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Value-at-risk in the presence of asset price bubbles
Raymond Kwong and Helen Wong

College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hung Hom, 
Hong Kong

ABSTRACT
In this study, we respond to the criticism that the value-at-risk (VaR) 
measure fails during financial crises and is only applicable during 
periods without asset price bubbles. We propose a new dating 
mechanism that is based on the work of Phillips (2015) to date- 
stamp the origination and termination of the asset price bubbles. 
Our method relaxed the minimum bubble duration constraint in 
the original model, and the empirical application statistically iden
tified the bubbles periods in nine stock markets (Australia, Canada, 
China, Germany, Spain, Hong Kong, Japan, the United Kingdom, 
and the United States). We choose the two most widely adopted 
VaR models (RiskMetrics and RiskMetrics 2006) to test the perfor
mance. Our results show that the RiskMetrics model fails in most 
periods, whereas the RiskMetrics 2006 performs efficiently in the 
periods with asset price bubbles. These results prove the criticism 
that all the VaR models fail during crises as invalid.
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1. Introduction

Financial markets have experienced several crises over the last two decades. The Asian 
financial crisis in 1997, the dot-com bubble burst in 2001, the subprime mortgage crisis in 
2008, and the European sovereign debt crisis in 2009 have driven the financial institu
tions to use better measures to manage downside risk. The losses caused by these 
financial crises were tremendous; the 2008 subprime mortgage crisis costed the US 
economy up to 14 USD trillion (Atkinson, Luttrell, & Rosenblum, 2013), which is 
equivalent to the average annual output of the entire US economy. Furthermore, the 
global economy has become more integrated and the cross-border financial flows have 
steadily increased. This widens the contagion effect and complicates the effects of the 
financial crisis further.

Financial crises are predominantly caused by the burst of asset price bubbles. An asset 
price bubble is formed when the asset’s price deviates from its fundamental value. During 
the bubble booming period, an asset’s price grows at an explosive rate. Blanchard and 
Watson (1982) suggest that asset bubbles last only till the market realizes it and makes 
corrections. The correction is usually associated with a large sale force that causes 
a plunge in the stock price. This process is commonly referred as a bubble burst. 
However, it is difficult to identify bubbles and date-stamp the bursts.
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The losses from the financial crises have led the practitioners and regulators to actively 
look for risk models that measure the downside risks. Over the past decade, value-at-risk 
(VaR) has emerged as one of the most popular methods for measuring the downside risks 
of financial investments. The downside risk of a financial investment predicts the 
minimum loss of a portfolio’s value for a period with a certain probability. After the 
subprime mortgage crisis in 2008, practitioners and regulators criticised the VaR models 
for failing to reveal the underlying risk, which led many financial institutions to suffer 
unexpected losses well above the VaR value and resulted in a credit crunch. However, 
most criticism stems from the lack of statistical analysis, which leads to false conclusions 
on the efficiency of VaR models.

Although a considerable body of research criticises VaR for performing poorly during 
turbulent financial periods (see Mertzanis, 2013; Lockwood, 2015), most literature 
classifies crisis and non-crisis periods unclearly by its own subjective judgment. 
Halbleib and Pohlmeier (2012) proposed a data-driven VaR method that combines 
quantile forecasts to improve VaR’s performance during a crisis. They formed three 
portfolios to represent small-, middle-, and large-cap stocks in the Dow Jones index and 
evaluated the performance in the claim period (1 January 2007 to 17 July 2007), crisis 
period (18 July 2007 to 1 July 2009), and crash period (1 September 2008 to 1 July 2009). 
The results show that the method performs well in the crisis periods. However, the crisis 
and non-crisis periods were defined arbitrarily without a statistical basis. Chen, Gerlach, 
Lin, and Lee (2012) studied the RiskMetrics models (Riskmetrics, 1996) and several 
generalised autoregressive conditional heteroscedasticity (GARCH) (Bollerslev, 1986) 
family VaR models under Bayesian forecasting tests in Japan, Hong Kong, Korea, and 
the US markets. Their study ranks the RiskMetrics model last among all models, and 
shows that all VaR models underestimate the risk level during a crisis period. However, 
similar to the work of Halbleib and Pohlmeier (2012), the crisis and non-crisis periods 
were defined arbitrarily and the crisis periods were considered to be the same across 
different stock markets with different characteristics, which is debatable.

Our study contributes to the literature that responds to these limitations, by empirically 
testing the VaR models’ performance in periods with and without asset price bubbles, 
particularly in the periods of financial crisis after the bubbles burst. Against the back
ground of criticism for VaR models, we perform a series of backtests to statistically evaluate 
its performance. Following Phillips, Shi, and Yu (2015), we use the backward supremum 
augmented Dickey–Fuller (BSADF) test to date-stamp the origination and termination of 
the bubbles. However, we modify the date-stamping algorithm to suit backtesting. We 
define three periods for the tests: the pre-bubble period, bubble period, and post-burst 
period. The bubble period is bounded by the bubble’s origination and termination dates 
and the pre- and post-burst periods are defined as 2 years before and 2 years after the 
termination date, respectively. Our date-stamping method allows researchers to evaluate 
the financial models that may behave differently at different stages of a bubble.

Though VaR is a popular means to quantify downside risk, there is little consensus on 
the preferred VaR model. Köksal and Orhan (2013) tested a VaR model based on a simple 
autoregressive conditional heteroscedasticity (ARCH) setting in the developed and emer
ging markets during financial crisis. Their results show that VaR performs more ineffi
ciently in developed countries than in emerging countries and, overall, fails to reveal the 
downside risk. However, their results may only be true for the ARCH-based VaR model. 
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Bams, Blanchard, and Lehnert (2017) compared VaR’s performance in the S&P 500, Dow 
Jones Industrial Average, and Nasdaq 100 indices. The results show that the VaR based on 
historical volatility measure outperforms other parametric VaR models. Lee, Chiou, and 
Lin (2006) employed Engle (2002) dynamic conditional correlation (DCC) estimators to 
estimate a portfolio’s VaR. The authors found that VaR performance at a portfolio level 
may be unreliable due to the difficulty in forecasting the dynamic correlation among 
assets. For better modeling of a portfolio’s volatility, Chiriac and Voev (2011) developed 
a multivariate vector fractionally integrated ARMA (VARFIMA) process that models the 
long memory characteristics of financial volatility. Furthermore, Engle, Ledoit, and Wolf 
(2019) proposed a new standard of DCC model that applies nonlinear shrinkage in the 
estimation of the portfolios of large dimensions. Recent studies such as Fiszeder, 
Fałdziński, and Molnár (2019) and Law, Li, and Yu (2020) incorporate the state-of-the- 
art volatility estimation method in the calculation of portfolio VaR. The results show that 
the choice of volatility model significantly impacts the accuracy of the VaR estimates.

We follow Campbell and Shiller (1989) and Phillips et al. (2015) to consider the 
explosive behaviour in log price–dividend ratio for the detection of asset price bubble. 
To understand the VaR performance in different markets, we examine nine stock 
markets (Australia, Canada, China, Germany, Spain, Hong Kong, Japan, the UK, and 
the US, and proxy each of the market portfolios by its respective market index. In light 
of this, our analysis focuses on univariate VaR models and uses the two widely adopted 
univariate VaR models – RiskMetrics (Riskmetrics, 1996) and RiskMetrics 2006 
(Zumbach, 2007) – in our empirical tests in response to the criticism of VaR failure. 
To evaluate the performance of the VaR models in different periods, we conduct the 
unconditional coverage tests (Kupiec, 1995), the independence tests (Christoffersen & 
Pelletier, 2004), and the joint coverage tests. The empirical results of both the condi
tional and unconditional coverage tests suggested that the RiskMetrics 2006 model 
adequately described the downside risks in all the nine markets during the bubble 
periods. However, one weakness noted in the RiskMetrics 2006 model was its tendency 
to occasionally overstate the downside risk after a market turbulence. Further, the 
RiskMetrics 2006 model reported zero VaR violations in post-burst periods in 
Australia, Canada, Japan, and the UK. The empirical results of the conditional coverage 
tests, unconditional coverage tests, and Fisher’s exact tests suggested that the 
RiskMetrics 2006 model performs efficiently in most periods, rendering the criticism 
against VaR models statistically invalid.

The remainder of this paper is organised as follows: Section 2 discusses the rationale of 
using the log price/dividend ratio as an indicator of asset price bubbles. Section 3 explains 
the SADF and generalised SADF (GSADF) tests used to identify asset price bubbles and 
the date-stamping mechanism. Section 4 describes the RiskMetrics and RiskMetrics 2006 
VaR models, as well as the backtesting methods. The empirical results of the GSADF 
tests, identification of the bubble periods, and VaR backtesting results for the sample 
markets are presented in Section 5. Section 6 concludes the study.

2. Asset prices and bubbles

Asset price bubbles are usually driven by speculative behaviours that bid up the asset 
prices beyond their fundamental values. The fundamental value of an asset is the sum of 
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the discounted future cash flows. In the presence of bubbles, asset prices behave explo
sively. The log price of a security is defined as 

pt ¼ pf
t þ bt; (1) 

where pt is the log price at a time t, pf
t is the fundamental value, and bt is the bubble 

component (Campbell & Shiller, 1989).
In this equation 1, the value of pf

t is the fundamental component of the stock price as it 
depends on the expected dividends. In contrast, bt is the speculative component as it is 
based on the future expectations on the stock price. The stock price will be explosive if the 
bubble component bt in the equation 1 is non-zero.

The log price–dividend ratio is the summation of a series of log dividend differences 
and the bubble components (Campbell & Shiller, 1989; Phillips et al., 2015). If the log 
dividend is stationary after differencing, an explosive behaviour of the log price–dividend 
ratio would be caused by the presence of a non-zero bubble component bt . Thus, we can 
detect if asset price bubbles exist by examining any explosive behaviour in the log price– 
dividend ratio series and non-explosive behaviour in the first difference log dividend 
series.

3. SADF and GSADF tests

Previous studies have suggested using a supremum of a set of recursive right-tailed 
augmented Dickey–Fuller (ADF) tests to detect the presence of stock bubbles (Dickey 
& Fuller, 1979). This SADF test applies the right-tailed ADF test with the null hypothesis 
of a unit root (ϕ ¼ 0) and the alternative hypothesis of an explosive root (ϕ> 0).

The regression model used in the SADF test is 

Δyt ¼ αþ πyt� 1 þ
Xk

j¼1
γjΔyt� j þ 2t; (2) 

where k is the lag order and 2t is the random error.
The SADF test begins with testing the first r0 fraction of the observations. It is followed 

by repeated ADF tests till r0 is increased to 1, which is denoted by ADF1
r0

. The forward 
sequence of the regression starts from observation 1 and ends with bTrwc, where b:c is the 
integer part of the argument, T is the total number of observations, and rw 2 ½r0; 1� is the 
fraction of the observations. The SADF statistic is 

SADFr0 ¼ sup
rw2½r0;1�

ADFrw
0 :

The corresponding asymptotic distribution of the SADF test is discussed by Phillips, 
Shi, and Yu (2014). The asymptotic distribution of the SADF test statistic for the null 
hypothesis that the true process is a random walk without drift is 
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SADFr0 ! sup
rw2½r0;1�

rw½

ðrw

0
WdW � 1=2rw� � WðrwÞ

ðrw

0
Wdr

r1=2
w frw

ðrw

0
W2dr � ½

ðrw

0
WðrÞdr�

2

g

1=2

8
>>><

>>>:

9
>>>=

>>>;

; (3) 

where W is a Wiener process.
We determine if the behaviour of the data series is explosive by comparing the SADF 

statistic of the data series with the asymptotic distribution of the Dickey–Fuller t-statistic 
in equation 3. We perform a backward ADF (BADF) test to date-stamp the explosion. 
The BADF test performs the ADF test repeatedly by fixing the starting point of the 
sample at the first observation, and rolling the ending point from bTr0c to T. For 
example, if the testing sequence starts from r1 (r1 ¼ 0 in the BADF test) and ends at r2, 
the corresponding BADF test statistic would be BADFr1 r2. The BADF test statistic is 
denoted by BADFr2 because the first observation is the starting point.

The explosion originates at bTrec when it is the first occurrence after the BADFre 

statistic exceeds the critical value. Phillips, Wu, and Yu (2011) impose the conditions that 
the bubble duration must be longer than logðTÞ and the termination date of the explosion 
(bTrf c) must be the first occurrence after the observation bTrec þ logðTÞ, when the 
BADFrf statistic is below the critical value. 

re ¼ inf
r22½r0;1�

fr2 : BADFr2 > cvβT
r2
g (4a) 

rf ¼ inf
r22½̂reþδlogðTÞ

T ;1�
fr2 : BADFr2 < cvβT

r2
g (4b) 

Phillips et al. (2011) further recommended that the critical value cvβT
r2 should vary with the 

number of observations in the testing window for it to diverge to infinity and eliminate type 
I errors for large T; specifically, they suggested setting cvβT

r2 ¼ logðlogðTrsÞÞ=100. The test 
using the bubble date-stamping method of equation 4 is referred to as the PWY test in this 
paper.

The disadvantage of the PWY test is the possible failure when multiple bubbles are 
present in the sample. Phillips et al. (2015) proposed the generalised version of SADF 
(i.e., the GSADF test) to address this issue for its flexibility in allowing changes to the 
starting point of the testing window. The GSADF statistic is defined as 

GSADFr0 ¼ sup
rw2½r0;1�

fsupr12½0;1� rw�ADFrw
r1
g:

The asymptotic distribution of the GSADF test is elaborated by Phillips et al. (2014).
The date-stamping method used in the GSADF test is an extended version of the one used 

in the BADF statistic. The BSADF test performs an SADF test by rolling the starting point of 
the test window r1 2 ½0; r2 � r0� from observation Tðr2 � r0Þb c to the first observation. The 
BSADF statistic for a testing sequence that starts at r1 and ends at r2 is defined as 

BSADFr2 ¼ sup
r12½0;r2� r0�

BADFr1 r2:
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Similar to the PWY test, the origination date of a bubble in the GSADF test is Tr̂eb c, 
when Tr̂eb c is the first occurrence after the BSADFr̂e statistic exceeds the critical value. 
The minimum bubble duration in the BSADF statistic is generalised to δlogðTÞ, where δ 
is a frequency-dependent parameter. Furthermore, the termination date of explosion 

Tr̂f
� �

is the first occurrence after the observation Tr̂e þ δlogðTÞb c, when the BSADFr2 

statistic is below the critical value. The bubble date-stamping method of equation 5 is 
referred to as the PSY test in this paper. 

r̂e ¼ inf
r22½r0;1�

r2 : BSADFr2 > cvβT
r2

n o
(5a) 

r̂f ¼ inf
r22½̂reþδlogðTÞ

T ;1�
r2 : BSADFr2 < cvβT

r2

n o
(5b) 

The bubble origination date in the GSADF test is date-stamped using equation 5a, which 
is the ending point r2 of the testing window in the BSADF statistic. The PSY date- 
stamping method picks the ending point in an explosive series as the bubble origination 
date. Though this gives confidence in forward tests, it might miss the bubble formation 
period, which is crucial for a backtest. Alternately, we examine the bubble origination 
date by considering the starting point as r1 instead of r2 of the explosive series. Thereby, 
we modify the date-stamping method for the bubble origination date as in equation 6a. 
The new bubble origination date is T�reb c. �r2, in equation 6a, is the end of the testing 
sequence in the BSADF test for bubble origination. We use this ending point as a starting 
point to detect the termination date of the explosion T�rf

� �
in equation 6b. The minimum 

length of the bubble duration is the size of the testing window when the bubble origina
tion date starts at r1. Thus, we address the minimum bubble duration δlogðTÞ constraint 
in the PSY test to obtain the bubble termination date. The differences between the PSY 
date-stamping method and the modified method are presented in section 5.2. This new 
date-stamping method for the bubble origination date, presented in equation 6, is used 
throughout the study. 

�re;�r2 ¼ inf
r22½r0;1�

r1; r2 : BSADFr2 > cvβT
r2

n o
(6a) 

�rf ¼ inf
r22½�r2;1�

r2 : BSADFr2 < cvβT
r2

n o
(6b) 

4. VaR models and backtests

We compute daily 1% VaRs by using the RiskMetrics (Riskmetrics, 1996) and 
RiskMetrics 2006 (Zumbach, 2007) models to compare the performance of VaR in the 
pre-bubble, bubble, and post-burst periods. The RiskMetrics model assumes that the 
asset returns xt are normally distributed with mean μt and variance σ2

t . Using the 
standard normal cumulative distribution function ΦðxtÞ ¼ 1=

ffiffiffiffiffiffi
2π
p Px

� 1 ey2=2dy and 
the cumulative distribution function of the asset return Fðxt; μt; σtÞ ¼ Φððxt � μtÞ=σtÞ, 
the α percent one-day VaR can be obtained using equation 7. The estimated values of ut 
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and σt are computed from an estimation window of size WE, which is set to 250 days in 
this study. As the Student’s t-distribution is another prominent distribution to describe 
financial asset returns, further from the original RiskMetrics model, we study a variant 
model that uses cumulative t-distribution Γvð1 � αÞ with v degree of freedom to compute 
the α percent one-day VaR, and the formula is shown in equation 8. 

α ¼ Fð� VaRαÞ (7a) 

� VaRα ¼ μt þ Φ� 1ðαÞσt (7b) 

VaRα ¼ Φ� 1ð1 � αÞσt � μt (7c) 

VaRα ¼ Γ� 1
v ð1 � αÞ

ffiffiffiffiffiffiffiffiffiffiffi
v � 2

v

r

σt � μt (8) 

RiskMetrics estimates the volatility σt by using the second central moment of the asset 
returns xt . In contrast, RiskMetrics 2006 allocates a heavier weight to recent observations, 
while preserving the long-lasting impact of shocks. Towards this end, RiskMetrics 2006 
introduces a hyperbolic decay factor hk ¼ expð� 1=τkÞ, based on the geometric time 
horizon factor τk defined using equation 9. 

τk ¼ τ1ρk� 1 (9) 

Here ρ is an operationalised parameter. RiskMetrics 2006 obtains the volatility σ2
tþ1 using 

equation 10, by summing the K historical volatilities σ2
k;t (defined in equation 11a) with 

logarithmic decay weights wk derived using equation 11b. 

σ2
tþ1 ¼

XK

k¼1
wkσ2

k;t (10) 

σ2
k;t ¼ hkσ2

k;t� 1 þ ð1 � hkÞðxt � μtÞ
2 (11a) 

wk ¼
1
C

1 �
lnðτkÞ

lnðτ0Þ

� �

(11b) 

C ¼ K �
XK

k¼1

lnðτkÞ

lnðτ0Þ
(11c) 

where C is kept constant to ensure that the sum of the weights wk is equal to 1 (i.e., 
P

wk ¼ 1). The long memory RiskMetrics 2006 model is controlled by three parameters: 
the logarithmic decay factor τ0, lower cut-off τ1, and upper cut-off τk. We set ρ ¼

ffiffiffi
2
p

, 
τ0 ¼ 1; 560 days, τ1 ¼ 4 days, τk ¼ 512 days, and K ¼ 15 following Zumbach (2007).

We define T as the total number of observations in the data set, WE as the size of the 
estimation window, and WT as the size of the testing window for VaR violations. A VaR 
violation (xt ¼ 1) is recorded when the loss on a trading day t exceeds the calculated VaR 
value. The total number of VaR violations ν1 in the testing period WT is calculated using 
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equation 12; ν0, calculated using equation 13, indicates the number of days without 
violations. 

WE þWT ¼ T 

xt ¼
1 if yt � � VaRt;

0 if yt > � VaRt

�

ν1 ¼
X

xt (12) 

ν0 ¼WT � ν1 (13) 

We employ three categories of backtests to test the accuracy of the VaR models: the 
unconditional, conditional, and joint coverage tests. Unconditional coverage tests eval
uate the VaR models by testing the number of violations at a given confidence level. In 
the unconditional coverage tests, we employ Kupiec (1995) proportion of failures (POF) 
test and time until first failure (TUFF) test to assess the VaR values. The POF test is 
a likelihood ratio test that examines if a VaR failure rate (number of violations divided by 
the number of observations) is consistent with the VaR confidence level. The TUFF test 
assesses the time for the first violation to occur in a sample. Both methods test the 
hypothesis that assumes that the violation rate is equal to the significance level α. Further, 
based on the frequency of the violations (unconditional coverage), independence of the 
violations (conditional coverage) is considered to hold equal importance when assessing 
a VaR model. Ideally, the probabilities of VaR violations of time t and t � 1 should show 
no dependences. Christoffersen and Pelletier (2004) developed an interval forecast test 
using a binary first-order Markov chain and a transition probability matrix to test the 
independence of the violations. However, the Christoffersen’s independence test has 
a limited ability in assessing violations between two consecutive trading days. The mixed- 
Kupiec independence test (Hass, 2001) overcame this limitation with the mixed-Kupiec 
independence test, which considers the timing of the violations without the use of first- 
order Markov chain. Both the conditional coverage tests examine the hypothesis that 
assume that no violation clustering effect (consecutive violations) exists. Furthermore, we 
employ the Christoffersen’s joint test (a likelihood ratio test which combines POF test 
and Christoffersen’s independence test) and mixed-Kupiec joint test (a likelihood ratio 
test, which combines TUFF test and mixed-Kupiec independence test) to test the 
hypotheses that the true violation rate is α and the violations are independent. The 
details of the coverage tests are provided in Appendix A.

4.1. Fisher’s exact test

We perform the Fisher’s exact test (Fisher, 1922) to examine the significance of associa
tions between the VaR failure rates in different crisis periods. We perform the Fisher’s 
exact test in this study due to the small sample size of VaR violations (1% VaR represents 
5 violations of 500 observations). We use a 2� 2 contingency table to represent the 
number of VaR violations in different periods. For instance, in Table 1, for T days in 
period A, the VaR measure performed well for vA

0 days but failed for vA
1 (T � vA

0 ) days. 
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Under the null hypothesis, the VaR failures in different periods are stochastically 
independent. The VaR failure rates show no significant difference between the crisis 
and non-crisis periods. The alternative hypothesis is that the systematic difference in VaR 
failures compared to the expectation in different periods is coincidental.

5. Data and empirical results

The nine stock markets employed in our empirical analysis represent both the developed 
and emerging markets. The selection was based on the market capitalisation and trading 
time zones, shown in Table 2.

Monthly price and dividend data were used in the bubble tests and daily price data 
were used in the VaR backtests. The data were obtained from Bloomberg.

5.1. Pre-bubble, bubble, and post-burst periods

Table 3 shows the GSADF tests of the log price–dividend ratio and log dividend 
difference series of the nine markets. The finite sample of critical values used in the 
GSADF tests was obtained from 2,000 simulations. We followed Phillips et al. (2015) in 
determining the minimum window size of the test based on the rule r0 ¼ 0:01þ 1:8=

ffiffiffiffi
T
p

, 
where T is the corresponding sample size. As the GSADF test statistic of all the log price– 
dividend ratios exceeded their corresponding 10% right-tail critical values, the summary 
test showed an explosive behaviour in the log price–dividend ratio and a non-explosive 
behaviour in the log dividend difference series. This provided evidence for explosive sub- 
periods in the nine markets.

Table 1. Contingency table of fisher’s exact test 
for VaR measures in different periods.

VaR success VaR failure

Period A vA
0 vA

1
Period B vB

0 vB
1

Table 2. Stock exchanges and the respective indices used.

Country/Region Exchange Name Index Used
Market 

Capitalisation Sample Periodc

Australia (AU) Australian Securities 
Exchange

S&P/ASX 200 1,454,171.20a 2000M4 to 2019M10

Canada (CA) Toronto Stock Exchange S&P/TSX Composite 2,286,818.24a 1993M5 to 2019M10
China (CN) Shanghai Stock Exchange SSE Composite 4,776,752.70a 1997M5 to 2019M10
Germany (DE) Deutsche Borse DAX 30 Performance 1,949,134.03a 1997M5 to 2019M10
Hong Kong (HK) Hong Kong Stock Exchange Hang Seng 4,189,279.03a 1993M9 to 2019M10
Spain (ES) BME Spanish Exchange IBEX 35 774,949.68a 1991M1 to 2019M10
Japan (JP) Japan Exchange Group NIKKEI 225 5,614,217.12a 1993M5 to 2019M10
United Kingdom 

(UK)
London Stock Exchange FTSE 100 4,903,809.99b 2002M2 to 2019M10

United States (US) New York Stock Exchange S&P500 24,230,840.32a 1978M2 to 2019M10
aData on market capitalisation obtained from World Federation of Exchanges, June 2019; values are in US$ million. 
bData obtained from the London Stock Exchange Main Market Factsheet, June 2019; values are in US$ million, converted 

at 1.26993 USD/ 1. 
cM1, M2, . . ., M12 represent the months January to December, respectively.
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We performed both the PSY test and the modified test to date-stamp the origination 
and termination of the bubbles using equations 5 and 6, respectively. Table 4 shows the 
bubble date-stamping results from these methods in the nine stock markets. The esti
mated bubble origination dates were close to the termination dates in most cases and the 
bubble duration was short in the PSY date-stamping method. The average duration of the 
bubble period was 7 months. Although all the tests identified asset price bubbles around 
the subprime mortgage crisis, they exhibited a time lag. For the stock markets in 
Australia, Canada, Germany, Spain, Japan, the UK, and the US, the PSY method 
suggested that the bubbles originated in late 2008 and terminated in mid-2009. The 
origination dates were close to the original bubble burst, that is, when Lehman Brothers 
filed for the largest bankruptcy protection in the US history on 15 September 2008. The 
reason for the short durations of asset price bubbles indicated by the PSY test, contrary to 
general agreement that it takes time for the bubble to form, is the date-stamping strategy, 
which is based on choosing the ending point of the testing window when the whole 
sample is explosive. We believe that a more appropriate choice for the bubble origination 
date would be the starting point of the testing window, instead of the ending point.

The bubble origination dates identified by the modified method are from late 2002 to 
mid-2005 and the termination dates are from early 2009. Our results agree with those 
from the previous studies (Brown, Stein, & Zafar, 2015; Demyanyk & Van Hemert, 2011; 
Lewis, 2009; Mian & Sufi, 2009; Sanders, 2008).

To illustrate the differences between the two date-stamping methods, we used the 
Hong Kong stock market as an example. The PSY approach identified a five-month 
bubble from November 2007 to March 2018; this is illustrated in Figure 1, with the 
bubble period highlighted in grey. In contrast, the bubble period identified by the 
modified method was from April 2004 to October 2007 as shown in Figure 1b. Unlike 
the PSY approach, the result of the modified method did not indicate shorter durations 
and agreed well with the asset price bubble cycles of the subprime mortgage crisis (see 
Dell’ariccia, Igan, & Laeven, 2012; Lewis, 2009; Tridico, 2012).

5.2. Backtesting results

We defined the pre-bubble and post-burst periods as 2 years before and after the bubble. 

Table 3. GSADF tests for the log price–dividend ratio and log dividend difference in the nine markets.
Critical Values

Country/Region Sample Size (T) log PD Ratio log ΔD 10% 5% 1%

Australia (AU) 235 2.47 –2.74 1.79 2.07 2.61
Canada (CA) 318 2.02 0.73 1.92 2.18 2.77
China (CN) 264 3.39 –1.27 1.81 2.10 2.62
Germany (DE) 270 2.60 –1.70 1.82 2.14 2.70
Hong Kong (HK) 314 2.07 –2.53 1.91 2.16 2.77
Spain (ES) 346 3.63 –1.87 1.92 2.21 2.76
Japan (JP) 318 2.52 –3.64 1.92 2.18 2.77
United Kingdom (UK) 213 2.85 –2.70 1.68 1.94 2.60
United States (US) 318 4.11 –1.63 1.92 2.18 2.77

We used Monte Carol Simulations to obtain the critical values with 2,000 replications following Phillips et al. (2015). The 
data generation process is yt ¼ dT � η þ yt� 1 þ 2t;2t,Nð0; 1Þ; d ¼ η ¼ 1
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pre � bubble period : T�reb c � p; T�reb c½ � (14) 

post � burst period : T�rf
� �

; T�rf þ p
� �� �

(15) 

Here p is the time frequency-dependent parameter; p ¼ 24 for the monthly data and p ¼
500 for the daily data (we assume 250 trading days per year). The pre-bubble period 
extended from September 2002 to August 2004 and the post-burst period from 
November 2007 to October 2009 for a bubble period identified from September 2004 
to October 2007, when Hong Kong was used as an example. Further, we define the period 
not covered by the pre-bubble, bubble, and post-burst periods as ”normal periods.” For 
example, two normal periods of September 1993 to August 2002 and November 2009 to 
October 2019 were defined from the entire period considered for the Hong Kong market 
(September 1993 to October 2019). Table 5 shows the bubble periods identified for the 
nine stock markets. One bubble period was identified each for Australia, Canada, China, 

(a) Identification results from the GSADF test with the PSY date-stamping
method.

(b) Identification results from the GSADF test with the proposed date-
stamping method.

Figure 1. Bubble identification results for the hong kong stock market.
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Germany, Hong Kong, Japan, and the UK, and two each for Spain and the US. The reason 
for the additional bubble period in Spain and the US could be the extent of data available. 
Spain’s data starts from January 1991 and the US’s data from February 1978.

Tables 6 and 7 show the results of the RiskMetrics VaR backtests, and Tables 8 and 9 
show the results of RiskMetrics 2006 in different periods. In all the hypothesis tests, we 
tested the null hypotheses at a significance level of 5%. For the periods where no VaR 
violation was observed, we have not reported the value for the independence tests as the 
results of the violation clustering test were ambiguous (see an example of the indepen
dence test and joint test results in the normal period for the UK (period 1) in Table 7). In 
the coverage tests, to deem a case as a ”failure,” the null hypotheses should be rejected in 
both coverage tests. An analogous criterion was also adopted for the independence tests 
and joint tests.

Table 6 shows that RiskMetrics performed poorly around turbulent financial times. 
Both the RiskMetrics models with normal distribution and t-distribution had analogous 
results. Minor differences were found in Canada and the UK but such have no impact on 
the results in the hypothesis tests. Within the large estimation window size used in the 
RiskMetrics model the fitted t-distribution approaches the normal. Further, RiskMetrics 

Table 5. Full, pre-bubble, bubble, post-burst, and normal periods for the bubbles examined in the nine 
stock markets.

Country/Region

Periods AU CA CN DE ES HK JP UK US

Full 2000M4 1993M5 1997M11 1997M5 1991M1 1993M9 1993M5 2002 M2 1978 M2
to to to to to to to to to
2019M10 2019M10 2019M10 2019M10 2019M10 2019M10 2019M10 2019M10 2019M10

Pre-bubble Period 1 2001M5 2000M11 2002M08 2003M5 1992 M2 2002M9 2001M6 2002M4 1987M8
to to to to to to to to to
2003M4 2002M10 2004M7 2005M4 1994M1 2004M8 2003M5 2004 M3 1989M7

Period 2 2002M10 2002M4
to to
2004M7* 2003 M2*

Bubble Period 1 2003M5 2002M11 2004M8 2005M5 1994 M2 2004M9 2003M6 2004M4 1989M8
to to to to to to to to to
2009 M2 2009 M2 2007M5 2009 M3 2000M9 2007M10 2009 M2 2009 M2 2000 M3

Period 2 2004M8 2003 M3
to to
2009M5 2009 M3

Post-burst Period 1 2009 M3 2009 M3 2007M6 2009M4 2000M10 2007M11 2009 M3 2009 M3 2000M4
to to to to to to to to to
2011 M2 2011 M2 2009M5 2011 M3 2002M9 2009M10 2011 M2 2011 M2 2002 M3

Period 2 2009M6 2009M4
to to
2011M5 2011 M3

Normal Period 1 2000M4 1993M5 1997M11 1997M5 1991M1 1993M9 1993M5 2002 M2 1978 M2
to to to to to to to to to
2001M4 2000M10 2002M7 2003M4 1992M1 2002M8 2001M5 2002 M3 1987M7

Period 2 2011 M3 2011 M3 2009M6 2011M4 2011M6 2009M11 2011 M3 2011 M3 2011M4
to to to to to to to to to
2019M10 2019M10 2019M10 2019M10 2019M10 2019M10 2019M10 2019M10 2019M10

*As the duration between the bubble period is less than four years (two years for the first bubble’s post-burst period and 
two years for the second bubble’s pre-bubble period), the duration of the pre-bubble period of the second bubble is 
less than two years.
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performed effectively only in the coverage tests for the pre-bubble period. We could not 
reject the null hypothesis because the probability of a violation was the same as the 
coverage rate for Australia, Canada, China, Spain, Hong Kong, Japan, and the US 
markets. The exceptions were Germany (p-value was 0.028 in the TUFF test) and the 
UK markets (p-value was 0.003 in the POF test). Violation clustering was also noted with 
Canada, Germany, the UK, and the US, which led to rejecting the null hypotheses in these 
markets in all the joint tests.

RiskMetrics performed inadequately in the bubble period as well. The null 
hypotheses of the POF coverage tests were rejected in all the nine markets. 
Although the Christoffersen’s independence test showed no significant consecutive 
violations, the violation clustering was severe leading to the null hypotheses being 
rejected by the mixed-Kupiec independence test and all the joint tests. However, 
RiskMetrics performed noticeably better in the post-burst period as it rejected the 
null hypotheses only for China, Hong Kong, and Japan. The coverage tests (with 
a p-value of 0.001 in the POF test, and 0.011 in the TUFF test) showed that the 
number of violations in China was misspecified. The independence tests showed that 
the Japanese market exhibited violation clusters (with a p-value of 0.035 in the 
Christoffersen test and 0.005 in the mixed-Kupiec test). In the post-burst period, 
RiskMetrics underestimated the downside risk in China, Hong Kong, and Japan. 
Further, Table 7 shows that RiskMetrics presented inaccurate downside risk mea
sures for both the normal and full periods. Similar to the results for the bubble 
period, the null hypotheses were rejected in most of the POF coverage tests, inde
pendence tests, and joint tests. We found that RiskMetrics failed to reveal the 
downside risk in most cases.

The results in Table 8 provide convincing evidence to show that RiskMetrics 2006 
works efficiently in a period of market turbulence. In the pre-bubble period, we could not 
reject the null hypotheses in all the tests, except for China and the US. In China, the null 
hypothesis was rejected by both coverage tests (the p-value was 0.002 in the POF test and 
0.033 in the TUFF test). In the US, both the independence tests (period 1) rejected the 
null hypothesis (with p-values of 0.034 and 0.020). Further, RiskMetrics 2006 performed 
efficiently in the bubble period. It failed only in the coverage tests and joint tests for the 
US market in period 2, defined in Table 5. However, the long memory RiskMetrics 2006 
behaved conservatively in the post-burst period although no violation was found in 
Australia, Canada, Japan, the UK, and the US (period 2). In the normal period, 
RiskMetrics 2006 performed efficiently; failing only in period 2 of the independence 
tests for Australia (with a p-value of 0.008 in the Christoffersen test and 0.004 in the 
mixed-Kupiec test), Japan (with a p-value of 0.008 in the Christoffersen test and 0.008 in 
the mixed-Kupiec test), and the US (with a p-value of 0.002 in the Christoffersen test and 
0.000 in the mixed-Kupiec test).

RiskMetrics 2006 behaved conservatively in overestimating the downside risk after the 
bubbles. However, in the total duration considered, the number of VaR violations were 
34, 57, 49, 23, 45, 43, 43, 25, and 77 in Australia, Canada, China, Spain, Hong Kong, 
Japan, the UK, and the US, respectively. These violation numbers were significantly lower 
than those found by the RiskMetrics model, which were 100, 172, 112, 129, 139, 140, 146, 
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108, and 212, respectively, as shown in Table 7. Although RiskMetrics 2006 may require 
financial institutions to allocate more capital than necessary to manage risks, it per
formed efficiently in most periods.

5.3. VaR performance in pre-bubble, bubble, and post-burst periods

We conducted the Fisher’s exact tests for both the RiskMetrics and RiskMetrics 2006 
models to gain further insight on their performance in different crisis periods. We 
performed 10 Fisher’s exact tests to compare the VaR performance in each of the nine 
markets during the full, pre-bubble, bubble, post-burst, and normal periods. The 
results are shown in Table 10. Table 10 shows that unlike RiskMetrics, the 
RiskMetrics 2006 has a consistent performance regardless of the periods in all the 
nine markets. In each panel, the lower triangular matrix contain the p-values of the 
RiskMetrics tests, while the upper triangular matrix contains the p-values of the 
RiskMetrics 2006 tests. A p-value of Fisher test greater than 5% is indicative of no 
statistically significant relationship of the VaR failure rates between two chosen 

Table 7. Backtest results of riskmetrics VaR in the normal and full periods.
Tests

Coverage 
Test Independence Test Joint Test

Period
Country/ 
Region Violations/nobs POF TUFF Christoffersen

Mixed- 
Kupiec Christoffersen

Mixed- 
Kupiec

AU (Period 1) 1/270 0.233 0.100 0.931 0.100 0.489 0.127
AU (Period 2) 47/2,196 0.000* 0.686 0.000* 0.000* 0.000* 0.000*
CA (Period 1) 51/1,888 0.000* 0.499 0.216 0.000* 0.000* 0.000*
CA (Period 2) 58/2,177 [57/2,177] 0.000* 0.068 0.000* 0.000* 0.000* 0.000*
CN (Period 1) 24/1,141 0.001* 0.459 0.100 0.000* 0.001* 0.000*
CN (Period 2) 55/2,536 0.000* 0.595 0.007* 0.000* 0.000* 0.000*
DE (Period 1) 37/1,513 0.000* 0.176 0.012* 0.000* 0.000* 0.000*
DE (Period 2) 53/2,175 0.000* 0.735 0.000* 0.000* 0.000* 0.000*
ES (Period 1) 2/269 0.658 0.624 0.862 0.884 0.893 0.931

Normal ES (Period 2) 35/2,155 0.008* 0.467 0.282 0.000* 0.016* 0.000*
HK (Period 1) 40/2,222 0.001* 0.909 0.000* 0.000* 0.000* 0.000*
HK (Period 2) 53/2,465 0.000* 0.199 0.891 0.000* 0.000* 0.000*
JP (Period 1) 37/1,992 0.001* 0.789 0.187 0.000* 0.001* 0.000*
JP (Period 2) 45/2,125 0.000* 0.089 0.016* 0.000* 0.000* 0.000*
UK (Period 1) 0/40 0.370 0.423 N/A N/A N/A N/A
UK (Period 2) 46/2,192 0.000* 0.945 0.000* 0.000* 0.000* 0.000*
US (Period 1) 33/2,402 0.081 0.070 0.477 0.000* 0.170 0.000*
US (Period 2) 57/2,161 0.000* 0.455 0.004* 0.000* 0.000* 0.000*
AU 100/4,957 0.000* 0.100 0.000* 0.000* 0.000* 0.000*
CA 172/6,661 [170/6,661] 0.000* 0.499 0.000* 0.000* 0.000* 0.000*
CN 112/5,331 0.000* 0.459 0.003* 0.000* 0.000* 0.000*
DE 129/5,707 0.000* 0.176 0.000* 0.000* 0.000* 0.000*

Full ES 139/7,295 0.000* 0.624 0.070 0.000* 0.000* 0.000*
HK 140/6,458 0.000* 0.909 0.000* 0.000* 0.000* 0.000*
JP 136/6,509 0.000* 0.789 0.001* 0.000* 0.000* 0.000*
UK 108/4,486 [106/4,486] 0.000* 0.926 0.000* 0.000* 0.000* 0.000*
US 212/10,531 0.000* 0.070 0.000* 0.000* 0.000* 0.000*

The backtest results of the RiskMetrics models that based on t-distribution do not differ from those with normal 
distribution. The only different results from t-distribution are shown in the square bracket[]. 

The decimal numbers in the cells are the p-values for assessing the null hypothesis that the model adequately measures 
the downside risk. Asterisk (*) indicates a p-value of less than 0.05.
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periods. Panels 10(a), 10(g), and 10(h) show that the performance of RiskMetrics VaR 
differed in the bubble periods. The null hypotheses were rejected in the tests between 
the bubble period and the pre-bubble, post-burst, and full periods. After combining the 
results in Tables 6 and 7, the performance of RiskMetrics was found to be inconsistent 
in different periods, with the frequency of failure being higher in the bubble periods. 
Panel 10(i) shows considerable difference with RiskMetrics in the US post-burst period 
when compared to other periods. Comparing this with the results in Table 6, we 
observe that the RiskMetrics model failed in all the periods in the US except for the 
post-burst period. Similarly, panel 10(c) shows that it only performed well in the pre- 
bubble period in China. The overall results suggested a significant difference in the 
RiskMetrics performance across different countries in different crisis periods.

Contrary to RiskMetrics, RiskMetrics 2006 did not show extensive performance 
differences in different periods. The VaR performance seen panel 10(d), panel 10(e), 
panel 10(f), panel 10(i) shows no significant difference, whereas occasional inconsisten
cies are observed in panel 10(b), 10(g), and 10(h). Specifically, the inconsistency in these 
three panels was between the bubble and the post-burst periods. The Fisher’s test results 
support our finding previously mentioned in section 5.2 that though RiskMetrics 2006 

Table 9. Backtest results of riskmetrics 2006 VaR in the full and normal periods.
Tests

Coverage 
Test Independence Test Joint Test

Period
Country/ 
Region

Violations/ 
nobs POF TUFF Christoffersen

Mixed- 
Kupiec Christoffersen

Mixed- 
Kupiec

AU (Period 1) 2/270 0.654 0.100 0.863 0.258 0.891 0.405
AU (Period 2) 18/2,196 0.381 0.923 0.008* 0.004* 0.019* 0.005*
CA (Period 1) 20/1,888 0.798 0.499 0.513 0.892 0.781 0.919
CA (Period 2) 22/2,177 0.961 0.930 0.503 0.078 0.798 0.100
CN (Period 1) 7/1,141 0.158 0.532 0.769 0.682 0.353 0.557
CN (Period 2) 32/2,536 0.203 0.456 0.366 0.006* 0.295 0.006*
DE (Period 1) 5/1,513 0.002* 0.810 0.856 0.006* 0.010* 0.000*
DE (Period 2) 11/2,175 0.011* 0.917 0.738 0.112 0.036* 0.024*
ES (Period 1) 2/269 0.658 0.624 0.862 0.884 0.893 0.931

Normal ES (Period 2) 13/2,155 0.046* 0.542 0.691 0.468 0.126 0.271
HK (Period 1) 16/2,222 0.163 0.909 0.103 0.009* 0.100 0.008*
HK (Period 2) 15/2,465 0.035* 0.199 0.668 0.146 0.099 0.067
JP (Period 1) 9/1,992 0.006* 0.517 0.775 0.029* 0.022* 0.004*
JP (Period 2) 18/2,125 0.467 0.089 0.008* 0.008* 0.023* 0.010*
UK (Period 1) 0/40 0.370 0.423 N/A N/A N/A N/A
UK (Period 2) 12/2,192 0.020* 0.938 0.054 0.027* 0.010* 0.008*
US (Period 1) 12/2,402 0.006* 0.070 0.728 0.047* 0.023* 0.007*
US (Period 2) 25/2,161 0.475 0.445 0.002* 0.000* 0.008* 0.000*
AU 34/4,957 0.028* 0.100 0.025* 0.000* 0.007* 0.000*
CA 57/6,661 0.225 0.499 0.321 0.141 0.293 0.135
CN 49/5,331 0.548 0.532 0.476 0.000* 0.647 0.000*
DE 23/5,707 0.000* 0.810 0.666 0.000* 0.000* 0.000*

Full ES 45/7,295 0.000* 0.624 0.455 0.048* 0.001* 0.005*
HK 43/6,458 0.004* 0.909 0.296 0.006* 0.009* 0.001*
JP 43/6,509 0.003* 0.517 0.034* 0.000* 0.001* 0.000*
UK 25/4,486 0.001* 0.213 0.131 0.000* 0.002* 0.000*
US 77/10,531 0.004* 0.070 0.003* 0.000* 0.000* 0.000*

The decimal numbers in the cells are the p-values for assessing the null hypothesis that the model adequately measures 
the downside risk. Asterisk (*) indicates a p-value of less than 0.05.
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occasionally overstated the downside risk in post-burst periods, it performed efficiently 
in most periods.

6. Summary and conclusions

In this study, we conducted empirical tests to respond to the criticism that VaR models 
fail during financial crises when asset bubbles burst. Our empirical tests on the nine 
markets, namely Australia, Canada, China, Spain, Hong Kong, Japan, the UK, and the 
US, were conducted using data from the earliest available dates to October 2019. Asset 
price bubbles were date-stamped using the modified PSY tests on the log price-dividend 
ratios of these nine markets. However, as the date-stamping method of the original PSY 
test is forward-looking, it selects the ending point of the testing window as the bubble 
origination date. To suit our need for a backward-looking date-stamping method for the 
backtests, we modified the date-stamping method by choosing the starting point of the 
testing window. Our results show that the original date-stamping method has time lag 
and indicates a shorter duration for the bubble period. It date-stamps the bubble start 
near the end of a true bubble and the average duration of the bubble periods detected is 8 
months. The results also show that our modified method addressed both the time lag and 
shorter duration issues present in the original date-stamping method and, thus, more 
suitable for backtesting.

The empirical test results of the nine backtests allowed us to draw two main conclu
sions. First, the RiskMetrics 2006 model outperforms the RiskMetrics model. Specifically, 
the former works well in pre-bubble, bubble, and normal periods but behaves conserva
tively in the post-burst period, which may overestimate the downside risk. Second, the 
criticism that all VaR models fail in crisis or bubble periods is statistically invalid. The 
power of VaR is affected by the modelling practices adopted by different financial 
institutions.

An interesting direction for future research would be to examine parametric and non- 
parametric VaR approaches. Non-parametric approaches comprise historical and Monte 
Carlo simulations, whereas parametric approaches include GARCH, GJR-GARCH 
(Glosten, Jagannathan, & Runkle, 1993), and the multivariate DCC (Engle, 2002) 
approach.
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Appendix A. Technical details of VaR backtests

A.1. Unconditional Coverage Tests
The POF test examines whether the observed fail rate (number of VaR violations) is significantly 
different from the selected failure rate p. The null hypothesis of the POF test is 
H0 : p ¼ p̂ ¼ ν1=WT , and equation A.1 defines the likelihood ratio test statistic of the POF test. 
Under the null hypothesis, the likelihood ratio test statistic LRPOF is asymptotically χ2-distributed 
with 1 degree of freedom.

The TUFF test assesses the time it takes for the first violation to occur. It assumes that the first 
violation occurs in ν ¼ 1=p days. For the 1% VaR calculation, a violation is expected to occur every 
100 days. The null hypothesis of the TUFF test is H0 : p ¼ p̂ ¼ 1=ν. Equation A.2 defines the 
likelihood ratio test statistic of the TUFF test. Similar to the POF test, under the null hypothesis, 
the likelihood ratio test statistic LRTUFF is asymptotically χ2-distributed with 1 degree of freedom. 

LRPOF ¼ � 2ln
ð1 � pÞWT � ν1 pν1

ð1 � p̂ÞWT � ν1 p̂ν1

 !

(A:1) 

LRTUFF ¼ � 2ln
pð1 � pÞν� 1

p̂ð1 � p̂Þν� 1

 !

(A:2) 

A.2. Conditional Coverage Tests
Christoffersen’s independence test uses a binary first-order Markov chain and a transition prob
ability matrix � to test the independence of the violations. 

�1 ¼
ð1 � p01Þ p01
ð1 � p11Þ p11

� �

(A:3) 

Indicator variable It takes the value 1 when a VaR violation occurs and 0 otherwise, and 
pij ¼ PrðIt ¼ jjIt� 1 ¼ iÞ. Christoffersen and Pelletier (2004) suggested that the likelihood function 
for the violation sequence is Bernoulli-distributed and follows the first-order Markov chain of 
equation A.4. 

LUð�1; I1; I2; � � � ; ItÞ ¼ ð1 � p01Þ
n00 pn01

01 ð1 � p11Þ
n10 pn11

11 (A:4) 

where nij is the total number of observations occurring after It� 1 ¼ i, until It ¼ j. The unrest
ricted form of the maximum likelihood estimates for the log-likelihood functions LUð�1Þ are 
simply ratios of the counts of the respective cells as shown in equation A.5. 

�1 ¼
n00

n00þn01

n01
n00þn01n10

n10þn11

n11
n00þn11

� �

(A:5) 

If the violations are independent, the violation on day t is independent from that on day t � 1; 
thus, the probability p01 should be equal to p11. Equation A.6 shows the transition probability 
matrix under the null hypothesis H0 : p01 ¼ p11 ¼ p̂ and equation A.7 shows the restricted form of 
the maximum likelihood estimates for the log-likelihood function LRð�0Þ. 

H0 : �0 ¼
ð1 � p̂Þ p̂
ð1 � p̂Þ p̂

� �

(A:6) 

LRð�0j; I1; I2; � � � ; ItÞ ¼ ð1 � p̂Þn00þn10 p̂n01þn11 (A:7) 

where p̂ ¼ ðn01 þ n11Þ=ðn00 þ n01 þ n10 þ n11Þ. Equation A.8 shows the likelihood ratio test 
statistic for independence, LRindc , which is asymptotically χ2-distributed with 1 degree of freedom 
under the null hypothesis of the restricted model being the preferred model. 
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LRindc ¼ 2ðlogLUð�0Þ � logLRð�1ÞÞ,χ2ð1Þ (A:8) 

Hass (2001) proposed the mixed-Kupiec independence test, which combined the ideas of 
Christoffersen and Kupiec, to consider the timing of different occurrences to test the independence 
of the violations. The mixed-Kupiec test overcomes the limitation of Christoffersen’s indepen
dence test in which the first-order Markov chain considers only the dependence between two 
consecutive trading days. Equation A.9 shows the likelihood ratio statistic LRindmk of the mixed- 
Kupiec test. 

LRindmk ¼
Xn

i¼1
� 2ln

pð1 � pÞbi � 1

ð1=biÞð1 � 1=biÞ
bi� 1

 !

(A:9) 

where bi is the time between VaR violations i � 1 and i, and n is the number of exceptions in the 
testing period. 

A.3. Joint Coverage Tests
The joint test considers both the coverage and the independence of the violations by combining the 
likelihood ratios of both the tests. The Christoffersen joint test combines the likelihood ratios of 
the POF test and the Christoffersen’s independence test, whereas the mixed-Kupiec joint test 
combines the likelihood ratios of the TUFF test and the mixed-Kupiec independence test.

The Christoffersen joint test of coverage and independence can be performed by combining the 
LRPOF and LRindc statistics. The null hypothesis is that there are no coverage and clustering issues. 
Under the null hypothesis, the conditional coverage LRCC statistic, shown in equation A.10, is 
asymptotically χ2-distributed with 2 degrees of freedom. 

LRcc ¼ LRPOF þ LRindc ,χ2ð2Þ (A:10) 

Similarly, the mixed-Kupiec joint test combines the LRTUFF and LRindmk statistics into the 
conditional coverage LRmixed statistic. This statistic, shown in equation A.11, is asymptotically χ2- 
distributed with ðnþ 1Þ degrees of freedom under the null hypothesis. 

LRmixed ¼ LRTUFF þ LRindmk ,χ2ðnþ 1Þ (A:11) 
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