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ARTICLE

A comparison of parametric and nonparametric estimation
methods for cost frontiers and economic measures
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bDepartment of Agricultural Economics, Kansas State University, Manhattan, KS

ABSTRACT
This article examines the empirical performance of alternative fron-
tier estimators’ ability to replicate a known underlying technology
and economic measures such as multi-product and product-specific
economies of scale, and economies of scope. A cross sectional Monte
Carlo procedure to simulate data is used to evaluate a two-sided error
system, an OLS system restricting errors to be above the cost frontier,
the stochastic frontier method, and data envelopment analysis (DEA).
The data are generated assuming a half-normal distribution, and a
uniform distribution. Data were also simulated with single and two
output firms. The DEA estimator was most robust in estimating the
“true” cost frontier and associated economicmeasures including data
sets without single output firms and less effected by distributional
assumptions.
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1. Introduction

The stochastic frontier method (Aigner, Lovell, & Schmidt, 1977; Battese & Coelli,
1988; Meeusen & Van Den Broeck, 1977) and data envelopment analysis (Charnes,
Cooper, & Rhodes, 1978; Färe, Groskopf, & Lovell, 1985) are commonly used to
measure the performance of economic agents in many contexts. In both cases of
measurement, the study of efficiency is premised on measurement of how far an
economic agent is off the cost or production frontier. The origination of this literature
began with Farrell (1957), who used piecewise linearization to envelope production
data. In his analysis, all firms were either on or below the production frontier with the
firms that reside on the frontier being labeled as efficient, and those that reside below
the frontier experience some amount of inefficiency. Farrell calculated the distance
from inefficient firms to the estimated frontier as the ratio of estimated minimum
production inputs for a given output to actual production inputs for a given output.
This method was then used as a metric to determine relative efficiency among firms.
Farrell and Fieldhouse (1962) and Afriat (1972) eliminated the restriction of constant
returns to scale technology using the nonparametric approach. The fundamental
economic concept is the existence of a frontier function to which the distance
above (cost) or below (production) represents inefficiency of the economic agent.
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Economists have used several tools to explore the structure of cost using both
frontier and non-frontier methods. Originally, cost functions were estimated using
parametric methods with two-sided errors (i.e., Ordinary Least Squares “OLS”) where
more efficient firms lie below the “average” frontier and less efficient firms lie above the
“average” frontier (Christensen, Jorgenson, & Lau, 1973; Diewert & Wales, 1988). The
result of estimation from a two-sided error model is thus an average cost function for
the firms. However, firms existing above a production frontier and below a cost frontier
are not an estimation using best practices for a frontier estimator.

To remedy this problem, regression-based methods such as the Corrected Ordinary
Least Squares method (COLS) (Greene, 2005) and Modified Ordinary Least Squares
method (MOLS) (Afriat, 1972) were developed. These methods either shifted the
intercept (COLS) (Richmond, 1974) to envelop the data or shifted the production/
cost function up/down based upon an expected value of the inefficiency distribution
(MOLS). COLS has been compared in the literature to other techniques (Ruggiero,
1999) with cross-sectional Monte Carlo data. For more information on COLS, see Fried,
Knox Lovell, and Schmidt (2008).

These issues led to the stochastic frontier estimation approach (SFA) based on
maximum likelihood that conforms more closely to economic theory by estimating
a frontier where the observations of cost lie either on or above a cost frontier. Like
traditional parametric estimation methods, the stochastic frontier method requires the
specification of a functional form, and all the assumptions that traditional parametric
estimation methods must satisfy remain for the function to be consistent with economic
theory. The stochastic frontier approach has been expanded by Battese and Coelli
(1988) to include panel estimation of a stochastic frontier using the software program
Frontier V4.1.1 Indeed, Bojani, Caudill, and Ford (1998) show that stochastic frontier-
type maximum likelihood estimators and corrected least squares perform better in two-
sided error models, especially in the presence of heterscedasticity. A further discussion
of the stochastic frontier approach is found in Parmeter and Kumbhakar (2014).

An alternative approach commonly used is the piecewise linear approach of Charnes
et al. (1978) and Färe et al. (1985). These methods estimate cost efficiency (CE) of a firm
where the cost frontier is calculated rather than a production frontier and efficient firms
lie on the frontier, but inefficient firms lie above the frontier. Recently, Parman,
Featherstone, and Coffey (2017) present an approach to calculate product-specific and
multi-product economies of scale to allow a more in-depth examination of the cost
frontier.

The merits of the stochastic frontier approach and the Data Envelopment Analysis
(DEA) approach have been widely discussed in the literature with the nonparametric
DEA approach enveloping the data such that it conforms to economic theory. That is,
the cost function is the minimum cost to produce an output bundle (Mas-Colell,
Whinston, & Green, 1995). Other advantages are that it does not require the specifica-
tion of a function and is not technologically restrictive. It also does not require the
imposition of curvature required for a cost function (Featherstone & Moss, 1994). The
disadvantages of the DEA approach compared to the stochastic frontier approach
involve the difficulty with hypothesis testing. It has also been discussed in the literature

1Frontier V4.1 written by Tim Coelli is available online at: http://www.uq.edu.au/economics/cepa/frontier.php.
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(Simar & Wilson, 1998) that bias exists within the DEA framework, especially in small
samples (Assaf & Matawie, 2010).

Previous research comparing frontier estimators includes Andor and Hesse (2013)
comparing the stochastic non-smooth envelopment of data (StoNED) method devel-
oped by Kuosmanen and Kortelainen (2012) with that of DEA and stochastic frontier
estimations utilizing Monte Carlo simulations. Their results show that non-noisy data
are better estimated using SFA or DEA, while noisy data are better estimated using the
STOned method. Kuosmanen, Saastamoinen, and Sipiläinen (2013) also compare SFA,
DEA and StoNED to evaluate CE using real-world data and a Monte Carlo simulation
comparison finding that StoNED estimators and DEA outperform SFA due to model
misspecification and multicollinearity. Also, Ruggiero (2007) used simulated data show-
ing that, even using a data generating process favorable to stochastic frontier models
over averaged panel data, deterministic models performed well, while the stochastic
frontier failed in estimations with high measurement error variance. Badunenko,
Henderson, and Kumbhakar (2012) examined kernel SFA and non-parametric bias-
corrected DEA finding that the reliability of efficiency scores depends upon the dis-
tribution of noise. Hjalmarsson, Kumbhakar, and Heshmati (1996) also evaluated the
performance of DEA and SFA with respect to frontier and efficiency estimations, using
the production function, and the well-established scale efficiency metric. Finally, regres-
sion analysis and DEA were compared by Thanassoulis (1993) finding DEA to be more
accurate, but regression-type models to be more stable with their estimations. For
a further discussion on the structure of DEA estimations, see Simar and Wilson (2013).

One item that has not been extensively studied in the literature is the empirical
performance of alternative methods being able to replicate an underlying technology
along with economic CE measures such as multi-product and product-specific econo-
mies of scale. While there are advantages and disadvantages for the stochastic frontier
approach and the DEA approach, how do those approaches perform in replicating
a “true” cost frontier with inefficient firms and associated economic cost savings and
efficiency?

This research examines the robustness of four different estimation approaches to
evaluate their ability to estimate a “true” cost frontier and associated economic measures.
The approaches used include the traditional two-sided error approach (Christensen et al.,
1973), an OLS method with only positive errors (Green, 1997) and the stochastic frontier
method (Aigner et al., 1977). The fourth method is the DEA method (Färe et al., 1985).
The robustness of the four estimation methods is examined using simulated data sets
from two different distributions and two different observation quantity levels.

The OLS method of estimating a cost frontier by restricting the errors to take on
only positive values is less investigated in the literature but is an alternative approach to
the composite error model. This method does not require any prior assumptions of
distribution of inefficiency and envelopes the data. Further, since it is not a shift of the
function such as the COLS or MOLS methods, it allows for the marginal cost calcula-
tions to be based off of a parametric curve fitted to frontier firms.

The manuscript is organized as follows. Section 2 discusses the derivation of the data
used to test the four methods, followed by a review of the estimation methodologies (in
Section 3). Next, in Section 4, the results are presented followed by a summary and
discussion of the conclusions (Section 5).
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2. Data

The data for the analysis were generated using a modified Monte Carlo procedure (Gao
& Featherstone, 2008). The Monte Carlo-generated data are cross-sectional diverging
from Gong and Sickles (1992) who used a Monte Carlo simulation generating a panel to
examine technical efficiency estimation performance for DEA and SFA estimations.
A normalized quadratic cost function with three inputs (x1, x2, x3) with corresponding
prices (w1, w2, w3) and two outputs (y1, y2) with corresponding prices (p1, p2) was
simulated. The normalized quadratic cost function is used since it is a self-dual cost
function and a flexible functional form (Lusk, Featherstone, Mash, & Abdulkadri, 2002).
The input and output prices (wi, pi) are simulated randomly using a normal distribu-
tion. The assumed distributions for the output prices and input prices were constrained
to provide observed prices strictly greater than zero and to have different means and
standard deviations to ensure the variability in input/output quantity demands and
relative prices (the prices are uncorrelated). The prices are:

w1 , N 9; 0:99ð Þ

w2 , N 18; 1:98ð Þ

w3 , N 7; 0:77ð Þ

p1 , N 325; 99ð Þ

p2 , N 800; 99ð Þ
The input price variability was set proportionate to its mean, while the output prices
have different relative variability to represent products in markets with different
volatilities.

The output (yi) and input (xj) quantities are a function of input and output prices
and an assumed underlying production technology. All prices are normalized on the
input price w3, and cost is scaled by w3 to impose homogeneity. To ensure curvature
holds, the “true” cost function is concave in input prices and convex in output
quantities. The assumed parameters also satisfy symmetry (bij = bji). The assumed
parameters (Table 1) are used to determine the output quantities y1 and y2.

2 The
general form of the normalized quadratic cost function is:

CðW;YÞ ¼ b0 þ b1 b2½ � w1

w2

� �
þ a1 a2½ � y1

y2

� �

þ 1
2

w1 w2½ � b11 b12
b21 b22

� �
w1

w2

� �
þ y1 y2½ � c11 c12

c21 c22

� �
y1
y2

� �� �

þ w1 w2½ � a11 a12
a21 a22

� �
y1
y2

� �
(1)

Output quantities (shown below) are calculated using the assumed parameters of the
cost function (Table 1) and the simulated output prices.

2The analysis also was completed for alternative assumptions on input prices.
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y1 ¼ c22p1 � c12p2 þ a12c12 � a11c22ð Þw1 þ a22c12 � a21c22Þw2 þ ða2c12 � a1c22ð Þ
c22c11 � c12c12ð Þ

y2 ¼ c12p1 � c11p2 þ a12c11 � a11c12ð Þw1 þ a22c11 � a21c12Þw2 þ ða2c11 � a1c12ð Þ
� c22c11 � c12c12ð Þ

(2)

Using Equation (1), a positive random cost deviation term is added to the cost function
following a half-normal distribution that introduces cost inefficiency where the absolute
value of e is distributed e ~ N (0,1000).3 The inclusion of this term adds cost inefficiency
to the data such that firms are off the frontier effectively increasing their cost while
keeping the output quantities the same. The cost inefficiency distribution was chosen
such that the simulated data reflected that seen in other literature (Gao & Featherstone,
2008; Paul, Nehring, Banker, & Somwaru, 2004).

With a large body of literature assuming that inefficiency is asymmetric and nega-
tively skewed such as a half-normal, truncated normal or exponential distribution, other
research exists arguing that inefficiency is symmetric (Lee & Lee, 2014; Li, 1996). Thus,
it is possible to encounter skewed and asymmetric inefficiency data or symmetric.
Therefore, along with a half-normal distribution, an additional simulation is generated
assuming a uniform distribution of cost inefficiency.4 The uniform deviation ranged
from 0 to 900. The normal distribution standard deviation of 1000 generates a mean
and standard deviations of CE roughly equivalent to a uniform distribution with
a range from 0 to 900 allowing for a more direct comparison.

From Equation (1), using Shephard’s Lemma where (∂C(W,Y)/∂wi) = xi, the factor
demands for inputs x1 and x2 are recovered. The factor demand for the normalized
input x3 is found by subtracting the product of quantities and prices for x1 and x2 from
the total cost.

Table 1. Assumed coefficients used in cost
function for data simulation for half-normal
and uniform distributions.
Coefficient Value

a1 30.0
a2 80.0
a11 0.50
a12 1.00
a21 0.6
a22 0.50
b0 20.0
b1 10.0
b2 35.0
b11 −0.09
b12 −0.15
b22 −0.47
c11 1.44
c12 −0.24
c22 2.29

The definitions of the coefficients presented in Table 1
correspond with those in Equation (1).

3The analysis also examined the alternative standard deviations.
4The analysis also examined alternative numbers of observations. The results were invariant to 500 and 2,500
observations.
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x1 ¼ b1 þ b11w1 þ b12w2 þ a11y1 þ a12y2
x2 ¼ b2 þ b12w1 þ b22w2 þ a21y1 þ a22y2
x3 ¼ C W;Yð Þ � ej jð Þ � x1w1 � x2w2Þ

(3)

The input quantities (xis) are adjusted (xi
a) by the CE percentage increasing the

quantity of input demanded proportionate to the inefficiency for each firm as:

xai ¼
xi
CE

(4)

Fifty firms were generated producing only y1 with another 50 firms producing only y2
which is accomplished by restricting either y1 or y2 to equal zero and re-running the
simulation for 50 separate observations each.5 A total of 500 observations were simulated
with the summary statistics shown in Table 2. In Table 2, xi

n represents inefficient input
quantities for the normal error distribution and xi

u represents the inefficient input quan-
tities for the uniform distribution. The summary statistics for the multi-product scale,
product-specific scale, scope and CEs for each data point are from the “true” cost frontier
and are shown in Table 3. Summary statistics for the economic measures are independent
of the distribution of cost “inefficiency”. Figures 1 through 4 provide a visual representation
of the CEs, scope economies (SC) and multi-product scale economies (MPSE) as well as
product-specific scale economies (PSE) calculated from the “true” cost function.

While the CE for each firm is presented under a 500 observation uniform (500U)
and a 500 observation half-normal distribution (500HN) (Figure 2), the SC, MPSE and
PSEs from the frontier are identical for each data point (Table 3) due to the input prices
(wis) and output prices (pis) being the same. Thus, the output quantities (yis) remain
unchanged (Equation 3).

A third data set is simulated using the same half-normal distribution but excluding
the single output firms. In this set, there are 400 firms each producing both y1 and y2
(400HN). Structuring a simulation in this fashion examines each method’s ability to
estimate an intercept similar in method with respect to DEA to Chavas and Aliber
(1993) who proposed dropping any one output and associated costs and then re-

Table 2. The average, standard deviation, minimum and maximum for the input/
output quantities and input prices in half-normal (xi

n) and uniform (xi
u) cases.

N = 500 Average Standard deviation Minimum Maximum

x1
n 42.29 11.95 13.35 88.33

x2
n 69.85 23.29 38.44 268.76

x3
n 2602.60 1154.75 152.95 8083.87

x1
u 36.93 8.644 14.06 68.89

x2
u 60.16 10.25 38.43 136.13

x3
u 2302.06 1027.79 147.92 6585.05

w1 9.05 0.98 5.42 11.98
w2 17.95 1.88 13.15 24.70
w3 6.98 0.78 4.85 9.75
y1 11.67 5.90 0.00 30.19
y2 14.31 7.53 0.00 37.92

5The goal of this method is to ensure that single output firms are in the sample. This assumption is further relaxed to
determine the robustness of the alternative methods to a situation where no single output firms are observed in the
data. Examining data with single output firms and with no single output firms is also a check on the accuracy of
incremental cost estimates needed for the economic effects of scope and product-specific economies of scale.
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estimating and repeating until each potential output has been dropped. Previous
research has shown (Parman et al., 2017) that data sets with no single output firms
are less accurate in estimating intercepts and incremental costs. However, in many
industries, single and multiple output firms may not exist. Thus, this third data set is
used to evaluate each method’s ability to estimate incremental costs and intercepts
accurately when no firms exist producing one output or another.6

The difference between the “true” estimates and each of the four methods is evaluated
by subtracting each model’s estimate from the “true”measure calculated with Monte Carlo
simulation. A positive difference implies that the model underestimates the measure, and

Table 3. Summary statistics for efficiency calculations from generated data including half-normal
and uniform distributions.
Economic measure Average Standard deviation Minimum Maximum

Half-normal distribution (500HN)
Multi-product scale economies 0.931 0.108 0.772 1.989
Cost efficiency 0.721 0.177 0.129 1.000
Scope 0.096 0.051 0.037 0.513
Product-specific scale economies for y1 0.728 0.246 0.000 0.957
Product-specific scale economies for y2 0.763 0.257 0.000 0.995

Uniform distribution (500U)
Cost efficiency 0.799 0.133 0.268 1.000

400 observations (400HN)
Multi-product scale economies 0.918 0.082 0.773 1.989
Cost efficiency 0.751 0.159 0.129 1.000
Scope 0.085 0.028 0.062 0.514
Product-specific scale economies for y1 0.808 0.047 0.678 0.957
Product-specific scale economies for y2 0.848 0.041 0.733 0.996

Economies of scope, multi-product scale economies and product-specific scale economies are identical for the half-
normal and uniform distributions.

Figure 1. Frontier cost efficiencies cumulative frequency for both half-normal and uniform distributions.

6See Parman et al. (2017) for comparisons of dropping outputs vs. constraining them to zero in the DEA framework.
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conversely, a negative difference indicates that the model overestimates the measure being
evaluated. The mean absolute deviation is also reported for all four methods allowing for
the comparison of average absolute deviation from zero.

Cumulative density functions are presented for the differences between the true
measures and the estimated measures to provide visual representation of both bias
and deviation. If there is no difference between the estimated measure and the true
measure, the cumulative density function is a vertical line at zero.

Figure 2. Frontier economies of scope cumulative frequency.
The economies of scope calculations for both the half-normal and uniform error distribution are identical.

Figure 3. Frontier multi-product scale economies cumulative frequency for simulated data.
The MPSE calculations for both the half-normal and uniform error distribution are identical.
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3. Estimation methods

3.1. The two-sided error system equation

The traditional two-sided error system (Christensen et. al., 1973) involves specification of
a cost function and single frontier of input quantities and costs from observed prices and
outputs. This method fits a curve with observations residing above and below the
estimated frontier. The cost function was estimated using the SHAZAM software package
using a normalized quadratic cost function with input prices normalized on w3 as7:

CðW;YÞ ¼ b0 þ b1 b2½ � w1

w2

� �
þ a1 a2½ � y1

y2

� �

þ 1
2

w1 w2½ � b11 b12
b21 b22

� �
w1

w2

� �
þ y1 y2½ � c11 c12

c21 c22

� �
y1
y2

� �� �

þ w1 w2½ � a11 a12
a21 a22

� �
y1
y2

� �
þ e1 (5)

x1 ¼ b1 þ b11w1 þ b12w2 þ a11y1 þ a12y2 þ e2
x2 ¼ b2 þ b12w1 þ b22w2 þ a21y1 þ a22y2 þ e3

(6)

The marginal costs are calculated by:

mcy1 ¼ a1 þ c11y1 þ c12y2 þ a11w1 þ a21w2; and
mcy2 ¼ a2 þ c22y2 þ c12y1 þ a12w1 þ a22w2

(7)

The incremental costs for each output are:

Figure 4. Frontier product-specific scale economies.
The PSE calculations for Y1 and Y2 for both the half-normal and uniform error distribution are identical.

7It should be noted that for each of the parametric methods, the true functional relationship is provided. That is, in
each of the parametric cases, the quadratic functional form is used. While not being known in actual applications, this
will benefit the results from the parametric methods when compared to the DEA method.
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ICy1 ¼ a1y1 þ 1
2 c11y

2
1 þ c12y1y2 þ a11w1y1 þ a21w2y1; and

ICy2 ¼ a2y2 þ 1
2 c22y

2
2 þ c12y1y2 þ a12w1y2 þ a22w2y2

(8)

The costs of producing a single output are:

CY1 ¼ CðW;YÞ � ICy2; and
CY2 ¼ CðW;YÞ � ICy1

(9)

The economies of scope (SC), MPSE and product-specific scale economies (PSEyi) can
be calculated from the marginal costs, incremental costs and single output costs:

SCi ¼
P2
i¼1

CYi � CðW;YÞ
� �

CðW;YÞ (10)

MPSE ¼ CðW;YÞP2
i¼1

mcyi � yi
� � (11)

PSEyi ¼ ICyi
yi �mcyi

(12)

CE measures are not calculated for the two-sided error system since the deviations from
the “frontier” are two sided.

3.2. The OLS estimator with positive errors

A one-sided error model is estimated similar to the two-sided error model discussed
above. However, a two-sided error model has errors above and below the frontier while a
one-sided error model restricts the errors to be either above or below the frontier only.
Also, the input demands in Equation (6) are not estimated in the one-sided error model.
However, a two-sided error model has errors above and below the frontier while a one-
sided error model restricts the errors to be either above or below the frontier only. Also,
the input demands in Equation (6) are not estimated in the one-sided error model. with
the difference being the error term is constrained to be positive and the input demand
Equation (6) are not estimated. Equation (5) is estimated with the restriction that ei ≥ 0 for
all i using the General Algebraic Modeling Software (GAMS) program. The objective
function minimizes the sum of squared errors subject to constraints that define the error.
Firms on the frontier have errors equal to zero, while those with inefficiency exhibit
positive errors. The calculations of SC, MPSE and PSE are identical to the two-sided error
model using the coefficient estimates from the one-sided error model.

3.3. The stochastic frontier cost function estimator

The stochastic frontier estimation method uses FRONTIER Version 4.1 by Coelli (1991)
based off of Battese and Coelli (1992) and Schmidt and Lovell (1979). One of the
primary differences between the stochastic frontier method and the two methods above

JOURNAL OF APPLIED ECONOMICS 69



is the error term. Specifically, the error term consists of two elements, Vi which are
random variables assumed to be iid N(0,σ2) and Ui which is a non-negative random
variable capturing inefficiency. Uit is assumed to be half-normal for this analysis and
defines how far above the frontier a firm operates. The resulting cost function is:

CðW;YÞ ¼ b0 þ b1 b2½ � w1

w2

� �
þ a1 a2½ � y1

y2

� �

þ 1
2

w1 w2½ � b11 b12
b21 b22

� �
w1

w2

� �
þ y1 y2½ � c11 c12

c21 c22

� �
y1
y2

� �� �

þ w1 w2½ � a11 a12
a21 a22

� �
y1
y2

� �
þ Vi þ Uið Þ (13)

For simplicity, Equation (13) can be rewritten as follows:

CðW;YÞi ¼ XiBþ Vi þ Uið Þ (14)

The CE from the stochastic frontier method takes on a value between one and infinity
since Ui ≥ 0. The CE from the nonparametric method and the one-sided error model is
estimated by dividing the minimized total cost estimate by the actual total costs
resulting in CE estimates between 0 and 1.

CE ¼ XiB
XiBþ Ui

(15)

The calculations of marginal costs, incremental costs, the SC, MPSEs and PSEs are the
same as those shown above using the estimated parameters.

Each of the methods discussed above is parametric. Symmetry and homogeneity are
imposed in the estimation process. Curvature and monotonicity are not imposed and
would need to be examined to ensure that the cost function estimated is consistent with
economic theory.

3.4. The nonparametric approach (DEA)

The nonparametric approach for estimating multi-product scale, product-specific scale
and SC follows Parman et al. (2017). The cost (Ci) is determined for each firm where
costs are minimized for a given vector of input prices (wi) and outputs (yi) with the
choice being the optimal input bundle (xi*).

minCi ¼ w
0
ix

�
i

s:t

Xz � x�i
y0z � yp
z1 þ z2 þ :::þ zn ¼ 1

zi 2 þ

(16)

where there are “n” firms. The vector Z represents the weight of a particular firm with
the sum of Zis equal to 1 under variable returns to scale. From the above model, the
minimum cost and output quantities can be estimated. The output quantities (yp)
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constrain the cost minimizing input bundle to be at or above that observed in the data.
Total cost from the model (Ci) is the solution to the cost minimization problem that
produces a constrained minimum of each of the outputs for the ith firm. The cost of
producing all outputs except one (Ci,all-p) where p represents the dropped output is
determined by dropping the pth output constraint.

CE identifies a firm’s proximity to the cost frontier for a given output bundle and is
the quotient of the estimated frontier cost (Ci) and the observed total cost (OTCi) the
firm incurred producing their output bundle.

CEi ¼ Ci

OTCi

� �
: (17)

The calculation for economies of scope is:

SCi ¼
ðP

p
Ci;pÞ � Ci

Ci

2
64

3
75: (18)

The shadow prices on the output constraints (16) are the marginal cost of that output
MCi,p. MPSE is defined as:

MPSEi ¼ Ci;allP
p
MCi;pYi;p

2
64

3
75: (19)

Product-specific economies of scale (PSE) require the calculation of the incremental
costs (ICi,p):

ICi;p ¼ Ci �
X
j

Ci;j�p"j:

Average incremental costs (AICi,p) are determined by dividing incremental costs by the
individual output:

AICi;p ¼
ICi;p

yi;p
:

Using the average incremental cost and the marginal cost calculations, the PSEs are:

PSEi;p ¼ AICi;p

MCi;p
: (20)

When estimating the frontier nonparametrically using a data set with no observations
of single output firms, the program will allow some of the output for the dropped
constraint to be produced, resulting in an overstatement of the cost of that one output
(Ci,p) which will cause an overstatement of economies of scope (Equation 18) and an
understatement of product-specific scale economies (20). Thus, there exist additional
product-specific production costs from an output being produced when, according to
the economics theory, it should not be. The procedure for adjusting the costs in a two-
goods case is as follows: the cost of producing y1 only (Ci,1) assumes that only (y1

1) is
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being produced. However, the optimization program allows some yi,2
1 to be produced

in this situation overstating the cost of producing y1 only (Ci,1). To remove the
additional cost, the percentage contribution of yi,1

1 to cost is multiplied by the cost of
producing y1 only, yielding an adjusted cost (Ca

i,1). This estimated adjusted cost is used
in the calculation of incremental costs and associated economic measures:

Ca
i;1 ¼ Ci;1

y1i;1
y1i;1 þ y2i;2

 !
(21)

This research evaluates the difference between the “true” measures of CE, economies of
scope (SC), MPSE and product-specific economies of scale (PSE) from the four model-
ing approaches. The statistics and results presented are the difference between the
model estimates and the “true” measure and not the economic measures.

The parametric estimators are specified knowing the “true” functional form: the
normalized quadratic cost function. Therefore, the differences for the parametric
methods may represent a “best case scenario” in that the true functional form is
known and estimated with only the parameters being unknown.

4. Results

Table 4 contains the parameter estimates and standard errors for the parametric
methods for all three data sets. The parameter estimates from each method are different
under the same distributional assumptions and different for the same method under
different distributional assumptions with the exception of the OLS-positive errors
model that yielded the same parameter estimates for the uniform and half-normal
distributions. For both the two-sided error system and the stochastic frontier estima-
tion, different distributional assumptions yielded changes in magnitude as well as sign
changes for various parameter estimates. Also, when comparing the 500U case to the
400HN with zero single output firms observed, there were changes for all three of the
parametric methods as well as changes in magnitude for the estimated parameters. The
calculation for the standard errors using GAMS used the method in Odeh,
Featherstone, and Bergtold (1992).

Curvature was checked for each parametric estimation method to ensure that it was
not violated (Table 5). A curvature violation implies that the shape of the cost frontier
estimation does not conform to the “true” cost function that is assumed and known in
this case. This indicated that the parametric cost function violates economic theory
conditions. To check these conditions, the eigenvalues are calculated for the “b” (price)
and “c” (output) matrices where the eigenvalues for “b” should be negative (concave in
prices) and “c” values should be positive (convex in outputs). Each parametric model
violated curvature conditions for every simulation for either the “b” or “c” matrices or
both. The one-sided error model and the two-sided system violated curvature condi-
tions for both the “b” and “c” matrices for the 400HN observations simulation.
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4.1. Cost efficiency

CE differences determine the ability of each model to estimate the “true” frontier since
it is the ratio of estimated minimum cost to actual total cost. The two-sided error model
was not examined because it is not a frontier function. The OLS-positive errors and
nonparametric models performed well for all three data sets in estimating the frontier
with average differences below 0.03 in absolute value and standard deviations below
0.04 (Table 6). The most accurate estimation of CE was the nonparametric model under
the uniform distribution simulation with the average, standard deviation and mean
absolute deviation close to zero.

The stochastic frontier method performed almost as well under the 500HN simula-
tion with the average closest to zero and under the 400HN observation simulation with
an average difference of −0.028 but much worse under the 500U (Figure 5) with an
average difference of −0.198, mean absolute deviation of 0.198 and standard deviation
of 0.118. This implies that estimating efficiency measures with the stochastic frontier
method is dependent on the correct assumption of the inefficiency error distribution
when inefficiency is symmetrically distributed. However, other research shows that in

Table 6. Statistics for simulated cost efficiency differences (CE) for the OLS-positive errors, stochastic
frontier and nonparametric estimations.

Average Standard deviation Minimum Maximum Mean absolute deviation

Half-normal distribution (500HN)
OLS-positive errors −0.020 0.039 −0.277 0.063 0.023
Stochastic frontier −0.015 0.043 −0.304 0.155 0.024
Nonparametric −0.025 0.041 −0.530 −0.003 0.026

Uniform distribution (500U)
OLS-positive errors −0.011 0.013 −0.062 0.122 0.013
Stochastic frontier −0.198 0.118 −1.478 −0.058 0.198
Nonparametric −0.004 0.007 −0.079 0.000 0.004

400 observations (400HN)
OLS-positive errors −0.017 0.023 −0.173 0.015 0.017
Stochastic frontier −0.028 0.049 −0.351 0.139 0.039
Nonparametric −0.022 0.032 −0.386 −0.003 0.022

Table 5. Eigenvalues for “B” (prices) and “C” (outputs) matrices for each model and simulation.
Half-normal (500HN) Uniform (500U) No zero outputs (400HN)

B C B C B C

Two-sided error system
3.09 3.50 0.70 2.80 0.41 2.10
0.09 1.80 −0.10 1.50 −0.40 −1.14
X √ X √ X X

Stochastic frontier
−37.0 3.20 3.10 2.90 677 34.8
−931 −2.20 −76.0 1.40 −1489 2.60
√ X X √ X √

OLS-positive errors
180 2.40 180 2.40 118 6.00
−106 1.50 −106 1.50 −325 −1.50
X √ X √ X X

The known cost function is concave in prices (B matrix) and convex in outputs(C matrix). For concavity, the matrix must
yield negative eigenvalues, and for convexity, the matrix must yield positive eigenvalues. A “√” implies correct
curvature, while “X” implies a curvature violation.
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the case of asymmetric and skewed distributions such as the truncated normal, half-
normal and exponential, that distributional assumptions are much less impactful
(Meesters, 2014).

Panel a: 500HN 

Panel b: 500U 

Panel c: Differences 400HN 

Figure 5. Differences between frontier cost efficiency and estimated cost efficiency for the non-
parametric, frontier and OLS-positive errors models.
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In all cases, the average differences were below zero implying that the OLS-positive
errors, stochastic frontier and nonparametric models slightly overestimated the CEs for
most of the firms. This is confirmed by examining the mean absolute deviation in the
500U and 400HN observations cases being the same as the absolute value of the mean.
Frontier methods envelope the observed data, thus CEs are overestimated unless there
are a significant number of firms where the simulated error is zero. The average
differences were close to zero in most cases with low standard deviations.

4.2. Economies of scope

Differences in estimates of economies of scope for the four different methods were not as
accurate as the CE estimates. For both the 500HN and 500U simulations, the two-sided
error system had an average error that was furthest from zero at −0.30 with a standard
deviation similar to the other methods (Table 7). For the 400HN simulation, the average
error for the stochastic frontier method was furthest from zero at −2.32. Due to scaling, the
stochastic frontier method cumulative density is not visible in Figure 6 for the 400HN case.

The OLS-positive errors model and nonparametric model estimated economies of
scope closely with averages for the 500HN of −0.08 and −0.09, respectively, and
standard deviations around 0.07 and 0.03, respectively (Table 7). The estimates of
scope for the 500U distribution from the OLS-positive errors model and nonparametric
model were less than 0.02 in absolute value with low standard deviations. The average
and standard deviation for the nonparametric method under the 500U simulation were
affected by a few observations (Figure 6). For the 400HN data set, the nonparametric
method had the lowest standard deviation (0.04) and an average closest to zero in
absolute value (0.07) (Table 7).

The three parametric estimation methods overestimated economies of scope in each
of the simulations except for the case of a half-normal distribution where the OLS-
positive errors model underestimated the economies of scope slightly. In many cases,
the parametric methods strictly overestimated scope in that the absolute values of the
means were the same as the mean absolute deviations (Table 7). The nonparametric

Table 7. Statistics for economies of scope (SC) differences from all four methods from all three data
sets.

Average Standard deviation Minimum Maximum Mean absolute deviation

Half-normal distribution (500HN)
Two-sided error system −0.300 0.057 −0.474 −0.194 0.300
OLS-positive errors −0.082 0.067 −0.291 0.093 0.088
Stochastic frontier −0.101 0.056 −0.266 0.052 0.103
Nonparametric −0.089 0.030 −0.249 0.029 0.089

Uniform distribution (500U)
Two-sided error system −0.300 0.058 −0.489 −0.191 0.300
OLS-positive errors 0.010 0.023 −0.044 0.190 0.018
Stochastic frontier −0.158 0.041 −0.312 −0.091 0.158
Nonparametric −0.019 0.079 −0.904 0.017 0.020

400 observations (400HN)
Two-sided error system −0.148 0.115 −0.437 0.152 0.175
OLS-positive errors −0.187 0.053 −0.376 −0.048 0.187
Stochastic frontier −2.324 0.607 −4.109 −0.142 2.324
Nonparametric 0.070 0.036 0.025 0.514 0.070
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model slightly overestimated scope in both the 500HN and 500U simulations but
slightly underestimated scope in the 400HN data set.

Panel a: 500HN 

Panel b: 500U 

Panel c: 400HN 

Figure 6. Differences between frontier economies of scope and estimated economies of scope from
two-sided errors, OLS-positive errors, frontier and nonparametric models.
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The most robust estimator of economies of scope appears to be the nonparametric
approach with averages close to zero in all three simulations and low standard devia-
tion. The OLS-positive errors model does not perform as well in the case of the 400HN
simulation, nor does the stochastic frontier model and the standard two-sided error
system under the 500HN and 500U simulations. Measures of economies of scope
become suspect using any of the methods when there are no single output firms in
the data sample. None of the methods extrapolate well out-of-sample.

4.3. Multi-product economies of scale

An accurate estimation of MPSE requires both a close approximation of the true
frontier and marginal costs. It is possible to have a good approximation for the
MPSE but not for economies of scope and PSEs due to the estimation of incremental
costs necessary for scope and the PSE measures.

The nonparametric approach appears to be the most robust estimator of MPSE
(Figure 7). It has an average difference closest to zero in all three simulations and the
lowest standard deviation in both the 500HN and 400HN cases (Table 8). Its mean
absolute deviation is also lowest except compared to the OLS-positive errors model
under the 500U distribution. The standard deviation was only slightly higher for the
nonparametric approach compared to the OLS-positive errors model in the 500U case
with a standard deviation of 0.05 for the nonparametric model and 0.04 for the OLS-
positive errors model (Table 8). All average differences except OLS-positive errors in
the 500U case were negative implying that MPSE was, for the most part, overestimated
by the models.

Of the four modeling methods in all three simulations, the two-sided error system had
the largest average differences from zero and the highest standard deviations (Table 8).
No observations were correctly estimated for MPSE (Figure 7) in any of the three
simulations. Using the standard two-sided system approach, the error never approaches
the zero difference.

The stochastic frontier method results were mixed. While it was outperformed by the
nonparametric approach in each of the simulations, it was close to the “true MPSE” in
the case of the 400HN simulation. However, in the 500U simulation, it did not perform
well with an average difference of −0.21 and standard deviation of 0.26 (Table 8).

4.4. Product-specific economies of scale

The estimation of the PSEs for both y1 and y2 for the 500HN and 500U simulations
yielded similar results for all three parametric-type estimations (Table 9). The para-
metric approaches appear to slightly outperform the nonparametric approach in the
estimation of PSE1 (Figure 8a, left) in the half-normal simulation but performed
similarly in the estimation of PSE2 (Figure 8b, left) under the same distribution in
terms of absolute distance from zero. For the 500U simulation, the PSE1 and PSE2
estimates from the nonparametric model were similar to both the stochastic frontier
method and the two-sided error systems with the OLS-positive errors model being the
closest to zero under the 500U simulation (Table 9).
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Under the 500HN and the 500U simulations, the two-sided error system and the
stochastic frontier underestimated PSEs for y1 and y2. The OLS-positive errors model
underestimated PSEs under both distributions except for the 500HN PSE1. In the

Panel a: 500HN 

Panel b: 500U 

Panel c: 400HN 

Figure 7. Differences between frontier multi-product scale economies and estimated multi-product
scale economies from the two-sided errors, OLS-positive errors, frontier and nonparametric models.
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400HN simulation, OLS overestimated both PSEs where that was not the case for the
nonparametric model and OLS-positive errors model.

The average difference and standard deviation for the PSEs from the stochastic
frontier method in the 400HN simulation are estimated poorly (Table 9). Of the
parametric methods, it appears that two-sided error system performed best when
there were no single output firms having the lowest standard deviations and averages
fairly close to zero, especially for PSE2 (Figure 8b, right).

Table 8. Statistics for multi-product scale economies (MPSE) differences from all four methods from
all three data sets.

Average Standard deviation Minimum Maximum Mean absolute deviation

Half-normal distribution (500HN)
Two-sided error system −0.443 0.361 −2.917 −0.067 0.443
OLS-positive errors −0.257 0.658 −5.995 0.104 0.272
Stochastic frontier −0.084 0.183 −1.577 0.107 0.107
Nonparametric −0.002 0.096 −0.678 0.739 0.049

Uniform distribution (500U)
Two-sided error system −0.482 0.609 −7.857 −0.068 0.482
OLS-positive errors 0.023 0.044 −0.124 0.515 0.027
Stochastic frontier −0.210 0.258 −3.384 −0.030 0.210
Nonparametric −0.012 0.054 −0.277 0.114 0.029

400 observations (400HN)
Two-sided error system −0.371 0.300 −4.642 −0.065 0.371
OLS-positive errors −0.087 0.131 −1.331 0.105 0.103
Stochastic frontier −0.074 0.152 −0.727 0.177 0.118
Nonparametric −0.009 0.137 −0.821 0.743 0.058

Table 9. Statistics for product-specific scale economies (PSE) differences for y1 and y2 from all four
methods and all three data sets.

Average Standard deviation Minimum Maximum Mean absolute deviation

Half-normal distribution (500HN)
Two-sided error system 0.099 0.024 0.047 0.147 0.099

y1 OLS-positive errors −0.056 0.039 −0.130 0.140 0.064
Stochastic frontier 0.111 0.018 0.081 0.176 0.111
Nonparametric 0.128 0.202 −0.259 0.573 0.202
Two-sided error system 0.053 0.011 0.022 0.081 0.053

y2 OLS-positive errors 0.075 0.016 0.037 0.148 0.075
Stochastic frontier 0.060 0.006 0.004 0.072 0.060
Nonparametric 0.027 0.099 −0.344 0.303 0.085
Uniform distribution (500U)
Two-sided error system 0.098 0.025 0.024 0.147 0.098

y1 OLS-positive errors 0.012 0.013 −0.012 0.049 0.013
Stochastic frontier 0.056 0.018 0.012 0.093 0.056
Nonparametric 0.020 0.123 −0.241 0.299 0.097
Two-sided error system 0.052 0.011 0.002 0.075 0.052

y2 OLS-positive errors 0.005 0.002 0.000 0.011 0.005
Stochastic frontier 0.004 0.004 −0.008 0.012 0.005
Nonparametric −0.004 0.053 −0.186 0.126 0.039
400 observations (400HN)
Two-sided error system −0.218 0.054 −0.368 −0.048 0.218

y1 OLS-positive errors −0.421 0.296 −4.110 −0.066 0.421
Stochastic frontier 1.696 32.94 −619.9 120.5 6.480
Nonparametric 0.187 0.310 −0.311 0.957 0.266
Two-sided error system −0.036 0.015 −0.086 0.000 0.036

y2 OLS-positive errors 0.302 0.028 0.042 0.373 0.302
Stochastic frontier −9.224 248.9 −4952 444.3 18.15
Nonparametric 0.132 0.209 −0.248 0.937 0.183
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In the 400HN simulation, while the standard deviation was higher for the nonpara-
metric method than OLS and OLS-positive errors, the average for PSE1 was closest to
zero using the nonparametric method and closer than OLS-positive errors and the
stochastic frontier method for PSE2 (Table 9). None of the methods accurately predict
the PSEs when there were no single output observations (Figure 8c).

The challenge for each method in the 400HN simulation is that there are no firms
producing a single output. This requires each method to extrapolate estimates out of
sample for the purpose of calculating incremental costs. If the smallest firms are not
efficient, a linear projection is inaccurate depending on the amount of inefficiency of the
firms.

5. Summary and conclusions

Four methods for estimating a cost frontier and associated economic measures were
examined under three different simulations including a half-normal distribution ineffi-
ciency, a uniform inefficiency distribution, and a data set with no single output firms
observed. The four methods examined were a traditional two-sided error system
regression with costs residing above and below the fitted curve, the stochastic frontier
method proposed by Aigner et al. (1977) where the error term ensures all observations
lie on or above the cost frontier, an OLS regression method where the error term was
restricted to take on positive values only ensuring that all observations lie on or above
the cost frontier and a nonparametric method proposed by Färe et al. (1985) using
a series of linear segments to trace out the cost frontier. For each simulation, CE,
economies of scope, MPSE and product-specific scale economies were calculated and
compared to the known values from the “true” cost frontier.

Results suggest that the two-sided error system is the least accurate method for
estimating a frontier function and associated cost measures. This empirical method
lacks consistency with the economic definition of a cost frontier, and it does not, in any
simulation, robustly estimate the MPSE or economies of scope.

The OLS-positive errors model appears to accurately project the cost frontier regard-
less of the distributional assumption and whether there are no single output firms
observed. However, like the stochastic frontier method, the OLS-positive errors method
has difficulty extrapolating incremental costs when there are no single output firms
(400HN). Thus, under no single output cases, the economies of scope estimations from
the positive errors model may be inaccurate along with the PSE estimates.

The stochastic frontier method appears susceptible to inaccurate distributional
assumptions on the one-sided error as it estimates the frontier much closer to the
“true” frontier under a half-normal distribution (500HN) rather than the uniform
distribution (500U) when assuming that the true distribution is a half-normal estima-
tion process. Results also suggest that the stochastic frontier method has difficulty
extrapolating when there are no single output firms observed in the data as indicated
by its inability to accurately estimate economies of scope or PSEs for the no single
output firms simulation (400HN). However, in the case of a half-normal error distribu-
tion (500HN) (the “true” distribution), it accurately estimates the frontier and, with the
existence of single output firms in the sample, accurately estimates economies of scope
and PSEs.
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The nonparametric method in all three simulations is fairly robust in estimating the
“true” cost frontier and associated economic measures. It is also the model most capable
of handling data with no single output firms observed due to its proximity to zero in
estimating economies of scope and PSEs. It does not appear to be particularly suscep-
tible to distributional assumptions on inefficiency.

All of the parametric methods assumed the functional form of the “true” frontier
(normalized quadratic) in the estimation process. Thus, these results may be different if
the true functional form differs from the function form assumed in the estimation of
the parametric methods. Functional form and statistical assumptions are not necessary
in the case of the nonparametric method; thus, this method may be more robust when
the true functional form and the distribution of efficiency are unknown. That is, if
a researcher is unsure of model specification or the inefficiency distribution, the
nonparametric approach may be a good alternative to parametric methods.

The results show that the three frontier estimators were capable of estimating the
“true” frontier in some cases. However, the stochastic frontier method was as robust as
neither the nonparametric method nor the OLS-positive errors model in the estimation
of MPSE. All three frontier methods estimated the zero single output firms data
simulation and the half-normal simulation fairly close; however, the stochastic frontier
model was not as close when inefficiency was distributed uniform as when the estima-
tion method assumed a half-normal distribution. The OLS method with two-sided
errors was the furthest from the “true” calculation of MPSE, indicating that it was
not accurate in estimating marginal cost.

Overall, the nonparametric approach estimated the frontiers and associated eco-
nomic measures close to the “true” values considering that no special assumptions or
specifications were required in its estimation. Its estimation of the frontier was about as
close or closer to the “true” values as any of the methods examined and its calculations
of economies of scope and MPSE were the closest in several of the scenarios presented.
The nonparametric approach did not significantly fail to estimate PSEs compared to
any other method. Therefore, it appears that the nonparametric method is robust for
estimating scale and scope measures.
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