market clearing price level when responding to future price changes. Our 
results are also consistent with previous studies, which prove a difference between the 
commodity spot and futures markets in the ability to incorporate relevant price informa
tion (Crain & Lee, 1996; Yang et al., 2001). The self-persistence of price returns during 
price increasing processes may contribute to more spot price bubbles.

Moreover, from the estimates of nonlinear price transmission effects, researchers 
often make inferences as to the existence of market power or speculative storage 
controlled by some market participants (such as retailers, wholesalers or producers) 
(Loy et al., 2018; Nakamura & Zerom, 2010; von Cramon-Taubadel & Goodwin, 
2021).7 Storage by speculators can be expected to move commodity from periods of 
low prices to periods of high prices, thus inducing autocorrelation and asymmetry 
momentum of price adjustments (Deaton, 1999; Deaton & Laroque, 1996), which is 
consistent with our results from the M-TAR based unit root tests and threshold VECM 
model.

In addition, prices tend to be higher in less competitive markets and market partici
pants with market power could keep “price going up but not coming down” (Assefa et al.,  
2017; Benzarti et al., 2020). Given that the inventory of corn and soybeans is to a large 
extent under the control of state-owned companies (SOCs) in China (Gale, 2013), these 
SOCs have a significant market power over the supply chain and could affect the timely 

Figure 5. Corn: time-varying OIRF. Source: own calculations based on data from DCE and the China 
Grain Reserves Group, Ltd. using Stata 15.

7See the literature review on price transmission by von Cramon-Taubadel and Goodwin (2021).
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and effective adjustment of agricultural spot prices. Though these SOCs are built to 
stabilize the agricultural markets, they also assume sole responsibility for their own 
profits or losses. It is plausible that these SOCs with significant market power may 
“ride the bubbles” temporarily to gain more profits. In this case, spot price bubbles 
cannot be fully arbitraged away in a short time (Wang & Tomek, 2007). Similar 
phenomenon of “riding the bubbles” has also been proved in the equity market (Temin 
& Voth, 2004). Compared with previous research merely focusing on the destabilizing 
effects of futures institutional investors, our estimation results suggest that agricultural 
price bubbles may also easily occur in a market where some market participants hold 
significant market power.

6. Conclusions

Previous studies on agricultural price bubbles have mostly ignored spot markets and 
agricultural futures markets have been blamed for their potentially negative effects of 
over-financialization. Our study aims to identify and analyze the price bubbles in 
agricultural commodity markets, highlighting the nonlinear transmission across futures 
and spot markets.

We first identify the bubble dates for the two highly traded agricultural commodities 
in China, corn and soybeans. Limited synchronization of bubbles across the agricultural 
futures and spot markets is found, and the spot price series shows more frequent and 
durable bubbles than the futures prices. This may imply that commodity futures markets 
provide a more effective price signal for traders. We use the M-TAR based unit root tests 
and threshold VECM model to capture the nonlinear (asymmetric) price transmission 
within and across the futures and spot markets. The spot price indicates a strong self- 

Figure 6. Soybeans: time-varying OIRF. Source: own calculations based on data from DCE and the 
China Grain Reserves Group, Ltd. using Stata 15.
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persistence of its upward process. Meanwhile, we find a significant asymmetric transmis
sion effect between the futures and spot prices. Thus, the spot price adjusts faster to its 
future price increases than decreases. A quick and lasting response of the spot price to the 
futures and its own price increases may have resulted in more bubbles for the spot 
market.

We further test whether the nonlinear transmission effect directly relates with more spot 
price bubbles through the Time-varying Partially Cointegrated VECM model and the logit 
model. The time-varying (long run and short run) adjustment parameters and OIRF values 
estimated from the Time-varying Partially Cointegrated VECM model are used to capture 
the dynamic interaction mode between the futures and spot prices at each period. The 
results of the logit model show that these time-varying indicators have significant effects on 
spot price bubbles, and higher response of the spot price to its own price shocks contributes 
to more bubbles. Thus, consistent with the results from the M-TAR based unit root tests 
and the threshold VECM model, spot price bubbles are more likely to occur when the spot 
price adjusts quickly to its futures price and keeps this upward trend longer. Futures price 
increases alone cannot lead to more spot price bubbles.

Above all, though there is a cointegration relationship between the futures and spot 
prices, bubbles occur more frequently for the spot price series, which shows higher self- 
persistence of increasing returns during the upward trend. This further implies poor ability 
of the spot market to adjust itself to a new equilibrium. Speculative storage and imperfectly 
competitive (spot) market structure may account for this slow and asymmetric price 
adjustments and more spot price bubbles. Moreover, our conclusion is limited due to 
that we only have aggregated price series for spot prices and infer the existence of the 
market power based on the nonlinear transmission effect. Future study using disaggregated 
spot price data or better measures on the market power of agricultural market participants 
could give a more intuitive explanation on the relationship among the nonlinear transmis
sion effect, price bubbles and market power.
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Appendix

Table A1. Unit root tests.
Corn: Soybeans:

　 Futures Price: Spot Price: Futures Price: Spot Price:

ADF Test −2.0840 −1.7720 −1.5140 −1.9610
P-value 0.2510 0.3945 0.5263 0.3037
KPSS Test 1.94 2.0000 1.7 1.78
P-value 0.0100 0.0100 0.0100 0.0100

Futures Price Returns: Spot Price Returns: Futures Price Returns: Spot Price Returns:

ADF Test −26.8850 −15.8580 −20.9910 −24.1340
P-value 0.0000 0.0000 0.0000 0.0000
KPSS Test 0.0543 0.0953 0.0335 0.0806
P-value 0.1000 0.1000 0.1000 0.1000

For the ADF test, whether to include the constant term and the number of lags (k = 1 or 2) are determined by AIC. For the 
KPSS test, the autocovariance function is to be weighted by the quadratic spectral kernel. Automatic bandwidth 
selection procedure proposed by Newey and West (Newey & West, 1994) is applied here. 

Source: Own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.

Table A2. Cointegration test and granger causality test.

　 Trace Test

(5% critical values in the parentheses) r0 r1

Johansen Cointegration Test:
Corn: Futures and Spot Prices 83.2115 

(15.4100)
3.4488 

(3.7600)
Soybeans: Futures and Spot Prices 25.1818 

(15.4100)
1.2377 

(3.7600)

H0 is the null hypothesis. (P-value in the parentheses) F-statistics

Granger-causality tests:
H0: Corn Spot Price Returns do not Granger-cause Futures Price Returns 0.8302 

(0.5496)
H0: Corn Futures Price Returns do not Granger-cause Spot Price Returns 9.9131*** 

(0.0000)
H0: Soybean Spot Price Returns do not Granger-cause Futures Price Returns 0.0972 

(0.9926)
H0: Soybean Futures Price Returns do not Granger-cause Spot Price Returns 　 2.5440** 

(0.0276)

*** statistically significant at 1% confidence level; **statistically significant at 5% confidence level; * statistically significant 
at 10% confidence level. 

Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 15.
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Figure A1. Corn: time-varying long run and short run adjustment parameters for the futures price. 
Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 
15.

Figure A2. Soybeans: time-varying long run and short run adjustment parameters for the futures price. 
Source: own calculations based on data from DCE and the China Grain Reserves Group, Ltd. using Stata 
15.
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