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RESEARCH ARTICLE

On the sparsity of synthetic control method
Qiang Chen and Wenjun Li

School of Economics, Shandong University, Jinan, Shandong, China

ABSTRACT
Synthetic Control Method (SCM) is a popular approach for causal 
inference in panel data, where the optimal weights for control units 
are often sparse. But the sparsity of SCM has received little attention 
in the literature except Abadie (2021), which explores the sparsity 
from the perspective of predictor space. In this paper, we make 
three contributions. First, we show that if there is a unique solution, 
then the number of positive weights is upper-bounded by the 
number of covariates. Second, we offer a simple alternative expla-
nation about the sparsity of SCM from the perspective of parameter 
space. Third, we conduct a meta-analysis of empirical studies using 
SCM in the literature, which shows that the sparsity of SCM 
decreases with the relative number of covariates. A practical impli-
cation is that if the number of positive weights exceeds the number 
of covariates, there are multiple solutions and possibly unstable 
weights.
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1. Introduction

Synthetic control method (SCM) is a popular approach for causal inference in panel data 
with a single treated unit (Abadie & Gardeazabal, 2003; Abadie et al., 2010), which has 
found many applications in fields such as economics, politics and health. For a treated 
unit, SCM constructs its counterfactual outcomes via a convex combination of control 
units, i.e., a linear combination with nonnegative weights summed to one. In practice, the 
optimal weights are usually sparse such that the share of zero weights are high. Obviously, 
sparsity of weights makes the interpretation of SCM easy. As pointed out by Abadie 
(2021, p. 407), “sparsity plays an important role for the interpretation and evaluation of 
the estimated counterfactual”.

However, there has been little formal discussion about the sparsity of SCM until 
Abadie (2021), which explains the origin of sparsity from the perspective of predictor 
space. In this paper, we make three contributions in understanding the sparsity of SCM. 
First, we show that if there is a unique solution, then the number of positive weights 
cannot exceed the number of covariates, which yields a lower bound for the sparsity 
defined as the share of zero weights. Second, we offer a simple alternative explanation 
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about the sparsity. Viewed from the perspective of parameter space, the sparsity of SCM 
arises simply because the feasible parameter space is a probability simplex with sharp 
vertices, similar to the sparsity of Lasso in origin. Third, we conduct a meta-analysis of 
empirical studies using SCM in the literature, and show that consistent with our 
theoretical finding, the sparsity of SCM decreases with the relative number of covariates 
as a fraction of the number of control units.

The rest of the paper is organized as follows. Section 2 reviews the methodology of 
SCM. Section 3 explores the sparsity of SCM from the perspective of predictor space, and 
derives a lower bound for sparsity when there is a unique solution. Section 4 proposes an 
alternative explanation of sparsity from the perspective of parameter space. Section 5 
conducts a meta-analysis of empirical studies using SCM in the literature, which yields 
results consistent with our theoretical finding. Section 6 provides a discussion and 
guidance to empirical practice, and section 7 concludes.

2. Synthetic control method

Suppose there are N þ 1 cross-sectional units indexed by i ¼ 1; � � � ;N þ 1 and observed 
over periods t ¼ 1; � � � ;T0 (pre-intervention) and t ¼ T0 þ 1; � � � ;T (post-intervention). 
The first unit ði ¼ 1Þ is the treated unit, while all other units ði ¼ 2; � � � ;N þ 1Þ are 
control units, which forms the donor pool. Let y1

it and y0
it be the outcome of unit i in 

period t with and without intervention respectively, and Δit ¼ y1
it � y0

it is the correspond-
ing treatment effect. SCM seeks to approximate the unknown y0

1t ðt ¼ T0 þ 1; � � � ;TÞ by 
a weighted average of control units, and the treatment effects are estimated by 

where w ¼ ðw2 � � �wNþ1Þ
0 is a N � 1 vector of weights (a potential synthetic control) such 

that 0 � wi � 1 for i ¼ 2; � � � ;N þ 1 and 
PNþ1

i¼2 wi ¼ 1.
Let x1 be the K � 1 vector containing the pretreatment covariates (also known as 

predictors) of the treated unit,1 and X0 be the K � N matrix containing the pretreatment 
covariates of the N control units. SCM selects the optimal w� such that the pretreatment 
characteristics of the synthetic control are most similar to that of the treated unit. 
Specifically, the optimal synthetic control w� is obtained by solving the following mini-
mization problem: 

where V is a K � K diagonal matrix with nonnegative elements on its diagonal, which 
measures the relative importance of each covariate in predicting the outcome. The 
optimal V can be determined by minimizing the mean squared prediction error 
(MSPE) of the outcome variable during the pretreatment period. See Abadie et al. 
(2010) for details of implementation.

1In this paper, we use the terms “covariate” and “predictor” interchangeably.
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3. The sparsity of SCM viewed from the predictor space

Consider the minimization problem in Equation (2) along with constraints on the 
weights: 

where � ¼ ð1 � � � 1Þ0 is a N dimensional vector consisting of all ones. Abadie (2021) 
proposes an explanation about the sparsity of SCM from the perspective of predictor 
space. Define HðX0Þ as the convex hull of the columns of X0, i.e., the smallest convex set 
containing the columns of X0; or equivalently, the intersection of all convex sets contain-
ing the columns of X0. Specifically, HðX0Þ can be defined as 

If x1 is in the convex hull, i.e., x1 2 HðX0Þ, then the objective function achieves 
a minimum of zero. In this case, we can find optimal weights w� that perfectly reproduces 
the pretreatment characteristics of the treat unit, i.e., x1 � X0w ¼ 0. We call the optimal 
weights w� an “exact solution”.

For illustration, consider a simple case with K ¼ 2 (two covariates) and N ¼ 5 (five 
control units); see Figure 1. In Figure 1, x1 2 int HðX0Þð Þ (located in the interior of the 
convex hull) represents the covariates of the treated unit, while x2; � � � ; x6 represent the 
covariates for units 2 through 6, and X0 ¼ ðx2 � � � x6Þ. In this case, it is easy to see that 
exact solutions w� are not unique, since there are different convex combinations of 
x2; � � � ; x6 that can perfectly reproduce x1. Therefore, the number of positive weights is 
only limited by the number of control units in general when there are exact solutions 
and x1 2 int HðX0Þð Þ.

Now consider the situation in Figure 2, where x1 is located on the boundary of 
the convex hull, i.e., x1 2 @ HðX0Þð Þ. Clearly, there is a unique exact solution with 
positive weights for x5 and x6 respectively. When there is a unique exact solution 

0

Figure 1. Multiple exact solutions.
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and K ¼ 2 (as presented in Figure 2), there can be at most 2 positive weights, since 
two vertices in a two-dimensional space form an edge. Similarly, when there is 
a unique exact solution and K ¼ 3, there can be at most 3 positive weights, since 
three vertices in a three-dimensional space form a face. By the same reasoning, 
when there is a unique exact solution, the number of positive weights cannot exceed 
the number of covariates. We state this formally in Proposition 1 below with 
a proof.

However, in empirical practice, x1 usually falls outside of the convex hull, i.e., 
x1‚HðX0Þ, which results in an “approximate solution”. In this case, the optimal weights 
w� provides a prediction X0w�, which is a linear projection of x1 to HðX0Þ. Thus, the 
sparsity of SCM arises because projection to a convex hull typically do not rely on all 
vertices, where each vertex represents a control unit, i.e., a column in X0; see Figure A1 in 
Abadie (2021), which is reproduced in Appendix 1 for convenience. Those control units 
with vertices making no contribution to the linear projection thus receive zero weights.

Consider again the case with K ¼ 2 (two covariates) and N ¼ 5 (five control units), 
but now there is a unique approximate solution on an edge (see Figure 3). In Figure 3, x1 
falls outside the convex hull of X0. The linear projection to HðX0Þ results in two positive 
weights for x2 and x6 respectively, whereas x3; x4; x5 all receive zero weights.

In Figure 3, the number of positive weights and the number of covariates happen to be 
equal. Of course, the number of positive weights could be smaller than the number of 
covariates. For example, if the projection of x1 to HðX0Þ lands on a vertex, instead of any 
line segment connecting two vertices, then the number of positive weights drops to just one; 
see Figure 4.

A further question is whether the number of positive weights can surpass the 
number of covariates. Geometrically, this appears to be impossible from Figure 3. 
In this case, the projection of x1 to HðX0Þ lies on the line segment connecting x2 
and x6. Note that in any plane, a straight line passing through two different points 
cuts the plane into two half-planes. In our case, the straight line passing through 
x2 and x6 cuts the plane into two half-planes, such that the other vertices (i.e., 
x3; x4; x5) are in the open half-plane further away from x1 by definition (thus 

0

Figure 2. A unique exact solution.
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receiving zero weights), since the unique approximate solution lies on the line 
segment connecting x2 and x6 (thus receiving positive weights). Therefore, the 
number of positive weights cannot be more than 2 in this case.

The same reasoning applies to higher dimensions in general. For any fixed K, 
consider the Kdimensional predictor space. When there is a unique approximate 
solution with K positive weights, then the hyperplane passing through the corre-
sponding K vertices cuts the predictor space into two half-spaces, such that the 
other vertices are in the open half-space further away from x1 by definition (thus 
receiving zero weights), since the unique approximate solution lies on the face 
connecting the K vertices with positive weights. Therefore, the number of positive 
weights cannot be larger than K in this case. We state this result formally below, 
and give a rigorous proof by contradiction.

0

Figure 3. A unique approximate solution on an edge.

0

Figure 4. A unique approximate solution on a vertex.
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Proposition 1. Consider a synthetic control problem with K covariates and N control 
units, and N >K. If there is a unique solution (either exact or approximate), then the 
number of positive weights are less than or equal to K.

Proof. We prove by contradiction. Denote Np as the number of positive weights. 
Suppose there is a unique solution (either exact or approximate), but Np >K. Without 

loss of generality, assume that the first Np control units x2; � � � ; xNpþ1

n o
receive positive 

weights, whereas all the rest control units xNpþ2; � � � ; xN

n o
get zero weights.

Denote Xð1Þ0 ;ðx2 � � � xNpþ1Þ, and note that Xð1Þ0 is a K � Np matrix with row rank less than 
or equal to K. Thus the column rank of Xð1Þ0 is also less than or equal to K, which in turn is 
strictly less than Np by assumption: 

Therefore, the K � Np matrix Xð1Þ0 does not have a full column rank, so its columns 
x2; � � � ; xNpþ1

n o
are strictly multicollinear. Hence, the solution to synthetic control 

problem is not unique, which leads to a contradiction.
An immediate implication of Proposition 1 is that if the number of positive weights 

exceeds the number of covariates, then the solutions to the synthetic control problem 
under consideration are not unique. Therefore, applied researchers should be concerned 
if the number of positive weights is larger than the number of covariates, which is 
symptomatic of the existence of multiple solutions. As a way out, one may change the 
model specification by adding more covariates or dropping multicollinear control units 
(more on this below), until the number of positive weights are less than or equal to the 
number of covariates.

Proposition 1 gives an upper bound on the number of positive weights, which 
naturally yields a lower bound on the number of zero weights. Since this paper is 
primarily concerned with the sparsity of SCM, denote Nz as the number of zero 
weights, such that N ¼ Np þ Nz. Moreover, define the sparsity of SCM as the share of 
zero weights, i.e., Nz=N. From Proposition 1, we immediately have the following 
proposition.

Proposition 2. Consider a synthetic control problem with K covariates and N control 
units, and N >K. If there is a unique solution, then the sparsity of SCM satisfies the 
following inequality: 

Proof. First, according to Proposition 1, Np � K, which implies Nz � N � K. Divide 
both sides of this inequality by N, and rearranging, we have sparsity ¼ Nz

N � 1 � K
N.

Second, since there needs to be at least one positive weight, the largest possible value of 
Nz is ðN � 1Þ, thus sparsity ¼ Nz

N � 1 � 1
N

6 Q. CHEN AND W. LI



From the above discussion, it is clear that when there is a unique solution, the lower 
bound for sparsity given by 1 � K

N

� �
could be tight in some cases, as long as the optimal 

solution resides on a regular face of the convex hull (which is usually a polyhedron or 
polytope), instead of on a lower-dimensional edge or vertex.

Also note that an important condition for Proposition 1 is the uniqueness of solution. 
On the contrary, if the solutions are not unique, then the number of positive weights can 
be larger than the number of covariates, and it is only limited by the number of control 
units; see Figure 5. In Figure 5, x2; x3; x5; x6 line up in a straight line. Clearly, multiple 
solutions are now available. In particular, it is possible to assign positive weights to 
control units x2; x3; x5; x6 as an optimal solution. In practice, this is the optimal solution 
that is often found by quadratic programming algorithms in used (say, the algorithm 
used by the Stata command synth), which results in many small positive weights that are 
far from being sparse. In fact, even if x2; x3; x5; x6 does not perfectly line up in a straight 
line, as long as the iterative algorithm thinks they are, the same result would follow. In the 
presence of (near) multicollinearity, a simple fix is to drop control units that are most 
responsible for (near) multicollinearity.2 For example, dropping x2 and x6 in Figure 5 
would solve the problem, and obtain a unique solution.

To illustrate the above results, we revisit the case study on the effect of California’s 
tobacco control program (Abadie et al., 2010). We use the Stata command synth for 
synthetic control estimation,3 while incrementally increasing the number of covariates 
from one to seven, which is the same as specified in Abadie et al. (2010). The results are 
reported in Table 1.

In Table 1, when there is only one covariate (K ¼ 1), the algorithm returns all small 
positive weights (ranging from 0.016 to 0.11) without any zero weight. Apparently, when 
K ¼ 1, X0 is just a 1� N matrix such that all columns of X0 are perfectly collinear, which 

0

Figure 5. Approximate solutions that are not unique.

2One may regress among x2; � � � ; xNþ1f g and drop the variable with the highest R2, and so on.
3For illustration purpose, we do not use the options “nested allopt” for more accurate numerical computation, otherwise 

the algorithm would fail when there is only one covariate (K = 1).
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line up in a straight line. Clearly, multiple solutions are available, and the algorithm just 
spews out a solution in a seemingly random way. On the other hand, when 2 � K � 7, 
the number of positive weights Np is always upper-bounded by K, where this upper 
bound is sometimes obtained. While this example is somewhat artificial,4 this is not 
a trivial case in practice. In fact, in the meta-analysis in Section 5, we find that among 658 
empirical studies using SCM in the sample, 4.56% of them have weights that are all 
positive.5

Furthermore, since unique solution appears to be frequent in practice, while the lower 
bound 1 � K

N

� �
in Proposition 2 may be tight in some cases, we propose the following 

hypothesis to be tested by the meta-analysis in Section 5.

Hypothesis 1. Other things being equal, the sparsity of SCM decreases with the relative 
number of covariates as a fraction of the number of control units (i.e., K=N) in empirical 
studies.

4. The sparsity of SCM viewed from the parameter space

Before moving to the meta-analysis in Section 5, we propose a simple alternative 
explanation of the sparsity of SCM from the perspective of parameter space in this 
section. First, note that the feasible set of weights is actually a probability simplex defined 
as w : w � 0; �0w ¼ 1f g. Second, the objective function is a quadratic form with 
a nonnegative diagonal matrix as its matrix. Thus, the contour sets of the objective 
function are ellipses or ellipsoids in high dimensions. For example, when there are only 
two control units (i.e., N ¼ 2), the minimization problem can be geometrically repre-
sented in Figure 6.

In Figure 6, the contour sets are ellipses with axes parallel to the coordinate axes, 
since no cross-terms are involved in the quadratic form of the objective function. Due 
to the constraint w : w � 0; �0w ¼ 1f g, the feasible parameter space is the line seg-
ment connecting ð1; 0Þ and ð0; 1Þ. w�� is the unconstrained optimum, whereas w� is 
the constrained optimum, which is a sparse solution with w�2 ¼ 0 and w�3 ¼ 1. 
Apparently, the sparsity of SCM arises simply because the feasible parameter set is 
a probability simplex with sharp vertices (in this case pointed ends). In a way, the 
origin of the sparsity of SCM is reminiscent of the sparsity of Lasso, where the 

Table 1. A case study of California’s tobacco control program.
N K Np Nz Covariates

38 1 38 0 retprice
38 2 2 36 retprice, lnincome
38 3 3 35 retprice, lnincome, age15to24
38 4 4 34 retprice, lnincome, age15to24, beer
38 5 5 33 retprice, lnincome, age15to24, beer, cigsale(1975)
38 6 4 34 retprice, lnincome, age15to24, beer, cigsale(1975), cigsale(1980)
38 7 4 34 retprice, lnincome, age15to24, beer, cigsale(1975), cigsale(1980), cigsale(1988)

For variable definitions, refer to Abadie et al. (2010).

4Note that Abadie et al. (2010) never estimates the one-covariate case.
5Among these 30 studies with all positive weights, the number of covariates ranges from 3 to 14 with a mean of 9, and 

the number of control units ranges from 4 to 54 with a mean of 17.43.
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feasible parameter space is of a diamond shape with sharp vertices. Of course, it is 
still possible for the optimal solution to lie in the middle of the line segment 
connecting ð1; 0Þ and ð0; 1Þ, but the presence of sharp vertices makes it less likely. 
Similarly, when there are only three control units (i.e., N ¼ 3), the minimization 
problem can be geometrically represented in Figure 7.

In Figure 7, the contour sets are ellipsoids with axes parallel to the coordinate axes. The 
feasible parameter space is the face of a polyhedron connecting three vertices ð1; 0; 0Þ, 
ð0; 1; 0Þ, andð0; 0; 1Þ. The optimal synthetic control is a sparse solution with 
w�2 ¼ w�4 ¼ 0 and w�3 ¼ 1. Again, the sparsity of SCM arises because of the sharp vertices 
of the feasible parameter space. Apparently, similar situations hold in higher dimensions, 
although we cannot draw graphs when there are more than three control units.

1

1

0

Figure 6. Optimal synthetic control in the 2D parameter space.

1

1

1

0

Figure 7. Optimal synthetic control in the 3D parameter space.
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5. A meta-analysis

In this section, we conduct a meta-analysis of empirical studies using SCM in the 
literature. We search JSTOR and ScienceDirect with the keyword “synthetic control”, 
and obtain a sample of 107 empirical papers using SCM published during 2003–2022 
across disciplines such as economics, political science, health and environment.6 Note 
that some papers using SCM do not report the number of positive weights, and are thus 
not included in the sample. While these papers certainly do not exhaust all empirical 
studies using SCM to date, they are sufficient for our purpose. Among the 107 papers in 
the sample, 61 of them conducted multiple SCM studies, thus we end up with 658 
observations. Among these 61 papers, 39 out of them conducted SCM studies for 
different treated units, while the rest 22 papers applied SCM to different outcome 
variables.7

As before, denoteN, K, Np and Nz as the number of control units, the number of 
covariates, the number of positive weights, and the number of zero weights respectively. 
The dependent variable sparsity is defined as the share of zero weights, i.e., sparsity  
= Nz=N. The summary statistics are reported in Table 2. As revealed by Table 2, the 
number of control units (N) ranges from as few as 4 to as many as 326. On the other 
hand, the number of covariates (K) has much less variation, ranging from 3 to 27. Our 
key explanatory variable K=Nð Þ has a mean of 0.522, but with a relatively large standard 
deviation of 0.369. The number of positive weights ranges from 1 to 54, whereas the 
number of zero weights ranges from as few as 0 to as many as 319.

The dependent variable sparsity (Nz=N) has a mean of 0.698, implying that the share of 
zero weights is 69.8% on average. However, the range of sparsity is quite wide, spanning 
from 0 to 0.991. Moreover, Figure 8 presents a histogram and a kernel density plot of 
sparsity. Clearly, most empirical studies using SCM have sparse weights. However, there 
are also some studies characterized by “dense” weights, i.e., there are more positive 
weights than zero weights. In particular, there are 30 studies (4.56% of the sample) 
with zero sparsity, i.e., all weights are positive and there is no zero weight.

Next, we explore the relation between the number of positive weights (Np) and the 
number of covariates (K). Figure 9 presents a scatterplot along with a 45 degree line. It is 
clear that most points are located below the 45 degree line satisfying Np � K, which is 
largely consistent with Proposition 1. In fact, among 658 SCM studies in the sample, 

Table 2. Summary statistics.
Variable Observations Mean Std. Dev. Min Max

N 658 26.588 23.975 4 326
K 658 9.336 4.479 3 27
K=N 658 0.522 0.369 0.0215 3.25
Np 658 5.784 6.491 1 54
Nz 658 20.792 23.959 0 319
sparsity (Nz=N) 658 0.698 0.257 0 0.991

6See Appendix 2 for a complete list of these papers used in the meta-analysis.
7Note that all 61 papers with multiple SCM studies used the same donor pools throughout, and 49 of them used the same 

covariates as well, but 12 of them used different covariates due to missing values.
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88.9% of them (585 studies) satisfy Np � K. For the rest 11.1% of them (73 studies) with 
Np >K, there are multiple and potentially unstable weights according to Proposition 1.

Before conducting regression analysis, Figure 10 provides a scatterplot and a linear fit 
between the dependent variable sparsity and the key explanatory variable K=Nð Þ. 
Consistent with Hypothesis 1, they are negatively correlated. The coefficient of correla-
tion is −0.397, which is significant at 1%.

To test Hypothesis 1 more rigorously, we consider the following regression 
specification: 

Figure 8. The distribution of sparsity.

Figure 9. The numbers of positive weights and covariates.
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where the subscripts “ij” refer to paper i’s jth SCM study, and ui represents paper fixed 
effects, which can be controlled by adding dummies for all but the first papers.8 The key 
explanatory variable Kij

�
Nij

� �
is theoretically motivated by Hypothesis 1, while the rest 

regressors Kij, Nij and Kij � Nij
� �

are typical terms used in reduced-form regressions. We 
take a general-to-specific approach to model selection, also known as the “sequential 
t-rule”.9 Specifically, we first estimate Equation (6) by OLS, then drop the most insig-
nificant variable each time, until all regressors are significant. The results are reported in 
Table 3.

As shown in Table 3, the coefficient of K=Nð Þ is negatively significant at 5% or 1%, and 
the magnitudes are very stable across different specifications. This lends support to 
Hypothesis 1, i.e., the sparsity of SCM decreases with the relative number of covariates 
as a fraction of the number of control units. On the other hand, all other regressors 
(except the constant term) are insignificant throughout.

However, since the dependent variable sparsity is bounded between 0 and 1, this is an 
example of limited dependent variable. Thus, a linear regression model may be mis-
specified, since it places no restriction on the dependent variable. For example, the 
predicted outcome could take values outside the interval ½0; 1�. Therefore, as 
a robustness check, we next consider fractional response models such as fractional probit 

Figure 10. The number of positive weights and the number of covariates.

8The paper fixed effects term ui captures unobserved heterogeneity across papers, which is analogous to the individual 
fixed effects in the panel data setting. Since ui may be correlated with the regressors, its omission could result in 
inconsistent estimation. Moreover, since some paper dummies are significant in the regressions (unreported), the paper 
fixed effects specification is preferred over the pooled OLS.

9The opposite specific-to-general approach starts from the smallest model possible (i.e., a model with only the constant 
term), and proceeds by adding the most significant regressor at each step. However, the specific-to-general approach 
may suffer from omitted variable bias when the model is too small.
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and fractional logit (Papke & Wooldridge, 1996, 2008; Wooldridge, 2010), which are fit 
by quasi maximum likelihood estimation (QMLE).

The likelihood function for fractional probit (or fractional logit) is exactly the same as 
that of probit (or logit), except that the dependent variable may take on values in the 
interval ½0; 1� instead of just 0 and 1. Moreover, as QMLE, fractional response models are 
consistently estimated as long as the conditional mean is correctly specified. The results 
of fractional probit and fractional logit regressions are reported in Tables 4 and 5 
respectively, where the results are qualitatively similar to the results from OLS regressions 
reported in Table 3. Overall, the meta-analysis in this section confirms the negative 
relation between sparsity and the relative number of covariates, which supports 
Propositions 1 and 2, and the derived Hypothesis 1.

6. Discussion

Proposition 1 implies that a necessary condition for a unique solution of the SCM 
problem is that the number of positive weights is less than or equal to the number of 

Table 3. Results of OLS regressions.
Dependent Variable: sparsity (1) (2) (3) (4)

K=N −0.243** −0.238*** −0.258*** −0.224***
(0.0937) (0.0855) (0.0902) (0.0705)

K 0.0228 0.0199 0.0175
(0.0183) (0.0137) (0.0134)

N 0.00285 0.00199
(0.00332) (0.00172)

K � N −0.000126
(0.000320)

constant 0.762*** 0.783*** 0.859*** 1.043***
(0.161) (0.134) (0.106) (0.0529)

paper fixed effects Yes Yes Yes Yes
N 658 658 658 658
R2 0.571 0.571 0.570 0.567
Adjusted R2 0.485 0.486 0.486 0.483

Standard errors clustered at the paper level are in parentheses. 
*p < 0.1, **p < 0.05, ***p < 0.01.

Table 4. Results of fractional probit regressions.
Dependent Variable: sparsity (1) (2) (3) (4)

K=N −0.804** −0.786*** −0.867*** −0.744***
(0.320) (0.283) (0.306) (0.223)

K 0.0700 0.0618 0.0572
(0.0574) (0.0423) (0.0433)

N 0.00884 0.00645
(0.0100) (0.00494)

K � N −0.000377
(0.00116)

constant 0.844* 0.895** 1.115*** 1.708***
(0.441) (0.371) (0.331) (0.167)

paper fixed effects Yes Yes Yes Yes
N 658 658 658 658
Pseudo R2 0.151 0.151 0.151 0.150

Standard errors clustered at the paper level are in parentheses. 
*p < 0.1, **p < 0.05, ***p < 0.01.
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covariates. For applied researchers, this provides an easy check on the possibility 
of multiple solutions. Specifically, if the number of positive weights exceeds the number 
of covariates, then one should be concerned with the existence of multiple solutions, 
which may result in unstable and random weights.

A possible way to resolve the issue of multiple solutions is to change the model 
specification by adding more covariates, since too few covariates could result in unstable 
weights, which are symptomatic of multiple solutions. However, too many covariates are 
not necessarily helpful, since irrelevant covariates with little predictive power over the 
outcome variable would just get zero or very small weights in the quadratic form. 
Apparently, getting more relevant covariates is always helpful. Therefore, not only the 
number of covariates matters, but also their quality.

Another way to fix the problem of multiple solutions is to drop control units that are 
(nearly) multicollinear. As shown in Figure 5, (nearly) multicollinear control units could 
also result in multiple solutions. Specifically, one may conduct regressions among 

x2; � � � ; xNþ1f g and drop the variable with the highest R2, and so on. Hopefully, by 
adding more covariates or dropping multicollinear control units, the number of positive 
weights no longer exceeds the number of covariates, thus relieving the concern over 
multiple solutions.

7. Conclusion

The optimal weights for synthetic control estimation are often sparse in practice, but little 
explanation has been offered in the literature except Abadie (2021). To the best of our 
knowledge, this is the first paper devoted entirely to understanding the sparsity of SCM. 
Specifically, we make three contributions. First, from the perspective of predictor space, 
we show that if there is a unique solution, then the number of positive weights are upper- 
bounded by the number of covariates. Second, we offer a simple alternative explanation 
about the sparsity of SCM from the perspective of parameter space. Last but not least, we 
conduct a meta-analysis of empirical studies using SCM in the literature. Consistently 
with our theoretical finding, regression analysis shows that the sparsity of SCM decreases 
with the relative number of covariates as a fraction of the number of control units.

Table 5. Results of fractional logit regressions.
Dependent Variable: sparsity (1) (2) (3) (4)

K=N −1.276** −1.257*** −1.405*** −1.217***
(0.537) (0.469) (0.519) (0.373)

K 0.108 0.100 0.0937
(0.100) (0.0736) (0.0758)

N 0.0144 0.0120
(0.0192) (0.00967)

K � N −0.000400
(0.00227)

constant 1.449* 1.495** 1.876*** 2.859***
(0.781) (0.674) (0.589) (0.280)

paper fixed effects Yes Yes Yes Yes
N 658 658 658 658
Pseudo R2 0.151 0.151 0.150 0.150

Standard errors clustered at the paper level are in parentheses. 
*p < 0.1, **p < 0.05, ***p < 0.01.
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An important take-away from this paper is that if the number of positive weights 
exceeds the number of covariates (which happened for 11.1% SCM studies in our 
sample), then there are multiple solutions to the synthetic control problem, which may 
result in unstable and random weights. In this case, applied researchers are recom-
mended to change the model specification by adding more covariates or dropping 
multicollinear control units until multiple solutions are no longer a concern.
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