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regressions in top economics journals and Monte Carlo 
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ABSTRACT
R2 and adjusted R2 may exaggerate a model’s true ability to predict 
the dependent variable in the presence of overfitting, whereas 
leave-one-out R2 (LOOR2) is robust to overfitting. We demonstrate 
this by replicating 279 regressions from 100 papers in top econom
ics journals, where the median increases of R2 and adjusted R2 over 
LOOR2 reach 40.2% and 21.4% respectively. The inflation of test 
errors over training errors increases with the severity of overfitting 
as measured by the number of regressors and nonlinear terms, and 
the presence of outliers, but decreases with the sample size. These 
results are further validated by Monte Carlo simulations.
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1. Introduction

In empirical studies, R2 and adjusted R2 (denoted as �R2) are routinely reported as 
measures of goodness-of-fit for linear regressions. For example, a R2 of 0.8 is usually 
taken to imply that all explanatory variables jointly explain 80% of the variations in the 
dependent variable. But how reliable is this interpretation?

It is well known that R2 and �R2 only measure in-sample fit, which may not be good 
indicators of the model’s true ability to explain or predict out of sample. In particular, it is 
common sense in the machine learning literature that training errors (as represented 
by1 � R2 and 1 � �R2) could be poor measures of the true test errors, when the model is 
used to predict data that it has not yet seen. Nevertheless, as of today, most economists 
still happily use R2 and �R2 to measure goodness-of-fit, without worrying about its 
potential pitfalls.1

This paper takes this issue seriously. The essential problem is that R2 and �R2 may 
exaggerate a model’s true ability to explain or predict the dependent variable, especially 
in the presence of overfitting. Overfitting occurs when a model is excessively fit to noisy 
sample data (e.g., a low degree of freedom resulting from a small sample size or too many 
covariates, a complicated functional form with many nonlinear terms, or the presence of 

CONTACT Qiang Chen qiang2chen2@126.com School of Economics, Shandong University, Jinan, China

Supplemental data for this article can be accessed online at https://doi.org/10.1080/15140326.2023.2207326.

1To be sure, economics is not the only discipline in this regard. For example, Parady et al. (2021) laments the overreliance 
on statistical goodness-of-fit and under-reliance on model validation in the transportation literature.
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outliers), which compromises the model’s ability to uncover the true relationship 
between the dependent and explanatory variables, as well as its performance in out-of- 
sample prediction.

To solve this problem, we recommend using leave-one-out cross-validated R2 (LOOR2 

in short) as a better measure of goodness-of-fit for linear regressions. While LOOR2 has 
been around for some time, this paper takes it seriously and suggests that economists 
should routinely report LOOR2 in their empirical work alongside R2 and adjusted R2 (if 
not at the expense of the latter two). There are a number of advantages associated with 
LOOR2. First, LOOR2 is robust to overfitting, as it measures the true test errors and the 
model’s real ability to explain or predict the dependent variable. Second, while five-fold 
or ten-fold cross-validations are popular in machine learning to measure test errors, the 
results are uncertain due to random splitting of the sample into five or ten folds (parts) of 
roughly equal sizes. On the other hand, the results from leave-one-out cross-validation is 
certain, since one observation is left out at a time, and no random sampling is involved. 
Last but not least, for linear regressions, there is a short-cut formula for computing 
LOOR2 such that only one regression is needed, thus the computational cost is minimal.

To support the above claims, we replicate 279 regressions from 100 empirical papers 
in four top economics journals during 2004–2021. In this sample, the median increases of 
R2 and �R2 over LOOR2 reach 40.2% and 21.4%, respectively, implying that both R2 and �R2 

often exaggerate the estimated model’s true ability to explain or predict the variations in 
the dependent variable to a large extent. Moreover, we introduce “error inflation factor” 
(EIF) and “adjusted error inflation factor” (adjusted EIF) to measure the inflation of test 
errors (i.e., 1 � LOOR2) over training errors using R2 and adjusted R2 (i.e., 1 � R2 and 
1 � �R2) respectively. The regression results show that both EIF and adjusted EIF increase 
with the severity of overfitting as measured by the number of regressors and nonlinear 
terms, and the presence of outliers, but decrease with the sample size. These results are 
further validated by Monte Carlo simulations.

Statisticians have long recognized that R2 could be deceptively large as a measurement 
of a model’s true predictive ability on subsequent data. In fact, this recognition motivated 
the development of adjusted R2 as a way to shrink R2 by degree-of-freedom adjustment 
(Larson, 1931; Wherry, 1931).2 However, Mayer (1975) demonstrates empirically that 
even �R2 is a poor guide to the post-sample fit, which may be caused by excessive data 
mining. An alternative route to the solution relies on cross-validation including leave- 
one-out cross-validation (Cochran, 1968; Hills, 1966; Lachenbruch & Mickey, 1968; 
Mosteller & Tukey, 1968), which turns out to be a more fruitful approach. Moreover, 
Efron and Morris (1973), Geisser (1974) and Stone (1974) propose to use cross-validation 
for model selection. For a modern survey on the methodology of cross-validation, see 
Arlot and Celisse (2010). This paper follows the tradition of cross-validation, as it 
measures test errors directly.

The rest of the paper is arranged as follows. Section 2 introduces leave-one-out R2 

(LOOR2), error inflation factor (EIF), and adjusted error inflation factor (adjusted EIF). 
Section 3 studies the determinants of EIF and adjusted EIF via a meta-analysis by 
replicating 279 regressions from 100 prominent economic papers. Section 4 conducts 

2The original formula for adjusted R2 was first proposed in a paper by M. J. B. Ezekiel, who read it before the Mathematical 
Society at its annual meeting in 1928, but gave the credit to B. B. Smith.
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Monte Carlo simulations for further investigation. Section 5 provides conclusion and 
suggestions for empirical researchers.

2. Leave-one-out R2 and error inflation factor

Consider the following linear regression model with n observations, 
yi ¼ x0iβþ εi ði ¼ 1; � � � ; nÞ; (1) 

where yi is the dependent variable for an individual i, and xi is a k� 1 vector of 
explanatory variables, β is the corresponding k� 1 vector of parameters, and εi is the 
error term. The model can be written in a matrix form, 

y ¼ Xβþ ε; (2) 

where y ¼ ðy1 . . . ynÞ
0, X ¼ ðx1 � � � xnÞ

0 and ε ¼ ðε1 � � � εnÞ
0. The well-known OLS estima

tor is given by β̂ ¼ ðX0XÞ� 1X0y. With β̂ estimated and the fitted values given by ̂yi ¼ x0iβ̂, 

we have R2 ¼ Corrðyi; ŷiÞ
� �2

¼ 1 �
Pn

i¼1
e2

iPn

i¼1
ðyi� �yÞ2 in the presence of a constant term,3   

and adjusted R2 given by �R2 ¼ 1 �
Pn

i¼1
e2

i =ðn� kÞ
Pn

i¼1
ðyi� �yÞ2=ðn� 1Þ

, where �y is the sample mean of yi, and 

ei is the OLS residual.
To implement leave-one-out regression omitting individual i, we simply run OLS 

regression with all but the ith observations. Denoting Xð� iÞ as the data matrix X without 
the ith row, and yð� iÞ as the outcome vector y without the ith element, the OLS estimator 
leaving out the ith observation is simply, 

β̂ð� iÞ ¼ X0ð� iÞXð� iÞ
� �� 1X0ð� iÞyð� iÞ: (3) 

With β̂ð� iÞ estimated, we can make an out-of-sample prediction for the ith observation as 
ŷð� iÞ ¼ x0iβ̂ð� iÞ. Repeat the procedure for all observations in the sample to obtain 

ŷð� iÞ

n on

i¼1
, and the leave-one-out R2(LOOR2) is given by 

0 � LOOR2 ¼ Corrð yi; ŷð� iÞÞ
h i2

� 1; (4) 

where Corrðyi; ŷð� iÞÞ is the correlation coefficient between yi and ŷð� iÞ.
The procedure to compute LOOR2 appears to be cumbersome as it entails running n 

regressions, which may be computationally costly if the sample size n is very large. 
Fortunately, for linear regressions, there is a short-cut formula for running leave-one- 
out regression omitting the ith observation (Hansen, 2022, Chapter 3), 

3We ignore the case of linear regression without a constant term, as it is rarely encountered in practice.
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β̂ð� iÞ ¼ β̂ � ðX0XÞ� 1xi~ei; (5) 

where ~ei ¼
ei

1� levi 
is a scaled version of the OLS residual ei using the full sample, and 

levi ¼ x0iðX0XÞ� 1xi is known as the leverage for the ith observation. Using Equation 
(5), the leave-one-out coefficient β̂ð� iÞ can be readily computed with existing 
information. Therefore, in the case of linear regressions, only one regression is 
needed to compute LOOR2 after all. Thus, calculating LOOR2 in addition to R2 and 
adjusted R2 only imposes a minimal computational cost for linear regressions.4

After introducing LOOR2, a natural question arises about the relationship among R2, 
adjusted R2and LOOR2. In general, R2 and adjusted R2 are larger than LOOR2, as it is 
usually more difficult to make out-of-sample predictions than in-sample predictions. For 
example, as simulations in Section 4.1 show, when noise variables are added to the 
regression, R2 keeps rising while adjusted R2remains stable, but LOOR2 declines steadily.

To see it from a different perspective, (1 � R2) and (1 � Adjusted R2) are generally 
smaller than (1 � LOOR2), as training errors are usually smaller than test errors. To 
measure the “inflation” of test errors over training errors, we define an error inflation 
factor (EIF) and an adjusted error inflation factor (adjusted EIF),5 

EIF ¼
1 � LOOR2

1 � R2
; (6) 

AdjustedEIF ¼
1 � LOOR2

1 � �R
2

; (7) 

where �R2 is adjusted R2.
We conjecture that both EIF and adjusted EIF increase with the severity of overfitting. 

Intuitively, when there is severe overfitting, training errors underestimate test errors to 
a great extent, resulting in large values of EIF and adjusted EIF. In the empirical study in 
Section 3, we consider three potential factors contributing to overfitting, i.e., the degree 
of freedom (sample size in excess of the number of regressors), the number of nonlinear 
terms (such as squared and interactive terms), and the presence of outliers. First, if the 
degree of freedom is small (e.g., a small sample size, or many regressors, or both), then 
linear regression is essentially fit to the noisy sample data, resulting in overfitting. 
Second, the presence of many nonlinear terms would increase the complexity of the 
regression function,6 and thus its ability to fit noisy data, which may also result in 
overfitting. Third, the nature of OLS estimation by minimizing the residual sum of 
squares implies that it is easily influenced by outliers, which again leads to overfitting.

4For example, the short-cut algorithm for computing LOOR2 could be implemented in Stata by using the user-written 
command “cv_regress” (Rios-Avila, 2018) after the usual “regress” command for OLS regression.

5These terminologies are in the same spirit as “variance inflation factor” (VIF).
6In fact, the presence of many covariates also increases the complexity of regression function.
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In summary, based on the fact that overfitting reduces in-sample training errors at the 
expense of increasing out-of-sample test errors, we hypothesize that overfitting would 
result in elevated EIF and adjusted EIF. The next section investigates these relationships 
empirically.

3. A meta-analysis

3.1. Data source and variable definitions

In this section, we empirically compare R2, adjusted R2, and LOOR2, and investigate 
determinants of their gaps as represented by EIF and adjusted EIF. We focus on linear 
models where OLS is used for estimation in the recent literature. As a meta-analysis, our 
sample data is compiled by replicating linear regressions from 100 empirical papers 
selected from American Economic Review (23 papers), Economic Journal (35 papers), 
European Economic Review (18 papers) and Review of Economic Studies (24 papers) 
during 2004–2021.7 There are a total of 100 papers and 279 regression results in our 
sample with a sample size of 279, since each paper usually contains multiple OLS 
regressions.

For each of these 279 regressions, we calculate R2, adjusted R2, and LOOR2, as well as 
the error inflation factor (EIF, denoted as eif) and the adjusted error inflation factor 
(adjusted EIF, denoted as eif_a). The explanatory variables include the sample size (n), 
the number of regressors including the constant term (k), the number of nonlinear terms 
(nonlinear) in each regression, and the maximum value of leverage (lev_max) as well as 
its variance (lev_var).

An explanation of these two measures of outliers is in order. As mentioned in Section 
2, the leverage for the ith observation is given by levi ¼ x0iðX0XÞ� 1xi, which measures the 
influence of the ith observation on β̂. Specifically, Equation (5) implies that 

β̂ � β̂ð� iÞ ¼
ðX0XÞ� 1xiei

1 � levi
: (8) 

It can be shown that 0 � levi � 1 with a sample average of k=n (Hansen, 2022, 
Chapter 3). Therefore, a large levi implies a large discrepancy between β̂ and β̂ð� iÞ

according to Equation (8). The variable lev_max is simply the maximum leverage for 
each regression, which captures the greatest influence of a single observation in 
a particular regression. In the same spirit, one may consider the second largest leverage, 
the third largest leverage, and so on. But this approach gets tedious. Instead, we use the 
variance of leverage (lev_var) as a parsimonious representation. The rationale is that 

given that the sum of all leverages is equal to the number of regressors (i.e., 
Pn

i¼1
levi ¼ k), 

when some leverages are very large (i.e., close to the largest possible value of 1), then 

7These four journals are selected partly because their replication data and programs are more easily accessible. See the 
Appendix for a complete list of these 100 papers.
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other leverages are squeezed towards their smallest possible value of 0, which results in an 
increase in the variance of leverage.

Summary statistics of the variables used in this study are presented in Table 1. While 
we focus on EIF (eif) and adjusted EIF (eif_a) in the regression analysis, it is intuitive to 
first look at the ratios (R2/LOOR2) and (adjusted R2/LOOR2) as reported in the first two 
rows of Table 1. The median of (R2/LOOR2) is 1.402, implying that the median increase of 
R2 over LOOR2 reaches 40.2% in the sample。Similarly, the median of (adjusted R2/ 
LOOR2) is 1.214, implying that the median increase of adjusted R2 over LOOR2 is 
21.4%。These show that R2 and adjusted R2 often exaggerate the estimated model’s 
true ability to explain or predict the dependent variable to a large extent, as measured by 
LOOR2.

The minimum values of (R2/LOOR2) and (adjusted R2/LOOR2) are both above 1 as 
expected. However, the maximum values of (R2/LOOR2) and (adjusted R2/LOOR2) reach 
alarming levels of 48,065.68 and 37,483.06, respectively. Therefore, it is instructive to take 
a closer look at these extreme values, which come from the fifth of five regressions in 
Dower et al. (2021), as shown in Table 2.

In an effort to estimate the value of a statistical life under Stalin’s dictatorship, Dower 
et al. (2021) ran cross-sectional OLS regressions with 58 regions of the former Soviet 
Union as the units of observations. The dependent variable is the number of citizens 
repressed during the German and Polish operations of the Great Terror during 1937– 
1938 per 1000 capita. As typically done in empirical papers, Table 2 of Dower et al. (2021) 
reports results from five regressions. As more regressors and nonlinear terms are added 

Table 1. Summary statistics.
Variable Observations Mean Median S. D. Min Max

R2/LOOR2 279 175.156 1.402 2877.459 1.001 48065.68
Adj. R2/LOOR2 279 136.268 1.214 2243.947 1.001 37483.06
eif 279 1.184 1.123 0.206 1.001 2.406
eif_a 279 1.090 1.060 0.098 1.000 1.837
n 279 621.473 245 1676.184 26 20269
k 279 29.108 11 75.084 2 694
nonlinear 279 1.487 0 2.639 0 13
lev_max 279 0.356 0.243 0.314 0.001 1
lev_var 279 0.004 0.00079 0.007 0.000 0.050

Table 2. Five regressions in Dower et al. (2021).
Regressions (1) (2) (3) (4) (5)

n 58 57 57 57 56
k 4 7 10 12 14
nonlinear 1 1 4 5 6
lev_max 0.996 0.996 0.997 0.998 0.998
lev_var 0.020 0.024 0.039 0.041 0.047
R2 0.244 0.296 0.425 0.476 0.584
Adjusted R2 0.202 0.212 0.315 0.348 0.456
LOOR2 0.109 0.090 0.242 0.003 0.000012
R2/LOOR2 2.239 3.287 1.759 151.725 48065.68
Adj. R2/LOOR2 1.853 2.351 1.302 110.860 37483.06
EIF 1.178 1.293 1.318 1.902 2.406
Adjusted EIF 1.116 1.155 1.107 1.528 1.837

Data are from Table 2 of Dower et al. (2021), and by authors’ calculation.
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from regressions (1) through (5), R2 increases steadily from 0.244 to 0.584, while adjusted 
R2 increases from 0.202 to 0.456, indicating a significant boost to the goodness-of-fit at 
face value. However, while LOOR2 improves in regression (3), it drops to alarmingly low 
values of 0.003 and 0.000012 in regressions (4) and (5).8 Consequently, (R2/LOOR2) and 
(adjusted R2/LOOR2) reach outrageous levels of 48,065.68 and 37,483.06, respectively. 
Apparently, regressions (1) and (2) are underfit, whereas regressions (4) and (5) are 
severely overfit. Moreover, the maximum leverages are close to 1 in all regressions, 
indicating the presence of outliers.

3.2. Correlation analysis

As a preliminary exploration of determinants of EIF and adjusted EIF, Table 3 presents 
a correlation matrix for major variables in the study. EIF (eif) is negatively correlated with 
the sample size (n) at the 5% level, while positively correlated with the number of 
regressors (k), the number of nonlinear terms (nonlinear), the maximum leverage 
(lev_max) and the variance of leverage (lev_var) at the 1% level. The correlation pattern 
between the adjusted EIF (eif_a) and these determinants is qualitatively similar. The only 
exception is that adjusted EIF (eif_a) is not significantly correlated with the number of 
regressors (k), perhaps due to the degree-of-freedom adjustment already made in 
adjusted R2.

3.3. Regression analysis

For the determinants of Log(EIF), we start from the following baseline regression9 

ln eifi ¼ β0 þ β1 lnnþ β2 ln kþ β3nonlinearþ β4lev maxi þ β5lev vari þ εi: (9) 

In addition, we also interact lnn and lnk with lev_max and lev_var in Equation (9) to 
capture possible moderating effects of the sample size and number of regressors on the 
two measures of outliers. Our dataset consists of 279 observations (regressions) from 100 
papers, where each paper contributes 2.79 regressions on average. Apparently, we have 
cluster data clustered at the paper level, where observations (regressions) from the same 
paper are likely correlated. Therefore, we use robust standard errors clustered at the 

Table 3. Correlation matrix for major variables in the study.
eif eif_a n k nonlinear lev_max lev_var

eif 1
eif_a 0.926*** 1
n -0.139** -0.154*** 1
k 0.172*** 0.0804 0.396*** 1
nonlinear 0.206*** 0.344*** -0.064 -0.074 1
lev_max 0.575*** 0.487*** 0.057 0.223*** 0.101* 1
lev_var 0.660*** 0.637*** -0.108* 0.016 0.107* 0.685*** 1

*p �10%, **p � 5%, ***p � 1%.

8Note that Dower et al. (2021) only report R2.
9The results of using EIF or adjusted EIF as the dependent variables are qualitatively similar, but the fit is slightly worse. To 

save space, we only report results using Log(EIF) and Log(Adjusted EIF) as the dependent variables.:
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paper level throughout. In addition, we may also control for the “paper fixed effects” by 
giving observations from the same paper a specific intercept. However, since sample size 
(n) varies little within a paper,10 adding the paper fixed effects may reduce our ability to 
detect the effects of sample size (n). Therefore, we report regression results both with and 
without the paper fixed effects.

Table 4 reports results from OLS regressions with Log(EIF) as the dependent variable. 
Column (1) of Table 4 reports the results from the baseline regression (9) without the 
paper fixed effects. The coefficient of lnn is negatively significant at the 1% level, 
indicating that a large sample size decreases overfitting, thus reducing the EIF. On the 
other hand, the coefficient of lnk is positively significant at the 1% level, implying that 
more regressors increases the chance of overfitting, which contributes to increased EIF. 
The coefficient of lev_var (variance of leverage) is positively significant at the 1% level, as 
outliers may result in overfitting, whereas the coefficients of lev_max and nonlinear are 
insignificant.

Column (2) of Table 4 interacts lnn and lnk with lev_max and lev_var. The coefficient 
of lnn*lev_var is negatively significant at the 1% level, implying that the effect of lev_var 
on EIF may have been mitigated by increasing the sample size. On the other hand, the 
coefficient of lnk*lev_var is positively significant at the 1% level, indicating that the effect 
of lev_var on EIF may have been magnified by increasing the number of regressors. 
Interestingly, the coefficient of lev_max is now positively significant at the 1% level, 
whereas the coefficient of lev_var loses significance. Note that these two measures of 

Table 4. Determinants of log(EIF).
(1) (2) (3) (4)

lnn -0.0645*** -0.0471*** -0.0106 -0.0418**
(0.00909) (0.00920) (0.0188) (0.0186)

lnk 0.0788*** 0.0607*** 0.0597*** 0.0528***
(0.0128) (0.00875) (0.0116) (0.00903)

nonlinear 0.00578 0.00590 0.0171*** 0.0119***
(0.00424) (0.00376) (0.00542) (0.00411)

lev_max -0.0155 0.479*** -0.0989* 1.300***
(0.0436) (0.149) (0.0525) (0.327)

lev_var 8.394*** 8.672 12.84*** -26.05**
(1.259) (6.288) (3.307) (10.82)

lnn*lev_max -0.0600 -0.235***
(0.0431) (0.0522)

lnn*lev_var -12.13*** -2.379
(4.244) (4.590)

lnk*lev_max -0.0167 0.00311
(0.0427) (0.0458)

lnk*lev_var 18.17*** 14.75**
(5.016) (6.806)

paper fixed effects No No Yes Yes
constant 0.284*** 0.219*** 0.0270 0.222**

(0.0389) (0.0461) (0.104) (0.106)
N 279 279 279 279
R2 0.694 0.807 0.943 0.962
Adjusted R2 0.689 0.800 0.909 0.939
LOOR2 0.667 0.745 0.839 0.892

Cluster-robust standard errors in parentheses. *p �10%, **p � 5%, ***p � 1%.

10Typically, the sample sizes of regressions within a paper change because of adding more variables, which may result in 
missing observations.
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outliers are somewhat collinear, since lev_max and lev_var are positively correlated at the 
1% level with a correlation coefficient of 0.685 (see Table 3).

Column (3) of Table 4 adds the paper fixed effects to the baseline regression (9). The 
results are qualitatively similar to column (1), but with notable differences. In particular, 
the coefficient of lnn loses significance, perhaps due to too little variation in sample size 
(n) within the same paper. However, the coefficient of nonlinear (number of nonlinear 
terms) is now positively significant at the 1% level, as more nonlinear terms increase the 
model complexity, thus contributing to overfitting.

Column (4) of Table 4 interacts lnn and lnk with lev_max and lev_var while keeping 
the paper fixed effects. The results in column (4) are mostly similar to column (3). 
However, the coefficient of lev_var surprisingly becomes negatively significant at the 5% 
level with an estimate of -26.05. Nevertheless, the coefficient of lnk*lev_var is positively 
significant at the 5% level with an estimate of 14.75. Overall, since the sample mean of lnk 
is 2.503, the marginal effect of lev_var evaluated at the sample mean of lnk is (-26.05 +  
2.503�14.75) = 10.87, which is similar in both magnitude and significance to the esti
mated coefficient of lev_var in columns (1) and (3) without interaction terms. This shows 
that lev_var increases overfitting more in high-dimensional data with a large number of 
covariates. Moreover, the coefficient of lnn*lev_max is negatively significant at the 1% 
level, implying that the effect of lev_max on overfitting could be mitigated by a large 
sample size.

Table 5 reports regression results for the dependent variable Log(Adjusted EIF). The 
results in Table 5 largely parallel those in Table 4, and the interpretations are also similar. 

Table 5. Determinants of log(adjusted EIF).
(1) (2) (3) (4)

lnn -0.0306*** -0.0249*** -0.00925 -0.0318*
(0.00530) (0.00616) (0.0147) (0.0187)

lnk 0.0313*** 0.0290*** 0.0279*** 0.0264***
(0.00599) (0.00529) (0.00688) (0.00608)

nonlinear 0.00737* 0.00697* 0.0140*** 0.0115***
(0.00378) (0.00376) (0.00432) (0.00373)

lev_max -0.0193 0.173** -0.0719 0.676**
(0.0282) (0.0822) (0.0433) (0.273)

lev_var 4.933*** 0.428 6.521** -21.39**
(1.248) (4.423) (3.145) (9.379)

lnn*lev_max -0.0130 -0.118***
(0.0192) (0.0392)

lnn*lev_var -3.642 0.595
(2.486) (4.845)

lnk*lev_max -0.0336 -0.0245
(0.0206) (0.0340)

lnk*lev_var 7.552*** 8.173
(2.845) (7.326)

paper fixed effects No No Yes Yes
constant 0.152*** 0.123*** 0.0441 0.178*

(0.0254) (0.0330) (0.0834) (0.106)
N 279 279 279 279
R2 0.599 0.656 0.882 0.902
Adjusted R2 0.592 0.645 0.811 0.840
LOOR2 0.551 0.581 0.708 0.736

Cluster-robust standard errors in parentheses. *p �10%, **p � 5%, ***p � 1%.
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In summary, these empirical results show that both Log(EIF) and Log(Adjusted EIF) 
increase with the severity of overfitting as measured by the number of regressors (lnk) 
and nonlinear terms (nonlinear), the maximum value of leverage (lev_max) and its 
variance (lev_var), but decreases with the sample size (lnn). Moreover, the effects of 
outliers (lev_max and lev_var) on overfitting could be moderated by the sample size and 
number of regressors (lnn and lnk).

4. Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to study the behavior of R2, 
adjusted R2, LOOR2, EIF, and adjusted EIF as factors related to overfitting change. 
Overall, the results from simulations are consistent with our findings in the empiri
cal study above.

In the baseline setting, we draw 100 random observations from a bivariate normal  

distribution Y
X

� �

,N 0
0

� �

;
1 0:9

0:9 1

� �� �

. With a correlation coefficient of 0.9 

between Y and X, the population R2 is 0.81. The baseline regression is simply, 
Yi ¼ β0 þ β1Xi þ εi ði ¼ 1; � � � ; 100Þ: (10) 

Throughout, we repeat each simulation for 1000 times, and compute the average values 
of R2, adjusted R2, LOOR2, EIF, and adjusted EIF. We then investigate their behaviors as 

(a) (b)

Figure 1. The effects of number of regressors.
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factors related to overfitting change, including the number of regressors, the sample size, 
the number of nonlinear terms, and the presence of outliers.

4.1. Number of regressors

In this simulation, we increase the number of regressors simply by incrementally 
adding 1–50 noise variables into the baseline regression (10), where all noise 
variables are independently distributed as Nð0; 1Þ. The sample size is kept at 100. 
The results are presented in Figure 1. Figure 1(a) graphs R2, adjusted R2 and LOOR2 

against the number of regressors, where the gray horizontal line shows the popula
tion R2 of 0.81. As the number of regressors increases from 2 to 51, R2 increases 
steadily to above 0.9, clearly overestimating the ability of the model to explain the 
variation in y as a result of overfitting. On the other hand, adjusted R2 hovers 
between 0.8 and 0.81, showing the value of degree-of-freedom adjustment. 
Interesting, LOOR2 actually declines steadily to below 0.65, indicating that adding 
noise variables actually hurts the model’s ability to predict out of sample. Clearly, 
both R2 and adjusted R2 exaggerate the model’s true predictive ability, and the 
extent of exaggeration increases with the number of noise variables added. On the 

other hand, LOOR2 is robust to overfitting (at least as the model’s real predictive 
ability is concerned), as overfitting resulting from adding noise variables reduces 

Figure 2. The effects of sample size.
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LOOR2. Figure 1(b) graphs EIF and adjusted EIF against the number of regressors. 
The interpretation is essentially the same as Figure 1(a).

4.2. Sample size

In this simulation, the sample size is increased from 100 to 1000 at the increment of 50. 
On the other hand, we keep the number of regressors at 27, including the constant term, 
the signal variable X, and 25 noise variables independently distributed as Nð0; 1Þ. The 
results are presented in Figure 2. Figure 2(a) graphs R2, adjusted R2 and LOOR2 against 
the sample size, where the gray horizontal line again shows the population R2 of 0.81. 
Apparently, sample size has little effect on adjusted R2, which hovers just below 0.81, as it 
has already compensated for the changing degree of freedom. On the other hand, when 
the sample size is relatively small (say, n = 100), R2 is clearly above 0.81, indicating that 
the model is overfit in the presence of 25 noise variables. However, as the sample size 
increases towards 1000, the overfitting phenomenon diminishes, and R2 declines towards 
0.81 (but still above 0.81). On the contrary, when the sample size is relatively small, 
LOOR2 is well below 0.81, as the model’s predictive ability suffers in the presence of 25 
noise variables. As the sample size is increased, LOOR2 climbs up towards 0.81, as a large 

sample size alleviates overfitting. Figure 4(b) graphs EIF and adjusted EIF against the 
sample size. The interpretation is similar to Figure 2(a).

Figure 3. The effects of number of nonlinear terms.
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4.3. Number of nonlinear terms

To consider the effect of nonlinear terms, we simply add second through eleventh power 
terms to Equation (10),11 

Yi ¼ β0 þ β1Xi þ β2X
2
iþ � � � þ β11X

11
i þεi ði ¼ 1; � � � ; 100Þ: (11) 

The sample size is still kept at 100. The results are presented in Figure 3. Figure 3(a) 
graphs R2, adjusted R2 and LOOR2 against the number of nonlinear terms. In this simple 
data generating process, adding more nonlinear terms does not have much effect on 
either R2 or adjusted R2, although R2 does climb up slightly. However, when more 
nonlinear terms are added, LOOR2 decreases rapidly, as these nonlinear terms drive up 
the model’s complexity, resulting in overfitting and reduced ability to predict out of 
sample. Figure 3(b) graphs EIF and adjusted EIF against the number of nonlinear terms, 
and the interpretation is similar.

4.4. Outliers

In this simulation, we generate outliers simply by multiplying the largest value of X in the 
sample by 2 through 100. As the multiplier on the largest X grows from 1 to 100, the 
maximum leverage increases rapidly, and approaches its largest possible value of 1, as 
shown in Figure 4.

Figure 5 presents the simulation results as the maximum leverage increases. 
Figure 5(a) graphs R2, adjusted R2 and LOOR2 against the maximum leverage. Initially, 

Figure 4. Maximum leverage and multiplier on the largest X.

11As pointed out by an anonymous referee, adding nonlinear terms can be viewed as a particular case of including 
additional correlated covariates.
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as the maximum leverage grows, LOOR2 drops much faster than R2 and adjusted R2, as 
the model’s true predictive ability declines, while overfitting occurs in the presence of an 
ever more extreme outlier. However, as LOOR2 drops closer to its lower bound of 0, its 
speed of declining inevitably falls behind than that of R2 and adjusted R2. In the end, as 
the multiplier on the largest X increases towards 100, the OLS fit becomes very poor, thus 
R2, adjusted R2, and LOOR2 all decline towards their common lower bound of 0. 
Figure 5(b) graphs EIF and adjusted EIF against the maximum leverage, which tells 
a similar story. Initially, both EIF and adjusted EIF increase, but they start to decline 
when the maximum leverage is around 0.5 (and the multiplier on the largest X is 5), 
resulting in an inverted U-shape.

5. Conclusion

Goodness-of-fit measures R2 and adjusted R2 are routinely reported in empirical studies 
with the implicit presumption that they represent the percentage by which the regressors 
jointly explain or predict the variation of the dependent variable. This paper shows that 
R2 and adjusted R2 are inaccurate in this regard and often overly optimistic in the 
presence of overfitting resulting from small sample size, many regressors and nonlinear 
terms, and existence of outliers. As a remedy, leave-one-out R2 (LOOR2) can be readily 
computed, and used as a reliable measure of the model’s true ability to predict out of 
sample.

Figure 5. The effect of outliers.
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Moreover, we introduce the concepts of “error inflation factor” (EIF) and 
“adjusted error inflation factor” (adjusted EIF) as the degree of inflation of test 
errors (1 � LOOR2) over training errors represented by (1 � R2) and (1 � �R2) 
respectively. We then conduct a meta-analysis about the determinants of EIF and 
adjusted EIF by replicating 273 regressions from 100 papers in four top economics 
journal during 2004–2021. The median increases of R2 and adjusted R2 over LOOR2 

reach 40.2% and 21.4%, respectively, in this sample. The regression results show 
that both EIF and adjusted EIF increase with the severity of overfitting, as measured 
by the number of regressors and nonlinear terms, and the presence of outliers, but 
decrease with the sample size. These results are further validated by Monte Carlo 
simulations.

For empirical researchers, we recommend that they report LOOR2 alongside R2 and 
adjusted R2, since LOOR2 is robust to overfitting as a measure of the model’s true 
predictive ability out of sample. Moreover, when LOOR2 diverges from either R2 or 
adjusted R2, this is a sign of overfitting, and empirical researchers should be concerned, 
and look for possible causes, such as a complicated functional form (e.g., too many 
nonlinear terms), and the presence of outliers (e.g., the maximum leverage is close to 1). 
As a practical matter, while overfitting reduces bias, it usually increases variance to 
a greater extent, which results in increased mean squared errors of the estimator, and 
reduced significance of the parameter of interest. Therefore, one way to increase para
meter significance is to reduce overfitting.12

As model validation via out-of-sample prediction becomes increasingly common in 
many disciplines, it is time for economists to honestly embrace LOOR2 as a safeguard 
against overfitting, which is hard to detect by using conventional R2 and adjusted R2 

based on in-sample fit. In this way, economists can more easily avoid the trap of over
fitting, and make their empirical findings more robust. Providers of statistical software 
(e.g., Stata) can also help in this regard by routinely reporting LOOR2 alongside tradi
tional R2 and adjusted R2 in the regression output.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Qiang Chen is a professor at the School of Economics, Shandong University.

Ji Qi is a PhD student at the School of Economics, Shandong University.

References

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. 
Statistics Surveys, 4, 40–79. https://doi.org/10.1214/09-SS054 

12We thank an anonymous referee for useful discussions about the relation between overfitting and parameter 
significance, and more studies are needed in this direction.

JOURNAL OF APPLIED ECONOMICS 15

https://doi.org/10.1214/09-SS054


Cochran, W. G. (1968). Commentary on estimation of error rates in discriminant analysis. 
Technometrics, 10(1), 204–205. https://doi.org/10.1080/00401706.1968.10490548 

Dower, P. C., Markevich, A., & Weber, S. (2021). The value of a statistical life in a dictatorship: 
Evidence from Stalin. European Economic Review, 133, 103663. https://doi.org/10.1016/j.euro 
ecorev.2021.103663 

Efron, B., & Morris, C. (1973). Combining possibly related estimation problems (with discussion). 
Journal of the Royal Statistical Society, Series B, 35, 379–402.

Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101–107. 
https://doi.org/10.1093/biomet/61.1.101 

Hansen, B. E. (2022). Econometrics. Princeton University Press.
Hills, M. (1966). Allocation rules and their error rates. Journal of the Royal Statistical Society Series 

B (Methodological), 28(1), 1–31. https://doi.org/10.1111/j.2517-6161.1966.tb00614.x 
Lachenbruch, P. A., & Mickey, M. R. (1968). Estimation of error rates in discriminant analysis. 

Technometrics, 10(1), 1–11. https://doi.org/10.1080/00401706.1968.10490530 
Larson, S. C. (1931). The shrinkage of the coefficient of multiple correlation. Journal of 

Educational Psychology, 22(1), 45–55. https://doi.org/10.1037/h0072400 
Mayer, T. (1975). Selecting economic hypotheses by goodness of fit. The Economic Journal, 85 

(340), 877–883. https://doi.org/10.2307/2230630 
Mosteller, F., & Tukey, J. W. (1968). Data analysis, including statistics. In G. Lindzey & E. Aronson 

(Eds.), Handbook of social psychology (Vol. 2). Addison-Wesley.
Parady, G., Ory, D., & Walker, J. (2021). The overreliance on statistical goodness-of-fit and 

under-reliance on model validation in discrete choice models: A review of validation practices 
in the transportation academic literature. Journal of Choice Modelling, 38, 100257. https://doi. 
org/10.1016/j.jocm.2020.100257 

Rios-Avila, F. (2018). CV_REGRESS: Stata module to estimate the leave-one-out error for linear 
regression models. In Statistical software components, S458469. Boston College Department of 
Economics. Retrieved June 11, 2020.

Stone, M. A. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of 
the Royal Statistical Society Series B (Methodological), 36(2), 111–147. https://doi.org/10.1111/j. 
2517-6161.1974.tb00994.x 

Wherry, R. J. (1931). A new formula for predicting the shrinkage of the coefficient of multiple 
correlation. Annals of Mathematical Statistics, 2(4), 440–457. https://doi.org/10.1214/aoms/ 
1177732951

16 Q. CHEN AND J. QI

https://doi.org/10.1080/00401706.1968.10490548
https://doi.org/10.1016/j.euroecorev.2021.103663
https://doi.org/10.1016/j.euroecorev.2021.103663
https://doi.org/10.1093/biomet/61.1.101
https://doi.org/10.1111/j.2517-6161.1966.tb00614.x
https://doi.org/10.1080/00401706.1968.10490530
https://doi.org/10.1037/h0072400
https://doi.org/10.2307/2230630
https://doi.org/10.1016/j.jocm.2020.100257
https://doi.org/10.1016/j.jocm.2020.100257
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1214/aoms/1177732951
https://doi.org/10.1214/aoms/1177732951

	Abstract
	1. Introduction
	2. Leave-one-out <italic>R</italic><sup>2</sup> and error inflation factor
	3. A meta-analysis
	3.1. Data source and variable definitions
	3.2. Correlation analysis
	3.3. Regression analysis

	4. Monte Carlo simulations
	4.1. Number of regressors
	4.2. Sample size
	4.3. Number of nonlinear terms
	4.4. Outliers

	5. Conclusion
	Disclosure statement
	Notes on contributors
	References

