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This paper analyzes possibly time-varying shock transmission in struc-
tural vector autoregressive (VAR) models when the reduced-form VAR coeffi-
cients are time-invariant and the shocks are identified through non-Gaussianity.
To check for possible time-variation in the impulse responses, we propose
Wald tests for two situations: (1) homoskedastic and (2) heteroskedastic
structural shocks. For the latter case, the challenge is to ensure that the
test does not indicate time-varying impulse responses if the changes are due
only to changes in the variances of the shocks. To illustrate the usefulness
of the tests, they are applied to an empirical model of the crude oil market.
They support time-varying shock transmission reflected in impulse response
functions that change over time.
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1 Introduction

Identification of structural shocks through non-Gaussianity in structural vec-
tor autoregressive (VAR) analysis is considered in a number of recent articles
(e.g., Lanne and Lütkepohl (2010), Herwartz and Plödt (2016), Herwartz
(2018), Hafner, Herwartz and Wang (2025), Hafner and Herwartz (2023),
Gouriéroux, Monfort and Renne (2017), Gourieroux and Monfort (2014),
Moneta, Entner, Hoyer and Coad (2013), Lanne, Meitz and Saikkonen (2017),
Maxand (2020)). While these authors use different approaches for modelling
and estimation, the main idea for achieving identification is that a nontriv-
ial linear transformation of a vector of independent non-Gaussian random
variables leads to a dependent random vector. Here we refer to a linear
transformation as trivial if it just multiplies the independent components by
a constant and possibly reorders them. In turn, if u is a K-dimensional non-
Gaussian random vector and there exists a linear transformation u = Bw
such that the (K × 1) random vector w = (w1, . . . , wK)

′ has non-Gaussian
independent components with unit variances, then the transformation ma-
trix B is unique apart from column sign and column permutations. This
result is the basis for identifying shocks in structural VAR analysis via non-
Gaussianity.

Finding the transformation matrix B for a given random vector with de-
pendent components from a sample u1, . . . , uT from the distribution of u is
known as independent component analysis (ICA). Hyvärinen, Karhunen and
Oja (2001) review a number of numerical procedures for ICA. As a nonlinear
transformation may be needed to extract the independent components, iden-
tification in structural VAR analysis based on non-Gaussianity of the data
hinges on the existence of a linear transformation that leads to independent
components.

An important assumption common in this literature is that the VAR
residuals ut and the shocks wt have the same distribution across the sam-
ple and this feature is then used to estimate the transformation matrix B.
Such an assumption is convenient because, if the slope coefficients of the
reduced-form VAR process are time-invariant across the sample, it implies
time-invariant structural impulse responses. The assumption is not neces-
sary in this framework, however, because non-Gaussianity allows to identify
different transformation matrices and impulse responses across the sample if
the distribution changes but remains non-Gaussian. For example, there may
be heteroskedasticity which implies changes in the variances and, hence, the
distributions of the shocks and may imply changes in the transmission of the
shocks.

In related work, if the data are heteroskedastic or conditionally het-
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eroskedastic, some authors use this feature for identifying shocks in structural
VAR analysis (e.g., Lütkepohl and Netšunajev (2017), Kilian and Lütkepohl
(2017, Chapter 14)). In this literature the shocks are also typically chosen as
linear transformations of the reduced-form errors but it is just required that
the structural shocks are uncorrelated rather than independent. For identi-
fying the structural shocks, some time-invariance of the structural impulse
responses is crucial in this literature, however.

In this study we use non-Gaussianity for identification but explicitly allow
for time-varying impulse responses despite time-invariant VAR slope coeffi-
cients. We propose tests for time-varying shock transmission and explore
their properties under different types of changes in the distribution of the
VAR residuals. To illustrate the usefulness of the tests for time-varying shock
transmission for applied empirical work, we present an example that shows
the importance of allowing for distributional heterogeneity. More precisely,
we consider a structural VAR model for the crude oil market.

The remainder of this study is organized as follows. The model setup and
ICA techniques are presented in the next section. In Section 3, the testing
problem is laid out and tests are presented. Their small sample properties
are explored in Section 4. The empirical example is discussed in Section 5.
Section 6 concludes. Details of the data generating processes (DGPs) used in
the small sample simulations and of some bootstrap procedures are provided
in Appendices.

2 Non-Gaussian SVAR Models

2.1 Model Setup

Let ut = (u1t, . . . , uKt)
′ be a K-dimensional vector of random variables with

mean zero and covariance matrix Σu, i.e., ut ∼ (0,Σu). Suppose there exists
a nonsingular (K ×K) matrix B such that

ut = Bwt, (1)

where the components of wt = (w1t, . . . , wKt)
′ are stochastically independent,

have variance one, wt ∼ (0, IK), and at most one component has a Gaussian
distribution. Then B is unique up to column permutations and column
sign. In other words, if there exists a matrix B∗ and a random vector with
independent components w∗

t ∼ (0, IK) such that

ut = B∗w∗
t ,
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then B∗ = BPD, where P is a permutation matrix and D is a diagonal
matrix with diagonal elements ±1 so that the elements of w∗

t are the same
as those of wt but may have reversed sign and may be ordered differently.
In other words, wt = PDw∗

t , where P is a permutation matrix and D is a
diagonal matrix with diagonal elements ±1 (see Comon, Jutten and Herault
(1991), Comon (1994), Gouriéroux et al. (2017)).

This result does not mean that for every K-dimensional non-Gaussian
stochastic vector ut with dependent components, there exists a linear trans-
formation that transforms the components to independent random variables.
In other words, there may not exist a matrix B such that B−1ut has indepen-
dent components. However, if such a matrix exists, then it is unique apart
from column permutations and column signs.

The uniqueness (up to column sign and order) of B in equation (1) is
used in the structural VAR literature to identify structural shocks. Suppose
that

yt = A1yt−1 + · · ·+ Apyt−p + ut, (2)

where ut is a zero mean white noise process with covariance matrix Σu, i.e.,
ut ∼ (0,Σu). Then it is assumed that the vector of structural errors, wt,
has independent components and is obtained from the reduced-form errors,
ut, by a linear transformation, ut = Bwt. Under this assumption and the
additional assumption that at most one component of wt has a Gaussian
distribution, the matrix B is unique up to column permutations and column
signs. In some related approaches, specific distributions are assumed (see,
e.g., Lanne et al. (2017)), while other ICA methods allow for more general
non-Gaussian distribution families (see Hyvärinen et al. (2001), Gouriéroux
et al. (2017), Hafner et al. (2025)).

If B is available, structural impulse responses can be computed from the
VAR slope coefficients, A1, . . . , Ap, and B as follows:

Θj = ΦjB, j = 0, 1, . . . ,

where Φj =
∑j

i=1 Φj−iAi, j = 1, 2, . . . , with Φ0 = IK and Ai = 0 for i > p
(e.g., Lütkepohl (2005, Section 2.1.2)). Thus, the shock transmission will be
time-varying if only B varies over time even if the VAR slope coefficients are
time-invariant.

2.2 ML Estimation of Structural Parameters

Lanne et al. (2017) assume that the structural errors, wkt, have zero mean and
finite variance σ2

k, they are mutually stochastically independent and at most
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one of them has a Gaussian distribution. The density of wkt is denoted by
σ−1
k fk(x/σk, ηk). In other words, the structural errors may have distributions

from different distribution families, although they may of course be from
the same distribution family and only differ in the specific parameter values
or may even have identical parameters. The log likelihood function of the
structural VAR model for a sample of size T can then be set up as

LT (θ) =
1

T

T∑
t=1

lt(θ), (3)

where

lt =
K∑
k=1

log fk(σ
−1
k ι′KB(β)−1ut(α); ηk)− log | detB(β)| −

K∑
k=1

log σk

(see Eq. (7)/(8) of Lanne et al. (2017)). Here ιK = (1, . . . , 1)′ is a K-
dimensional vector of ones, α = vec(A1, . . . , Ap) and β contains the free pa-
rameters of B. Lanne et al. parameterize the B matrix so as to make the col-
umn sign and column order unique. Then by maximizing this log-likelihood,
the ML estimator of the structural parameters B is obtained. Clearly, this
approach starts out from independent structural errors and thereby ensures
that a unique structural matrix B exists. In addition to this assumption, also
specific distributions or at least distribution families for the structural errors
wkt have to be assumed. Under these assumptions, asymptotic properties
can be derived (for details see Lanne et al. (2017)).

2.3 Pseudo ML Approach

Gouriéroux et al. (2017) consider a pseudo ML (PML) approach which gets
away without assuming knowledge of the specific distribution families for the
structural errors. They assume that the reduced-form errors are standardized
such that they have zero mean and identity covariance matrix. Let u∗

t =

Σ
−1/2
u ut ∼ (0, IK) denote the standardized residuals. Then the choice of a

transformation matrix B such that wt = B−1ut has independent components,
amounts to choosing an orthogonal matrix Q ∈ O(K), O(K) being the
set of orthogonal (K × K) matrices, such that wt = Q′u∗

t has independent

components and defining B = Σ
1/2
u Q.

Gouriéroux et al. (2017) propose to set up a pseudo log-likelihood func-
tion,

log lT (Q) =
T∑
t=1

K∑
k=1

log gk(q
′
kut), (4)
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where gk(·) (k = 1, . . . , K) is a non-Gaussian probability density function
(p.d.f.) which may differ from the true p.d.f. of wkt and qk is the k

th column of
Q (i.e., q′k is the k

th row ofQ′ = Q−1). Maximizing log lT (Q) with respect toQ
subject to Q′Q = IK , gives the PML estimator. The latter restriction reduces
the parameter space to dimensionK(K−1)/2. Thus, Q can be parameterized
by a K(K − 1)/2 dimensional vector θ, Q = Q(θ), and log lT (Q(θ)) just has
to be maximized over θ.

Note that an orthogonal matrix Q can be written as a product of Givens
matrices,

Q(θ) =

(
K−1∏
k=1

K∏
j=k+1

Gk,j,(θi)

)′

, (5)

where

Gk,j(θi) = [gij]

is a (K×K) Givens matrix such that for k ̸= j, gkk = gjj = cos θi, gkj = sin θi,
and gjk = − sin θi. All other elements gmn are 0 for m ̸= n and 1 for m = n.
For example, for K = 3,

G1,3(θi) =

 cos θi 0 sin θi
0 1 0

− sin θi 0 cos θi

 .

Moreover, θi ∈ (0, 2π] for i = 1, . . . , K(K − 1)/2, such that log lT (Q(θ))
can in principle be optimized by grid search. This may be quite feasible for
small K but could be a challenge for larger K. Note that for K = 5, θ has
dimension 10 already.

Gouriéroux et al. (2017) show that the PML estimator is consistent and
asymptotically normal under quite general conditions for the true distribu-
tions and the assumed p.d.f.s gk(·). Of course, in practice the unknown
standardized errors ut have to be replaced by estimators. Gouriéroux et al.
(2017) propose to estimate the reduced-form VAR process by least-squares

(LS) and use the standardized LS estimates Σ̃
−1/2
u ût in place of u∗

t . Here

Σ̃u = T−1
∑T

t=1 ûtû
′
t is the usual error covariance estimator based on the LS

residuals ût and Σ̃
1/2
u is such that Σ̃

1/2
u Σ̃

1/2′
u = Σ̃u. For example, Σ̃

1/2
u may be

a Cholesky component of Σ̃u.

2.4 Other Approaches and Discussion

In our simulations and in the empirical example we will use the aforemen-
tioned methods. However, there are a number of alternative approaches that
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have been used in the structural VAR literature to estimate the structural
parameters and the shocks. For example, Hafner et al. (2025) propose to es-
timate the distributions of the structural shocks nonparametrically by kernel
methods and then maximize the estimated likelihood function obtained in
this way with respect to the structural parameters.

Herwartz (2018) proposes to choose the structural errors from the reduced-
form errors by maximizing the p-value of an independence test for the struc-
tural errors. In practice, a minimum requirement is that the maximal p-value
exceeds some threshold value such as 5% or 10%. Otherwise identification
of the shocks through non-Gaussianity is not ensured. The problem is, of
course, that a statistical test not rejecting the independence assumption may
not mean that the components are independent but only that there is not
enough evidence to reject independence.

All these approaches work under the assumption that a linear transfor-
mation exists that turns the reduced-form residuals into independent compo-
nents. Since there exist distributions for which this assumption is not valid,
it is not surprising that the ICA tool kit is substantially larger than what
we have reviewed here. As we are not using such alternative methods in the
following, we refer readers to Hyvärinen et al. (2001), Matteson and Tsay
(2017) and Hafner et al. (2025) for discussions of further tools.

Another basic assumption underlying our analysis is, of course, the non-
Gaussianity of the structural shocks. That assumption is often investigated
by considering the non-Gaussianity of the reduced-form errors ut. Clearly, all
components of ut will generally be non-Gaussian, even if only one component
of wt is non-Gaussian and all other components are Gaussian. Thus, the
statistical underpinning of the non-Gaussianity assumption for the structural
shocks may be weak and it should be understood that it is often an assumed
rather than a confirmed property.

In the aforementioned estimation procedures yet another crucial assump-
tion is the time-invariance of the distributions of the structural shocks across
the sample. If that assumption is violated, the impact effects matrix B
may also change during the sample period and then the shock transmis-
sion will change even if the reduced-form slope coefficients A1, . . . , Ap are
time-invariant. As the data should be informative about a time-varying B
matrix, we will consider statistical tests for this type of time-varying shock
transmission in the next section.
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3 Testing for Time-Varying Shock Transmis-

sion

Time-varying shock transmission is possible if the VAR slope coefficients or
the impact effects of the shocks, B, vary. In this section we continue to as-
sume that the VAR slope parameters are time-invariant. Thus, changes in
the shock transmission must be due to changes in B. As the identification
of the latter matrix requires suitable identifying information, additional in-
formation may be needed when the impact effects are changing. If sufficient
information is available, testing for changing impact effects becomes pos-
sible. Lütkepohl and Schlaak (2022) combine identifying information from
external instruments and heteroskedasticity to assess time-variation in the
impact effects while Bruns and Lütkepohl (2024) consider restrictions on the
long-run effects of the shocks in combination with heteroskedasticity to test
for time-varying impact effects. In the following we will show how identifying
information from non-Gaussianity can be used to explore time-variation in
the impact effects that can even be due to other features of the distribution
than heteroskedasticity.

3.1 General Changes in the Shock Distribution

Suppose we suspect a change in the distribution of the shocks and a corre-
sponding change in the shock transmission at the end of time period T1. In
other words, the structural parameters are θ(1) for t ∈ T1 = {1, . . . , T1} and
θ(2) for t ∈ T2 = {T1 + 1, . . . , T}. Then we would like to test

H0 : θ
(1) = θ(2) vs. H1 : θ

(1) ̸= θ(2). (6)

As the shocks are assumed to be instantaneously independent, it may
be reasonable to assume that the ut are not only serially uncorrelated but
even serially independent. Since the structural parameters are parameters of
the distribution of the residuals, estimates of θ(1) and θ(2) are asymptotically
independent, assuming, e.g., that θ(m) is estimated based on log lT (Q(θ)) for
the sample period Tm. Suppose

√
T (θ̂(m) − θ(m))

d→ N (0, τ−1
m Vm), m = 1, 2, (7)

where τ1 = T1/T and τ2 = (T − T1)/T are the fractions of the sample
associated with T1 and T2, respectively. These fractions are assumed to be
independent of T . Under this assumption, the asymptotic distribution in (7)
is obtained from results in Lanne et al. (2017) or Gouriéroux et al. (2017) if
their conditions are satisfied.
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Based on the asymptotic result in (7) we can test the pair of hypotheses
(6) using the test statistic

W = T (θ̂(1) − θ̂(2))′
(
τ−1
1 V̂1 + τ−1

2 V̂2

)−1

(θ̂(1) − θ̂(2)). (8)

Under the null hypothesis, this statistic has an asymptotic χ2(K(K − 1)/2)
distribution. Here V̂m is a suitable estimator of the asymptotic covariance
matrix Vm. For this test to be feasible, we need estimates of Vm, m = 1, 2.
We will use a bootstrap method to estimate Vm from Tm (see Appendix B.1
for the details).

This test would even work if the shocks identified by non-Gaussianity
have no economic meaning and are therefore perhaps not even proper struc-
tural shocks. The Wald test based on the test statistic in Equation (8)
tests time-varying impact effects of the structural impulse responses or some
transformation of them. If the test rejects, it rejects time-invariance of the
impact effects of the shocks and, hence, of the shock transmission, even if Σu

is time-invariant. These considerations show that there can be a change in
the shock transmission even if the reduced-form VAR parameters including
the residual covariance Σu are time-invariant.

3.2 Heteroskedastic Shocks

Heteroskedasticity is a specific change in the distribution of the shocks which
is often visible even in the reduced-form residuals. If such a change in the
distribution is diagnosed or suspected, it may be preferable to take time-
variation in Σu explicitly into account. In that case, one may want to test
time-varying impact effects directly by considering B = Σ

1/2
u Q(θ). As it is

often of interest to test time-varying impulse responses of a specific structural
shock, we focus on the case of testing for time-varying impulse responses of a
single structural shock. To investigate the time-invariance of all the impulse
responses, a separate test can be performed for each shock.

To simplify the exposition we assume that interest focusses on testing
time-variation of the first column of the B matrices related to Tm, m = 1, 2.
In the following we denote these matrices by B(1) and B(2) and their first
columns by b(1) and b(2), respectively.

Let Σ
(m)
u be the covariance matrix of ut, t ∈ Tm. Then Σ

(m)
u = B(m)B(m)′,

if we continue to standardize the variances of the shocks to be one (Σw =
IK) across the full sample period. Thus, the B(m) matrices reflect possible
changes in the impact effects of the shocks and changes in their variability. To
separate these two elements of variability, it is now preferable to standardize
one element in each column of B(m) to one (e.g., the elements on the main
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diagonal) and allow wt to have variances different from one such that Σ
(m)
u =

B(m)Σ
(m)
w B(m)′, m = 1, 2, where the Σ

(m)
w are diagonal matrices. Thereby it

becomes more apparent that changes in the reduced-form covariances can be
due to changes in the impact effects of the shocks, the shock variances or both.
Note, however, that for two covariance matrices Σ

(1)
u and Σ

(2)
u we can always

find a matrix B such that Σ
(1)
u = BB′ and Σ

(2)
u = BΛB′, where Λ is a diagonal

matrix. Thus, we can always find a decomposition of the Σ
(m)
u matrices that

ensures uncorrelated shocks wt = B−1ut in both volatility regimes that have
time-invariant impact effects B. They may not be independent, however, if
the shocks are non-Gaussian. It is, of course, possible that B provides even
independent shocks. In that case the change in the reduced-form covariance
matrix must be exclusively due to changes in the variances of the structural
shocks and the shock transmission is time-invariant.

If one element of each column of B(m) is standardized to one, variance
changes of the shocks wt are reflected in changes in Σ

(m)
w . Our standardization

of B(m) implies that one element of b(m) is also one. Without loss of generality,
we assume that the first element is one and denote the vector of the second
to last elements of the normalized vector by β(m).2 Then the goal is to test
the pair of hypotheses

H0 : β
(1) = β(2) vs. H1 : β

(1) ̸= β(2). (9)

An obvious estimator of β(m) would be

β̂(m) = [0, IK−1]b̂
(m)/b̂

(m)
1 ,

where b̂(m) is the first column of Σ̂
(m)1/2
u Q(θ̂(m)) and b̂

(m)
1 is its first component.

If heteroskedasticity is a possibility, Σ
(m)
u should be estimated from ût, t ∈ Tm,

of course.
If the estimator θ̂(m) is asymptotically normal as in (7), the same holds

for b̂(m) estimated in this way by appealing to Slutsky’s Theorem, because
Q(θ) is a differentiable function of θ. Thus, a suitable statistic for testing
the pair of hypotheses in (9) is

W1 = T (β̂(1) − β̂(2))′
(
τ−1
1 V̂β1 + τ−1

2 V̂β2

)−1

(β̂(1) − β̂(2)), (10)

which has an asymptotic χ2(K−1) distribution. We will use again bootstrap
methods to construct suitable estimators of the covariance matrices Vβm,
m = 1, 2 (see Appendix B.1 for details).

2If the first element of β(m) is zero, we can standardize the first nonzero element of
β(m) instead and reorder the variables such the normalized element is the first one. Of
course, the same variable ordering has to be used in both regimes to ensure comparable
impact effects.
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A drawback of this test may be that it has to be ensured that the first
column of each of the B(m) matrices (m = 1, 2) contains the impact effects
of the same shock. Recall that identification and estimation of the impact
effects using purely statistical criteria such as the distributional properties
implies that the labelling of the shocks can usually only be done after the
estimation because the columns will be ordered arbitrarily. Hence, the first
column of B(1) may not represent the impact effects of the same shock as that
of B(2). In practice, that issue may create a problem and it is difficult to give
general advise how to deal with it because the labelling of the shocks depends
on the specific empirical model. Clearly, the test based on (10) is meant to
test time-variation in the impact effects of the same shock. In Section 5,
we discuss an example and show how the problem can be circumvented in a
specific empirical study.

The discussion of this section has been in terms of two transmission
regimes. Generalizing it for more regimes is straightforward. A critical issue
is, however, the choice of regimes. This has not been discussed so far but
should ideally be linked to subject matter considerations. For example, for a
monetary policy analysis it may be linked to special events concerning mon-
etary policy such as policy changes announced by the central bank. Alter-
natively, one may also consider statistical procedures to investigate volatility
changes during the sample. Such an approach may lead to pretesting issues
that we do not consider in this study.

4 Small Sample Properties of the Tests

To get an impression of the small sample rejection frequencies of the two tests
proposed in Equations (8) and (10) under the null and alternative hypotheses,
we have performed a Monte Carlo simulation. Test statistic (8) is appropriate
when testing for general time-varying transmission of homoskedastic shocks,
while test statistic (10) may be preferable for heteroskedastic shocks or if
one is interested in the transmission of a specific shock. Recall that in the
heteroskedastic case, the change in the distribution may be exclusively due to
changing variances of the structural shocks, while leaving the transmission of
the shocks time-invariant if shocks of a fixed size are considered. On the other
hand, focussing the test on the impact effects of individual shocks, the issue
of comparing the same shocks across different volatility regimes may create
additional problems in practice. Since, in practice, the variance properties
of the shocks may not be known, the test based on (10) may still be a good
choice if the reduced-form residuals are heteroskedastic.

We analyze the test properties for structural VAR models with two and
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three variables, setting the VAR order to zero. Parameter estimation is per-
formed with pseudo maximum likelihood as in Equation (4), where the as-
sumed distributions gk(·) ∀k follow t-distributions with 4 degrees of freedom.
The simulation is carried out under the general setting of R = 1000 replica-
tions. One of the generated structural shocks follows a normal distribution,
the remaining structural shocks have t-distributions. The t-distributions
have 4 degrees of freedom for homoskedastic DGPs and 4 and 3 degrees
of freedom for heteroskedastic DGPs.3 We consider sample sizes of T =
200, 400, 1 000, 2 000 and investigate a single break in the shock transmission
matrix B occurring at the break date T1 = T/2. Exact parameter values for
the DGPs are presented in Tables 7 and 8 in Appendix A. The variances of
the estimators, Vm in Equation (8) and Vβm in Equation (10), are estimated
through a bootstrap with S = 100 replications carried out in each simulation
run r. More details are given in Appendix B.1.

For both types of DGPs we consider alternative scenarios for the volatility
of the reduced-form residuals and the structural shocks. In the first scenario,
called the homoskedastic scenario, the structural shocks wt are always ho-
moskedastic while the reduced-form residuals ut are homoskedastic under the
null hypothesis of time-invariance of the impact effects but heteroskedastic
under H1, where the impact effects are time-varying (see Table 7). In a
second scenario, called the heteroskedastic scenario, the variances of both,
the structural as well as the reduced-form residuals, are distinct in the two
volatility regimes considered (see Table 8). In that case, only the impact

effects are time-invariant under H0. Thus, under the null hypothesis, Σ
(m)
u

is time-varying only due to the time variation in Σ
(m)
w , whereas under the

alternative hypothesis, Σ
(m)
u is time-varying due to both, time variation in

Σ
(m)
w and time variation in the matrix of impact effects.
The simulation results are reported in Tables 1 - 4. The overall impression

is that the asymptotic critical values from the proper χ2-distributions are
useful in small samples. The small sample rejection frequencies line up quite
well with the nominal significance levels, α, in particular for the larger sample
sizes of T = 1000 and 2 000, while the power is quite impressive. For the
larger sample sizes, it is in fact one or close to one in all scenarios considered.
Thus, the test has a good chance to find a structural break in larger samples.
For the smaller sample sizes of T = 200 and 400, the tests tend to reject
slightly too often under H0, which may contribute to the large rejection
frequencies for the smaller sample sizes when H0 is false.

3Note that the variance of a t-distribution with d degrees of freedom is given by d
d−2 .
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Table 1: Size and Power of the Wald Test for Time-Varying Shock Transmis-
sion Based on Test Statistic (8) for a Bivariate DGP with Homoskedastic wt

Size (θ(1) = θ(2)) Power (θ(1) ̸= θ(2))
T α = 0.1 0.05 0.01 α = 0.1 0.05 0.01

200 0.202 0.131 0.050 0.767 0.646 0.445
400 0.161 0.108 0.040 0.842 0.751 0.555
1000 0.089 0.062 0.023 0.964 0.939 0.832
2000 0.099 0.046 0.008 0.997 0.997 0.965

Notes: No. of replications R = 1000, variances of the estimator are estimated by a
bootstrap with S = 100 replications in each simulation run. The nominal test size, α,
is based on an asymptotic χ2(1)-distribution.

Table 2: Size and Power of the Wald Test for Time-Varying Shock Trans-
mission Based on Test Statistic (8) for a Three-Dimensional DGP with Ho-
moskedastic wt

Size (θ(1) = θ(2)) Power (θ(1) ̸= θ(2))
T α = 0.1 0.05 0.01 α = 0.1 0.05 0.01

200 0.175 0.103 0.028 0.982 0.960 0.883
400 0.141 0.076 0.016 0.999 0.995 0.971
1000 0.126 0.063 0.015 1.000 1.000 0.996
2000 0.129 0.063 0.013 1.000 1.000 1.000

Notes: No. of replications R = 1000, variances of the estimator are estimated by a
bootstrap with S = 100 replications in each simulation run. The nominal test size, α,
is based on an asymptotic χ2(3)-distribution.

5 Empirical Example

As an empirical illustration, we apply the tests to the structural VAR model
estimated in Kilian (2009) over the sample 1973M2 until 2007M12. Kilian
(2009) analyzes the oil market in a recursively identified (Cholesky) structural
VAR. The system includes three variables – percent change in global crude
oil production (y∆prod

1t ), an index of real economic activity (yrea2t ) and the
real price of oil (yrpo3t ) – and three structural shocks: an oil supply shock
(woil supply

1t ), an aggregate demand shock (waggregate demand
2t ) and an oil specific-

demand shock (woil-specific demand
3t ). Kilian (2009) uses a VAR order of p = 24.

For easy comparison of our results, we also use p = 24.
Using our notation in Equation (1), the system of Kilian (2009) can be

12



Table 3: Size and Power of the Wald Test for Time-Varying Shock Transmis-
sion Based on Test Statistic (10) for a Bivariate DGP with Heteroskedastic
wt

Size (β(1) = β(2)) Power (β(1) ̸= β(2))
T α = 0.1 0.05 0.01 α = 0.1 0.05 0.01

200 0.143 0.088 0.027 0.893 0.838 0.712
400 0.127 0.076 0.023 0.951 0.927 0.839
1000 0.122 0.069 0.023 0.994 0.992 0.978
2000 0.109 0.056 0.015 1.000 1.000 1.000

Notes: No. of replications R = 1000, variances of the estimator are estimated by a
bootstrap with S = 100 replications in each simulation run. The nominal test size, α,
is based on an asymptotic χ2(1)-distribution. β refers to the first column of B. The
log likelihood accounts for heteroskedasticity.

Table 4: Size and Power of the Wald Test for Time-Varying Shock Trans-
mission Based on Test Statistic (10) for a Three-Dimensional DGP with
Heteroskedastic wt

Size (β(1) = β(2)) Power (β(1) ̸= β(2))
T α = 0.1 0.05 0.01 α = 0.1 0.05 0.01

200 0.191 0.123 0.047 0.943 0.910 0.834
400 0.159 0.101 0.035 0.982 0.970 0.929
1000 0.109 0.077 0.020 1.000 1.000 0.992
2000 0.110 0.071 0.018 1.000 1.000 1.000

Notes: No. of replications R = 1000, variances of the estimator are estimated by a
bootstrap with S = 100 replications in each simulation run. The nominal test size, α,
is based on an asymptotic χ2(2)-distribution. β refers to the first column of B. The
log likelihood accounts for heteroskedasticity.

represented as

ut ≡

 u∆prod
1t

urea
2t

urpo
3t

 =

 b11 0 0
b21 b22 0
b31 b32 b33

 woil supply
1t

waggregate demand
2t

woil specific-demand
3t

 . (11)

The estimated matrix of impact effects of the shocks is

B̂rec =

 −18.74 0 0
−0.07 4.06 0
0.44 −0.47 5.94

 ,

where the shock variances are normalized to one (Σw = I3). For comparison,
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in a non-Gaussian structural VAR, we estimate the following impact effects,

B̂nG =

 −18.60 2.24 −0.25
0.41 4.03 0.31
0.36 −0.03 5.96

 .

In particular, the diagonal elements are close to those from Kilian’s study,
suggesting that the ordering of the shocks can be assumed to be the same as
in Equation (11).

The corresponding reduced-form residuals of Kilian’s model are shown
in Figure 1. A heteroskedastic pattern is clearly visible. We interpret that
pattern as indication that the distribution of the shocks has changed during
the sample period. This could be due to hetereskedasticity of the structural
shocks only while the transmission matrix B remains unchanged. However,
the heteroskedasticity could also indicate that the impact effects matrix B is
time-varying. We use our tests proposed in Section 3 to assess this possibility.

Applying the tests for structural breaks requires to choose a break date.
Barsky and Kilian (2004) discuss turbulences in the oil market associated
with Iraq’s invasion of Kuwait in 1990. Bruns and Lütkepohl (2023) test
for variance changes, providing evidence for a volatility regime change in
1990M9. In line with their finding, we split the sample in 1990M9 to illustrate
our tests, although further volatility changes may be present.

Assuming a potential change in the impact effects of the shocks in 1990M9
we get the following subsample estimates of the B(m) matrices, using a re-
cursive structural VAR,

B̂(1)
rec =

 −23.90 0 0
0.24 4.62 0
0.61 0.83 4.75

 and B̂(2)
rec =

 −8.84 0 0
−0.29 3.34 0
−0.35 1.01 6.22


and, using a non-Gaussian SVAR,

B̂
(1)
nG =

 −13.91 12.95 14.49
−0.47 2.98 −3.51
4.06 2.62 0.54

 and B̂
(2)
nG =

 −7.76 −0.57 4.19
−1.36 2.64 −1.55
1.50 4.52 4.14

 .

In the non-Gaussian SVAR, the shocks have to be labelled properly. We do
so by aligning the order and the signs of the columns of B̂

(1)
nG and B̂

(2)
nG with

the signs proposed by Kilian and Murphy (2012). These authors use sign
restrictions to identify the shocks and impose the sign pattern − + +

− + −
+ + +

 (12)
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Figure 1: Reduced-form LS residuals of the VAR(24) model of the crude oil
market.
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Table 5: Tests for Time-Varying Impact Effects Based on Test Statistic (8)

H0 Change Point Wald Statistic p-value

θ(1) = θ(2) 1990M7 47.441 0.000
1990M8 16.410 0.001
1990M9 16.620 0.001
1990M10 17.522 0.001
1990M11 20.200 0.000

Note: The Vm are estimated using a bootstrap as described in Appendix B.1 with
S = 2000 replications. The p-values are based on a χ2(3)-distribution.

Table 6: Tests for Time-Varying Impact Effects Based on Test Statistic (10)

oil supply aggregate demand oil-specific demand
Change in Wald Stat. p-value Wald Stat. p-value Wald Stat. p-value
1990M7 2.266 0.322 2.562×103 0.000 143.994 0.000
1990M8 0.525 0.769 1.289×103 0.000 20.753 0.000
1990M9 0.511 0.774 3.334×103 0.000 7.284 0.026
1990M10 0.506 0.777 0.718×103 0.000 13.254 0.001
1990M11 0.571 0.756 3.678×103 0.000 12.743 0.002

Note: The Vβm are estimated using a bootstrap as described in Appendix B.1 with
S = 2000 replications. The p-values are based on a χ2(2)-distribution.

on the impact effects matrix. We have used that pattern as a basis for
ordering the columns of B̂

(1)
nG and B̂

(2)
nG. As the estimates in the columns

of these two matrices look quite different, testing formally for time-varying
impact effects may be worthwhile.

First, we apply the test based on (8) that standardizes the structural
shocks to be homoskedastic and all heteroskedasticity is due to a change in
the impact effects. Note that if the true data generating process features
homoskedastic structural shocks but exhibits changes in the impacts effects
matrix B, this results in heteroskedastic reduced-form residuals. The test
results are presented in Table 5 for a set of possible change points around
1990M9. The test for change point 1990M9 clearly rejects time-invariance of
the impact effects of the shocks as its p-value is less than 1%. Interestingly,
the p-values for neighbouring months are also very small. Overall the indi-
cation for a time-varying impact effects matrix is quite robust to a potential
slight misspecification of the actual change point.

Given that the change in the distribution may well be due to a change in
the variances of the shocks and because we are interested to know whether
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the impact effects of all shocks are time-varying, we have also applied the
test based on (10). Note that if the true data generating process features
heteroskedastic structural shocks but a time-invariantB matrix, an estimated
B matrix over two subsamples can seemingly appear to feature time-variation
while in fact the change in B only picks up the true, but ignored change in the
variances of the structural shocks. Applying the test based on (10), we obtain
the results presented in Table 6. The p-values of the tests for time-varying
impact effects of the oil supply shock are larger than 30% for all change
dates considered. Thus, our test does not provide statistical evidence for
time-varying impact effects of the oil supply shock. In contrast, the evidence
for time-varying impact effects of the aggregate demand and the oil-specific
demand shocks is quite strong. Almost all p-values for all assumed change
dates are well below 1%. Thus, we can conclude that estimating the non-
Gaussian model over each subsample separately is clearly supported by the
data because at least some of the impact effects have changed during the
sample period. It is again interesting to note that the test results are robust
to slight changes in the assumed month of volatility change. The p-values
obtained for July to November 1990 are very similar.

Overall the results of both types of tests in Tables 5 and 6 are well in line.
They both present evidence of a change in the impact effects of the shocks
in the second half of 1990. The second test permits a more detailed analysis
of the impact effects of the individual shocks. It indicates that the change in
impact effects may be primarily due to changes in the impact effects of the
aggregate demand and oil-specific demand shocks, while there is no evidence
of changes in the responses to an oil supply shock.

Figure 2 shows the estimated impulse response functions corresponding
to shocks of size one-standard deviation when we allow for the impact effects
B(1) and B(2) to be distinct. In the figure we also depict one-standard error
bands for the impulse responses.4 For comparison, we also show point es-
timates of the impulse responses when we identify triangular B̂

(1)
rec and B̂

(2)
rec

from a recursive SVAR. In general, the impulse responses change, compared
to the case of time-invariant impact effects in Kilian (2009).5 However, the
confidence intervals of the impact effects of the oil supply shock overlap, re-
flecting the insignificant test results in Table 6. In contrast, the impact effects
of aggregate demand and oil-market specific demand shocks on oil production
in the two subsamples appear to be quite different. Although the pre- and

4In line with Kilian (2009), the confidence intervals are calculated using a recursive
design wild bootstrap with 2 000 replications as in Gonçalves and Kilian (2004), see also
Appendix B.2.

5Interestingly, the two impulse responses from the recursively identified SVAR are also
partly quite different.
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Figure 2: Comparison of impulse response functions. The solid lines show
point estimates from non-Gaussian SVARs, the shaded areas represent one-
standard error bands. Blue: pre-1990M9; red: post-1990M9. The dashed
lines show point estimates from recursive SVARs.
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post-1990M9 impact effects of the aggregate demand shocks on real activity
are roughly the same and, hence, the size of the shocks is very similar, the ef-
fect on oil production is very different. The pre-1990M9 effect is much larger
on impact than the post-1990M9 effect, where oil production increases only
gradually after the shock has hit. The one-standard error oil specific demand
shock is smaller pre-1990M9 but has a much larger effect on oil production
(see the panels in the last column of Figure 2). Thus, it clearly makes a
difference whether a possible change in the shock transmission is allowed for
or not.

Note, however, that our interpretation of the shock transmission depends
on our labelling of the shocks. The labelling of the last two shocks can, in
fact, be questioned. Recall that the signs of the aggregate demand shock in
the pre-1990M9 period are not fully in line with those assumed by Kilian and
Murphy (2012) (see the sign matrix in (12)). Moreover, the shock labelled
as ‘oil-specific demand shock’ has impact effects around zero on the real
price of oil, as seen in Figure 2. Clearly that makes it difficult to think
of the shock as a shock to the oil market. It is, of course, possible that a
purely statistical identification, as in our identification strategy using non-
Gaussianity, shocks are obtained without economic interpretation. Thus, our
finding of a possible change in the shock transmission around 1990M9 may
also reveal that the shocks obtained by the statistical identification procedure
may not correspond to the economic shocks of interest.

6 Conclusions

Identifying causal relations is the centerpiece of structural VAR analysis.
Identification through non-Gaussianity represents a statistical, data-driven
approach. Another prominent statistical technique is identification through
heteroskedasticity. Both approaches are often seen in isolation. We argue
that it is important to see both techniques together as what they are: ways
of exploiting the statistical properties of the data for structural identification.
We also argue that all properties of the data should be taken into account.
Heteroskedasticity is a change in the variances and, hence, in the distribution.
The true data generating process then might in fact only feature changing
variances but a time-invariant shock transmission matrix. Note that this is
a crucial assumption in identification through heteroskedasticity. However,
the true data generating process might as well exhibit a change in the shock
transmission.

When identification is achieved through non-Gaussianity, time-varying
shock transmission can and should be tested. In this paper, we propose two
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simple asymptotic χ2-tests to do so. One test version is designed for an
overall change in the shock transmission and the other one allows to test
time-varying transmission for a specific shock and is particularly useful for
heteroskedastic shocks. We have shown by simulation that the tests ex-
hibit good small sample properties and we have applied them to an existing
empirical study where time-invariant shock transmission has been assumed
although the reduced-form residuals are heteroskedastic. We reject the null
hypothesis of a time-invariant transmission matrix. Estimating a model that
allows for time-varying impact effects of the shocks, our empirical example il-
lustrates that the impulse responses along with their economic interpretation
may change over time.

In this study, we have assumed that the possible change point of the distri-
bution is known to the analyst, for example, from subject matter knowledge.
In practice, the change point is likely to be uncertain. Although in our em-
pirical example the test results were robust to changes in the assumed change
point, it would be preferable to have statistical tools to aid in the determi-
nation of possible change points. If the change in the distribution is due to
changes in the second moments, then there are tests for heteroskedasticity
that may be suitable in the present context. For future research, it may be
of interest, however, to develop tools that can be used more generally.
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A Detailed Monte Carlo Settings

Table 7: Parameter Settings for a DGP with homoskedastic wt

bivariate DGP three-dimensional DGP

H0

trans-
mission
matrix

B(1) = B(2) =

(
1.0 −1.7
2.0 1.0

)
B(1) = B(2) =

 1.0 −1.7 −0.9
2.0 1.0 −3.5
1.5 −1.3 1.0


θ(1) = θ(2) = −0.30 θ

(1)
1 = θ

(2)
1 = 2.68, θ

(1)
2 = θ

(2)
2 = 0.33,

θ
(1)
3 = θ

(2)
3 = 2.28

covariance
matrix of
structural
shocks wt

Σ
(1)
w = Σ

(2)
w =

(
64 0
0 2

)
Σ

(1)
w = Σ

(2)
w

64 0 0
0 2 0
0 0 2


covariance
matrix of

reduced-form
residuals ut

Σ
(1)
u = Σ

(2)
u =

(
70.0 124.5
124.5 258.0

)
Σ

(1)
u = Σ

(2)
u =

 71.5 130.5 98.8
130.5 282.0 182.5
98.8 182.5 149.4



H1

trans-
mission
matrix

B(1) =

(
1.0 −1.7
2.0 1.0

)
B(1) =

 1.0 −1.7 −0.9
2.0 1.0 −3.5
1.5 −1.3 1.0


B(2) =

(
1.0 −5.2
3.0 1.0

)
B(2) =

 1.0 −5.2 −0.9
3.0 1.0 −3.5
1.5 −1.3 1.0


θ(1) = −0.30 θ

(1)
1 = 2.68, θ

(1)
2 = 0.33, θ

(1)
3 = 2.28

θ(2) = −0.74 θ
(2)
1 = 2.98, θ

(2)
2 = 0.75, θ

(2)
3 = 2.85

covariance
matrix of
structural
shocks wt

Σ
(1)
w = Σ

(2)
w =

(
64 0
0 2

)
Σ

(1)
w = Σ

(2)
w =

64 0 0
0 2 0
0 0 2


covariance
matrices of
reduced-
form

residuals
ut

Σ
(1)
u =

(
70.0 124.5
124.5 258.0

)
Σ

(1)
u =

 71.5 130.5 98.8
130.5 282.0 182.5
98.8 182.5 149.4


Σ

(2)
u =

(
118.0 181.6
181.6 578.0

)
Σ

(2)
u =

119.5 187.6 107.8
187.6 602.0 278.5
107.8 278.5 149.4


Note: The parameters for the bivariate case in the first column (upper and lower part)
correspond to the simulation results reported in Table 1. The parameters for the
three-dimensional case in the second column (upper and lower part) correspond to the
simulation results reported in Table 2.
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Table 8: Parameter Settings for a DGP with heteroskedastic wt

bivariate DGP three-dimensional DGP

H0

trans-
mission
matrix

B(1) = B(2) =

(
1.0 −1.7
2.0 1.0

)
B(1) = B(2) =

 1.0 −1.7 −0.9
2.0 1.0 −3.5
1.5 −1.3 1.0


θ(1) = −0.64 θ

(1)
1 = 2.68, θ

(1)
2 = 0.70, θ

(1)
3 = 2.18

θ(2) = −0.30 θ
(2)
1 = 2.68, θ

(2)
2 = 0.33, θ

(2)
3 = 2.28

covariance
matrices of
structural
shocks wt

Σ
(1)
w =

(
16 0
0 3

)
Σ

(1)
w =

16 0 0
0 3 0
0 0 3


Σ

(2)
w =

(
64 0
0 2

)
Σ

(2)
w =

64 0 0
0 2 0
0 0 2



covariance
matrices of
reduced-
form

residuals
ut

Σ
(1)
u =

(
25.0 26.8
26.8 67.0

)
Σ

(1)
u =

27.3 35.8 28.2
35.8 103.0 33.7
28.2 33.7 44.1


Σ

(2)
u =

(
70.0 124.5
124.5 258.0

)
Σ

(2)
u =

 71.5 130.5 98.8
130.5 282.0 182.5
98.8 182.5 149.4



H1

trans-
mission
matrices

B(1) =

(
1.0 −1.7
2.0 1.0

)
B(1) =

 1.0 −1.7 −0.9
2.0 1.0 −3.5
1.5 −1.3 1.0


B(2) =

(
1.0 −2.6
3.0 1.0

)
B(2) =

 1.0 −2.6 −0.9
3.0 1.0 −3.5
1.5 −1.3 1.0


θ(1) = −0.64 θ

(1)
1 = 2.68, θ

(1)
2 = 0.70, θ

(1)
3 = 2.18

θ(2) = −0.43 θ
(2)
1 = 2.68, θ

(2)
2 = 0.33, θ

(2)
3 = 2.51

covariance
matrices of
structural
shocks wt

Σ
(1)
w =

(
16 0
0 3

)
Σ

(1)
w =

16 0 0
0 3 0
0 0 3


Σ

(2)
w =

(
64 0
0 2

)
Σ

(2)
w =

64 0 0
0 2 0
0 0 2



covariance
matrices of
reduced-
form

residuals
ut

Σ
(1)
u =

(
25.0 26.8
26.8 67.0

)
Σ

(1)
u =

27.3 35.8 28.2
35.8 103.0 33.7
28.2 33.7 44.1


Σ

(2)
u =

(
77.5 186.8
186.8 578.0

)
Σ

(2)
u =

 71.5 194.5 98.8
194.5 602.0 278.5
98.8 278.5 149.4


Note: The parameters for the bivariate case in the first column (upper and lower part)
correspond to the simulation results reported in Table 3. The parameters for the
three-dimensional case in the second column (upper and lower part) correspond to the
simulation results reported in Table 4.
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B Bootstraps

B.1 Bootstraps for Covariance Matrices

The estimates of the covariance matrices Vm and Vβm used in the Wald statis-
tics (8) and (10) of the tests for time-varying impact effects are estimated by
the following bootstrap procedures.

For Vm, a large number, S, of estimates of the parameters θ(m) are gen-
erated with a standard residual-based recursive design bootstrap based on
random draws from the reduced-form LS residuals ût. Then we use the QML
estimation procedure to get bootstrap estimates θ̂

(m)
s , s = 1, . . . , S. In this

procedure it has to be ensured, however, that the ordering and signs of the
columns of Q(θ) are the same in each bootstrap replication. Therefore, in the

simulation exercise, the ordering and signs of the columns of Q(θ̂
(m)
s ) follow

the true Q(θ(m))-matrix of the data generating process. In the empirical ex-
ample, the point estimate Q(θ̂(m)) is taken as reference instead. Technically

this is implemented by choosing the permutation of Q(θ̂
(m)
s ) that has the

highest correlation with the true Q(θ(m)) matrix in the Monte Carlo simula-
tions and the estimate Q(θ̂(m)) in the empirical example. Note that we also
have to maximize the correlation over all combinations of column signs (see

also below). Based on the θ̂
(m)
s obtained in this way, the covariance matrix

Vm is estimated in the usual way as

V̂m =
1

S − 1

S∑
s=1

(
θ̂(m)
s − θ̂(m)

)(
θ̂(m)
s − θ̂(m)

)′
, where θ̂(m) =

1

S

S∑
s=1

θ̂(m)
s .

For Vβm, we proceed with the bootstrap as before and compute S boot-

strap estimates B̂
(m)
s , s = 1, . . . , S, of B(m). In this case, it has to be ensured

that the ordering and signs of the shocks (i.e., the columns of B̂
(m)
s ) are the

same in each bootstrap replication. We use the ordering and signs of the
columns of B̂

(m)
s such that they follow the true B(m)-matrix of the data gen-

erating process. In the empirical example, the point estimate B̂(m) is taken
as reference instead. Technically this is implemented as described for the
Q(θ) (see above). Note that also all combinations of column signs have to
be taken into account. Thus, for example for a three-dimensional system,
we have to consider all permutations of B = [b1, b2, b3], −B, [−b1, b2, b3],
[b1,−b2, b3], [b1, b2,−b3], [−b1,−b2, b3], [−b1, b2,−b3], and [b1,−b2,−b3]. Here
the bi denote the columns of B. The correlation coefficient is calculated over
all elements in the vectorized B̂

(m)
s and the vectorized B(m) matrix. Then we

compute the first columns β̂
(m)
s , s = 1, . . . , S, of the resulting standardized

23



bootstrap estimates. Finally, the Vβm matrix is estimated as

V̂βm =
1

S − 1

S∑
s=1

(
β̂(m)
s − β̂(m)

)(
β̂(m)
s − β̂(m)

)′
, where β̂(m) =

1

S

S∑
s=1

β̂(m)
s .

In the Monte Carlo simulations of Section 4, bootstraps of this kind are
performed in each replication.

B.2 Bootstrap for Impulse Responses

The bootstrap for the confidence intervals round the impulse responses is a
wild bootstrap on the LS residuals of the reduced-form model as described in
Kilian and Lütkepohl (2017, Section 12.2.3). In other words, the LS residuals
ût are replaced by ηtût, where ηt is an independent random variable ηt with
a standard normal distribution. In each bootstrap replication, the B matrix
is estimated based on the pre- or post-1990M9 data and then its columns
are permuted as described in Section B.1 such that the highest correlation
with the point estimates B̂(1) and B̂(2) is obtained. In other words, in each
bootstrap replication, the estimate that has the highest correlation with the
original estimate is used for computing the bootstrap impulse responses from
which the pointwise confidence intervals are constructed in the usual way
using the percentiles of the bootstrap distributions.
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