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QUESTION:

What strategies can be chosen by rational

players who know the structure of the game 

and the preferences of their opponents and 

who recognize each other’s rationality and 

knowledge?

Keywords: knowledge, rationality, recognition of each other’s 
knowledge and rationality
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Modular approach

Module 1: representation of belief and knowledge of an 
individual (Hintikka, 1962; Kripke, 1963).

Module 2: extension to many individuals.
Common belief and common knowledge 
(“recognition of each other’s belief / knowledge”)

Module 3: definition of rationality in games 
(relationship between choice and beliefs)

QUESTION: what are the implications of rationality and 
common belief of rationality in games?



4

Module 1
representation of beliefs and knowledge of an individual

Finite set of states Ω and a binary relation B on Ω .  

α B β means   “at state α the individual considers state β possible”

Notation: { }:  ( ) ω ω ωω ′ ′∈Ω=B B set of states considered possible at ω

PROPERTIES

1. ( )                                              seriality

2. if  ( )  then  ( ) ( )      transitivity

3. if  ( )   then  ( ) ( )      euclideannes

ω
ω ω ω ω
ω ω ω ω

≠ ∅
′ ′∈ ⊆
′ ′∈ ⊆

B

B B B

B B B

, ,ω ω′∀ ∈Ω
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Belief operator on events: : 2 2B Ω Ω→

For  , ( )E BE if and only if Eω ω⊆ Ω ∈ ⊆B

EXAMPLE:

α β γ δ

¬p p p¬p

( ) ( ) { , }

( ) ( ) { }

α β α β
γ δ δ

= =
= =

B B

B B

Let { , } :  the event that represents the proposition 

Then  { , }

E p

BE

β δ
γ δ

=
=
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Properties of the belief operator: E∀ ⊆ Ω

1.           (consistency: 

                                    follows from seriality of )

2.              (positive introspection: 

                                    follows from transi

BE B E

BE BBE

⊆ ¬ ¬

⊆
B

tivity of )

3.        (negative introspection: 

                                    follows from euclideanness of )

BE B BE¬ ⊆ ¬
B

B

Mistaken beliefs are possible: at γ p is false but the individual believes p

α β γ δ

¬p p p¬p

If { , },   then 

 but { , }

E

E BE

β δ
γ γ γ δ

=
∉ ∈ =
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KNOWLEDGE

If - in addition to the previous properties - the "doxastic accessibility" 

relation is  ( , ( )) then it is an 

- giving rise to a  of the set of states - 

ω ω ω∀ ∈Ω ∈B Breflexive equivalence 
relation partition and the associated

belief operator satisfies the additional property that ,      

(beliefs are correct). In this case we speak of   and the associated 

operator is denoted by   rather th

E BE E

K

∀ ⊆ Ω ⊆
knowledge

an  B

α β γ
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Module 2
interactive  belief and common belief

Set of individuals Ν and a binary relation Bi for everyi N∈

1

2
α β γ δ

p p p ¬pp

1 2

1 2 2 1 2

Let { , , } :  the event that represents the proposition 

Then  { , , }, { , }

{ },

E p

K E K E

K K E K K K E

α β γ

α β γ α β

α

=

= =

= = ∅
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An event E is commonly believed if (1) everybody believes it, 

(2) everybody believes that everybody believes it,  

(3) everybody believes that everybody believes that everybody 

believes it, etc.

Define the “everybody believes” operator Be as follows:

1 2 ...e
nB E B E B E B E= ∩ ∩ ∩

The common belief operator B* is defined as follows:

* ...e e e e e eB E B E B B E B B B E= ∩ ∩ ∩
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* 1 2

*

1

1

Let    be the  of  ...

Thus ( )  if and only if there exists a sequence

,...,   in    such that

(1)   

(2)   

(3)   for every 1,...,  there exists an indivi

n

m

n

transitive closure

j m

ω ω
ω ω

ω ω
ω ω

∪ ∪ ∪
′∈

Ω
=

′=
=

B B B B

B

j+1 j

dual 

        such that ( ) i

i N

ω ω
∈

∈B

α β γ

1
:

α β γ

B

2
:B

*
:B

1 1 1( ) ( ) { }, ( ) { }α β α γ γ= = =B B B

2 2 2( ) { }, ( ) ( ) { , }α α β γ β γ= = =B B B

* * *( ) { }, ( ) ( ) { , , }α α β γ α β γ= = =B B B
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α β γ

1
:

p p p¬

α β γ

B

2
:B

*
:B

* *   if and only if  ( ) .B E Eω ω∈ ⊆PROPOSITION. B

1 2

1 2 2 1

*

Let { , } :  the event that represents the proposition 

Then  { }, { , },

In fact, while { },    

E p

B E B E

B B E B B E

B E

β γ

γ β γ

γ γγ

=

= =

∈ = ∉ = ∅

= ∅
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Module 3
Models of games and Rationality

Definition. A finite strategic-form game with ordinal payoffs is a quintuple 

{ } { }, , , ,i ii N i N
N S O z

∈ ∈
�

{1,..., }  is a set of 

  is a finite set of  or choices of player 

  is a set of 

 is player 's ordering of  (  means that, for player ,

       outcome  is at l

i

i i

N n players

S strategies i N

O outcomes

i O o o i

o

=
∈

′� �

1

east as good as outcome )

:  (where ... ) associates an outcome with every

                  strategy profile  
n

o

z S O S S S

s S

′

→ = × ×
∈



13

Definition. Given a strategic-form game with ordinal payoffs

{ } { }, , , ,i ii N i N
N S O z

∈ ∈
�

a reduced form of it is a triple

{ } { }, ,i ii N i N
N S u

∈ ∈

where  :   is such that  ( ) ( )  if and only if  ( ) ( )i i i iu S u s u s z s z s′ ′→ ≥ℝ �

player i’s utility function

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

4 , 9

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 80 , 81 , 0

8 , 22 , 52 , 5

2 , 03 , 3

0 , 46 , 49 , 6

SAME AS
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Definition. An epistemic model of a strategic-form game is an 

interactive belief structure together with n functions 

: ( )i iS i Nσ Ω → ∈

Interpretation:   σi(ω) is player i’s chosen strategy at state ω

Restriction: if  ( )  then  ( ) ( )i i iω ω σ ω σ ω′ ′∈ =B

(no player has mistaken beliefs about her own strategy)
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1

2
α β γ δ

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

EXAMPLE

1's strategy:

2's strategy:

A C C D

f f g g

At every state each player knows his
own strategy 

At state  player 1 plays C (he knows this) not knowing whether player 2 is playing f or g
and player 2 plays f (she knows this) not knowing whether player 1 is playing A or C

β
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Non-probabilistic(no expected utility) and very weak notion of rationality

RATIONALITY

Definition. Player i is  IRRATIONAL at state ω if there is a 
strategy si (of player i) which she believes to be better than σi(ω) 
(that is, if she believes that she can do better with another strategy)

Player i is RATIONAL at state ω if and only if she is not irrational

Player  1  is  rational  at  state  β

1

2
α β γ δ

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

1's strategy:

2's strategy:

A C C D

f f g g

4 , 1
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Let si and ti be two strategies of player i: ,i i is t S∈

i i is t≻ is interpreted as  “strategy si is better for player i than strategy ti ”

is true at stateω if ( , ( )) ( , ( ))i i i i i iu s u tσ ω σ ω− −>
that is, si is better than ti againstσ−i(ω )

i i is t≻

profile of strategies chosen 
by the players other than i

α β γ

2 , 3

P
l
a
y
e
r

1

Player  2

GFE

A

B

C 4 , 10 , 21 , 2

3 , 12 , 2

0 , 11 , 13 , 2

1's strategy:

2's strategy:

A C C

E F G

1A B≻ 1B A≻ 1C B≻

1A C≻ 1B C≻ 1C A≻

1B C≻ 1A C≻ 1B A≻

2E F≻ 2F G≻ 2F G≻ etc.
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Let Ri be the event representing the proposition “player i is rational”

{ }Let  : ( , ( )) ( , ( ))i i i i i i i i is t u s u tω σ ω σ ω− −= ∈Ω >≻ event that si is better than ti

If  si ∈ Si ,  let { }: ( )i is sω σ ω= ∈Ω = event that player i chooses si

i i i i is B t s∩ ⊆ ¬≻ iR

( )
i i i i

i i i i i
s S t S

s B t s
∈ ∈

¬ = ∩ ≻∪ ∪iR

...= ∩ ∩1 nR R R all players are rational
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1

2
α β γ δ

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

1's strategy:

2's strategy:

A C C D

f f g g

R1 ¬R1

K R1 2

K R2 1 K R2 1 ¬K R2 1 ¬K R2 1

K K R1 2 1 ¬K K R1 2 1 ¬K K R1 2 1 ¬K K R1 2 1

¬K K K R2 1 2 1

R1 R1

R2 R2R2 R2

K R1 2 K R1 2 K R1 2

1 2

1 2 2 1 2

{ , , }, { , , , }

{ , , , }, { , }

{ },

K K

K K K K K

α β γ α β γ δ

α β γ δ α β

α

= =

= =

= = ∅

1 2

2 1

1 1

R R

R R

R R

At state α there is mutual 
knowledge of rationality but not 
common knowledge of rationality
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1 1 1Let  ... ...i i i nS S S S S− − += × × × × × set of strategy profiles of all players except i

. Let  , . We say that  is  by 

if  ( , ) ( , )  for all  
i i i i i

i i i i i i i i

s t S t strictly dominated s

u t s u s s s S− − − −

∈
< ∈

Definition

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

2 , 3

Player  2

gfe

A

B

C 4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

(by C) (by e)

2 , 3

fe

A

B

C 1 , 21 , 2

2 , 2

3 , 13 , 2

(by B)
2 , 3

fe

A

B 2 , 2

3 , 13 , 2

(by e)
2 , 3

e

A

B

3 , 2

(by A)

ITERATED DELETION OF STRICTLY DOMINATED STRATEGIES
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Let G be a strategic-form game with ordinal payoffs and G∞ be the game obtained 
after applying the procedure of Iterated Deletion of Strictly Dominated Strategies. 

Let S∞ denote the strategy profiles of game G∞

Given a model of G, let S∞∞∞∞ denote the event { }: ( ) Sω σ ω ∞∈Ω ∈

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2 0 , 1

G
G∞

A

e

3 , 2

{( , )}S A e∞ =

1

2
α β γ δ

1's strategy:

2's strategy:

A C C A

f f e e

S∞∞∞∞ = {δδδδ}
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*   B ⊆PROPOSITION 1. R S∞∞∞∞

If at a state it is commonly believed that all players are rational, then the strategy profile
chosen at that state belongs to the game obtained after applying the iterated deletion of 
strictly dominated strategies. 

1

2
α β γ δ

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

1's strategy:

2's strategy:

A C C D

f f g g

R1 ¬R1

K R1 2

K R2 1 K R2 1 ¬K R2 1 ¬K R2 1

K K R1 2 1 ¬K K R1 2 1 ¬K K R1 2 1 ¬K K R1 2 1

¬K K K R2 1 2 1

R1 R1

R2 R2R2 R2

K R1 2 K R1 2 K R1 2
At state  there cannot be 

common knowledge of rationality

since ( ) ( , )A e

α

σ α ≠
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* *

* * *

*

* * *

Every normal operator  satisfies the property 

that if  then .

  is a normal operator. Thus from  

it follows that .

By transitivity of  we have that 

  for every even

B

E F BE BF

B B

B B B

B E B B E

⊆ ⊆

⊆

⊆

⊆

B

R S

R S

∞∞∞∞

∞∞∞∞

* * *

* *

t .

Thus   

It follows that 

E

B B B

B B

⊆

⊆
R R. 

R S∞∞∞∞

1

2
α β γ δ

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2

1's strategy:

2's strategy:

A

e

A

e

A

e

A

e

Same as:
1

2

1's strategy:

2's strategy:

A

ee
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REMARK.  In general it is not true that *B⊆S R∞∞∞∞

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C

D 1 , 30 , 30 , 2

4 , 11 , 21 , 2

3 , 12 , 2

0 , 13 , 13 , 2 0 , 1 1

2
α β γ δ

1's strategy:

2's strategy:

A C C A

f f e e

S∞∞∞∞ = {δδδδ}
2

{ , }, { , , , }

K

α δ α β γ δ= =
= ∅

1 2

1

R R

R
*K = ∅R
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*

  Fix a strategic-form game with ordinal payoffs  and let  .  

Then there exists an epistemic model of  and a state  such that ( )   and  .

. G s S

G s Bω σ ω ω

∞∈
= ∈

PROPOSITION 2
R

EXAMPLE

2 , 3

P
l

1

Player  2

fe

A

B 4 , 2

3 , 33 , 2

In this game every strategy profile 

survives iterative deletion

B

B

B

1

2

*

α β γ δ

α β γ δ

σ
σ

1

2

A
e

B
e

B
f

A
f

*In this model   and every

strategy profile occurs at some state

B= = ΩR R



26

REMARK. Given the above notion of rationality, there is no 

difference between common belief of rationality and common 

knowledge of rationality. The previous two propositions can be 

restated in terms of knowledge and common knowledge.

*   K′ ⊆PROPOSITION 1 . R S∞∞∞∞

*

  Fix a strategic-form game with ordinal payoffs  and let  .  

Then there exists an epistemic model of  and a state  such that ( )   and  .

. G s S

G s Kω σ ω ω

∞∈
= ∈

′PROPOSITION 2
R
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Still non-probabilistic(no expected utility) 

STRONGER NOTION OF RATIONALITY

Definition. Player i is  IRRATIONAL at state ω if there is a 
strategy si which she believes to be at least as good as σi(ω) and she 
considers it possible that si is better than σi(ω)

Player i is RATIONAL at state ω if and only if she is not irrational

Player  1  is  irrational  at  state  β: B is at least as good as C at both β and γ and 
it is better than C at γ

1

2
α β γ

2 , 3

P
l
a
y
e
r

1

Player  2

gfe

A

B

C 2 , 11 , 24 , 2

3 , 11 , 2

0 , 13 , 13 , 2

1's strategy:

2's strategy:

A C C

f f g

{ },α= = ∅1 2R R
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i i i i i i i i is B t s B t s∩ ∩ ¬ ¬ ⊆ ¬≻ iR�

( )
i i i i

i i i i i i i i i
s S t S

s B t s B t s
∈ ∈

¬ = ∩ ∩ ¬ ¬ ≻∪ ∪iR �

...= ∩ ∩1 nR R R all players are rational

Player i is  IRRATIONAL at state ω if there is a strategy si which she believes to be at 
least as good as σi(ω) and she considers it possible that si is better than σi(ω)
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Definition.

{ } { }Given a game , , , , ,  a subset of strategy

profiles  and a strategy profile , we say that  is 

  if there exist a player  and a strategy  of player 

(thus  

i i N i N

i i

i

G N S O z

X S x X x

X i s S i

s

∈ ∈
=

⊆ ∈
∈

inferior

relative to

�

need not belong to the projection of  onto ) such that:

1.  ( , ) ( , )  and

2.  for all , if ( , )  then ( , ) ( , ).

i

i i i i i

i i i i i i i i i

X S

z s x z x x

s S x s X z s s z x s
− −

− − − − −∈ ∈
≻

�

0

1 1 1 1

1

 for  define

 recursively as follows:  and, for 1, 

\ , where  is the set of strategy profiles 

that are inferior relative to . 

m

m m m m m

m

m

T S T S m

T T I I T

T

− − − −

−

∈
⊆ = ≥
= ⊆

Iterated Deletion of Inferior Profiles : ℕ

Let .m

m

T T∞

∈

=
ℕ

∩
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d e f d e f
A 2 , 1 0 , 1 2 , 1 A 2 , 1 0 , 1 2 , 1
B 1 , 0 1 , 0 1 , 1 B 1 , 0 1 , 1
C 1 , 4 1 , 3 0 , 3 C 1 , 4 1 , 3

T0 T1

d e f d e f
A 2 , 1 0 , 1 2 , 1 A 2 , 1 0 , 1 2 , 1
B B
C C 1 , 4

T∞ = T3 T2

Player
1

Player  2

Player
1

Player  2

Player
1

Player  2

Player
1

Player  2

0 0{( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )}, {( , ), ( , )} (the elimination of ( , ) is 

done through player 2 and strategy , while the elimination of ( , ) is done through player 

T S A d A e A f B d B e B f C d C e C f I B e C f B e

f C f

= = =

1

1 and strategy ); 

 

{( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )}, ¹ {( , ), ( , ), ( , )} (the elimination of ( , ) and ( , ) is 

done through player 1 and strategy , while the elimination of ( , ) i

B

T A d A e A f B d B f C d C e I B d B f C e B d B f

A C e

= =
s done through player 2 and strategy );  

² {( , ), ( , ), ( , ), ( , )}, ² {( , )} (the elimination of ( , ) is done through player 1 and strategy ); 

 

³ {( , ), ( , ), ( , )}, ³ ; thus ³.

d

T A d A e A f C d I C d C d A

T A d A e A f I T T∞

= =

= = ∅ =
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*   K ⊆PROPOSITION  3. R T ∞∞∞∞

If at a state it is commonly known that all players are rational, then the strategy profile
chosen at that state belongs to the game obtained after applying the iterated deletion of 
Inferior strategy profiles. 

*

  Fix a strategic-form game with ordinal 

payoffs  and let  .  Then there exists an epistemic model 

of  and a state  such that ( )   and  .

.
G s T

G s Kω σ ω ω

∞∈
= ∈

PROPOSITION  4

R
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NOT TRUE if we replace common knowledge with common belief

c d
A 1 , 1 1 , 0
B 1 , 1 0 , 1

Player  2

Player
1

α β
1
:

α β

B

2
:B

*
:B

σ
1

:

σ
2

:

BB

cd

{ , }, { , }α β α β= =1 2R R

There is common belief of 
rationality at every state and yet 
at state α the strategy profile 
played is (B,d) which is inferior

∞

∞ =
T = {(A,c),(B,c)}

S {(A,c),(A,d),(B,c),(B,d)}
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Definition. A Bayesian frame is an interactive belief frame 
together with a collection                      of probability 

distributions on Ω such that

PROBABILISTIC BELIEFS

{ }, ,i i N
p ω ω∈ ∈Ω

, ,

,

,

(1)  if  ( )  then  

(2)  ( ) 0  if and only if   ( )     

       (the support of   coincides with ( ))

i i i

i i

i i

p p

p

p

ω ω

ω

ω

ω ω
ω ω ω

ω

′′∈ =
′ ′> ∈
B

B

B

α β γ

1
:B

2
:B 1/3 2/3

1/21/2
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Definition. A strategic-form game with von Neumann-Morgenstern payoffs
is a quintuple 

{ } { }, , , ,i ii N i N
N S O U z

∈ ∈

1

{1,..., }  is a set of 

  is the set of  of player 

  is a set of 

:   is player 's von Neumann-Morgenstern utility function

:  (where ... ) associates an 

i

i

n

N n players

S strategies i N

O outcomes

U O i

z S O S S S

=

∈

→

→ = × ×

ℝ

outcome with every

                  strategy profile  s S∈

where

{ } { }Its reduced form is a triple , ,  where ( ) ( ( )).i i i ii N i N
N S s U z sπ π

∈ ∈
=
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An epistemic model of a strategic-form game is a Bayesian frame 
together with n functions 

: ( )i iS i Nσ Ω → ∈

such that if  ( )  then  ( ) ( )i i iω ω σ ω σ ω′ ′∈ =B

Stronger definition of Rationality than the previous ones

Player i is RATIONAL at state α if her choice at α maximizes 
her expected payoff, given her beliefs at α:

( ) ( )
( ) ( )

, ,( ), ( ) ( ) , ( ) ( )
i i

i i i ii itp p
ω α ω α

α ασ α σ ω ω σ ω ωπ π− −
∈ ∈

≥∑ ∑
B B

i i

for all i it S∈
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A

B

C

P
l
a
y
e
r

1

0 , 1

2 , 2

3 , 2

d e

Player  2

3 , 0

1 , 0

0 , 3

β γ δ εα

2/3 1/3 1/21/2

B
d

B
d

B
e

A
d

A
e

1:

2 1 4
Player 1 is not rational at  because her expected payoff is 1 2

3 3 3
2 1

while if she had chosen strategy   her payoff would have been 3 0 2
3 3

A

α + =

+ =

1 1 3
On the other hand, Player 1   rational at  because her expected payoff is 3 0

2 2 2
1 1 3

and if she had chosen strategy   her payoff would have been 1 2
2 2 2

and if she had chosen strategy   her payo

is

B

C

δ + =

+ =

1 1 3
ff would have been 0 3

2 2 2
+ =

{ , }δ ε=1R
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What are the implications of Common Belief of 
this stronger notion of rationality?

Definition. A mixed strategy of player i is a probability distribution over Si

The set of mixed strategies of player i is denoted by ∆(Si)

Let  and ( ). We say that  is  by  if, 

for every  ,  ( ) ( , )( , )
i i

i i i i i i

i i i i i i i
s S

i i i

t S S t strictly dominated

s S s s st s

ν ν
ν ππ− − −

∈
−

∈ ∈ ∆

∈ < ∑

A

B

C

P
l
a
y
e
r

1

0 , 1

2 , 2

3 , 2

d e

Player  2

3 , 0

0 , 0

0 , 3

51
6 6

In this game strategy  of player 1 is 

A C
strictly dominated by the mixed strategy 

B

 
 
 
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ITERATIVE

DELETION

OF PURE

STRATEGIES

THAT ARE

STRICTLY

DOMINATED 

BY (POSSIBLY

MIXED) 

STRATEGIES

3 , 0 1 , 0 0 , 1

1 , 1 0 , 2 1 , 1

0 , 0 4 , 1 2 , 2

0 , 3 1 , 0 3 , 2D

C

B

A

e f g

Player  2

P
l
a
y
e
r

1

A

C

D

e f g

Player  2

P
l
a
y
e
r

1

3 , 0 1 , 0 0 , 1

0 , 0 4 , 1 2 , 2

0 , 3 1 , 0 3 , 2

(a) The game G

B is strictly dominated by (1/2 A, 1/2 D)

(b) The game G

Now f is strictly dominated by g

A

C

D

P
l
a
y
e
r

1

0 , 1

2 , 2

3 , 2

(c) The game G

Now C is strictly dominated by (1/6 A, 5/6 D)

e g

Player  2

3 , 0

0 , 0

0 , 3

A 0 , 1

3 , 2

(d) The game G

e g

Player  2

3 , 0

0 , 3D

=  G

Player
    1

No strategy is strictly dominated

1

2
3 ∞
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Let G be a strategic-form game with von Neumann-Morgenstern 

payoffs and G∞ be the game obtained after applying the procedure of  

Iterated Deletion of Pure Strategies that are Strictly Dominated by 

Possibly Mixed Strategies.

{ }
Let  denote the pure-strategy profiles of game 

Given a model of  , let  be the event : ( )

mS G

G ω σ ω

∞ ∞

∈Ω ∈m mS S∞ ∞∞ ∞∞ ∞∞ ∞

*   B ⊆PROPOSITION  5. mR S ∞∞∞∞

*

  Fix a strategic-form game with von Neumann-Morgenstern 

payoffs  and let  .  Then there exists a Bayesian model of  and a state  such 

that ( )   and  .

.

mG s S G

s B

ω
σ ω ω

∞∈
= ∈

PROPOSITION  6

R
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Given this stronger notion of rationality, there is a difference 

between common belief of rationality and common knowledge 

of rationality. The implications of common knowledge of 

rationality are stronger.

With knowledge, a player’s beliefs are always correct and are 

believed to be correct by every other player. Thus there is 

correctness and common belief of correctness of everybody’s 

beliefs.
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Definition. Given a strategic-form game with von Neumann-Morgenstern payoffs G, a 

pure-strategy profile x∈X ⊆ S is inferior relative to X if there exists a player i and a 

(possibly mixed) strategy νi of player i (whose support can be any subset of Si, not 

necessarily the projection of  X onto Si) such that: 

i

i

(1)  , ( , ) ( )  (  yields a higher expected payoff than  against ) 

(2)  for all  such that ( , ) , ( , ) ( )

( )

( , )
i i

i i

i i i i i i i i i i
s S

i i i i i i i i i i
s S

i

x s x s x x

s S x s X s s s

x

x s

π ν ν

π ν

π

π

− − −
∈

− − − −
∈

−∈ ∈

<

≤

∑

∑

   Player   2 

  D E F 

Player A 2  ,  0 2  ,  2 0  ,  2 

1 B 2  ,  2 1  ,  2 5  ,  1 

 C 2  ,  0 1  ,  0 1  ,  5 

 

Here (C,F) is inferior relative to S (for 
player 1, B weakly dominates C and is 
strictly better than C against F)

and (A,D) is inferior relative to S (for 
player 2, E weakly dominates D and is 
strictly better than D against A)
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   Player   2 

  D E F 

Player A 2  ,  0 2  ,  2 0  ,  2 

1 B 2  ,  2 1  ,  2 5  ,  1 

 C 2  ,  0 1  ,  0 1  ,  5 

(a) 
S

0
s  = S, D

0
s  = {(A, D), (C, F)} 

 

 
   Player  2  

  D E F 

Player A  2  ,  2 0  ,  2 

1 B 2  ,  2 1  ,  2  

 C 2  ,  0   

(c) 
S

2
s  = {(A, E), (A, F), (B,D), (B, E), (C, D) },   

D
2
s  = {(B, E)}. 

 

   Player   2 

  D E F 

Player A  2  ,  2 0  ,  2 

1 B 2  ,  2 1  ,  2 5  ,  1 

 C 2  ,  0 1  ,  0  

(b) 
S

1
s  = {(A, E), (A, F), (B,D), (B, E),  

(B, F), (C, D), (C, E)} 

D
1
s  = {(C, E), (B, F)} 

 

   Player   2 

  D E F 

Player A  2  ,  2 0  ,  2 

1 B 2  ,  2   

 C 2  ,  0   

(d) 
S

3
s  = S

∞
s   = {(A, E), (A, F), (B,D),  

(C, D) },   D
3
s  = ∅. 

 

ITERATED

DELETION

OF

INFERIOR 

PURE 

STRATEGY 

PROFILES
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Let G be a strategic-form game with von Neumann-Morgenstern payoffs and G∞

be the game obtained after applying the procedure of  Iterated Deletion of 

Inferior Pure-Strategy Profiles.

{ }
Let  denote the pure-strategy profiles of game 

Given a model of  , let  be the event : ( )

sS G

G ω σ ω

∞ ∞

∈Ω ∈s sS S∞ ∞∞ ∞∞ ∞∞ ∞

*   K ⊆PROPOSITION  7. sR S ∞∞∞∞

*

  Fix a strategic-form game with von Neumann-Morgenstern 

payoffs  and let  .  Then there exists a Bayesian model of  and a state  such 

that ( )   and  .

.

sG s S G

s K

ω
σ ω ω

∞∈
= ∈

PROPOSITION  8

R
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   Player   2 

  D E F 

Player A 2  ,  0 2  ,  2 0  ,  2 

1 B 2  ,  2 1  ,  2 5  ,  1 

 C 2  ,  0 1  ,  0 1  ,  5 

 

In this game  

while {( , ), ( , ), ( , ), ( , )}

m

s

S S S

S A E A F B D C D

∞ ∞

∞

= =

=

Thus every strategy profile is compatible with common belief of rationality while 
only (A,E), (A,F), (B,D) and (C,D) are compatible with common knowledge of 
rationality
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CREDITS
The link between the iterated deletion of strictly dominated strategies and the informal notion 
of common belief of rationality was first shown by Bernheim (1984) and Pearce (1984)

The first explicit epistemic characterization was provided by Tan and Werlang (1998) using a 
universal type space. 

The state space formulation used in Propositions 5 and 6 is due to Stalnaker (1994), but it was 
implicit in Brandenburger and Dekel (1987).

Propositions 7 and 8 are due to Stalnaker (1994) (with a correction given in Bonanno and 
Nehring, 1996b).

To my knowledge, Propositions 1, 2, 3 and 4  have not been explicitly stated before.

References and further details can be found in

Battigalli, Pierpaolo and Bonanno Giacomo, “Recent results on belief, knowledge and 
the epistemic foundations of game theory”, Research in Economics, 53 (2), June 
1999, pp. 149-225.

For a syntactic version of Propositions 1, 2, 3 and 4 see
Giacomo Bonanno, A syntactic approach to rationality in games, Working Paper, 
University of California, Davis (http://www.econ.ucdavis.edu/faculty/bonanno/PDF/CBR.pdf)
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EXTENSIVE GAMES WITH PERFECT INFORMATION

• tree

• n  players

• assignment of one player 
to every non-terminal node

• assignment of an ordinal
payoff to every player at
every terminal node

2

1

2

1

a b

c d e f

g h

0
3

2
1

1
4

1
1

2
2
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BACKWARD-INDUCTION SOLUTION

2

1

3

1
c d e f

g h

0
3
4

2
1
1

1
4
2

1
1
2

2
2
0

(3 is rational
 and believes
 1 to be rational)

(1 is rational)

(2 is rational)

a b(1 is rational
 and believes
 that everybody
 is rational)
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STRATEGIES IN PERFECT-INFORMATION GAMES

Non-terminal nodes are 
called decision nodes

:  set of decision nodes

:  set of decision nodes assigned to player i

X

X i

Definition. A strategy of player i is a function that assigns to every

  a choice at  ix X x∈

2

1

3

1

a b

c d e f

g h

0
3
4

2
1
1

1
4
2

1
1
2

2
2
0

Player 1’s strategies: 

(a,g), (a,h), (b,g) and (b,h)
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THE STRATEGIC FORM OF A PERFECT-INFORMATION GAME

2

1

2

1

a b

c d e f

g h

0
3

2
1

1
3

1
1

2
2

ce cf de df

ag 2 , 2 2 , 2 1 , 1 1 , 1

ah 2 , 2 2 , 2 1 , 1 1 , 1

bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1

Player  2

Player
1
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EPISTEMIC MODEL OF A PERFECT-INFORMATION GAME

(Knowledge based)

:  satisfyingi iSσ Ω →

if  ( )  then  ( ) ( )i i iω ω σ ω σ ω′ ′∈ =K

• Set of states Ω

• Equivalence relation Ki on Ω for every player i

• For every player i a function

Thus a standard epistemic model for the associated strategic form
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Let si and ti be two strategies of player i: ,i i is t S∈

i i is t≻ is interpreted as  “strategy si is better for player i than strategy ti ”

is true at stateω if ( , ( )) ( , ( ))i i i i i iu s u tσ ω σ ω− −>
that is, si is better than ti againstσ−i(ω )

i i is t≻

profile of strategies chosen 
by the players other than i

Recall from Lecture 1:

{ }Let  : ( , ( )) ( , ( ))i i i i i i i i is t u s u tω σ ω σ ω− −= ∈Ω >≻ event that si is better than ti

If  si ∈ Si ,  let { }: ( )i i is sω σ ω= ∈Ω = event that player i chooses si
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Let Ri
EA be the event representing the proposition “player i is ex ante rational”

i i i i is K t s∩ ⊆ ¬≻
EA
iR

( )
i i i i

i i i i i
s S t S

s K t s
∈ ∈

¬ = ∩ ≻∪ ∪
EA
iR

...= ∩ ∩EA EA EA
1 nR R R all players are rational

Recall from Lecture 1:
PROPOSITION: if at a state there is common knowledge of ex ante 
rationality then the strategy profile chosen at that state belongs to the game 
obtained by applying the iterated deletion of strictly dominated strategies; 
conversely, for every such strategy profile there is a model and a state 
where (1) the strategy profile is chosen and (2) there is common knowledge 
of ex ante rationality. 
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This notion of rationality is not sufficient 
to yield backward induction

Here there are no strictly 
dominated strategies

Thus every strategy profile is 
consistent with common 
belief/knowledge of ex ante 
rationality

ce cf de df

ag 2 , 2 2 , 2 1 , 1 1 , 1

ah 2 , 2 2 , 2 1 , 1 1 , 1

bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1

Player  2

Player
1

2

1

2

1

a b

c d e f

g h

0
3

2
1

1
3

1
1

2
2
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ce cf de df

ag 2 , 2 2 , 2 1 , 1 1 , 1

ah 2 , 2 2 , 2 1 , 1 1 , 1

bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1

Player  2

Player
1

Here: ex ante rationality and common 
knowledge of ex ante rationality at 
both states. 

α β

ah

de

1's strategy:

2's strategy:

2:

1:

bh

de

For example:

2 2

1

a b

c d e f

g h

0
3

2
1

1
3

1
1

2
2

(For 2 ce better than de at α but not at β, thus 
at α she does not know that ce is better.)
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Let Ri
EA/S be the event representing the proposition “player i is ex ante rational 

in a strong sense”

i i i i i i i i is K t s K t s∩ ∩ ¬ ¬ ⊆ ¬≻
EA/S
iR�

( )
i i i i

i i i i i i i i i
s S t S

s K t s K t s
∈ ∈

¬ = ∩ ∩ ¬ ¬ ≻∪ ∪
EA/S
iR �

...= ∩ ∩EA/S EA/S EA/S
1 nR R R all players are rational in a 

strong sense

Recall from Lecture 1:
PROPOSITION: if at a state there is common knowledge of ex ante 
rationality in a strong sense then the strategy profile chosen at that state 
belongs to the set T∞ of strategy profiles that survive the iterated deletion of 
inferior profiles; conversely, for every such strategy profile there is a model 
and a state where (1) the strategy profile is chosen and (2) there is common 
knowledge of ex ante rationality in a strong sense. 
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ce cf de df

ag 2 , 2 2 , 2 1 , 1 1 , 1

ah 2 , 2 2 , 2 1 , 1 1 , 1

bg 1 , 3 0 , 3 1 , 3 0 , 3

bh 1 , 3 2 , 1 1 , 3 2 , 1

ce cf de
ag 2 , 2 2 , 2 1 , 1
ah 2 , 2 2 , 2 1 , 1
bg 1 , 3
bh 1 , 3 1 , 3

ce cf de
ag 2 , 2 2 , 2
ah 2 , 2 2 , 2
bg 1 , 3
bh 1 , 3

player 1 using ah

player 2 using cf

player 2 using ce

player 1 using ah

2 2

1

a b

c d e f

g h

0
3

2
1

1
3

1
1

2
2

αααα

1's strategy:

2's strategy:

2:

1:

bg

de

Thus even common knowledge of  ex ante rationality in a 
strong sense is not sufficient to yield backward induction

In this example all the strategy profiles in T∞ are Nash equilibria. Is it the case that 
common knowledge of ex ante rationality in the strong sense gives Nash equilibrium 
play in perfect information games? 
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The answer is NO!

x
1

x
2

x
3

d1 d2 d3

2 31

1
1
1

2
2
2

3
3
3

4
4
4

a1 a2 a3

Backward
induction
solution

α

d2

1:

2:
β

α

3:
β

a1

d3

a2

a1

a3There is no Nash equilibrium that yields the play a1d2 (the 
Nash equilibria are marked in blue)

1 2 3 3

1 2 3 2

First round: eliminate ( , , ) through player 3 and 

second round: eliminate ( , , ) through player 2 and 

a a d a

a d a a

a2 d2 a2 d2 a2 d2 a2 d2
a1 4,4,4 2,2,2 1,1,1 2,2,2 a1 4,4,4 2,2,2 2,2,2
d1 3,3,3 3,3,3 3,3,3 3,3,3 d1 3,3,3 3,3,3 3,3,3 3,3,3

a2 d2 a2 d2
a1 4,4,4 2,2,2
d1 3,3,3 3,3,3 3,3,3 3,3,3

a3 d3

a3 d3 a3 d3
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Given a strategy profile , let    be the associated play( )s p s

( )
( )

0 1 2

0 2 3 5

( )

( ,

,

)bh df

p x x z

p x

ag df

x x z

=

=

( )
 At state  node  is  

                   if and only if  ( ) .

x reached

x p

ω
σ ω∈

Definition.

1

a b

c d e f

g h

x0

x222 x1

1 x3

z1 z2 z3

z4 z5

Going beyond ex ante rationality
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1

a b

c d e f

g h

x0

x222 x1

1 x3

z1 z2 z3

z4 z5

1's strategy:

α β γ δ ε

ag bh bg bh bg

2's strategy: df df ce de cf

( ){ }

 Given an epistemic model, for every

node , let    be the event that node  is reached:  

: ( )

x x x

x x pω σ ω= ∈Ω ∈

Definition.

1 2

3 1 2

{ }, { , , , }

{ , }, , { },    etc.

x x

x z z

α β γ δ ε
β ε α

= =

= = ∅ =
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Let  ,   be two events. 

Denote by    the event    (if  then )

E F

E F E F E F

⊆ Ω
→ ¬ ∪

Let Ri
RN be the event representing the proposition “player i is rational at 

reached nodes”

( )i i i i ix s K x t s∩ ∩ → ⊆ ¬≻
RN
iR

( )( )
i i i i i

i i i i i
x X s S t S

s K x t s x
∈ ∈ ∈

¬ = ∩ → ∩≻∪ ∪ ∪
RN
iR

...= ∩ ∩RN RN RN
1 nR R R all players are rational

at reached nodes

if  ix X∈



17

2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1

2 2 2 { }d a α=≻ 2 { , , }x α β ε= 2 2 2 2 { , , }x d a α γ δ¬ ∪ =≻

( )2 2 2 2 2K x d a→ = ∅≻ Thus player 2 is rational at nodes α andβ and trivially atγ.

2 2 2 { , }a d β ε=≻ 2 2 2 2 { , , , }x a d β γ δ ε¬ ∪ =≻2 { , , }x α β ε=

( )2 2 2 2 2 { , }K x a d δ ε→ =≻ ( )2 2 2 2 2 2 2 { }x d K x a d ε∩ ∩ → =≻

Thus player 2 is trivially rational at state δ, and irrational at εεεε.
*K = ∅R

α β γ δ ε

a1d3 a1a3 d1a3 d1a3 a1a3

a2 a2 a2 d2 d2

1:

2:
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Backward Induction terminating games

Definition. A BI terminating game is a perfect information game where 

(1) at each decision node there is a choice the terminates the game (it leads to a 

terminal node) and (2) the backward-induction solution prescribes a terminating 

choice at every decision node.

The best-known example is 
the centipede game (n is the 
number of decision nodes)

a1 a2

d1 d2 d3

a3

1 2 1

dn

an

2

z
1

z
2

z
3

z
n

z
n+1

if n is even

a1 a2

d1 d2 d3

a3

1 2 1

dn

an

1

z
1

z
2

z
3

z
n

z
n+1

if n is odd

1 1

2 1

( ) 2

( ) 1

u z

u z

=
= 1 2 1

2 1 1

for 1

( ) ( )

( ) ( ) 2
k k

k k

k n

u z u z

u z u z
−

−

< ≤
=
= +

1 1 1

2 1 2

If  is even

( ) ( ) 1

( ) ( ) 1
n n

n n

n

u z u z

u z u z
+

+

= +
= −

1 1 1

2 1 2

If  is odd

( ) ( ) 1

( ) ( ) 1
n n

n n

n

u z u z

u z u z
+

+

= −
= +



19

Definition. Given an epistemic model of a BI terminating game, let BI be the event that 
the backward-induction play obtains, that is, { }1 1: ( ( ))p x zω Ω σ ω= ∈ =BI

2
1

1
4

4
3

3
4

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1α β γ δ ε

a1d3 a1a3 d1a3 d1a3 a1a3

a2 a2 a2 d2 d2

1:

2:

BI = {γ,δ}

a1 a2

d1 d2 d3

a3

1 2 1

d4

2

n = 4

2
1

1
4

4
3

3
6

4
5a4
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*

*

 In every BI terminating game,  

 For every BI terminating game, there is a 

model of  it where 

K

K

⊆

≠ ∅

PROPOSITION 1.

PROPOSITION 2.

RN

RN

R BI

R

Aumann, R., A note on the centipede game, Games and Economic Behavior, 1998, 23: 97-105.

Broome, J. and W. Rabinowicz, Bacwards induction in the centipede game, Analysis, 1999, 59:237-242.

Rabinowicz, W., Grappling with the centipede, Economics and Philosophy, 1998, 14: 95-126.

Sugden, R., Rational choice: a survey of contributions from economics and philosophy, Economic Journal, 1991, 101:751-785.

Note: it is not necessarily the case that if ω ∈ Ω is such that at ω there is 
common knowledge of rationality then  σ(ω) coincides with the backward-
induction strategy profile. What is true is that player 1’s strategy assigns the 
terminating choice to the root. 

2
1

1
4

4
3

3
4

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1

α

d1a3

d2

1:

2:
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In general perfect-information games common knowledge of 
Rationality at Reached Nodes does not yield the backward-
induction play.

2 2

1
x1

x2 x3

l 1
r1

l 2
l 3r2 r3

3
3

0
0

1
1

0
0

α

r1

r2l3

1:

2:
The backward induction 

play is l1l2 while in this 

model we get r1l3

(r1,r2l3) is a Nash equilibrium. Does common knowledge of Rationality at Reached 

Nodes at least yield a play that can be sustained by a Nash equilibrium?
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NO! In general, common knowledge of Rationality at Reached Nodes does not yield 
Nash equilibrium play

x
1

x
2

x
3

d1 d2 d3

2 31

1
1
1

2
2
2

3
3
3

4
4
4

a1 a2 a3

Backward
induction
solution

α

d2

1:

2:
β

α

3:
β

a1

d3

a2

a1

a3

a2 d2 a2 d2
a1 4,4,4 2,2,2 1,1,1 2,2,2
d1 3,3,3 3,3,3 3,3,3 3,3,3

a3 d3

The Nash equilibria are marked in blue
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Let    be a decision node of player . Denote by  the set of player 's 

strategies in the subgame that starts at node .

x
i ix X i S i

x

∈

1

a b

c d e f

g h

0
3

2
1

1
3

1
1

2
2

x0

x222 x1

1 x3

3

1 2

1 1

2 2 2

{ , , , }, { , }

{ , , , }, { , }, { , }

x

x x

S ag ah bg bh S g h

S cd cf de df S c d S e f

= =

= = =

Dealing with general perfect-information games
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Let x be a decision node of player i and let ,x x x
i i is t S∈

x x
i i is t≻

is true at stateω if, starting from node x, 

Let    be the event that    is true.x x x x
i i i i i is t s t≻ ≻

{ }If , let  : ( ) |x x x x
i i i i i xs S s sω σ ω∈ = ∈Ω =

be two strategies of player i in the subgame that starts at node x

is interpreted as "for player ,  strategy  is better than strategy 

in the subgame that starts at node "

x x
i ii s t

x

  gives a higher payoff to player  than   against ( )x x
i i is i t σ ω−

x x
i i is t≻

If  is a node of player , let ( ) |  denote the restriction of 

( ) to the subgame that starts at 
i x

i

x i

x

σ ω
σ ω
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Recall that if  , ,      is the event    (if  then )E F E F E F E F⊆ Ω → ¬ ∪

Let Ri
SR be the event representing the proposition “player i is substantively rational”

( )x x x
i i i i is K t s∩ ⊆ ¬≻

SR
iR

( )( )
x x

i i i i i

x x x
i i i i i

x X s S t S

s K t s
∈ ∈ ∈

¬ = ∩ ≻∪ ∪ ∪
SR
iR

...= ∩ ∩SR SR SR
1 nR R R all players are 

substantively rational

if  ix X∈

SUSBSTANTIVE  RATIONALITY (Aumann, GEB 1995)
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2

2

2

{ , , } (  rationality)

{ , } (rationality at reached nodes)

{ }   (substantive rationality)

EA

RN

SR

ex anteα β γ
β γ
γ

=

=

=

R

R

R

2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1

α β γ

d1d3

a2

1:

2:

a1d3

a2

d1d3

d2
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*

*

 In every perfect information game,  

 For every perfect information game, there is a 

model of  it where 

K

K

⊆

≠ ∅

PROPOSITION 3.

PROPOSITION 4.

SR

SR

R BI

R

Aumann, R., Backward induction and common knowledge of rationality, Games and Economic Behavior, 1995, 8: 6-19.
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Why is player 2 substantively irrational at state α? What is true at state α that makes player 
2 substantively irrational?

At state α player 2 is not taking any actions, because her node x2 is not reached. In fact, at 

state α player 2  knows that her node is not reached. So what makes her irrational 

(according to the notion of substantive rationality) must be herplan to choose d2 if her 

decision node were to be reached. This is a counterfactual statement.

α

d1a3

d2

1:

2:
2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1
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α β γ

d1d3

a2

1:

2:

a1d3

a2

d1d3

a2

The association of a strategy profile with every state gives rise to two types of counterfactuals:

(1) An objective statement about what the relevant player would do at a node that is not 
reached.

(2) (With the help of the partitions) a subjective statement about what a player believes would 
happen if he were to take a different action from the one he is actually taking. 

(1) Thus at state γ it is true that player 2 would take action a2 if her node x2 were to 
be reached (although it is not in fact reached and she knows that it is not reached)

(2) At states β and γ player 1 knows that if he were to take action a1 instead of d1 at 
the root (he knows that he is taking d1) then his payoff would be 4 (the payoff 
associated with a1a2d3)

2
1

1
4

4
3

3
6

x
1

x
2

x
3

d1 d2 d3

2 11

a2 a3a1
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Modeling counterfactuals indirectly through strategies is not satisfactory. We have 
abandoned the modular approach suggested in Lecture 1, since there exists a module 
that deals with counterfactuals.

Modeling Counterfactuals

For every ,  let  be a relation on  satisfying, , ,

(1) either ( ) or ( )                  (completeness)

(2) if ( ) then ( ) ( )              (transitivity)

(3) if ( ) and 

ω

ω ω

ω ω ω

ω

ω Ω Ω α β Ω
α β β α

β α β α
α β β

∈ ∀ ∈
∈ ∈

∈ ⊆
∈

P

P P

P P P

P ( ) then     (antisymmetry)

(4) ( ),  for all                           (centeredness)
ω

ω

α α β
ω ω ω Ω

∈ =
′ ′∈ ∈

P

P

The interpretation of ( ) or  is that state  is at least as close to

to state  as state  is. Thus, for every state , the closeness relation  determines 

a strict ordering of the set of sta

ω ω

ω

β α α β α
ω β ω

∈P P

P

tes based on closeness to , with  itself being the 

closest state.

ω ω

( ) = set of states that are not closer to  than  is.ω α ω αP
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REPRESENTATION

{ , , , }Ω α β γ δ=

α β γ δ

α
γ
β
δ

β
α
δ
γ

γ
δ
α
β

δ
β
γ
α

} ordering

farthest

closest

Given a state ω and an event E, denote by min(ω,E) the closest state 
to ω that belongs to event E. Thus if ω ∈ E, then min(ω,E) = ω.

In the above example, if { , } then min( , ) = E Eβ δ α β=
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Recall that, if   ,   are two events,    denotes the event    

(if  then ). Thus  if either  or .

 represents the material conditional, which is true whenever the antecedent is

E F E F E F

E F E F E E Fω ω ω
⊆ Ω → ¬ ∪

∈ → ∉ ∈ ∩
→  false

We use the symbol  � to denote the counterfactual conditional. 
Thus  E � F  is interpreted as “if E were the case then F would be 
the case”

{ }  : min( , )E F E Fω Ω ω= ∈ ∈Definition. �

α β γ δ

α
γ
β
δ

β
α
δ
γ

γ
δ
α
β

δ
β
γ
αfarthest

closest

If { , } and { , , }

then  { , }

while  { , , }

E F

E F

E F

β δ α γ δ
γ δ

α γ δ

= =
=

→ =
�

Note that, for all , ,    E F E F E FΩ⊆ ⊆ →�
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MODELING STRATEGIES WITH COUNTERFACTUALS

i

Given a perfect information game define an epistemic model of it as before, but with

the following changes:

(1) replace the  functions :  with a single function :  where 

       is the set of pl

n S d P

P

σ Ω Ω→ →

{ }
ays of the game written in terms of actions taken,

(2) add a set of closeness relations ω ω Ω∈
P

NOW

α β γ

d1d3

a2

1:

2:

a1d3

a2

d1d3

a2

BEFORE2
1

1
4

4
3

3
6

x
1

x
2

x
3

d1 d2 d3

1

a2 a3a1

1 2

α β γ

d1

1:

2:

d1a1a2d3

α
β
γ

β
α
γ

γ
β
α
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We add two more requirements: 

(3) for every play there is at least one state where that play is realized 

(4) if, at a state, node x of player i is reached and he takes action a there,
then he knows that if x is reached he takes action a: 

( )

2 2

2 2 2 2

2 2 2

{ , , }, , }

{ , , , }

{ , , }

x a a

x a x a

K x a

α β ε β
α β γ δ

α β γ

= = {

→ = ¬ ∪ =

→ =

( )ia K x a⊆ →

α β γ δ ε

a1a2d3 a1a2a3

1:

2:

d1d1 a1d2

α
β
γ
δ
ε

β
γ
α
ε
δ

γ
β
α
δ
ε

δ
ε
γ
α
β

ε
δ
γ
α
β

2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1
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EXTRACTING STRATEGIES FROM A MODEL

Given a model we can extract a strategy profile at every state as follows. 

If si is a strategy of player i and xi is a decision node of player i, denote by 
si(xi) the choice prescribed by si at xi .

Define σi(ω) as follows: σi(ω)(xi) = ci if and only if i ix cω ∈ �

1 1 3 1 1 3

1 1 3 3

1 1 3 3

1 1 3 3

( ) , ( )

( )  (for node  we use state )

( )  (for node  we use state )

( )  (for node  we use state )

a d a a

d a x

d d x

a d x

σ α σ β
σ γ β
σ δ α
σ ε α

= =
=
=
=

2 2 2 2

2 2 2

2 2 2

2 2

( ) , ( )

( )  (for node  we use state )

( )  (for node  we use state )

( )

a a

a x

d x

d

σ α σ β
σ γ β
σ δ ε
σ ε

= =
=
=
=

α β γ δ ε

a1a2d3 a1a2a3

1:

2:

d1d1 a1d2

α
β
γ
δ
ε

β
γ
α
ε
δ

γ
β
α
δ
ε

δ
ε
γ
α
β

ε
δ
γ
α
β
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From We get

In this model it is not true that players 
know their own strategies. E.g. player 
1 at state γ

In order for a counterfactual model to give rise to a standard model based on 
strategies, we need to impose a further condition:

( ) ( )(5)  i i i i ix c K x c→� �

α β γ δ ε

a1a2d3 a1a2a3

1:

2:

d1d1 a1d2

α
β
γ
δ
ε

β
γ
α
ε
δ

γ
β
α
δ
ε

δ
ε
γ
α
β

ε
δ
γ
α
β

α β γ δ ε

a1a3

a2

1:

2:

d1d3

d2

d1a3

a2

a1d3

d2

a1d3

a2
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RE-DEFINING  RATIONALITY AT REACHED NODES

i

Let  be a decision node of player  and  and  be two 

choices of player  at .

If  is a number, let  be the event that player 's payoff is .

If  and  are numbers, let   if  and 

i i i

i

x i c c

i x

m m i m

k k k

π

′

=

> = Ω >ℓ ℓ ℓ    otherwise.k > = ∅ℓ

( )( )|| ||i i i i i ic k K x c kπ π′∩ = ∩ → = ∩ > ¬⊆ℓ ℓ�
RN
iR
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1

1 1

2

2 2

1

2

4

2

3

4

d

d

R

R

π
π

π
π

=
=

=
=

�

�

2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1

1

1 1

2

2 2

1

2

3

2

6

4

d

d

R

R

π
π

π
π

=
=

=
=

�

�

1

1 1

2

1

2

2

1

1

no choices

by  2

a

R

R

π
π

π

=
=

=
�

1

1 1

2

2 2

1

2

1

2

4

6

d

a

R

R

π
π

π
π

=
=

=
=

¬

�

�

use β use ε use β

Thus no common 
knowledge of rationality 
at any state.

1

1 1

2

1

2

2

3

1

no choices

by  2

a

R

R

π
π

π

=
=

=
�

α β γ δ ε

a1a2d3 a1a2a3

1:

2:

d1d1 a1d2

α
β
γ
δ
ε

β
γ
α
ε
δ

γ
β
α
δ
ε

δ
ε
γ
β
α

ε
δ
γ
β
α
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α β γ δ ε

a1a2d3 a1a2a3

1:

2:

d1d1 a1d2

α
β
γ
δ
ε

β
γ
α
ε
δ

γ
β
α
δ
ε

δ
ε
γ
β
α

ε
δ
γ
β
α

α β γ δ ε

a1d3 a1a3

1:

2:

a2 a2 a2

d1a3

d2

d1a3

d2

a1a3

1

2

R

R
1

2

R

R
1

2

R

R
1

2

R

R
1

2

R

R¬

The corresponding strategy-based model

2
1

1
4

4
3

3
6

x
1

x
2

x
3

a2

d1 d2 d3

a3

2 11

a1



40

( )
i i

i
x X

x
∈

= ∩ �
SR RN
i iR R

Redefining substantive rationality (Stalnaker’s notion)

rationality at all nodes: reached and un-reached

Does common knowledge of substantial rationality so 
defined imply the backward-induction play?
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{ , }

{ , , }

α γ
α β γ

=

=

RN
1

RN
2

R

R

At state α there is common knowledge of substantive rationality. The following is true at α: 

(1) 1 is materially rational at x1 : 1 knows that if he played a1 then 2 would play d2. [state ββββ]

(2) 2 is materially rational (does not do anything) but also substantively rational: if x2 were 

reached [state ββββ] then player 2 would be materially rational (she would play d2 knowing 

that if she played a2 then 1 would play d3) [state δδδδ].

(3) 1 is substantively rational at x3 : if x3 were reached he would play a3 [state γγγγ].

2
2

1
1

0
0

3
3

x
1

x
2

x
3

a2

d1 d2 d3

a3a1

2 11

α β γ δ

1:

2:

αααα
ββββ
γγγγ
δ

ββββ
δδδδ
γ
α

γγγγ
δ
β
α

δδδδ
γ
β
α

d1 a1d2 a1a2a3 a1a2d3
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Stalnaker (1998 p. 48)

Player 2 has the following initial belief: player 1 

would choose a3 on her second move if she had a second 

move. This is a causal ‘if’ – an ‘if’ used to express 2’s 

opinion about 1’s disposition to act in a situation that 

they both know will not arise. Player 2 knows that since 

player 1 is rational, if she somehow found herself at her 

second node, she would choose a3 . But to ask what 

player 2 would believe about player 1 if he learned that 

he was wrong about 1’s first choice is to ask a 

completely different question – this ‘if’ is epistemic; it 

concerns player 2’s belief revision policies, and not 

player 1’s disposition to be rational. No assumption 

about player 1’s substantive rationality, or about player 

2’s knowledge of her substantive rationality, can imply 

that player 2 should be disposed to maintain his belief 

that she will act rationally on her second move even were 

he to learn that she acted irrationally on her first.

2
2

1
1

0
0

3
3

x
1

x
2

x
3

a2

d1 d2 d3

a3a1

2 11

α β γ δ

1:

2:

αααα
ββββ
γγγγ
δ

ββββ
δδδδ
γ
α

γγγγ
δ
β
α

δδδδ
γ
β
α

d1 a1d2 a1a2a3 a1a2d3
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The corresponding strategy-based model is:

According to Aumann, player 2 is not 

substantively rational at α: player 2 is 

planning to play d2 knowing that player 

1 would play a3. 

2
2

1
1

0
0

3
3

x
1

x
2

x
3

a2

d1 d2 d3

a3a1

2 11

α β γ δ

1:

2:

αααα
ββββ
γγγγ
δ

ββββ
δδδδ
γ
α

γγγγ
δ
β
α

δδδδ
γ
β
α

d1 a1d2 a1a2a3 a1a2d3

α β γ δ

1:

2:

a1a3

d2

d1a3 a1d3

d2 a2 a2

a1d3
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2
2

1
1

0
0

3
3

x
1

x
2

x
3

a2

d1 d2 d3

a3a1

2 11

α β γ δ

1:

2:

αααα
ββββ
γγγγ
δ

ββββ
δδδδ
γ
α

γγγγ
δ
β
α

δδδδ
γ
β
α

d1 a1d2 a1a2a3 a1a2d3

( ) ( )2 3 3 2 2 3 3 and also  K x a x K x dα α∈ ∈� � �

Thus what player 2 believes about player 1’s behavior in the hypothetical world 

where node x3 is reached changes going from node x1 (where the game ends 

without node x2 being reached) to the hypothetical world wherex2 is reached. If 

one imposes the constraint that such changes cannot happen, then common 

knowledge of substantive rationality implies the backward-induction play.



45

Aumann, R., Backward induction and common knowledge of rationality, Games and 
Economic Behavior, 1995, 8: 6-19.

Halpern, J., Substantive rationality and backward induction, Games and Economic 
Behavior, 2001, 37: 425-435.

Samet, D., Hypothetical knowledge and games with imperfect information, Games and 
Economic Behavior, 1996, 17: 230-251.

Stalnaker, R., Belief revision in games: forward and backward induction, Mathematical 
Social Sciences, 1998, 36: 31–56

ADDITIONAL  REFERENCES


