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Estimating interaction effects with panel data∗

Chris Muris† Konstantin M. Wacker‡§
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Abstract

This paper analyzes how interaction effects can be consistently estimated un-

der economically plausible assumptions in linear panel models with a fixed T -

dimension. We advocate for a correlated interaction term estimator (CITE) and

show that it is consistent under conditions that are not sufficient for consistency

of the interaction term estimator that is most common in applied econometric

work. Our paper discusses the empirical content of these conditions, shows that

standard inference procedures can be applied to CITE, and analyzes consistency,

relative efficiency, inference, and their finite sample properties in a simulation

study. In an empirical application, we test whether labor displacement effects of

robots are stronger in countries at higher income levels. The results are in line

with our theoretical and simulation results and indicate that standard interaction

term estimation underestimates the importance of a country’s income level in the

relationship between robots and employment and may prematurely reject a null

hypothesis about interaction effects in the presence of misspecification.
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1 Introduction

In many econometric applications, the relationship between an outcome variable Y

and a regressor X depends on a so-called interaction variable H. For example, an

earlier macroeconomic literature postulated that the effect of foreign capital inflows

X on economic growth Y depends on some host-country fundamentals H, such as

institutional quality, financial development, or a sufficiently educated labor force.1 In

micro data, the effect of new technologies on firms’ productivity may depend on firm

size, reflecting scale effects. And how a worker responds to a labor market reform may

depend on age, reflecting that older individuals value leisure higher and income less in

their labor supply choice than younger workers.

Panel data have at least two dimensions, i and t, which provides us with opportuni-

ties to estimate interaction effects that uni-dimensional data do not have. In particular,

panel data give us more flexibility to model heterogeneities in the relationship between

Y and X, on top of variation in H. Yet, those opportunities are rarely exploited

in applied econometric analysis, which possibly reflects that theoretical work to date

has largely ignored the benefits of modeling heterogeneities across panel units for the

estimation of interaction effects in panel data.

Consider the relationship between employment Y and robotization X. We may

hypothesize that this relationship is more negative in countries i with a higher wage

level Hi because firms experience higher pressure to save labor costs. The standard

approach to estimating such an interaction effect in a linear model with panel data is

to regress employment Yit on robotization Xit, and its interaction with countries’ wage

levels Hi, together unit-specific fixed effects αi and possibly additional variables in Zit,

where t may index time, industries, firms etc.:

Yit “ αi `Xitβ ` pXitHiqκ` Z
1
itγ ` νit. (1)

The conventional approach to estimate interaction effects in a linear model with panel

data seems to be least squares based on equation (1).2 We refer to this approach as the

1See, for example, Alfaro, Chanda, Kalemli-Ozcan, and Sayek (2004, 2010); Borensztein, Gregorio,
and Lee (1998); Burnside and Dollar (2000); Durham (2004). Economically, this literature assumes
that foreign capital X and interaction variables H complement each other in the production of output
Y .

2See, for example, Alsan and Goldin (2019); Amiti and Konings (2007); Berman, Martin, and Mayer
(2012); Bloom, Draca, and Van Reenen (2016); Bloom, Sadun, and Van Reenen (2012); Burnside and
Dollar (2000); Duflo, Dupas, and Kremer (2011); Epifani and Gancia (2009); Herrera, Ordoñez, and
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interaction term estimator (ITE). The partial effect of X (robots) on Y (employment)

linearly depends on H (wage level) in this model, as is easily verified by taking the

partial derivative BY {BX “ β `Hκ.

Our paper focuses on the interaction effect κ and how it can be consistently esti-

mated under economically plausible assumptions with panel data that have a short T

dimension. Standard linear regression assumptions in application to equation (1) re-

quire the error term ν to be independent of the regressors X,XH,Z. This assumption

is easily violated in many interaction models: the economic reasons for effect hetero-

geneity in the relationship between X and Y are extensive and rarely independent of

the regressors. Recall the example of robots and employment. In a technology-minded

country, firms t may find various ways to substitute workers’ tasks in the production

process by robots. The partial relationship between robots X and employment Y will

hence be more negative in those countries than in less tech-minded countries because

a robot can replace more workers in the former. Since this aspect is unmodeled in

equation (1), and tech-mindedness is not directly observable, this heterogeneity across

countries will end up in the error term ν. And since tech-mindedness likely gives rise

to higher robotization X in the first place, we observe a standard endogeneity bias: ν

is correlated with X and XH in equation (1).

Panel data models for interaction effects can be deceptive because the inclusion

of the additive fixed effects αi may lull the researcher into a false sense of having

controlled for unobserved heterogeneity. This is not the case because in the context

of interaction effects we are not concerned about (additive) heterogeneity in levels of

Y and X, which are indeed absorbed through αi, but about effect heterogeneity in

the relationship between X and Y . Our research shows that a common source of such

unobserved effect heterogeneity can be easily addressed with panel data. Our exposition

focuses on the simple case where the interaction variableH only varies in the i dimension

since this is plausibly the key dimension giving rise to heterogeneity in the partial effect

of X on Y . An extension to interaction variables that vary in the it dimension and an

application to higher-dimensionality panel data is provided in an earlier working paper

version of this paper (Muris & Wacker, 2022) and follows the same rationale: additive

fixed effects do not control for important aspects of heterogeneity.

The key contribution of our paper is to advocate for a different approach to the es-

timation of interaction effects with panel data and to analyze the exogeneity conditions

Trebesch (2020); List and Sturm (2006); Manacorda and Tesei (2020); Shambaugh (2004); Spilimbergo
(2009); Storeygard (2016).
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that are are sufficient for consistent estimation of κ. We therefore develop a frame-

work of correlated unobserved effect heterogeneity that explicitly includes unit-specific

effects βi as parameters in the relationship between X and Y (see esp. Chamberlain,

1992). Building on this framework, we propose a correlated interaction term estimator

(CITE) that obtains an estimate for the interaction term coefficient κ by first running

the regression Yit “ αi`Xitβi`Z
1
itγ`Uit and subsequently projecting the unit-specific

effects pβi onto Hi in a second-step regression.3 Since this second-step regression of pβi

onto Hi is a simple cross-section OLS regression, it is easily to implement and can be

assessed with the extensive, well-known statistical toolkit that has been developed for

OLS regressions.4

A key result of the rigorous comparison of ITE and CITE that we provide in this

paper is that the exogeneity restrictions that guarantee the consistency of CITE for κ

are not sufficient for the consistency of ITE. On top of conditions that apply to both

estimators, CITE requires unobserved effect heterogeneity to be uncorrelated with the

interaction variable H, while ITE requires this effect heterogeneity to be uncorrelated

with all right-hand side regressors H,X,Z for consistent estimation of κ. This suggests

that researchers need strong exogeneity arguments when estimating interaction terms

with ITE in panel data.

One plausible concern about our newly proposed CITE is that its superior bias

protection comes at the cost of efficiency. By treating the unit-specific effects βi as

parameters that need to be estimated, one may expect a higher variability of CITE

for κ, compared to ITE. We present simulation results demonstrating that this is not

necessarily the case when considering different Monte Carlo designs. There is hence no

obvious penalty for using CITE in terms of efficiency, while its advantages in terms of

consistency are clear.

Another advantage of CITE is that we can demonstrate that standard inference

procedures, available in common software, can be applied under economically plausible

3Such an approach has occasionally been used in applied work. See particularly Couttenier, Pe-
trencu, Rohner, and Thoenig (2019) and MaCurdy (1981). Giesselmann and Schmidt-Catran (2020)
discuss CITE, but make a case for a double-demeaned estimator. Alternatively, running unit-by-unit
regressions to recover common parameters is a strategy that has been used in different panel data
settings, see e.g. Fernández-Val and Lee (2013). In any case, we are not aware of existing work that
demonstrates that ITE and CITE are distinct and that analyzes their asymptotic properties.

4If one is interested in time-varying interaction variables, those can be considered part of Z and the
second step can be omitted. Unobserved effect heterogeneity across panel units is directly absorbed
in pβi in this case. See an earlier working paper version of our paper for a more explicit treatment of
such time-varying interactions (Muris & Wacker, 2022).
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assumptions about the structure of error terms. The finite sample performance of these

inference procedures is also demonstrated in our simulation section. Finally, CITE does

not require a large number of time periods. Our paper develops theoretical consistency

results under fixed-T and our simulations suggest that relative efficiency is often similar

to ITE around T “ 4, depending on the simulation design. The fact that we can

prove consistency of CITE for fixed-T also sets our paper apart from the literature on

heterogeneity in large-T panels.5

Related literature

Our framework builds on the literature on correlated random coefficient models (see

Arellano & Bonhomme, 2012; Chamberlain, 1992; Graham & Powell, 2012; Laage, 2024;

Sasaki & Ura, 2021). Specifically, we build on Corollary 1 in Arellano and Bonhomme

(2012) to study the estimation of interaction effects in panel models. We adapt and

extend the theoretical results in this literature to advocate for CITE over ITE.

Models with correlated coefficient heterogeneity have previously been used to study

the identification and estimation of average treatment effects in various settings, see

for example Wooldridge (2005), Murtazashvili and Wooldridge (2008), de Chaisemartin

and D’Haultfœuille (2022); Verdier (2020), S loczyński (2022), de Chaisemartin and Lei

(2023), Winkelmann (2024), de Chaisemartin and D’Haultfœuille (2024). This litera-

ture is mostly concerned with the identification and estimation of (convex combinations

of) average coefficients, partial effects, and treatment effects, from cross-sectional and

panel data. In contrast, we focus on the estimation of interaction effects from panel

data in the presence of unobserved effect heterogeneity.

Organization and preview from an applied perspective

Section 2 introduces the unobservable effect heterogeneity model. Section 3 formally

defines the two estimators. Section 4 presents our main results about the consistency

of CITE. Section 5 discusses inference. Section 6 contains a Monte Carlo simulation

study. Section 7 contains an empirical application where we investigate whether worker

displacement effects of robots are stronger in countries at higher income levels. Section 8

5Balli and Sørensen (2013) observe that unobserved effect heterogeneity can lead to inconsistency
in the ITE, and suggest that “if the time-series dimension of the data is large, one may directly allow
for country-varying slopes”. We show that such slopes should generally be preferred regardless of the
time-series dimension.
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concludes and discusses some avenues for future research.

In sections 2 - 5, which focus on theory, we have mostly opted for a notation of

within-transformed stacked variables to facilitate the theoretical exposition. Applied

readers who are at less comfort with this notation, or less interested in the details of

our theoretical results, are suggested to focus on the following aspects: the part of

section 2 prior to notational definitions to understand the unobservable effect hetero-

geneity model we have in mind and the first two paragraphs of section 3 for an informal

definition of ITE and CITE.

The crucial exogeneity conditions required for consistent estimation of interaction

terms in panel data can be found in Assumptions 6-8 in Section 4. It is particularly

instructive to compare Assumption 7, which is sufficient for consistency of CITE, to the

stronger Assumption 8, which is required for consistency of ITE. Remark 2 compares

both assumptions with an example from our application.

The essence of section 5 for applied researchers is that conventional heteroskedasticity-

robust standard errors in the second-stage projection of pβi onto Hi are sufficient for valid

inference under CITE. Section 6 is accessible without delving into technical or nota-

tional details, but can also be skipped if one is already convinced about the advantages

of CITE in terms of consistency, relative efficiency, inference, and their finite sample

properties. The application section 7 will be most instructive for applied readers to

understand the implementation of our approach in practice.

2 Model

We are interested in estimating interaction effects in static linear panel models with

a short T dimension. In our framework, the effect of X on Y linearly depends on

observables H and on additional unobservable sources of effect heterogeneity. We model

this unobserved heterogeneity in the effect of X on Y as follows:

Yit “ αi `Xitβi ` Z
1
itγ ` Uit, i “ 1, ¨ ¨ ¨ , n, t “ 1, ¨ ¨ ¨ , T, (2)

βi “ κ0 ` κ1H1i ` κ2H2i ` ...` εi “ H 1
iκ` εi, i “ 1, ¨ ¨ ¨ , n, (3)

where i indexes cross-sectional units, and t indexes time periods (or other panel dimen-

sions). The beginning of Section 3 clarifies how the standard panel interaction term

model relates to this framework.

The outcome equation (2) of our framework describes how a dependent variable
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Yit P R responds to a change in a regressor Xit P R,6 allowing for additive fixed effects

αi P R, control variables Zit P RKz , and an error term Uit P R. It is important to

note that the control variables Zit may include interaction terms with it variation. As

an earlier working paper version of our paper shows more thoroughly, CITE poses less

restrictive exogeneity conditions for their consistency as well (Muris & Wacker, 2022).

The heterogeneity equation (3) of our framework relates effect heterogeneity βi to

observed, time-invariant interaction variables Hi P RKh . The associated interaction

term coefficient κ P RKh is the main object of interest in our paper.7 The effect of

X on Y may additionally vary, even when holding Hi constant, because of unobserved

effect heterogeneity εi P R. The relationship between unobserved effect heterogeneity

and pX,Hq plays an important role in our analysis (in a similar way as the relationship

between unobserved heterogeneity αi and X is important in the conventional additive

fixed effect model).

Remark 1. The index t need not refer to time, but can refer to students t for a given

classroom i, counties t within a given state i, employees t within a given firm i, etc.

The empirical application in Section 7 provides an example and section 6.2 in an earlier

working paper version illustrates how our framework applies to higher-dimensional panel

data (Muris & Wacker, 2022).

Some additional notation simplifies the exposition in the remainder of the paper.

First, estimation will be based on the within-transformed outcome equation:

rYit “ rXitβi ` rZ 1itγ `
rUit, (4)

where

rYit “ Yit ´
1

T

T
ÿ

s“1

Yis, rXit “ Xit ´
1

T

T
ÿ

s“1

Xis,

and rZit and rUit are defined analogously.

6Our analysis is easily generalized to vector-valued Xit.
7Note that we obtain the constant κ0 in the heterogeneity equation (3) by setting the first element

of all Hi equal to 1 and that this constant can be interpreted as the average βi across panel units,
conditional on all other elements of Hi.
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Second, the reduced form of the within-transformed equations (2)–(3) is

rYit “ rXitpH
1
iκ` εiq `

rZ 1itγ `
rUit

“ rXitH
1
i

loomoon

Ψ1
it

κ` rZ 1itγ `
´

rUit ` rXitεi

¯

loooooomoooooon

Vit

, (5)

with an error term Vit that depends on the unobserved effect heterogeneity εi.

Third, we collect the within-transformed outcome equation (4) across t “ 1, ¨ ¨ ¨ , T

for a given i to obtain
rYi “ rXiβi ` rZiγ ` rUi, (6)

where
rXi “ p rXi1, ¨ ¨ ¨ , rXiT q P RT ,

and rYi P RT , rXi, rZi P RTˆKz , and rUi P RT . Accordingly, we obtain

rYi “ Ψiκ` rZiγ ` Vi, (7)

where Ψi “ rXiH
1
i P RTˆKh and Vi “ rUi ` rXiεi P RT are stacked versions of Ψit and Vit,

respectively.

3 Estimators

We consider two estimators for the interaction term coefficient κ: the interaction term

estimator (ITE) and the correlated interaction term estimator (CITE). The ITE is a

fixed effects regression8 of Y on the interaction term Ψ “ XH and Z, as suggested by

the reduced form (5). It is the default approach in applied research when the effect of X

is expected to depend on H: “just add an interaction term”. This standard ITE panel

interaction model is usually written along the lines Yit “ αi`Xitβ`XitH1iκ1`Z
1
itγ`νit

in many applied papers, which is a special case of our framework that one obtains by

substituting equation (3) into equation (2), imposing εi “ 0 @ i, and setting β “ κ0. A

formal definition of ITE is provided in Section 3.2.

The CITE, defined formally in Section 3.1, is a two-step estimator. The first step is

a fixed effects regression of Y on Z and interactions of X with dummy variables for each

8By “fixed effects regression” we mean a regression that includes a dummy variable for each i, i.e.
the within estimator.
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i: Yit “ αi`Xitβi`Z
1
itγ`Uit. The coefficients on the dummy variable interactions, pβi,

are individual-specific effects of X on Y that capture unobserved effect heterogeneity.

The second step is a regression of pβi on H. CITE hence directly follows the structure in

equations (2)–(3): the first-step regression is based on the outcome equation (2), and the

second-step regression is based on heterogeneity equation (3). Practical implementation

of CITE in standard software is simple: it just requires interacting X with the unit-

specific dummy variables, saving the estimated coefficients, and regressing them on H

in a second step.

The remainder of this manuscript assumes a random sample is available.

Assumption 1 (Random sampling). For each i “ 1, ¨ ¨ ¨ , n, the observed data is

Wi “ pYi1, ¨ ¨ ¨ , YiT , Xi1, ¨ ¨ ¨ , XiT , Zi1, ¨ ¨ ¨ , ZiT , Hiq ,

generated by equations (2)–(3). The random sequence tWiu
n
i“1 is independent and iden-

tically distributed.

3.1 Correlated interaction term estimator

Sufficient variation in rXi for all i is required for the CITE to be well-defined.

Assumption 2. There exists an h ą 0 such that

inf
i

˜

T
ÿ

t“1

rX2
it

¸

ě h.

This guarantees that the least squares estimators for the pβiq are well-defined, which

avoids the identification issues addressed in Graham and Powell (2012) and Arellano

and Bonhomme (2012). If Assumption 2 does not hold for all i, our analysis applies to

the subpopulation for which it does hold.

To obtain the within-transformed data, we define the residual maker matrix

Mi “ IT ´ rXi

´

rX 1
i
rXi

¯´1
rX 1
i,

9



where IT is the T ˆ T identity matrix. Premultiplication by Mi obtains

Mi
rYi “Mi

rXiβi `Mi
rZiγ `Mi

rUi

“Mi
rZiγ `Mi

rUi, (8)

and estimation of γ can be based on equation (8).

Assumption 3. The matrix E
´

rZ 1iMi
rZi

¯

is invertible.

Assumptions 1–3 guarantee that the following is well-defined for large n.

Definition 1. CITE for γ is given by

pγn “

˜

n
ÿ

i“1

rZ 1iMi
rZi

¸´1 n
ÿ

i“1

rZ 1iMi
rYi.

To define the CITE for κ, we also need sufficient variation in Hi.

Assumption 4. The matrix E pH 1
iHiq is invertible.

For each i, the estimator for the individual-specific effect of X on Y is

pβi “
´

rX 1
i
rXi

¯´1

X 1
i pYi ´ Zipγnq .

The CITE for κ is obtained from a regression of pβi on Hi.

Definition 2. The CITE for κ is

pκn “

˜

n
ÿ

i“1

H 1
iHi

¸´1 n
ÿ

i“1

H 1
i
pβi.

3.2 Interaction term estimator

The ITE is based on equation (7). To formally define it, we project out the fixed effects

αi using the within transformation. For the ITE to be well-defined, we require the

following ‘no multicollinearity’ condition:

Assumption 5. The matrix E
´

rΨi
rZis

1rΨi
rZis

¯

is positive definite.
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Definition 3. Given Assumption 5, the ITE for θ “ pκ, γq is well-defined:

qθn “

˜

n
ÿ

i“1

rΨi
rZis

1
rΨi

rZis

¸´1 n
ÿ

i“1

rΨi
rZis

1
rYi

“ pqκn, qγnq.

4 Consistency

We now show that a set of exogeneity conditions that is sufficient for consistency of

CITE is not sufficient for consistency of ITE. Throughout, we maintain the following

strict exogeneity assumption.

Assumption 6 (Strict exogeneity). E pUi|Xi, Zi, Hiq “ 0.

This assumption is similar to the strict exogeneity assumption that is standard in the

literature on correlated random coefficient panel models,9 and in textbook treatments of

fixed-T linear panel models with additive fixed effects. If one is only interested in γ, and

not in κ, Assumption 6 can be relaxed for CITE (but not for ITE) to E pUi|Xi, Ziq “ 0.

4.1 CITE

It is sufficient for the consistency of CITE that the unobserved effect heterogeneity εi

is orthogonal to the time-invariant interaction variable Hi.

Assumption 7 (Exogeneity, ε). E pεi|Hiq “ 0.

This assumption is easily understood when recalling that the second step of CITE

is a cross-sectional OLS regression: it is equivalent to the textbook OLS exogeneity

condition that requires the regressor Hi to be orthogonal to the error term εi.

To understand the advantages of CITE in applied econometric work, it is crucial

to emphasize that Assumption 7 does not involve the regressors pX,Zq. We discuss

this advantage in contrast with ITE, including an example, in Remark 2 at the end of

Section 4.

Theorem 1. (i) If Assumptions 1–3 and 6 hold, and if E }Zi}
2 and E }Yi}

2 are bounded,

then pγn
p
Ñ γ as nÑ 8. (ii) If additionally, Assumptions 4 and 7 hold, and if E}Hi}

2,

E}βi}
2, E} rXi}

4, and E} rZi}
4 are bounded, then pκ

p
Ñ κ as nÑ 8.

9See Arellano and Bonhomme (2012); Chamberlain (1992); Graham and Powell (2012). See Laage
(2024) for an approach without exogeneous regressors.
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For consistency of CITE, we do not need to restrict the joint distribution of pZ,X, εq

beyond the existence of certain moments. The proof of consistency is standard and can

be found in Appendix A. Because distribution theory for ITE and CITE is standard,

we omit the remaining proofs.

4.2 Inconsistency of ITE

Theorem 1 establishes that the exogeneity restrictions in Assumptions 6 and 7 guarantee

the consistency of CITE for κ and γ. We now show that the exogeneity restrictions are

not sufficient for the consistency of ITE for κ.

Consider the special case that H is scalar, and that there is no Z, so the reduced

form simplifies to:
rYit “ rXitHiκ`

´

rUit ` rXitεi

¯

.

The ITE is simply a linear regression of rY on rXH. Consistency of OLS requires that

the error term is orthogonal to the regressors. Given Assumption 6,

E
´

rXitHi
rUit

¯

“ 0.

However, under the exogeneity Assumptions 6 and 7 we may have

E
´

rX2
itHiεi

¯

‰ 0.

It is straightforward to construct data generating processes where this happens, see our

simulation study in Section 6.

To ensure the consistency of ITE, one could further strengthen the conditions. For

example, strengthening Assumption 7 to the following stronger correlated random effects

assumption restores consistency:

Assumption 8 (Exogeneity, ε, strengthened). E pεi|Hi, Xi, Hiq “ 0.

This restriction requires the unobserved effect heterogeneity εi to be orthogonal to

X and Z in addition to H. Consistency of ITE hence requires that unobserved effect

heterogeneity is independent of all relevant regressors in the model.

Remark 2. Comparison of Assumptions 7 and 8 facilitates a key insight of our paper:

the latter (which ensures consistency of ITE) is more demanding than Assumption 7

(which is sufficient for consistency of CITE), since it requires additional orthogonality

12



of εi to X and Z (in addition to H). In the context of our empirical application,

where we estimate how the effect of robots X on employment Y depends on interaction

variables H, ITE requires that heterogeneity in the relationship between robotization

and employment across countries is uncorrelated with countries’ robot adoption. As

discussed in our introduction, this is implausible because certain countries may be more

open to new technologies, in which case they are more likely to adopt robots X and

find ways to replace workers with robots, which gives rise to effect heterogeneity εi.

CITE does not require such effect heterogeneity to be independent of robotization X

for consistent estimation of the interaction effect.

5 Inference

In this section, we discuss how to conduct inference on the interaction effect κ for both

estimators. For both estimators, inference is standard and can be performed using

widely available software. We sketch our arguments below for the case where Z is

absent. The general case with Z is similar, and it is omitted because the additional

notation obscures the argument.

In this paper, we are concerned with inference for the partial effects. Empirical

researchers may also be interested in the distribution of partial effects. Inference for

this object is significantly more challenging, see for example Arellano and Bonhomme

(2012) and Fernández-Val, Gao, Liao, and Vella (2022).

5.1 ITE

Inference for the ITE follows the standard theory for linear panel data models with

clustered errors. In panel data, cluster-robust standard errors account for arbitrary

correlation patterns in the error terms within each panel unit while maintaining the

assumption of independence across units. Clustered standard errors address the fact

that observations from the same panel unit (like multiple years of data from the same

country) are typically not independent.

Two features of our model make clustering necessary. First, the within transforma-

tion induces correlation in the transformed errors rUi within each panel unit i. Second,

the presence of unit-specific unobserved effect heterogeneity εi in the composite error

term Vi “ rUi ` rXiεi creates an additional source of within-unit correlation. However,

our random sampling assumption (Assumption 1) ensures independence across panel
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units, making cluster-robust standard errors appropriate.

The asymptotic variance of the ITE takes the standard sandwich form for clustered

data:

varpqκnq “

˜

ÿ

i

Ψ1
iΨi

¸´1 ˜
ÿ

i

Ψ1
ivarpVi|ΨiqΨi

¸˜

ÿ

i

Ψ1
iΨi

¸´1

.

This variance can be consistently estimated in the usual way.

Implementation of cluster-robust standard errors is straightforward in standard sta-

tistical software. For instance, in current STATA versions, one would use the op-

tion vce(robust) for a standard panel command with interactions, like xtreg y x

c.x#c.h, fe vce(robust). Similar commands are available in R, Python, and other

commonly used statistical packages. Our simulation study in Section 6 documents the

finite-sample performance of this inference approach.

5.2 CITE

Because of the two-step nature of CITE, it may be surprising that heteroskedasticity-

robust standard errors in the second-step regression are sufficient for valid inference.

To show that this is the case, recall that CITE for κ is a regression of the estimated

individual-specific coefficients pβi on Hi,

pκn “

˜

n
ÿ

i“1

H 1
iHi

¸´1 n
ÿ

i“1

H 1
i
pβi.

The corresponding regression equation is

pβi “ βi ` ppβi ´ βiq “ H 1
iκ` εi ` p

pβi ´ βiq,

where the second equality follows from the heterogeneity equation (3).

Therefore, pκn is based on a linear regression with a composite error term εi`ppβi´βiq.

This composite error term is independent across i, and heteroskedastic by construction.

Independence follows from two observations: first, Assumption 1 implies that εi is in-

dependent across i, and second, the first-step estimation errors pβi “
´

rX 1
i
rXi

¯´1

X 1
iYi

are independent across i because they only depend on p rXi, rYiq, which are also indepen-

dent across i by Assumption 1. The composite error term is heteroskedastic because

the variance of the first-step estimation error ppβi ´ βiq depends on rXi, even if εi is

homoskedastic. Consequently, using heteroskedasticity-robust standard errors (White
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(1980)) in the second-step regression leads to valid inference.

Implementation is straightforward in standard statistical packages. For example, in

STATA, after obtaining the unit-specific coefficients ‘bhat’ via a first-stage regression,

one would use reg bhat H, robust to obtain valid standard errors. Our simulation

study in Section 6 confirms good finite-sample performance of this approach. When

control variables Z are present, the argument remains valid asymptotically, because γ is

estimated at rate
?
nT . The contribution to sampling variation is negligible compared

to that from pβi. The latter is estimated using T observations.

6 Monte Carlo simulations

We use a Monte Carlo simulation to document the bias in ITE, the relative efficiency

of ITE and CITE, and the finite sample performance of the inference procedures.

We use a data generating process in which all building blocks follow a normal distri-

bution, are mutually independent, and are independent across i. For the heterogeneity

equation, we let Hi „ N p1, 1q, εi „ N p0, σεq, and βi “ κHi ` εi. For the outcome

equation, we omit Z, and construct Xit as follows:

ψit „ N p0, σxq, λt „ N p0, σlq,

Xit “ p1` ψitqp1`∆ˆ εitqp1` λtq.

The parameter ∆ controls the amount of correlation between Xit and εit. Values of ∆

away from zero favor CITE because they create a correlation between X and unobserved

effect heterogeneity ε (see Section 4.2). λt creates common time trends for all panel

units. Finally, we generate Uit „ N p0, σuq, αi „ N p0, σaq, and compute Yit “ αi `

Xitβi ` Uit.

All σ parameters default to 1. We will vary the number of time periods T and the

number of cross-section units n, as well as the value of the interaction term coefficient

κ and other design parameters.

6.1 The bias in ITE

We start with the design outlined above, with n “ 100, T “ 5, and κ “ 0.5. Figure

1a plots the mean of ITE and CITE across 10000 simulations, as a function of ∆ P

r´0.3, 0.3s. At ∆ “ 0, there is no endogeneity bias in the ITE, and both estimators
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for κ have a mean of 0.5. For any ∆ ‰ 0, the ITE is biased, whereas the mean CITE

remains at 0.5. The bias in the ITE can be severe.

Figure 1b plots the mean of ITE and CITE as a function of κ P r´0.5, 0.5s at

∆ “ 0.4. An unbiased estimator should follow the 45-degree diagonal, which is achieved

by CITE. Conversely, the bias in ITE is substantial (« 0.3) and does not change much

when varying κ. The shaded area corresponds to values of κ where the mean of ITE

has the opposite sign of κ.

(a) Means as a function of ∆ (true κ=0.5). (b) Means as a function of κ.

Figure 1: Mean of ITE and CITE.

6.2 Relative efficiency

Next, we compare the variability of ITE and CITE. We continue using n “ 100, set

∆ “ 0 (otherwise ITE is biased), and set κ “ 0 (results for other values are comparable).

We will vary T P t3, ¨ ¨ ¨ , 8u. In our baseliness results, the σ parameters are at 1. We

will consider the effect of changing them on the relative efficiency of ITE and CITE as

a function of T .

Figure 2a presents the baseline results. At T “ 3, the ITE is more efficient than

CITE. At T ą 3, the CITE has a lower standard deviation. Figures 2b–2f document

that the profiles shift as we vary the values of σ. For example, an increase in effect

heterogeneity σε favors the CITE. For example, at σε “ 0.1 (Figure 2e), ITE is more effi-

cient than CITE over the entire plotted range. Conversely, for σε “ 2, CITE dominates

ITE over T (Figure 2c).

Across all designs, the variability of both estimators decreases with T . The relative

efficiency of the two estimators depends on the design, and there is no clear ranking
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that holds across all designs. Our main takeaway is that there is no clear penalty for

using CITE to protect against bias.

6.3 Inference

In Section 5, we established simple inference procedures for ITE and CITE: use cluster-

robust standard errors for ITE, and use heteroskedasticity-robust standard errors in

the second step of CITE.

In both cases, the asymptotic distribution theory is standard, and standardized test

statistics are asymptotically standard normal. Figure 3 plots the density estimates of

the standardized test statistics across 100000 simulations in a design with n “ 1000,

T “ 20, κ “ 0.5, ∆ “ 0, and all σ parameters equal to 1. The dashed line is the

pdf of a standard normal distribution. The dashed line is barely visible in the plot,

because the distribution of t´statistics of both ITE and CITE are right on top. For

the same design, Figure 3b plots the density estimates of ITE and CITE. They appear

bell-shaped, with CITE less variable than ITE. In conclusion, the results in Figure 3

are in line with the asymptotic theory.

Figure 4 provides further evidence on the asymptotic validity of our inferential

procedure. We plot the rejection frequencies for H0 : κ0 “ 0.5, varying κ in the data

generating process along the horizontal axis. Both panels use 100000 simulations, and

a nominal level of α “ 0.05 (indicated as a dashed horizontal line). Figure 4a presents

results for a design with n “ 100, T “ 8, ∆ “ 0, and all σ parameters equal to 1. In

this design, ITE is consistent. At κ “ 0.5, rejection frequencies are close to the nominal

level of 0.05 for both estimators. Rejection frequences away from κ “ 0.5 are better

for CITE: an incorrect null hypothesis is more frequently rejected. Figure 4b presents

results for a design with n “ 500, T “ 8, ∆ “ 0.3, and all σ parameters equal to 1.

In this design, the ITE curve is shifted left due to the bias in ITE under this design.

Compared to the left panel, due to the increased sample size, the CITE curve is steeper

around 0.5, and the rejection frequency at κ “ 0.5 is very close to α.
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(a) Baseline, all σ “ 1 (b) σu “ 2

(c) σε “ 2 (d) σx “ 2

(e) σε “ 0.1 (f) σε “ 0.5

Figure 2: The relative efficiency of CITE versus ITE changes depending on the design,
and depends on T .
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(a) Distribution of t-values. (b) Distribution of ITE and CITE.

Figure 3: Validity of inference.

(a) n “ 100 and ∆ “ 0. (b) n “ 500 and ∆ “ 0.3.

Figure 4: Rejection frequencies for ITE and CITE.
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7 What does the relation between robots and em-

ployment depend on?

The relationship between robots and employment has attracted considerable attention

over recent years. Jurat, Klump, and Schneider (2023); Mondolo (2022), and Restrepo

(2024) survey this literature, which is highly relevant beyond academia: a solid knowl-

edge about the labor market consequences of technical change helps us understand

whose jobs may be automated, and to design targeted policies.

Yet, the empirical evidence on the robot-employment nexus is mixed to date. A

meta-analysis by Guarascio, Piccirillo, and Reljic (2024) summarizes 33 studies with

644 estimates and finds considerable variation across studies and estimates, with a very

small average negative relationship between robotization and employment. Within this

literature, our application is related to cross-country industry level studies in the spirit

of Graetz and Michaels (2018) and de Vries, Gentile, Miroudot, and Wacker (2020).

One possible reason for the mixed findings about the robot-employment relationship

is cross-country heterogeneity, as suggested by previous empirical results by Reljic, Cir-

illo, and Guarascio (2023) and Chen and Frey (2024), for example. Such heterogeneity

is highly plausible on theoretical grounds. Consider the seminal partial equilibrium

model of Acemoglu and Restrepo (2020), where employment L in industry t and region

i is affected by robotization R through three channels: a negative labor displacement

effect of robotization technology, a positive demand effect reflecting the productivity

gains from robotization, and a composition effect, which captures that industries that

robotize require more (non-automated) labor from non-expanding sectors. Formally,

those three channels are captured in their equation:

∆ lnLit
∆ lnRit

“ ´
∆θt

1´ θt
looomooon

displacement

`
1

α
∆ lnYi

looomooon

demand

´pσ `
1

α
´ 1q∆ lnPX

it
looooooooooomooooooooooon

other

, (9)

where θt is a technology parameter indicating the range of tasks that can be auto-

mated (i.e., performed by robots), Yc is output, σ ą 0 is the elasticity of substitution

(between goods of different industries) and Pit is the output price of industry t in i, and

1 ´ α is the share of non-robot capital in the production process.10 Those effects may

10Acemoglu and Restrepo (2020) estimate a reduced-form version of equation (9) for US commuting
zones i but their theoretical model is more general and can be applied across countries i. Note that our
subscript t here indexes industries, not time periods. An earlier working paper version of our paper
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operate into opposing directions and cause marginal effect heterogeneity. Heterogeneity

across industries is thoroughly documented by Bekhtiar, Bittschi, and Sellner (2024),

while our application focuses on heterogeneity across countries.

We focus on two key candidates for effect heterogeneity across countries in the robot-

employment relationship, which arise from the partial equilibrium model by Acemoglu

and Restrepo (2020): income p.c. levels and demand effects. The demand effect is

straightforward and reflected in the second right-hand side term of equation (9). The

importance of the income p.c. level for the robot-employment relationship arises from

the fact that Acemoglu and Restrepo (2020) assume the technology parameter θ to

be homogeneous across i, which is plausible for US commuting zones but not across

countries. Moreover, θ captures whether a task can technically be automated. Whether

this is economically profitable depends on the cost savings from using robots (πi in

Acemoglu & Restrepo, 2020, who for simplicity assume πi ą 0 @i). The cost-savings

aspect unambiguously calls for a more negative effect of robotization on employment

in higher-income countries: cost-saving potential πi positively depends on wage levels,

which are higher in high-income countries.

The remainder of this section hence explores how income p.c. and its changes,

reflecting demand effects, alter the robot-employment relationship. We will abstract

from other factors that may give rise the cross-country effect heterogeneity in the robot-

employment nexus for the sake of providing a traceable and instructive illustration of

the performance of CITE and ITE in a relevant applications with plausible interac-

tion term effects. Code documentation is available on the authors’ GitHub repository

(https://github.com/KMWacker/CITErobots).

Regression setup: ITE vs. CITE

In cross-country industry-level studies, the relationship between labor market outcomes

L and robots is typically estimated as a long-run first-difference equation (e.g., Bekhtiar

et al., 2024; de Vries et al., 2020; Graetz & Michaels, 2018):

∆ lnLit “ β∆Robotsit ` ai ` εit. (10)

The inclusion of country-specific fixed effects ai is convenient for isolating country-

(Muris & Wacker, 2022) contains a textbook application from (Stock & Watson, 2015) that illustrates
how ITE and CITE can differ in a standard panel setting with t indexing time periods.

21



specific employment trends that are associated with robots. To capture the effect

heterogeneity suggested above, we interact ∆Robots with the relevant interaction terms

H1 (income levels) and H2 (demand changes) in an ITE settting:

∆ lnLit “ β∆Robotsit `
K
ÿ

k“1

κk∆Robotsit ¨Hk,i ` ai ` νit, (11)

where our (up to) K “ 2 interaction terms are country-specific income p.c. levels and

demand changes. Recall that β in this framework corresponds to κ0 in the context of

CITE.

The standard ITE approach consists in estimating equation (11) through least

squares (augmented with dummy variables αi). As thoroughly discussed in Section

4, this requires strong exogeneity assumptions for consistent estimation of the interac-

tion term coefficients κ1, κ2. In particular, we may be concerned about two cases that

give rise to a correlation between the error term u and the regressors.

One reason for concern is the behaviour of estimators in the presence of omitted

interaction variables. Changes in demand H2i are likely correlated with income levels

H1i and both may give rise to effect heterogeneity, leading to a bias in κ̂ if one of them

is omitted. We will hence assess to what extent it matters for ITE and CITE if κ1H1

and κ2H2 are jointly or individually included to gauge how both estimators behave in

the presence of potentially omitted interaction variables.

A second reason for concern is more fundamental and concerns unobservable effect

heterogeneity. For example, robots are frequently used for manual routine work in many

industries, like health care. Patients, or clients more generally, in more technology-

minded countries may be more open to being supported by robots. This gives rise to

a higher worker substitutability, implying that the relationship between employment

and robots is more negative in tech-minded countries. Tech-mindedness, which is not

directly observable, will hence enter the error term u in our ITE regression equation (11)

(through Xitεi in our general notation, see eq. (2)-(3)). Since tech-mindedness plausibly

gives rise to higher robotization in the first place, the error term u and ∆Robots will be

positively correlated in equation (11), which is a clear violation of the ITE exogeneity

assumption (see Section 4.2).

Conversely, CITE explicitly models such country-specific effects. In the context of

our application, CITE consists in first estimating the unit-specific parameters βi for

each individual country i through the outcome equation:
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∆ lnLit “ βi∆Robotsit ` ai ` uit, (12)

and subsequently exploring their relationship with country-specific income p.c. levels

H1 and demand changes H2 by running the heterogeneity equation:

pβi “ κ0 ` κ1H1i ` κ2H2i ` εi. (13)

Both approaches, ITE and CITE, allow us to investigate if previous empirical stud-

ies have omitted an essential factor how robots influence labor market outcomes and

facilitate a comparison of the performances of ITE and CITE.

It is important to recall that CITE absorbs all country-specific effect heterogeneity

in the robot-employment relation in βi, while ITE only allows for heterogeneity in

the modeled interation terms. Furthermore, note that equations (10) - (12) are long-

run first-difference equations, which means that industry fixed effects are “differenced

away” and that our subscript t now indexes industries, not time periods, to illustrate the

applicability of CITE in various panel setups. A standard textbook panel application

(as well as a higher-dimensional panel application) can be found in an earlier working

paper version of our paper (Muris & Wacker, 2022).

Data

We use data from 15 manufacturing industries across 35 countries that is explained in

full detail in Dijkstra and Wacker (2025). Robot stocks are calculated from IFR data

(International Federabtion of Robotics) with a perpetual inventory method and divided

by thousands of employees in the respective industry (from OECD TiM, see below). As

suggested by Graetz and Michaels (2018), using raw or log changes in this robot density

is not recommendable because of very low (or zero) starting values in the mid-2000s. We

hence follow their recommendation to construct percentiles of (employment-weighted)

changes in the robot stock.

For employment numbers, we rely on the 2023 edition of OECD’s Trade in Employ-

ment (TiM) database (variable EMPN). Additionally, we merge the country-specific log

of gross domestic product per capita, ln GDP p.c. (rgdpo/emp), from the Penn World

Tables 10.0 (Feenstra, Inklaar, & Timmer, 2015), which captures income levels across

countries and, in first differences, demand changes. Those are our interaction variables

H1, H2, as suggested by the first two right-hand side terms of equation (9).
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For ∆ lnL and ∆Robots, we construct 10-year changes comparing the 2014-2018

averages to 2004-2008 averages.11 For ln GDP p.c. we take country-specific averages

over the 2004-2018 period. For changes in demand, we construct changes in ln GDP

p.c. between the 2014-2018 and 2004-2008 averages (divided by 10 to obtain annual

approximations). Further details on the data construction can be inferred from the

code in the associated GitHub repository ‘CITErobots’.

Table 1: Summary Statistics

N mean sd min max
∆ ln L -0.113 0.288 -1.39 0.92
∆ Robots 0.500 0.290 0.00 1.00
ln GDP p.c. 11.165 0.438 9.77 11.94
∆ demand 0.018 0.016 -0.01 0.06
Observations 509

Figure 5: Changes in employment and robotization
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Table 1 reports the summary statistics of our sample, while Figure 5 plots our

key variables ∆ lnL and ∆Robots in a scatter that differentiates between lower- and

11Comparing 10-year changes is standard in this literature. We construct 5-year averages at the
start- and end-point to avoid year-specific variation in key variables (e.g., due to the global financial
crisis in 2008).

24



higher-income countries. A number of features is worth highlighting. First, employment

declines, on average (unweighted), with considerable heterogeneity: the standard devi-

ation is more than double the mean. Second, since ∆Robots is constructed as percentile

change, it ranges from 0 to 1 by construction, with a mean and IQR of 0.5. GDP p.c.

is rather high, reflecting that most of our sample countries are high-income. Its rather

low standard deviation reflects that this variable does not vary in the t dimension of

our panel (i.e., across industries of the same country). Figure 5 separately illustrates

countries at or above the ln GDP p.c. average (blue color) and those below average

ln GDP p.c. (black). Third, there is some negative correlation between ∆Robots and

ln GDP p.c., although this is not obviously visible from Figure 5. Their correlation

coefficient is -0.10 (not reported) and averages of ∆Robots are slightly higher for lower-

income countries than for higher-income countries (0.54 vs. 0.47). Fourth, Figure 5

suggests a positive descriptive correlation between ∆ lnL and ∆Robots in lower-income

countries (dashed black line) and no correlation in higher-income countries (solid blue

line), which our estimation will explore more thoroughly. Fifth, the sample is slightly

unbalanced (with 509 observations), reflecting missing values in 1-4 industries across

9 sample countries. Finally, it is worth noticing that changes in demand are close to

the historic average GDP growth rate of 2% per annum documented in Pritchett and

Summers (2014) and negatively correlated with ln GDP p.c. (-0.64, not reported), con-

sistent with the idea of unconditional convergence (Patel, Sandefur, & Subramanian,

2021).

Note that our third and fourth observation, taken together and at face value, may

constitute a problem for ITE if an interaction of ∆Robots with ln GDP p.c. is omitted:

X (∆Robots) is plausibly correlated with the error term ε in the heterogeneity equation

(3). This violates the required Assumption 8 for consistency of ITE and is likely on

economic grounds: richer countries may exhibit certain features that simultaneously

affect robotization and the robot-employment nexus.

Results

Table 2 summarizes our regression results, with ITE in the upper panel A and CITE

in the lower panel B. We start with a simple linear regression of ∆ lnL on ∆Robots

as a baseline in column (1), which facilitates comparison to the literature. In our

(manufacturing) sample, there seems to be an overall positive relationship between

industries’ robotization and employment changes.

25



Table 2: Regression results

(1) (2) (3) (4)
∆ ln L ∆ ln L ∆ ln L ∆ ln L

Panel A: ITE results

∆ Robots 0.125*** 5.267*** -0.008 4.053**
(0.05) (1.73) (0.06) (1.97)

∆ Robots ˆ ln GDP p.c. -0.454*** -0.352**
(0.15) (0.17)

∆ Robots ˆ ∆ demand 10.475*** 4.527
(3.77) (5.03)

Country FEs yes yes yes yes
r2 0.308 0.326 0.320 0.327
N 509 509 509 509

Panel B: CITE results

∆ Robots 0.449** 13.098* 0.214 16.380*
(0.18) (7.33) (0.16) (9.36)

∆ Robots ˆ ln GDP p.c. -1.133* -1.408*
(0.65) (0.81)

∆ Robots ˆ ∆ demand 13.271 -11.892
(9.60) (14.99)

Country FEs yes yes yes yes
r2 (second stage) N/A 0.209 0.037 0.226
N 35 35 35 35

* pă0.1, ** pă0.05, *** pă0.01

In column (2) of Table 2, we allow this relationship to vary with the interaction term

for income levels (ln GDP p.c., H1). In line with the above theoretical considerations

(and already suggested by Figure 5), we find a negative interaction term coefficient

κ̂1: the higher a country’s income p.c. (and hence wage) level, the less favorable

employment outcomes are associated with robotization. We will revert to the estimated

marginal effects (which are graphically depicted in Figure 6) below but highlight a

higher (absoulte) interaction term coefficient estimate for CITE, compared to ITE.

Both estimators are relatively precise (interaction term standard errors ă 1.7 ˆ |κ̂1|),

especially ITE.

In column (3) of Table 2, we explore the hypthesis that heterogeneities in the robot-
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employment nexus are driven by demand changesH2. Consistent with theory both point

estimates of the interaction term coefficient suggest a more positive association between

robotization and employment growth the more aggregate demand increases in a country.

However, ITE would leave the researcher highly confident in this specification that the

partial effect between robots and employment linearly depends on demand effects. The

associated ITE p-value ă 0.01 in column (3) suggests that the data are quite compatible

with the specified interaction model, while CITE inference raises considerably more

caution. Also notice the low R squared of the second stage CITE projection in column

(3).

Column (4), which includes both interaction terms, illustrates that the demand

channel identified in column (3) is most likely due to an omitted variable bias. Recall

that demand changes and income p.c. levels are inversely correlated across countries

(-0.64): richer countries experience lower increases in demand. The interaction term

∆Robotsˆ∆demand in column (3) hence captures all cross-country heterogeniety that

is correlated with demand changes, including substantial heterogeneity due to income

p.c. levels. It is, of course, highly likely that ∆demand (and ln GDP p.c.) are correlated

with other sources of effect heterogeneity in the robot-employment nexus.12 As we know

from our Monte Carlo inference simulations, ITE’s rejection probabilities for t-tests of

a null hypothesis about the interaction term coefficient can be highly distorted in this

case. The stark ITE-related differences in p-values for such rejections when moving from

column (3) to column (4) in panel A of Table 2 should be a warning signal for applied

researchers that inference of standard ITE may be highly susceptible and misleading.

Marginal effects

The results in Table 2 suggest that cross-country heterogeneity in the robot-employment

relationship is to a significant degree driven by differences in income per capita (and

associated wage) levels. Column (2) of panel B suggests that 21% of cross-country

heterogeneity can be explained by variation of ln GDP p.c. (see also Figure 6).

How much of a difference does the income level make for employment effects of

robotization?13 And how would that estimated marginal effect vary between ITE and

CITE? Figure 6 is instructive for answering this question. Let us consider income levels

12Likewise, it is plausible that our measure for demand changes is erroneous – which substantiates
our point that ITE inference in column (3) of panel A in Table 2 is problematic.

13In this section, we treat the estimated relationship as an ‘effect’, well-aware that other sources of
endogeneity may pose challenges to a causal interpretation.
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Figure 6: Marginal effects of robots on employment
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of ln GDP p.c. = (10.5, 11.4, 11.7). In our sample, the former corresponds to Bulgaria,

which is at the lower end of new European Union member states and a plausible level

for various middle-upper income countries (e.g., between Colombia and Chile). The

second corresponds to Germany, the latter to the United States. Recall that an overall

regression with no interaction effects would suggest a positive relationship equal to 0.13

in either case (red line in Figure 6 and column (1) in panel A of Table 2).

Considering a difference in robotization rates of ∆Robots “ 0.5 and estimates from

column (2) of Table 2, ITE suggests an associated employment increase of 25% over

a decade, for a country at a ln GDP level of 10.5.14 The magnitude is much larger

with CITE, 60%, and Figure 6 suggests that it more plausibly captures the estimated

country-specific coefficients for various upper-middle income countries, while ITE seems

heavily impacted by the low country-specific estimate of China, the lowest-income coun-

try in our sample.

For a ln GDP p.c. level of 11.4 (approximately Germany), the estimated marginal

effects of CITE (9.1%) and ITE (4.6%) are both positive and relatively close to the

14Recall that ∆Robots is constructed as percentile changes, ranging from 0 to 1. The IQR of
∆Robots “ 0.5 hence compares the 25th percentile of robot adoption to the 75th percentile of robot
adoption. Estimated marginal effect: 0.5 ¨ pκ̂0 ` κ̂1 lnGDPp.c.q.
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magnitude without interaction effect (6% “ 0.5 ¨ 0.13, cf. column (1) panel A of Table

2). For a ln GDP p.c. level of 11.7 (approximately US), the estimated marginal effects

are negative, and stronger for CITE (-7.9%) than for ITE (-2.2%). Considering that

CITE is consistent under milder assumptions than ITE, our results suggest that ITE

and homogeneous estimation without interaction terms both underestimate the negative

effects of robotization for manufacturing employment in countries at the highest income

levels in the sample (ln GDP p.c. ą 11.57; Ireland, Norway, Switzerland, United States).

If income (and associated wage) levels are indeed a main source of robot-employment

effect heterogeneity, this may reconcile conflicting country level evidence in the litera-

ture. For example, Acemoglu and Restrepo (2020), find negative consequences of robot

exposure on regional labor markets in the US, while Dauth, Findeisen, Suedekum, and

Woessner (2021) find no such aggregate employment effects for Germany, despite using

a similar approach. This is quite consistent with our quantitative estimates about effect

heterogeneity due to income differences across countries (especially when considering

differences in sample coverage and methodologies).

CITE, of course, provides country-specific estimates of the robot-employment re-

lationship, as they are illustrated in Figure 6. The reason why we do not consider

those country-specific estimates for our marginal effect calculations is that they suffer

from incidental parameter bias. The purpose of our paper is to estimate interaction

terms in exactly such a short-T panel, where country-specific estimation is no option,

and we have shown that CITE offers a consistent projection of those (individually bi-

ased) panel unit estimates on the interaction variable of interest. We hence consider

marginal effects of a random country at an income level like, e.g., Bulgaria, rather than

a Bulgaria-specific coefficient. Applied analysts working on specific countries may be

willing to accept the incidental parameter bias in country-specific estimates, but this is

not the purpose of our paper.

Application takeaways

An important insight of our analysis for the literature on employment effects of roboti-

zation is that economic displacement effects of robots are plausibly stronger in countries

at higher income levels, where wages are usually higher. Econometrically, our appli-

cation suggests that this income-interaction effect is underestimated by standard ITE

and that ITE may lead to premature rejection of a null hypothesis about an interaction

term in the presence of misspecification (e.g., when another relevant interaction term
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is omitted).

Our application results, and particularly Figure 6, also highlight why CITE is at-

tractive for applied econometricians. Because unit-specific coefficients are estimated

in a first step and then further analyzed in a second step (through projection on the

relevant interaction variables H), this offers a lot of flexibility and diagnostics tools in

the second step.15

8 Conclusion

Our paper has highlighted that the most common approach to estimate interaction

effects with panel data neglects residual heterogeneity in the effect of X on Y across

panel units. If this unobserved effect heterogeneity is systematically correlated with

explanatory variables in the model, which is plausible in most econometric applications,

this standard approach will not provide consistent estimates of the interaction effects.

We advocate for explicit modeling of effect heterogeneity across panel units with a

correlated interaction term estimator (CITE) that requires less demanding exogeneity

assumptions for consistency. Those findings are irrespective of whether interaction

variables are constant within panels or not.

Our argument in favor of CITE resembles the case for additive fixed effects in

linear panel data models. While additive fixed effects explicitly capture unobserved

heterogeneity in unit-specific levels of Y , CITE explicitly models the effect heterogeneity

βi that most common panel interaction estimates do not account for.

Our paper has focused on the comparison of ITE and CITE for the estimation of

interaction effects in panel data. Two alternative approaches that are sometimes used

in empirical practice are (i) subgroup analysis – in which one conducts the analysis

conditional on every value of the interaction variable (e.g. Chetty, Hendren, and Katz

(2016)) – and (ii) saturating the heterogeneity model and then running ITE (e.g., Norris,

Pecenco, and Weaver (2021)). Either approach may bridge the gap between ITE and

CITE. Although such approaches may work well when the interaction variables are

discrete, they are not feasible or practical for continuous interaction variables. It would

15For example, one may speculate to what extent Bulgaria, Colombia, China, and Chile are outliers.
Indeed, those countries surpass a critical value for ‘Cook’s distance’ and when they are excluded from
the analysis, we obtain ITE and CITE interaction coefficients for ln GDP p.c. of -0.58 and -0.59
(significant at the 1 and 10% level), respectively, which are very close to each other and fall between
the point estimates reported in column (2) of Table 6.
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be interesting to extend our analysis to include a comparison with these alternative

approaches.

An obvious extension of our research is to derive a test statistic for consistency of ITE

when compared to CITE. Until such a test becomes available, we strongly recommend

the use of CITE or at least reporting CITE results next to ITE results. Given the

simple implementation of CITE, this should become standard in applied econometrics

when estimating interaction terms in panel data.16

An additional advantage of CITE, beyond its less restrictive exogeneity assumptions,

is that the unit-specific effect heterogeneity captured in βi can provide further insights

about sources of heterogeneity in panel data. Recent advances in machine learning

appear particularly promising to further explore those first-step CITE estimates of

unit-specific effects.

16If one is interested in interactions with varying variables G, it is sufficient to additionally include
an interaction of the X variable(s) with panel dummy variables. If one is interested in interactions
with H variables that are constant within panels, those panel specific estimates from the first step
need to be saved and regressed on the H variables in a second step. An adjustment of standard errors
is necessary to account for first-step estimation.
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S loczyński, T. (2022). Interpreting OLS Estimands When Treatment Effects Are Het-

erogeneous: Smaller Groups Get Larger Weights. The Review of Economics and

Statistics , 104 (3), 501–509.

Spilimbergo, A. (2009). Democracy and Foreign Education. American Economic

Review , 99 (1), 528–543.

Stock, J. H., & Watson, M. W. (2015). Introduction to econometrics (Updated third

edition, global edition ed.). Boston Columbus Indianapolis New York San Fran-

cisco Hoboken Amsterdam Cape Town Dubai London: Pearson.

Storeygard, A. (2016). Farther on down the Road: Transport Costs, Trade and Urban

Growth in Sub-Saharan Africa. Review of Economic Studies , 83 (3), 1263–1295.

Verdier, V. (2020). Average treatment effects for stayers with correlated random

coefficient models of panel data. Journal of Applied Econometrics , 35 (7), 917–

939.

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and

a Direct Test for Heteroskedasticity. Econometrica, 48 (4), 817.

Winkelmann, R. (2024). Neglected Heterogeneity, Simpson’s Paradox, and the Anatomy

of Least Squares. Journal of Econometric Methods , 13 (1), 131–144.

Wooldridge, J. M. (2005, May). Fixed-Effects and Related Estimators for Correlated

Random-Coefficient and Treatment-Effect Panel Data Models. The Review of

Economics and Statistics , 87 (2), 385–390. doi: 10.1162/0034653053970320

35



A Proof of Theorem 1

Proof. Part (i): Consistency of pγn. CITE for γ is the coefficient estimate in a linear

regression of Mi
rYi on Mi

rZi, corresponding to

Mi
rYi “Mi

rZiγ `Mi
rUi.

It follows that

pγn ´ γ “

˜

řn
i“1

rZ 1iMi
rZi

n

¸´1
řn
i“1

rZ 1iMi
rUi

n
.

The boundedness assumptions in the statement of the theorem, and the fact that the

residual maker matrices Mi and the linear transformation Yi Ñ rYi have bounded norm,

imply that Er rZ 1iMi
rZis and Er rZ 1iMi

rUis are bounded. Thus, the weak law of large num-

bers (WLLN) for random vectors ensures that both terms converge to their expecta-

tions. Because Er rZ 1iMi
rZis is invertible by Assumption 3, it only remains to be shown

that E
´

rZ 1iMi
rUi

¯

“ 0. Assumption 6 implies E
´

rUi

ˇ

ˇ

ˇ

rXi, rZi

¯

“ 0. By the law of iterated

expectations, E
´

rZ 1iMi
rUi

¯

“ 0, since Mi is a transformation of rXi.

Part (ii): Consistency of pκn.

The CITE for κ, cf. Definition 2, has the representation

pκn “

˜

n
ÿ

i“1

H 1
iHi

¸´1 n
ÿ

i“1

H 1
i
pβi

“

˜

n
ÿ

i“1

H 1
iHi

¸´1 n
ÿ

i“1

H 1
iβi `

˜

n
ÿ

i“1

H
1

iHi

¸´1 n
ÿ

i“1

H 1
i

´

pβi ´ βi

¯

.

Because the second moments of H and β are assumed bounded in the statement of the

theorem, and Assumption 4 guarantees invertibility of ErH 1Hs, the WLLN applied to

the first term yields κ by Assumption 7.

If we can show that the second term converges to zero in probability, we have

established consistency of pκn to κ. Recall the individual specific effects estimators

pβi “
´

rX 1
i
rXi

¯´1
rX 1
i

´

rYi ´ rZipγn

¯

“

´

rX 1
i
rXi

¯´1
rX 1
i

´

rXiβi ` rZi pγ ´ pγnq ` rUi

¯

,
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where the last step uses (6). Thus, we can write

pβi ´ βi “
´

rX 1
i
rXi

¯´1
rX 1
i
rZi pγ ´ pγnq `

´

rX 1
i
rXi

¯´1
rX 1
i
rUi.

This allows us to write

pκn ´ κ “

˜

n
ÿ

i“1

H 1
iHi

¸´1 n
ÿ

i“1

H 1
i

´

pβi ´ βi

¯

“

˜

n
ÿ

i“1

H
1

iHi

¸´1 « n
ÿ

i“1

H 1
ip
rX 1
i
rX 1
iq
´1

rX 1
i
rZi

ff

pγ ´ pγnq`

`

˜

n
ÿ

i“1

H
1

iHi

¸´1 n
ÿ

i“1

H 1
ip
rX 1
i
rX 1
iq
´1

rX 1
i
rUi

” A1n ` A2n.

Assumption 2 ensures that p rX 1
i
rX 1
iq
´1 ď 1

h2
uniformly over i, so the term can be ignored

in the analysis of A1n and A2n. Applying Cauchy-Schwartz twice to each term, and

using: boundedness of the second moments of H; boundedness of the fourth moments

of rX and rZ; that pγn
p
Ñ γ from part (i); and that ErH 1

i
rX 1
i
rUis from Assumption 6, we

conclude that A1n and A2n converge in probability to zero.
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