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Abstract

We propose a modal logic based on three operators, representing intial
beliefs, information and revised beliefs. Three simple axioms are used
to provide a sound and complete axiomatization of the qualitative part
of Bayes’ rule. Some theorems of this logic are derived concerning the
interaction between current beliefs and future beliefs. Information flows
and iterated revision are also discussed.

1 Introduction

The notions of static belief and of belief revision have been extensively studied
in the literature. However, there is a surprising lack of uniformity in the two
approaches. In the philosophy and logic literature, starting with Hintikka’s
[20] seminal contribution, the notion of static belief has been studied mainly
within the context of modal logic. On the syntactic side a belief operator B is
introduced, with the intended interpretation of Bφ as “the individual believes
that φ”. Various properties of beliefs are then expressed by means of axioms,
such as the positive introspection axiom Bφ → BBφ, which says that if the
individual believes φ then she believes that she believes φ. On the semantic side
Kripke structures (Kripke [26]) are used, consisting of a set of states (or possible
worlds) Ω together with a binary relation B on Ω, with the interpretation of
αBβ as “at state α the individual considers state β possible”. The connection
between syntax and semantics is then obtained by means of a valuation V which
associates with every atomic sentence p the set of states where p is true. The
pair hΩ,Bi is called a frame and the addition of a valuation V to a frame yields
a model. Rules are given for determining the truth of an arbitrary formula at

∗I am grateful to two anonymous reviewers for helpful and constructive comments. A first
draft of this paper was presented at the Sixth Conference on Logic and the Foundations of
Game and Decision Theory (LOFT6), Leipzig, July 2004.
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every state of a model; in particular, the formula Bφ is true at state α if and
only if φ is true at every β such that αBβ, that is, if φ is true at every state that
the individual considers possible at α. A property of the accessibility relation
B is said to correspond to an axiom if every instance of the axiom is true at
every state of every model based on a frame that satisfies the property and vice
versa. For example, the positive introspection axiom Bφ → BBφ corresponds
to transitivity of the relation B. This combined syntactic-semantic approach has
turned out to be very useful. The syntax allows one to state properties of beliefs
in a clear and transparent way, while the semantic approach is particularly
useful in reasoning about complex issues, such as the implications of rationality
in interactive situations.1

The theory of belief revision (known as the AGM theory due to the seminal
work of Alchourron et al [1]), on the other hand, has followed a different path.2

In this literature beliefs are modeled as sets of formulas in a given syntactic
language and the problem that has been studied is how a belief set ought to be
modified when new information, represented by a formula φ, becomes available.
With a few exceptions (see Section 4), the tools of modal logic have not been
explicitly employed in the analysis of belief revision.
In the economics and game theory literature, it is standard to represent

beliefs by means of a probability measure over a set of states Ω and belief
revision is modeled using Bayes’ rule. Let P0 be the prior probability measure
representing the initial beliefs, E ⊆ Ω an event representing new information
and P1 the posterior probability measure representing the revised beliefs. Bayes’

rule says that, if P0(E) > 0, then, for every event A, P1(A) =
P0(A∩E)
P0(E)

. Bayes’

rule thus implies the following, which we call the Qualitative Bayes Rule:

if supp(P0) ∩E 6= ∅, then supp(P1) = supp(P0) ∩E.
where supp(P ) denotes the support of the probability measure P .3

In this paper we propose a unifying framework for static beliefs and belief
revision by bringing belief revision under the umbrella of modal logic and by
providing an axiomatization of the Qualitative Bayes Rule in a simple logic
based on three modal operators: B0, B1 and I, whose intended interpretation
is as follows:

B0φ initially (at time 0) the individual believes that φ
Iφ (between time 0 and time 1) the individual is informed that φ
B1φ at time 1 (after revising his beliefs in light of the

information received) the individual believes that φ.

Semantically, it is clear that the Qualitative Bayes Rule embodies the conser-
vativity principle for belief revision, according to which “When changing beliefs

1For extensive surveys of the role of beliefs and rationality in game theory see Dekel and
Gul [10], Battigalli and Bonanno [4] and vand der Hoek and Pauly [22].

2For an extensive overview see Gärdenfors [16].
3There is an ongoing debate in the philosophical literature as to whether or not Bayes’ rule

is a requirement of rationality: see, for example, Brown [8], Jeffrey [24], Howson and Urbach
[23], Maher [29] and Teller [32].
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in response to new evidence, you should continue to believe as many of the
old beliefs as possible” (Harman [19], p. 46). The set of all the propositions
that the individual believes corresponds to the set of states that she considers
possible (in a probabilistic setting a state is considered possible if it is assigned
positive probability). The conservativity principle requires that, if the individ-
ual considers a state possible and her new information does not exclude this
state, then she continue to consider it possible. Furthermore, if the individual
regards a particular state as impossible, then she should continue to regard it
as impossible, unless her new information excludes all the states that she previ-
ously regarded as possible. The axiomatization we propose gives a transparent
syntactic expression to the conservativity principle.

The paper is organized as follows. In Section 2 we provide a characterization
of the Qualitative Bayes Rule in terms of three simple axioms. In Section 3
we provide a logic which is sound and complete with respect to the class of
frames that satisfy the Qualitative Bayes Rule and prove some theorems of this
logic concerning the interaction between current beliefs and future beliefs. In
section 4 we discuss the relationship between our analysis and that of closely
related papers in the literature. Section 5 examines the relationship between
our approach and the AGM approach. In Section 6 we deal with the issue of
iterated revision and Section 7 concludes.

2 Axiomatic characterization of the Qualitative
Bayes Rule

We begin with the semantics. A frame is a quadruple hΩ,B0,B1,Ii where Ω is
a set of states and B0, B1, and I are binary relations on Ω, whose interpretation
is as follows:

αB0β at state α the individual initially (at time 0) considers state β possible
αIβ at state α, state β is compatible with the information received
αB1β at state α the individual at time 1 (in light of the information

received) considers state β possible.
Let B0(ω) = {ω0 ∈ Ω : ωB0ω0} denote the set of states that, initially, the

individual considers possible at state ω. Define I(ω) and B1(ω) similarly.4 By
Qualitative Bayes Rule (QBR) we mean the following property:

∀ω ∈ Ω, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) = B0(ω) ∩ I(ω). (QBR)

Thus QBR says that if at a state the information received is consistent with the
initial beliefs − in the sense that there are states that were considered possible

4In a probabilistic setting, if P0 is the prior probability measure representing the initial
beliefs at state ω and P1 is the posterior probability measure representing the revised beliefs
at ω then B0(ω) = supp(P0) and B1(ω) = supp(P1).
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initially and are compatible with the information − then the states that are
considered possible according to the revised beliefs are precisely those states.

On the syntactic side we consider a modal propositional logic based on three
operators: B0, B1 and I whose intended interpretation is as explained in Section
1. The formal language is built in the usual way from a countable set S of
atomic propositions, the connectives ¬ (for “not”) and ∨ (for “or”) and the
modal operators.5 Thus the set Φ of formulas is defined inductively as follows:
q ∈ Φ for every atomic proposition q ∈ S, and if φ,ψ ∈ Φ then all of the
following belong to Φ: ¬φ, φ ∨ ψ, B0φ, B1φ and Iφ.

Remark 1 We have allowed Iφ to be a well-formed formula for every formula
φ. As pointed out by Friedman and Halpern [12], this may be problematic. For
example, it is not clear how one could be informed of a contradiction. Further-
more, one might want to restrict information to facts by not allowing Iφ be a
well-formed formula if φ contains any of the modal operators B0, B1 and I.6

Without that restriction, in principle we admit situations like the following: the
individual initially believes that φ and is later informed that he did not believe
that φ: B0φ ∧ I¬B0φ. It is not clear how such a situation could arise.7 How-
ever, since our results remain true - whether or not we impose the restriction
- we have chosen to follow the more general approach. The undesirable situa-
tions can then be eliminated by imposing suitable axioms, for example the axiom
B0φ→ ¬I¬B0φ, which says that if the individual initially believes that φ then it
cannot be the case that he is informed that he did not believe that φ (see Section
7 for further discussion).

The connection between syntax and semantics is given by the notion of
model. Given a frame hΩ,B0,B1,Ii, a model is obtained by adding a valuation
V : S → 2Ω (where 2Ω denotes the set of subsets of Ω, usually called events)
which associates with every atomic proposition p ∈ S the set of states at which
p is true. The truth of an arbitrary formula at a state is then defined inductively
as follows (ω |= φ denotes that formula φ is true at state ω; kφk is the truth set
of φ, that is, kφk = {ω ∈ Ω : ω |= φ}):

5See, for example, Blackburn et al [5]. The connectives ∧ (for “and”), → (for “if ... then
...”) and ↔ (for “if and only if”) are defined as usual: φ∧ψ = ¬ (¬φ ∨ ¬ψ), φ→ ψ = ¬φ∨ψ
and φ↔ ψ = (φ→ ψ) ∧ (ψ → φ) .

6In an interpersonal setting, however, information that pertains to beliefs (rather than
merely to facts) ought to be allowed, at least to the extent that the information received by
an individual be about the beliefs of another individual.

7More examples of problematic situations are: I(φ ∧ ¬B1φ) (the individual is informed
that φ and that he will not believe φ), B0φ∧ I¬B1B0φ (the individual initially believes φ and
is informed that he will forget that he did), etc.

4



if q is an atomic proposition, ω |= q if and only if ω ∈ V (q),
ω |= ¬φ if and only if ω 2 φ,
ω |= φ ∨ ψ if and only if either ω |= φ or ω |= ψ (or both),
ω |= B0φ if and only if B0(ω) ⊆ kφk,8
ω |= B1φ if and only if B1(ω) ⊆ kφk,
ω |= Iφ if and only if I(ω) = kφk .

Remark 2 Note that, while the truth conditions for B0φ and B1φ are the
standard ones, the truth condition of Iφ is unusual in that the requirement is
I(ω) = kφk rather than merely I(ω) ⊆ kφk.9

We say that a formula φ is valid in a model if ω |= φ for all ω ∈ Ω, that
is, if φ is true at every state. A formula φ is valid in a frame if it is valid in
every model based on that frame. Finally, we say that a property of frames
is characterized by (or characterizes) an axiom if (1) the axiom is valid in any
frame that satisfies the property and, conversely, (2) whenever the axiom is valid
in a frame, then the frame satisfies the property.

We now introduce three axioms that, together, provide a characterization of
the Qualitative Bayes Rule.

QUALIFIED ACCEPTANCE: (Iφ ∧ ¬B0¬φ)→ B1φ.

This axiom says that if the individual is informed that φ (Iφ) and he initially
considered φ possible (that is, it is not the case that he believed its negation:
¬B0¬φ) then he accepts φ in his revised beliefs. That is, information that is
not surprising is believed.

The next axiom says that if the individual receives non-surprising infor-
mation (i.e. information that does not contradict his initial beliefs) then he
continues to believe everything that he believed before:

PERSISTENCE: (Iφ ∧ ¬B0¬φ)→ (B0ψ → B1ψ).

The third axiom says that beliefs should be revised in a minimal way, in the
sense that no new beliefs should be added unless they are implied by the old
beliefs and the information received:

MINIMALITY: (Iφ ∧B1ψ)→ B0(φ→ ψ).

8In a probabilistic setting, where B0(ω) is the support of the probability measure repre-
senting the initial beliefs at ω, we would have that ω |= B0φ if and only if the individual
assigns probability 1 to the event kφk. Similarly for ω |= B1φ.

9The reason for this will become clear later. Intuitively, this allows us to distinguish
between the content of information and its implications.
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The Minimality axiom is not binding (that is, it is trivially satisfied) if the
information is surprising: suppose that at a state, say α, the individual is in-
formed that φ (α |= Iφ) although he initially believed that φ was not the case
(α |= B0¬φ). Then, for every formula ψ, the formula (φ→ ψ) is trivially true at
every state that the individual initially considered possible (B0(α) ⊆ kφ→ ψk)
and therefore he initially believed it (α |= B0(φ→ ψ)). Thus the axiom restricts
the new beliefs only when the information received is not surprising, that is, only
if (Iφ ∧ ¬B0¬φ) happens to be the case.
The above axioms are further discussed below. The following proposition

gives the main result of this section.

Proposition 3 The Qualitative Bayes Rule (QBR) is characterized by the con-
junction of the three axioms Qualified Acceptance, Persistence and Minimality
(that is, if a frame satisfies QBR then the three axioms are valid in it and -
conversely - if the three axioms are valid in a frame then the frame satisfies
QBR).

The proof of Proposition 3 is a corollary of the following three lemmas, which
characterize the three axioms individually.

Lemma 4 The Qualified Acceptance axiom ((Iφ ∧ ¬B0¬φ)→ B1φ) is charac-
terized by the property: ∀ω ∈ Ω, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) ⊆ I(ω).

Proof. Fix a frame where the property holds, an arbitrary model based on it,
a state ω and a formula φ such that ω |= Iφ∧¬B0¬φ. Then I(ω) = kφk . Since
ω |= ¬B0¬φ there exists a β ∈ B0(ω) such that β |= φ. Thus B0(ω) ∩ I(ω) 6= ∅
and, by the property, B1(ω) ⊆ I(ω). Hence ω |= B1φ. Conversely, fix a frame
that does not satisfy the property. Then there exists a state α such that B0(α)∩
I(α) 6= ∅ and B1(α) 6⊆ I(α), that is, there is a β ∈ B1(α) such that β /∈ I(α).
Let p be an atomic proposition and construct a model where kpk = I(α). Then
α |= Ip and, since B0(α)∩I(α) 6= ∅, α |= ¬B0¬p. Furthermore, β 2 p (because
β /∈ I(α)). Thus, since β ∈ B1(α), α 2 B1p and the axiom is falsified at α.

Note that if the truth condition for Iφ were “ω |= Iφ if and only if I(ω) ⊆
kφk” (rather than I(ω) = kφk), then Lemma 4 would not be true. The im-
plication “property violated =⇒ axiom not valid” would still be true (identical
proof). However, the implication “property holds =⇒ axiom valid” would no
longer be true, because it could happen that I(ω) is a proper subset of kφk. For
example, let Ω = {α, β, γ}, B0(α) = {α}, B0(β) = B0(γ) = {γ}, I(α) = {α},
I(β) = {β}, I(γ) = {γ}, B1(α) = B1(β) = {α} and B1(γ) = {γ}. Then the
property ∀ω, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) ⊆ I(ω) is satisfied (note, in par-
ticular, that B0(β) ∩ I(β) = ∅). Construct a model where, for some atomic
proposition p, kpk = {β, γ}. Then, under the rule I(β) ⊆ kpk, we would have
β |= Ip and β |= ¬B0¬p∧¬B1p, so that the Qualified Acceptance axiom would
be falsified at β. This frame is illustrated in Figure 1. In all the figures we
represent a binary relation R ⊆ Ω× Ω as follows: (1) if there is an arrow from
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ω to ω0 then ω0 ∈ R(ω) (i.e. ωRω0), (2) if a rounded rectangle encloses a set of
states then, for any two states ω and ω0 in that rectangle, ω0 ∈ R(ω) and (3) if
there is an arrow from a state ω to a rounded rectangle, then for any state ω0

in that rectangle, ω0 ∈ R(ω).

α β γ

The relation
B 0

The relation
B    1

The relation
I    

α β γ

¬p p p

Figure 1

Lemma 5 The Persistence axiom ((¬B0¬φ∧ Iφ)→ (B0ψ → B1ψ)) is charac-
terized by the property: ∀ω ∈ Ω, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) ⊆ B0(ω).

Proof. Fix a frame where the property holds, an arbitrary model based on
it, a state ω and formulas φ and ψ such that ω |= B0ψ ∧ ¬B0¬φ ∧ Iφ. Then
I(ω) = kφk. Since ω |= ¬B0¬φ, B0(ω) ∩ I(ω) 6= ∅. Then, by the property,
B1(ω) ⊆ B0(ω). Since ω |= B0ψ, B0(ω) ⊆ kψk. Thus ω |= B1ψ. Conversely, fix
a frame that does not satisfy the property. Then there exists a state α such that
B0(α)∩I(α) 6= ∅ and B1(α) * B0(α), that is, there exists a β ∈ B1(α) such that
β /∈ B0(α). Let p and q be atomic propositions and construct a model where
kpk = B0(α) and kqk = I(α). Then α |= B0p∧ Iq and, since B0(α)∩ I(α) 6= ∅,
α |= ¬B0¬q. Since β /∈ B0(α), β 2 p. Thus, since β ∈ B1(α), α 2 B1p. Thus the
instance of the axiom with ψ = p and φ = q is falsified at α.

Note again that with the standard validation rule for the operator I, the
above lemma would not be true. The implication “property violated =⇒ ax-
iom not valid” would still be true (identical proof). However, the implication
“property holds =⇒ axiom valid” would no longer be true. This can be seen
in the example of Figure 1 at state β with φ = ψ = p. In fact, under the rule
β |= Ip if and only if I(β) ⊆ kpk (rather than I(β) = kpk) we would have
β |= Ip and β |= B0p ∧ ¬B0¬p ∧ ¬B1p, so that the Persistence axiom would be
falsified at β, despite the fact that the frame of Figure 1 satisfies the property
that, ∀ω ∈ Ω, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) ⊆ B0(ω) (notice, in particular,
that B0(β) ∩ I(β) = ∅).
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Lemma 6 The Minimality axiom ((Iφ ∧B1ψ)→ B0(φ→ ψ)) is characterized
by the following property: ∀ω ∈ Ω, B0(ω) ∩ I(ω) ⊆ B1(ω).

Proof. Fix a frame that satisfies the property and an arbitrary model based
on it. Let α be a state and φ and ψ formulas such that α |= Iφ ∧B1ψ. Then
I(α) = kφk. By the property, B0(α) ∩ I(α) ⊆ B1(α). Since α |= B1ψ, B1(α) ⊆
kψk. Thus, for every ω ∈ B0(α) ∩ I(α), ω |= ψ and therefore ω |= φ → ψ. On
the other hand, for every ω ∈ B0(α), if ω /∈ I(α), then ω |= ¬φ and therefore
ω |= φ→ ψ. Thus B0(α) ⊆ kφ→ ψk, i.e. α |= B0(φ→ ψ).
Conversely, suppose the property is violated. Then there exists a state α

such that B0(α) ∩ I(α) * B1(α), that is, there exists a β ∈ B0(α) ∩ I(α) such
that β /∈ B1(α). Let p and q be atomic propositions and construct a model
where kpk = I(α) and kqk = B1(α). Then α |= Ip ∧ B1q. Since β ∈ I(α)
and β /∈ B1(α), β |= p ∧ ¬q, i.e. β |= ¬(p → q). Thus, since β ∈ B0(α),
α 2 B0(p→ q). Hence the axiom is falsified at α.

Once again, it can be seen from Figure 1 that under the standard validation
rule for I (ω |= Iφ if and only if I(ω) ⊆ kφk, rather than I(ω) = kφk) it is not
true that satisfaction of the property ∀ω ∈ Ω, B0(ω)∩I(ω) ⊆ B1(ω) guarantees
validity of the Minimality axiom. In fact, under the standard validation rule,
Minimality would be falsified at state β with φ = p and ψ = ¬p.
The Qualitative Bayes Rule captures the following conservativity principle

for belief revision: if the information received involves no surprises, then beliefs
should be changed in a minimal way, in the sense that all the previous beliefs
ought to be maintained and any new belief should be deducible from the old
beliefs and the information. The extreme case of “no surprise” is the case where
the individual is informed of something which he already believes. In this case
the notion of minimal change would require that there be no change at all. This
requirement is expressed by the following axiom:

NO CHANGE: (B0φ ∧ Iφ)→ (B1ψ ↔ B0ψ).

Proposition 7 Assume that initial beliefs satisfy axiom K (B0φ∧B0(φ→ ψ)→
B0ψ) and the consistency axiom D (B0φ→ ¬B0¬φ). Then the conjunction of
Persistence and Minimality implies No Change.

Proof. We give a syntactic proof (PL stands for ‘Propositional Logic’):
1. B0φ→ ¬B0¬φ Consistency of B0
2. B0φ ∧ Iφ→ ¬B0¬φ ∧ Iφ 1, PL
3. ¬B0¬φ ∧ Iφ→ (B0ψ → B1ψ) Persistence
4. B0φ ∧ Iφ→ (B0ψ → B1ψ) 2, 3, PL
5. Iφ ∧B1ψ → B0(φ→ ψ) Minimality
6. Iφ ∧B1ψ ∧B0φ→ B0(φ→ ψ) ∧B0φ 5, PL
7. B0(φ→ ψ) ∧B0φ→ B0ψ Axiom K for B0
8. Iφ ∧B0φ ∧B1ψ → B0ψ 6, 7, PL
9. Iφ ∧B0φ→ (B1ψ → B0ψ) 8, PL
10. Iφ ∧B0φ→ (B0ψ → B1ψ) ∧ (B1ψ → B0ψ) 4, 9, PL
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Note that without consistency of initial beliefs Proposition 7 is not true.10

Note also that the converse of Proposition 7 does not hold: neither Persistence
nor Minimality can be derived from No Change.11

We conclude this section with further discussion of the axioms studied above.

The relatively recent literature on dynamic epistemic logic studies how ac-
tions such as public announcements lead to revision of the interactive knowledge
of a group of individuals (for a survey see van der Hoek and Pauly [22] and van
Ditmarsch and van der Hoek [11]). One of the issues studied in this literature is
what kind of public announcements can be successful in the sense that they pro-
duce common knowledge of the announced fact. Some public announcements,
although truthful, cannot be successful. For example if individual a does not
know that p (¬Kap), the public announcement ‘p ∧ ¬Kap’, although truthful,
“leaves a with a difficult, if not impossible task to update his knowledge; it is
hard to see how to simultaneously incorporate p and ¬Kap into his knowledge”
(van der Hoek and Pauly [22], p. 23). In our approach this difficulty does not
arise, since we distinguish between initial beliefs (B0) and revised beliefs (B1).
It is therefore not problematic to be told “p is true and you did not believe it
before this announcement” (p∧¬B0p) since this fact can be truthfully incorpo-
rated into the revised beliefs. That is, the formula p ∧ ¬B0p ∧B1(p ∧ ¬B0p) is
consistent.

If the revised beliefs satisfy positive introspection, that is, if the operator
B1 satisfies the axiom B1φ→ B1B1φ, then the following axiom can be derived
from Minimality: Iφ∧B1φ→ B0(φ→ B1φ).

12 This may seem counterintuitive.
However, one cannot consistently reject this principle and at the same time
embrace Bayes’ rule for belief revision, since the former is an implication of the
latter. In fact, letting P0 be the probability measure that represents the initial
beliefs, and denoting its support by supp(P0), for every event F it is trivially
true that
10As is well known (see Chellas [9]) consistency of initial beliefs is characterized by seriality

of B0 (∀ω ∈ Ω, B0(ω) 6= ∅). If there is a state α such that B0(α) = ∅ then α |= B0ψ for
every formula ψ.
To see that without consistency of initial beliefs Proposition 7 is not true, consider the

following example. Ω = {α}, B0(α) = ∅, B1(α) = I(α) = {α}. Then, for every formula φ,
α 5 ¬B0¬φ so that Persistence is trivially valid. It is also trivially true, for every φ and ψ,
that α |= B0(φ → ψ) so that Minimality is also valid. Let p be an atomic proposition such
that α |= p. Then α |= B0p∧ Ip∧B0¬p∧¬B1¬p, so that the No Change axiom is falsified at
α with φ = p and ψ = ¬p.
11Consider the following frame: Ω = {α, β, γ}, and for every ω ∈ Ω, B0(ω) = {β, γ},

I(ω) = {ω} and B1(ω) = {α, β}. By Lemma 5, Persistence is not valid in this frame (since
B0(β) ∩ I(β) 6= ∅ and yet B1(β) - B0(β). By Lemma 6, also Minimality is not valid (since
B0(γ) ∩ I(γ) - B1(γ)). However, No Change is trivially valid in this frame. In fact, fix
an arbitrary model and an arbitrary formula φ. It is easy to see that, for every ω ∈ Ω,
ω 5 B0φ ∧ Iφ. For example, if β |= Iφ then kφk = I(β) = {β}, so that γ /∈ kφk, implying
that β 5 B0φ.
12Proof:
1. B1φ→ B1B1φ positive inrospection axiom
2. Iφ ∧B1φ→ Iφ ∧B1B1φ 1, PL
3. Iφ ∧B1B1φ→ B0(φ→ B1φ) instance of Minimality with ψ = B1φ
4. Iφ ∧B1φ→ B0(φ→ B1φ) 2,3,PL.
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supp(P0) = (supp(P0) ∩ F ) ∪ (supp(P0) ∩ ¬F ) (1)

(where ¬F denotes the complement of F ). Now, let E be an event representing
new information such that P0(E) > 0, that is, supp(P0) ∩ E 6= ∅. Let P1 be
the probability measure representing the revised beliefs obtained by applying

Bayes’ rule, so that, for every event A, P1(A) =
P0(A∩E)
P0(E)

. Then, as noted in

Section 1,

supp(P1) = supp(P0) ∩E. (2)

It follows from (1) and (2) that

supp(P0) ⊆ ¬E ∪ supp(P1) (3)

which says that for any state ω that the individual initially considers possible
(ω ∈ supp(P0)) if event E is true at ω (ω ∈ E) then he will later assign positive
probability to ω (ω ∈ supp(P1)). Since, by (2), supp(P1) ⊆ E, assigning prior
probability 1 to the event ¬E ∪ supp(P1) corresponds to the syntactic formula
B0(φ→ B1φ), where kφk = E.

3 A sound and complete logic for belief revision

We now provide a sound and complete logic for belief revision. Because of the
non-standard validation rule for the information operator I, we need to add the
universal or global modality A (see Blackburn et al [5], p. 415 and Goranko
and Passy [17]). The interpretation of Aφ is “it is globally true that φ”. As
before, a frame is a quadruple hΩ,B0,B1,Ii. To the validation rules discussed
in Section 2 we add the following:

ω |= Aφ if and only if kφk = Ω.

We denote by L the logic determined by the following axioms and rules of
inference.

AXIOMS:

1. All propositional tautologies.

2. Axiom K for B0, B1 and A (note the absence of an analogous axiom for
I):

B0φ ∧B0(φ→ ψ)→ B0ψ (K0)
B1φ ∧B1(φ→ ψ)→ B1ψ (K1)
Aφ ∧A(φ→ ψ)→ Aψ (KA)

3. S5 axioms for A:

10



Aφ→ φ (TA)
¬Aφ→ A¬Aφ (5A)

4. Inclusion axioms for B0 and B1 (note the absence of an analogous axiom
for I):

Aφ→ B0φ (Incl0)
Aφ→ B1φ (Incl1)

5. Axioms to capture the non-standard semantics for I:

(Iφ ∧ Iψ)→ A(φ↔ ψ) (I1)
A(φ↔ ψ)→ (Iφ↔ Iψ) (I2)

RULES OF INFERENCE:

1. Modus Ponens: φ, φ→ψ
ψ (MP)

2. Necessitation for A: φ
Aφ (NecA)

Remark 8 Note that from (NecA) and (Incl0) one obtains necessitation for B0
as a derived rule of inference: φ

B0φ
. The same is true for B1. On the other

hand, the necessitation rule for I is not a rule of inference of logic L. Indeed
necessitation for I is not validity preserving.13 Neither is the following rule for
I (normally referred to as rule RK): φ→ψ

Iφ→Iψ .
14 On the other hand, by NecA

and I2, the following rule for I (normally referred to as rule RE):
φ↔ψ
Iφ↔Iψ is a

derived rule of inference of L.

Note that, despite the non-standard validation rule, axiom K for I, namely
Iφ ∧ I(φ → ψ) → Iψ, is trivially valid in every frame.15 It follows from the
completeness theorem proved below that axiom K for I is provable in L. The
following proposition, however, provides a direct proof.

Proposition 9 Iφ ∧ I(φ→ ψ)→ Iψ is a theorem of logic L.

Proof. We give a syntactic proof (‘PL’ stands for ‘Propositional Logic’):

13If φ is a valid formula, then kφk = Ω. Let α ∈ Ω be a state where I(α) 6= Ω. Then α 5 Iφ
and therefore Iφ is not valid.
14Consider the following model: Ω = {α, β}, I(α) = {α}, I(β) = {β}, kpk = {α} and

kqk = Ω. Then kp→ qk = Ω, kIpk = {α}, kIqk = ∅ and thus kIp→ Iqk = {β} 6= Ω.
15Proof. Fix a frame, an arbitrary model and a state α. For it to be the case that α |=

I(φ → ψ) ∧ Iφ we need I(α) = kφk and I(α) = kφ→ ψk. Now, kφ→ ψk = k¬φ ∨ ψk =
k¬φk∪kψk and therefore we need the equality kφk = k¬φk∪kψk to be satisfied. This requires
kφk = kψk = Ω. Thus if I(α) = kφk = kψk = Ω, then α |= I(φ → ψ) ∧ Iφ ∧ Iψ. In every
other case, α 6|= I(φ→ ψ)∧ Iφ and therefore the formula I(φ→ ψ)∧ Iφ→ Iψ is trivially true
at α.

11



1. (Iφ ∧ I(φ→ ψ))→ A(φ↔ (φ→ ψ)) Axiom I1
2. (φ↔ (φ→ ψ))→ (φ↔ ψ) Tautology
3. A(φ↔ (φ→ ψ))→ A(φ↔ ψ) 2, necessitation for A, axiom

KA and Modus Ponens
4. A(φ↔ ψ)→ (Iφ↔ Iψ) Axiom I2
5. (Iφ ∧ I(φ→ ψ))→ (Iφ↔ Iψ) 1,3,4 PL
8. (Iφ ∧ I(φ→ ψ))→ Iψ 5, PL

Recall that a logic is complete with respect to a class of frames if every
formula which is valid in every frame in that class is provable in the logic (that
is, it is a theorem). The logic is sound with respect to a class of frames if
every theorem of the logic is valid in every frame in that class. The following
proposition is a straightforward adaptation of a result due to Goranko and Passy
[17] (Theorem 6.2, p. 24). Its proof is relegated to the appendix.

Proposition 10 Logic L is sound and complete with respect to the class of all
frames hΩ,B0,B1,Ii.

We are interested in extensions of L obtained by adding various axioms. Let
R (‘R’ stands for ‘Revision’) be the logic obtained by adding to L the axioms
discussed in the previous section:

R = L + Qualified Acceptance + Persistence + Minimality.

The following proposition is proved in the appendix (in light of Propositions
3 and 10 it suffices to show that the axioms Qualified Acceptance, Persistence
and Minimality are canonical).

Proposition 11 Logic R is sound and complete with respect to the class of
frames hΩ,B0,B1,Ii that satisfy the Qualitative Bayes Rule.

So far we have not postulated any properties of beliefs, in particular, in the
interest of generality, we have not required beliefs to satisfy the KD45 logic. In
order to further explore the implications of the Qualitative Bayes Rule, we shall
now consider additional axioms:

Consistency of initial beliefs B0φ→ ¬B0¬φ (D0)

Positive Introspection of initial beliefs B0φ→ B0B0φ (40)

Self Trust B0(B0φ→ φ) (ST)

Information Trust B0(Iφ→ φ) (IT).

Self Trust says that the individual at time 0 believes that his beliefs are correct
(he believes that if he believes φ then φ is true), while Information Trust says
that the individual at time 0 believes that any information he will receive will
be correct (he believes that if he is informed that φ then φ is true).
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Remark 12 It is well-known that Consistency of initial beliefs corresponds to
seriality of B0 ( B0(ω) 6= ∅, for all ω ∈ Ω) and Positive Introspection to tran-
sitivity of B0 (if β ∈ B0(α) then B0(β) ⊆ B0(α)). It is also well-known that
Self Trust is characterized by secondary reflexivity of B0 (if β ∈ B0 (α) then
β ∈ B0 (β)).16

Lemma 13 Information Trust (B0(Iφ → φ)) is characterized by reflexivity of
I over B0: ∀α, β ∈ Ω, if β ∈ B0 (α) then β ∈ I (β) .

Proof. Suppose the property is satisfied. Fix arbitrary α and φ. If B0(α) = ∅
then α |= B0ψ for every formula ψ, in particular for ψ = Iφ → φ. Suppose
therefore that B0(α) 6= ∅ and fix an arbitrary β ∈ B0(α). If I (β) 6= kφk then
β 2 Iφ and therefore β |= Iφ → φ. If I (β) = kφk then β |= Iφ. By the
property, β ∈ I (β). Thus β |= φ and, therefore, β |= Iφ → φ. Conversely,
suppose the property is violated. Then there exist α and β such that β ∈ B0(α)
and β /∈ I (β) . Let p be an atomic proposition and construct a model where
kpk = I(β). Then β |= Ip. Since β /∈ I (β) , β |= ¬p. Thus β 2 Ip → p and,
therefore, α 2 B0(Ip→ p).

Remark 14 Since the additional axioms listed above are canonical, it follows
from Proposition 11 that if Σ is a set of axioms from the above list, then the logic
R+Σ obtained by adding to R the axioms in Σ is sound and complete with respect
to the class of frames that satisfy the Qualitative Bayes Rule and the properties
corresponding to the axioms in Σ. For example, the logic R+ {D0, 40, ST} is
sound and complete with respect to the class of frames that satisfy the Qualitative
Bayes Rule as well as seriality, transitivity and secondary reflexivity of B0.

By Proposition 7, No Change (B0φ ∧ Iφ→ (B1ψ ↔ B0ψ)) is a theorem of
R+D0. We now discuss some further theorems of extensions of R. Consider
the following axiom:

B0φ→ B0B1φ

which says that if the individual initially believes that φ then she initially be-
lieves that she will continue to believe φ later.

Proposition 15 B0φ→ B0B1φ is a theorem of R+ 40 + ST + IT .

Proof. It is shown in van der Hoek [21] (p. 183, Theorem 4.3 (c)) that axiom
B0φ→ B0B1φ is characterized by the following property:

∀α, β ∈ Ω, if β ∈ B0(α) then B1(β) ⊆ B0(α). (P0)

16Furthermore, Self Trust is implied by a stronger property of beliefs, namely Negative
Introspection (¬B0φ→ B0¬B0φ), which is characterized by euclideanness of B0 (if β ∈ B0(α)
then B0(α) ⊆ B0(β)).
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By Remark 14, the logic R + 40 + ST + IT is sound and complete with
respect to the class of frames that satisfy the Qualitative Bayes Rule as well
as transitivity and secondary reflexivity of B0 and reflexivity of I over B0.
Thus it is enough to show that this class of frames satisfies property (P0).
Fix an arbitrary frame in this class and arbitrary states α and β such that
β ∈ B0(α). By Secondary Reflexivity of B0, β ∈ B0(β). By Reflexivity of I
over B0, β ∈ I(β). Thus B0(β) ∩ I(β) 6= ∅ and, by the Qualitative Bayes
Rule, B1(β) = B0(β) ∩ I(β), so that B1(β) ⊆ B0(β). By transitivity of B0,
B0(β) ⊆ B0(α). Thus B1(β) ⊆ B0(α).

Remark 16 Close inspection of the proof of Proposition 15 reveals that Qual-
ified Acceptance and Minimality play no role (since we only used the fact that
B0(β)∩I(β) 6= ∅ implies that B1(β) ⊆ B0(β)), that is, B0φ→ B0B1φ is in fact
a theorem of the logic L+Persistence + 40 + ST + IT .

The following frame, illustrated in Figure 2, shows that Positive Introspec-
tion of initial beliefs is crucial for Proposition 15: Ω = {α, β, γ}, B0 = B1,
B0(α) = {β}, B0(β) = {β, γ}, B0(γ) = {γ}, I(α) = I(β) = I(γ) = {α, β, γ}.
This frame does not validate the axiomB0φ→ B0B1φ. In fact, let kpk = {α, β}.
Then α |= B0p but α 2 B0B1p. However, the frame satisfies the Qualitative
Bayes Rule (∀ω, if B0(ω)∩ I(ω) 6= ∅ then B1(ω) = B0(ω)∩ I(ω)) and validates
Self Trust (since B0 is secondary reflexive) and Information Trust (since is I
reflexive). On the other hand, Positive Introspection of Initial Beliefs does not
hold, since B0 is not transitive (in fact, α |= B0p but α 2 B0B0p).

α β γ

The relations
B   and

The relation
I    

0 B
with B  = B0 1

1

¬ppp
Figure 2

The next example, illustrated in Figure 3, shows that also Self Trust is
crucial for Proposition 15: Ω = {α,β, γ, δ, ε}, B0(α) = {β, γ}, B0(β) = B0(γ) =
{γ}, B0(δ) = B0(ε) = {ε}, I(α) = {α}, I(β) = I(δ) = {β, δ}, I(γ) = {γ},
I(ε) = {ε}, B1 = I, kpk = {β, γ}. This frame does not validate axiom B0φ→
B0B1φ since α |= B0p but α 2 B0B1p (since β ∈ B0(α) and β 2 B1p because
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δ ∈ B1(β) and δ 2 p). This frame satisfies the Qualitative Bayes Rule and
validates Information Trust (since I is reflexive) and Positive Introspection of
Initial Beliefs (since B0 is transitive). However Self Trust B0(B0φ → φ) is
not valid, since B0 is not secondary reflexive (for example, let q be such that
kqk = {γ}, then α 2 B0(B0q → q), since β ∈ B0(α) and β |= B0q ∧ ¬q).

γ

The relation
B 0

The relations
B    and  I

with B    = I1

1

p

δ

¬p

ε

¬p

αβ

¬pp

Figure 3

Similarly, it can be shown that Information Trust is necessary for Proposition
15 to be true.

Consider now the following axiom which is the converse of the previous one:

B0B1φ→ B0φ.

This axiom says that if the individual initially believes that later on she will
believe φ then she must believe φ initially.

Proposition 17 B0B1φ→ B0φ is a theorem of R+ ST + IT .

Proof. It is shown in van der Hoek [21] (p. 183, Theorem 4.3 (e)) that axiom
B0B1φ→ B0φ is characterized by the following property: ∀α, γ ∈ Ω,

if γ ∈ B0(α) then there exists a β ∈ B0(α) such that γ ∈ B1(β). (P1)

By Remark 14, the logic R+ST +IT is sound and complete with respect to
the class of frames that satisfy the Qualitative Bayes Rule as well as secondary
reflexivity of B0 and reflexivity of I over B0. Thus it is enough to show that
this class of frames satisfies property (P1). Fix an arbitrary frame in this class
and arbitrary states α and γ such that γ ∈ B0(α). By Secondary Reflexivity of
B0, γ ∈ B0(γ). By Reflexivity of I over B0, γ ∈ I(γ). Thus γ ∈ B0(γ) ∩ I(γ)
and, by the Qualitative Bayes Rule, B0(γ) ∩ I(γ) = B1(γ), so that γ ∈ B1(γ).
Hence Property (P1) is satisfied with β = γ.
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Remark 18 Close inspection of the proof of Proposition 17 reveals that Qual-
ified Acceptance and Persistence play no role (since we only used the fact that
B0(γ) ∩ I(γ) ⊆ B1(γ)), that is, B0B1φ→ B0φ is in fact a theorem of the logic
L+Minimality + ST + IT .

To see that Minimality is crucial for Proposition 17, consider the follow-
ing frame: Ω = {α, β} and, for every ω ∈ Ω, B0(ω) = {β}, I(ω) = Ω and
B1(ω) = {α}. This frame validates Self Trust (since B0 is secondary reflexive)
and Information Trust (since I is reflexive). However, it does not validate Mini-
mality, since B0(α)∩I(α) = {β} * B1(α) = {α}. Let p be such that kpk = {α}.
Then α |= B0B1p ∧ ¬B0p.
The following example, illustrated in Figure 4, shows that also Self Trust is

crucial for Proposition 17: Ω = {α, β, γ}, B0(α) = {β, γ}, B0(β) = B0(γ) = {γ},
I(α) = {α}, I(β) = I(γ) = {β, γ}, B1(α) = {α}, B1(β) = B1(γ) = {γ},
kpk = {γ}. Then α |= B0B1p but α 2 B0p. This frame satisfies the Qualitative
Bayes Rule (∀ω, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) = B0(ω) ∩ I(ω)) as well as
Information Trust (since I is reflexive).17.

α β γ

The relation
B 0

The relation
B    1

The relation
I    

α β γ

¬p p¬p

Figure 4

Putting together Propositions 15 and 17 we obtain the following corollary.

Corollary 19 B0φ↔ B0B1φ is a theorem of R+ 40 + ST + IT .

Remark 20 In the proof of Propositions 15 and 17 it was shown that axiom
B0φ↔ B0B1φ is valid in every frame that satisfies the Qualitative Bayes Rule

17The frame also satisfies Positive Introspection of initial beliefs (B0φ→ B0B0φ) since B0
is transitive.
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as well as the properties that characterize axioms 40, ST and IT (so that Corol-
lary 19 follows from the completeness theorem: see Remark 14). On the other
hand, if a frame validates axioms 40, ST , IT and B0φ ↔ B0B1φ then it does
not necessarily satisfy the Qualitative Bayes Rule, as the example illustrated in
Figure 5 shows.

α β γ

The relation
B 0

The relation
B    1

The relation
I    

α β γ

p pp

q¬q ¬q
Figure 5

The frame illustrated in Figure 5 is as follows: Ω = {α, β, γ}, B0(α) =
B0(β) = B0(γ) = {γ}, I(α) = I(β) = I(γ) = {α, β, γ}, B1(α) = B1(β) = {β},
B1(γ) = {γ}. This frame validates Self Trust (since B0 is secondary reflexive)
and Information Trust (since I is reflexive). It also validates Positive Introspec-
tion of initial beliefs (since B0 is transitive). Furthermore, the frame satisfies
properties P0 and P1 (see the proofs of Propositions 15 and 17) and thus val-
idates axiom B0φ ↔ B0B1φ . However, it does not validate Persistence.

18 In
fact, let kpk = Ω and kqk = {γ}; then α |= Ip∧¬B0¬p∧B0q but α 2 B1q. Be-
cause of this, the Qualitative Bayes Rule is not satisfied: B0(α)∩I(α) = {γ} 6= ∅
and yet B1(α) 6= {γ} .
18Although, by Lemma 6, it does validate Minimality.
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4 Closely related literature

In this section we discuss the relationship between our approach and papers on
belief revision that are closest to our analysis in that they make explicit use
of modal logic. The relationship with the AGM literature will be discussed in
Section 5.
Fuhrmann [15] uses a simplified version of dynamic logic, which he calls

update logic, to model belief contraction and belief revision. For every formula
φ he considers a modal operator [−φ] with the interpretation of [−φ]ψ as “ψ
holds after contracting by φ”. Alternatively, he considers a modal operator [∗φ],
for every formula φ, with the intended interpretation of [∗φ]ψ as “ψ holds after
updating by φ”. He provides soundness and completeness results with respect
to the class of frames consisting of a set of states Ω and a collection {CX}
of binary relations on Ω, one for every subset X of Ω (or for every X in an
appropriate collection of subsets of Ω). In a similar vein, Segerberg [31] notes
the coexistence of two traditions in the literature on doxastic logic (the logic
of belief), the one initiated by Hintikka [20] and the AGM approach [1], and
proposes a unifying framework for belief revision. His proposal is to use dynamic
logic by thinking of expansion, revision and contraction as actions. Besides the
belief operator B, he introduces three operators for every (purely Boolean)
formula φ: [+φ] for expansion, [∗φ] for revision and [−φ] for contraction. Thus,
for example, the intended interpretation of [+φ]Bχ is “after performing the
action of expanding by φ the individual believes that χ”. Fuhrmann’s and
Segerberg’s logics are therefore considerably more complex than ours: besides
requiring the extra apparatus of dynamic logic, they involves an infinite number
of modal operators, while our logic uses only three.

A different axiomatization of the Qualitative Bayes Rule was provided by
Battigalli and Bonanno [3] within a framework where information is not modeled
explicitly. The logic they consider is based on four modal operators: B0 and B1,
representing - as in this paper - initial and revised beliefs, and two knowledge
operators, K0 and K1. Knowledge at time 1 is thought of as implicitly based
on information received by the individual between time 0 and time 1 and is
the basis on which beliefs are revised. The knowledge operators satisfy the
S5 logic (the Truth axiom, Ktφ → φ, and negative introspection, ¬Ktφ →
Kt¬Ktφ), while the belief operators satisfy the KD45 logic (consistency and
positive and negative introspection). Furthermore, knowledge and belief are
linked by two axioms: everything that is known is believed (Ktφ → Btφ) and
the individual knows what he believes (Btφ→ KtBtφ). Within this framework
Battigalli and Bonanno express the Qualitative Bayes Rule as follows: ∀ω ∈ Ω,
if K1(ω)∩B0(ω) 6= ∅ then B1(ω) = K1(ω)∩B0(ω), that is, if there are states that
are compatible with what the individual knows at time 1 and what he believed
at time 0, then the states that he considers possible at time 1 (according to his
revised beliefs) are precisely those states. The authors show that, within this
knowledge-belief framework the formula B0φ ↔ B0B1φ (which says that the
individual believes something at time 0 if and only if he believes that he will
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continue to believe it at time 1) provides an axiomatization of the Qualitative
Bayes Rule. We showed in Corollary 19 that this axiom is a theorem of our
logic R augmented with axioms 40 (one of the axioms postulated by Battigalli
and Bonanno), ST (implied by the negative introspection axiom for B0, which
they assume) and IT (whose counterpart in their framework, since they do not
model information explicitly, is B0(K1φ → φ),which is implied by the Truth
axiom ofK1). However, as pointed out above (Remark 20) in a framework where
information is modeled explicitly, it is no longer true that the Qualitative Bayes
Rule is characterized by axiom B0φ ↔ B0B1φ. Thus moving away from the
knowledge-belief framework of Battigalli and Bonanno [3] axiom B0φ↔ B0B1φ
becomes merely an implication of the Qualitative Bayes Rule under additional
hypotheses.

In a recent paper, Board [6] offers a syntactic analysis of belief revision. Like
Segerberg, Board makes use of an infinite number of modal operators: for every
formula φ, an operator Bφ is introduced representing the hypothetical beliefs of
the individual in the case where she learns that φ. Thus the interpretation of
Bφψ is “upon learning that φ, the individual believes that ψ”. The initial beliefs
are represented by an operator B. On the semantic side Board considers a set
of states and a collection of binary relations, one for each state, representing
the plausibility ordering of the individual at that state. The truth condition for
the formula Bφψ at a state expresses the idea that the individual believes that
ψ on learning that φ if and only if ψ is true in all the most plausible worlds in
which φ is true. The author gives a list of axioms which is sound and complete
with respect to the semantics. There are important differences between our
framework and his. We model information explicitly by means of a single modal
operator I, while Board models it through an infinite collection of hypothetical
belief operators. While we model, at any state, only the information actually
received by the individual, Board considers all possible hypothetical pieces of
information: every formula represents a possible item of information, including
contradictory formulas and modal formulas. Although, in principle, we also
allowed information to be about an arbitrary formula, in our approach it is
possible to rule out problematic situations by imposing suitable axioms (see
Remark 1 and further discussion in Section 7).

Liau [28] considers a multi-agent framework and is interested in modeling the
issue of trust. He introduces modal operators Bi, Iij and Tij with the following
intended meaning:

Biψ Agent i believes that ψ
Iijψ Agent i acquires information ψ from agent j
Tijψ Agent i trusts the judgement of agent j on the truth of ψ.

On the semantic side Liau considers a set of states Ω and a collection of binary
relations Bi and Iij on Ω, corresponding to the operators Bi and Iij . The truth
conditions are the standard ones for Kripke structures (ω |= Biψ if and only if
Bi(ω) ⊆ kψk and ω |= Iijψ if and only if Iij(ω) ⊆ kψk). Intuitively, Bi(ω) is the
set of states that agent i considers possible at ω according to his belief, whereas
Iij(ω) is what agent i considers possible according to the information acquired
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from j. The author also introduces a relation Tij that associates with every
state ω ∈ Ω a set of subsets of Ω. For any S ⊆ Ω, S ∈ Tij(ω) means that agent
i trusts j ’s judgement on the truth of the proposition corresponding to event
S. Liau considers various axioms and proves that the corresponding logics are
sound and complete with respect to the semantics. One of the axioms the author
discusses is Iijψ → BiIijψ, which says that if agent i is informed that ψ by agent
j then she believes that this is the case. Liau notes that, in general, this axiom
does not hold, since when i receives a message from j, she may not be able to
exclude the possibility that someone pretending to be j has sent the message;
however, in a secure communication environment this would not happen and
the axiom would hold. There are important differences between our analysis
and Liau’s. We don’t discuss the issue of trust (although introducing an axiom
such as Iφ → B1φ would capture the notion that information is trusted and
therefore believed). On the other hand, we explicitly distinguish between beliefs
held before the information is received and revised beliefs. Liau has only one
belief operator and therefore does not make this distinction. Yet this distinction
is very important. Suppose first that we take B to be the initial belief (of some
agent). Then an axiom like Iψ → BIψ would not be acceptable on conceptual
grounds, even if communication is secure. For example, consider a doctor who
initially in uncertain whether the patient has an infection (represented by the
atomic proposition p) or not (¬p). Let α be a state where p is true (the patient
has an infection) and β a state where it is not. Thus the initial uncertainty
can be expressed by setting B(α) = B(β) = {α, β}. The doctor orders a blood
test, which, if positive, reveals that there is an infection and, if negative, reveals
that there is no infection. Thus I(α) = {α} and I(β) = {β}, so that α |= Ip
and β |= I¬p. Then α |= Ip but α 2 BIp. On the other hand, if we take
B to be the revised belief (after the information is received) then postulating
the axiom Iφ → BIφ would imply in this example that B(α) = I(α) = {α}
and B(β) = I(β) = {β}, that is, that the information is necessarily believed,
thus making it impossible to separate the issues of information and trust. For
example, we would not be able to model a situation where the doctor receives
the result of the blood test but does not trust the report because of mistakes
made in the past by the same lab technician.

The above discussion focussed on contributions that tried to explicitly cast
belief revision in a modal logic. There are also discussions of belief revision
which follow the AGM approach of considering belief sets where in addition the
underlying logic is assumed to contain one or more modal operators (see for
example Levi [27] and Fuhrmann [14]). Hansson [18] contains a brief discussion
of a restricted modal language for belief change, based on two operators, B
(for belief) and L (for necessity).19 Thus, for example, LBφ means that φ
is necessarily believed. The author provides some results on the irreducible
modalities of this logic and proposes a semantics for this logic.

19“This language is called ‘restricted’ since (1) it does not allow for iterations of the B
operator, and (2) it is not closed under truth-functional operations other than negation”
[Hansson [18], p. 22].
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5 Relationship to the AGM framework

The AGM theory of belief revision has been developed within the framework
of belief sets. Let Φ be the set of formulas in a propositional language.20

Given a subset S ⊆ Φ, its PL-deductive closure [S]PL (where ‘PL’ stands for
‘Propositional Logic’) is defined as follows: ψ ∈ [S]PL if and only if there exist
φ1, ..., φn ∈ S such that (φ1 ∧ ...∧φn)→ ψ is a truth-functional tautology (that
is, a theorem of Propositional Logic). A belief set is a set K ⊆ Φ such that
K = [K]PL. A belief set K is consistent if K 6= Φ (equivalently, if there is no
formula φ such that both φ and ¬φ belong to K). Given a belief set K (thought
of as the initial beliefs of the individual) and a formula φ (thought of as a new
piece of information), the revision of K by φ, denoted by K∗φ, is a subset of Φ
that satisfies the following conditions, known as the AGM postulates:

(K*1) K∗φ is a belief set
(K*2) φ ∈ K∗φ
(K*3) K∗φ ⊆ [K ∪ {φ}]PL
(K*4) if ¬φ /∈ K, then [K ∪ {φ}]PL ⊆ K∗φ
(K*5) K∗φ = Φ if and only if φ is a contradiction
(K*6) if φ↔ ψ is a tautology then K∗φ = K∗ψ
(K*7) K∗φ∧ψ ⊆

h
K∗φ ∪ {ψ}

iPL
(K*8) if ¬ψ /∈ K∗φ, then

h
K∗φ ∪ {ψ}

iPL
⊆ K∗φ∧ψ

(K*1) requires the revised belief set to be deductively closed. In our frame-
work this corresponds to requiring the B1 operator to be a normal operator,
that is, to satisfy axiom K (B1(φ→ ψ)∧B1φ→ B1ψ) and the inference rule of
necessitation (from φ to infer B1φ).

(K*2) requires that the information be believed. In our framework, this
corresponds to imposing axiom Iφ→ B1φ, which is a strengthening of Qualified
Acceptance, in that it requires that if the individual is informed that φ then
he believes that φ even if he previously believed that ¬φ. It is straightforward
to prove that this axiom is characterized by the following property: ∀ω ∈ Ω,
B1(ω) ⊆ I(ω).
(K*3) says that beliefs should be revised minimally, in the sense that no new

belief should be added unless it can be deduced from the information received
and the initial beliefs. As we will show later, this requirement corresponds to
our Minimality axiom (Iφ ∧B1ψ)→ B0(φ→ ψ).

(K*4) says that if the information received is compatible with the initial be-
liefs, then any formula that can be deduced from the information and the initial
beliefs should be part of the revised beliefs. As shown below, this requirement
corresponds to our Persistence axiom (Iφ ∧ ¬B0¬φ)→ (B0ψ → B1ψ).

20For simplicity we consider the simplest case where the underlying logic is classical propo-
sitional logic.
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(K*5) requires the revised beliefs to be consistent, unless the information is
contradictory. As pointed out by Friedman and Halpern [12], it is not clear how
information could consist of a contradiction. In our framework we can eliminate
this possibility by imposing the axiom ¬I(φ ∧ ¬φ), which is characterized by
seriality of I (∀ω ∈ Ω, I(ω) 6= ∅) (see Section 7). Furthermore, the requirement
that revised beliefs be consistent can be captured by the consistency axiom
(axiom D): B1φ → ¬B1¬φ, which is characterized by seriality of B1 (∀ω ∈ Ω,
B1(ω) 6= ∅). Together with the axiom corresponding to (K*2), consistency
of revised beliefs guarantees that information itself is consistent, that is, the
conjunction of B1φ→ ¬B1¬φ and Iφ→ B1φ implies ¬I(φ∧¬φ) (since B1(ω) 6=
∅ and B1(ω) ⊆ I(ω) implies that I(ω) 6= ∅).
(K*6) is automatically satisfied in our framework, since if φ↔ ψ is a tautol-

ogy then kφk = kψk in every model and therefore the formula Iφ↔ Iψ is valid
in every frame. Hence revision based on Iφ must coincide with revision based
on Iψ.

(K*7) and (K*8) are a generalization of (K*3) and (K*4) that

“applies to iterated changes of belief. The idea is that if K∗φ is a
revision of K and K∗φ is to be changed by adding further sentences,
such a change should be made by using expansions of K∗φ whenever
possible. More generally, the minimal change of K to include both φ
and ψ (that is, K∗φ∧ψ) ought to be the same as the expansion of K

∗
φ

by ψ, so long as ψ does not contradict the beliefs inK∗φ” (Gärdenfors
[16], p. 55).21

We postpone a discussion of iterated revision to the next section, where we
claim that the axiomatization of the Qualitative Bayes Rule that we provided
can deal with iterated revision and satisfies the conceptual content of (K*7) and
(K*8).
The set of postulates (K*1) through (K*6) is called the basic set of postulates

for belief revision (Gärdenfors, [16] p. 55). The next proposition shows that our
axioms imply that the basic set of postulates are satisfied.

Proposition 21 Fix an arbitrary model and an arbitrary state α and let K =
{ψ : α |= B0ψ}. Suppose that there is a formula φ such that α |= Iφ and define
K∗φ = {ψ : α |= B1ψ}. If at α the following hypotheses are satisfied for all
formulas ψ and χ

α |= Iψ → B1ψ Acceptance
α |= (Iψ ∧B1χ)→ B0(ψ → χ) Minimality
α |= (Iψ ∧ ¬B0¬ψ)→ (B0χ→ B1χ) Persistence
α |= B1χ→ ¬B1¬χ Consistency of B1 (axiom D)

then K∗φ satisfies postulates (K*1) to (K*6).

21The expansion of K∗φ by ψ is K∗φ ∪ {ψ}
PL

.
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Proof. (K*1): we need to show that K∗φ is a belief set, that is, K
∗
φ =

h
K∗φ
iPL

.

Clearly, K∗φ ⊆
h
K∗φ
iPL

, since ψ → ψ is a tautology. Thus we only need to show

that
h
K∗φ
iPL

⊆ K∗φ. Let ψ ∈
h
K∗φ
iPL

, i.e. there exist φ1, ..., φn ∈ K∗φ such
that (φ1 ∧ ... ∧ φn)→ ψ is a tautology. Then α |= B1 ((φ1 ∧ ... ∧ φn)→ ψ). By
definition of K∗φ, since φ1, ..., φn ∈ K∗φ, α |= B1 (φ1 ∧ ... ∧ φn) . Thus α |= B1ψ,
that is, ψ ∈ K∗φ.
(K*2): we need to show that φ ∈ K∗φ, that is, α |= B1φ. This is an immediate

consequence of our hypotheses that α |= Iφ and α |= Iφ → B1φ (by the
Acceptance axiom).

(K*3): we need to show that K∗φ ⊆ [K ∪{φ}]PL. Let ψ ∈ K∗φ, i.e. α |= B1ψ.
By hypothesis, α |= (Iφ ∧ B1ψ) → B0(φ → ψ) (by Minimality) and α |= Iφ.
Thus α |= B0(φ → ψ), that is, (φ → ψ) ∈ K. Hence {φ, (φ→ ψ)} ∈ K ∪ {φ}
and, since (φ ∧ (φ→ ψ))→ ψ is a tautology, ψ ∈ [K ∪ {φ}]PL.
(K*4): we need to show that if ¬φ /∈ K then [K ∪ {φ}]PL ⊆ K∗φ. Suppose

¬φ /∈ K, that is, α |= ¬B0¬φ. By hypothesis, α |= Iφ and α |= (Iφ∧¬B0¬φ)→
(B0ψ → B1ψ) (by Persistence). Thus

α |= (B0ψ → B1ψ), for every formula ψ. (4)

Let χ ∈ [K ∪ {φ}]PL, that is, there exist φ1, ..., φn ∈ K ∪ {φ} such that
(φ1 ∧ ... ∧ φn)→ χ is a tautology. We want to show that χ ∈ K∗φ, i.e. α |= B1χ.
Since (φ1 ∧ ... ∧ φn) → χ is a tautology, α |= B0 ((φ1 ∧ ... ∧ φn)→ χ). If
φ1, ..., φn ∈ K, then α |= B0 (φ1 ∧ ... ∧ φn) and therefore α |= B0χ. Thus,
by (4), α |= B1χ. If φ1, ..., φn 6∈ K, then w.l.o.g. φ1 = φ and φ2, ..., φn ∈ K. In
this case we have α |= B0 (φ2 ∧ ... ∧ φn) and α |= B0 ((φ2 ∧ ... ∧ φn)→ (φ→ χ))
since (φ1 ∧ ... ∧ φn)→ χ is a tautology and it is equivalent to (φ2 ∧ ... ∧ φn)→
(φ→ χ). Thus α |= B0 (φ→ χ) . Hence, by (4) (with ψ = (φ→ χ)), α |=
B1 (φ→ χ) . From the hypotheses that α |= Iφ and α |= Iφ → B1φ it follows
that α |= B1φ. Thus α |= B1χ.
(K*5): we have to show that K∗φ 6= Φ, unless φ is a contradiction. As

noted above, the possibility of contradictory information is ruled out by the
conjunction of Consistency of revised beliefs (B1ψ → ¬B1¬ψ) and Acceptance
(Iψ → B1ψ). Thus we only need to show that K

∗
φ 6= Φ. By hypothesis, B1ψ →

¬B1¬ψ; thus if ψ ∈ K∗φ then ¬ψ /∈ K∗φ and therefore K
∗
φ 6= Φ.

(K*6): we have to show that if φ ↔ ψ is a tautology then K∗φ = K∗ψ. If
φ↔ ψ is a tautology, then kφ↔ ψk = Ω, that is, kφk = kψk. Thus α |= Iφ if
and only if α |= Iψ. Hence, by definition, K∗φ = K∗ψ.

6 Iterated revision

As is well known22, the AGM postulates are not sufficient to cover iterated belief
revision, that is, the case where the individual receives a sequence of pieces of

22See, for example, Rott [9] (p. 170).
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information over time. Only a limited amount of iterated revision is expressed
by postulates (K*7) and (K*8), which require that the minimal change of K to
include both information φ and information ψ (that is, K∗φ∧ψ) ought to be the
same as the expansion of K∗φ by ψ, so long as ψ does not contradict the beliefs
in K∗φ.
In our framework we model, at every state, only the information that is

actually received by the individual and do not model how the individual would
have modified his beliefs if he had received a different piece of information.
Thus we cannot compare the revised beliefs the individual holds after receiving
information φ with the beliefs he would have had if he had been informed of
both φ and ψ. On the other hand, it is possible in our framework to model
the effect of receiving first information φ and then information ψ. Indeed, any
sequence of pieces of information can be easily modeled. In order to do this,
we need to add a time index to the belief and information operators. Thus, for
t ∈ N (where N denotes the set of natural numbers), we have a belief operator
Bt representing the individual’s beliefs at time t. In order to avoid confusion,
we attach a double index (t, t+1) to the an information operator, so that It,t+1
represents the information received by the individual between time t and time
t+ 1. Thus the intended interpretation is as follows:
Btφ at time t the individual believes that φ
It,t+1φ between time t and time t+ 1 the individual is informed that φ
Bt+1φ at time t+ 1 (in light of the information received between t and

t+ 1) the individual believes that φ.

Let Bt and It,t+1 be the associated binary relations. The iterated version
of the qualitative Bayes rule then is the following simple extension of QBR:
∀ω ∈ Ω,∀t ∈ N,

if Bt(ω) ∩ It,t+1(ω) 6= ∅ then Bt+1(ω) = Bt(ω) ∩ It,t+1(ω). (IQBR)

The iterated Bayes rule plays an important role in game theory, since it
is the main building block of two widely used solution concepts for dynamic
(or extensive) games, namely Perfect Bayesian Equilibrium 23 and Sequential
Equilibrium (Kreps and Wilson [25]). The idea behind these solution concepts
is that, during the play of the game, a player should revise his beliefs by using
Bayes’ rule “as long as possible”. Thus if an information set has been reached
that had positive prior probability, then beliefs at that information set are ob-
tained by using Bayes’ rule (with the information being represented by the set
of nodes in the information set under consideration). If an information set is
reached that had zero prior probability, then new beliefs are formed more or
less arbitrarily, but from that point onwards these new beliefs must be used
in conjunction with Bayes’ rule, unless further information is received that is
inconsistent with those revised beliefs. This is precisely what IQBR requires.

23See, for example, Battigalli [2], Bonanno [7], Fudenberg and Tirole [13].
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Within this more general framework, a simple adaptation of Propositions 3
and 11 yields the following result:

Proposition 22 (1) The Iterated Qualitative Bayes Rule (IQBR) is character-
ized by the conjunction of the following three axioms:

Iterated Qualified Acceptance: (¬Bt¬φ ∧ It,t+1φ)→ Bt+1φ
Iterated Persistence: (¬Bt¬φ ∧ It,t+1φ)→ (Btψ → Bt+1ψ)
Iterated Minimality (It,t+1φ ∧Bt+1ψ)→ Bt(φ→ ψ).

(2) The logic obtained by adding the above three axioms to the straightforward
adaptation of logic L to a multi-period framework is sound and complete with
respect to the class of frames that satisfy the Iterated Qualitative Bayes Rule.

7 Conclusion

The simple modal language proposed in this paper has two advantages: (1)
information is modeled directly by means of a modal operator I, so that (2)
three operators are sufficient to axiomatize the qualitative version of Bayes’
rule. Previous modal axiomatizations of belief revisions required an infinite
number of modal operators and captured information only indirectly through
this infinite collection. We also showed that a multi-period extension of our
framework allows one to deal with information flows and iterated belief revision.
While the belief operators B0 and B1 are normal modal operators, the infor-

mation operator I is not normal in that the inference rule “from φ→ ψ to infer
Iφ→ Iψ” does not hold.24 This is a consequence of using a non-standard rule
for the truth of Iφ (ω |= Iφ if and only if I(ω) = kφk, whereas the standard
rule would simply require I(ω) ⊆ kφk). However, the addition of the global or
universal modality allowed us to obtain a logic of belief revision which is sound
and complete with respect to the class of frames that satisfy the Qualitative
Bayes Rule.
As pointed out in Remark 1, one might want to impose restrictions on the

type of formulas that can constitute information (that is, on what formulas φ
can be under the scope of the operator I). This is best done by imposing suitable
axioms, rather than by restricting the syntax itself. For example, contradictory
information is ruled out by imposing axiom ¬I(φ ∧ ¬φ), which is characterized
by seriality of I (∀ω, I(ω) 6= ∅).25 Other axioms one might want to impose are:
24Furthermore, no formula of the type Iφ or its negation is universally valid. Recall, how-

ever, that I trivially satisfies axiom K: I(φ→ ψ) ∧ Iφ→ Iψ.
25Proof. Suppose I is serial and ¬I(φ ∧ ¬φ) is not valid, that is, there is a state α and a

formula φ such that α |= I(φ ∧ ¬φ). Then I(α) = kφ ∧ ¬φk. But kφ ∧ ¬φk = ∅, while by
seriality I(α) 6= ∅. Conversely, suppose that I is not serial. Then there exists a state α such
that I(α) = ∅. Since, for every formula φ, kφ ∧ ¬φk = ∅ , it follows that α |= I(φ ∧ ¬φ) so
that ¬I(φ ∧ ¬φ) is not valid.
Note that, given the non-standard validation rule for Iφ, the equivalence of axiom D (Iφ→

¬I¬φ) and seriality breaks down. It is still true that if I is serial then the axiom Iφ→ ¬I¬φ
is valid, but the converse is not true. Proof of the first part: assume seriality and suppose that
the axiom is not valid, i.e. there is a formula φ such that α |= Iφ∧I¬φ. Then I(α) = kφk and
I(α) = k¬φk. By seriality, there exists a β ∈ I(α). Then β |= φ ∧ ¬φ, which is impossible.
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B0φ → ¬I¬B0φ (if you initially believed that φ then you cannot be informed
that you did not believe that φ)26, ¬I(φ∧¬B1φ) (you cannot be informed that
φ and that you will not believe that φ), etc. In this paper we have focused on
characterization and completeness results and we leave the study of desirable
refinements of the proposed logic for future work.

A APPENDIX

In this appendix we prove Propositions 10 and 11. First some preliminaries.
LetM be the set of maximally consistent sets (MCS) of formulas of L. Define

the following binary relation A ⊆M×M: αAβ if and only if {φ : Aφ ∈ α} ⊆ β.
Such a relation is well defined (see Chellas, 1984, Theorem 4.30(1), p. 158) and
is an equivalence relation because of axioms TA and 5A (Chellas, 1984, Theorem
5.13 (2) and (5), p. 175).

Lemma 23 Let α, β ∈ M be such that αAβ and let φ be a formula such that
Iφ ∈ α and φ ∈ β. Then, for every formula ψ, if Iψ ∈ α then ψ ∈ β, that is,
{ψ : Iψ ∈ α} ⊆ β.

Proof. Suppose that αAβ, Iφ ∈ α and φ ∈ β. Fix an arbitrary ψ such that
Iψ ∈ α. Then Iφ ∧ Iψ ∈ α. Since (Iφ ∧ Iψ) → A(φ ↔ ψ) is a theorem, it
belongs to every MCS, in particular to α. Hence A(φ ↔ ψ) ∈ α. Then, since
αAβ, φ↔ ψ ∈ β. Since φ ∈ β, it follows that ψ ∈ β.

Similarly to the definition of A, let the binary relations B0 and B1 on M be
defined as follows: αB0β if and only if {φ : B0φ ∈ α} ⊆ β and αB1β if and only
if {φ : B1φ ∈ α} ⊆ β. It is straightforward to show that, because of axioms
Incl0 and Incl1, both B0 and B1 are subrelations of A, that is, αB0β implies
αAβ and αB1β implies αAβ.
Let ω0 be an arbitrary object such that ω0 /∈M, that is, ω0 can be anything

but a MCS. Define the following relation I on M ∪ {ω0}: αIβ if and only if
Now, to see that the converse is not true, first note that the truth condition for Iφ is equivalent
to

∀β, if β ∈ I(α) then β |= φ, and ∀γ, if γ |= φ then γ ∈ I(α).

Thus α |= ¬I¬φ iff α 5 I¬φ iff not(∀β, β ∈ I(α) =⇒ β |= ¬φ and ∀γ, γ |= ¬φ =⇒ γ ∈ I(α))
which is equivalent to

either ∃β ∈ I(α) such that β |= φ or ∃γ such that γ |= ¬φ and γ /∈ I(α).

Now, suppose that I(α) = ∅. Then, for every formula φ either kφk 6= ∅, in which case α 5 Iφ
and therefore α |= Iφ → ψ for every formula ψ (in particular for ψ = ¬I¬φ) or kφk = ∅, in
which case α |= Iφ and, since α |= ¬φ and α /∈ I(α), α |= ¬I¬φ. Thus validity of Iφ→ ¬I¬φ
does not guarantee seriality of I (let I be empty everywhere, then the axiom is valid!).
26Indeed, one might want to go further and impose memory axioms: B0φ → B1B0φ (if in

the past you believed φ then later on you remember this) and ¬B0φ → B1¬B0φ (at a later
time you remember what you did not believe in the past).
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either for some φ, Iφ ∈ α and φ ∈ β and αAβ (thus α,β ∈M)
or for all φ, Iφ /∈ α, α ∈M and β = ω0.

Definition 24 An augmented frame is a quintuple hΩ,B0,B1, I,Ai obtained
by adding an equivalence relation A to a regular frame hΩ,B0,B1, Ii with the
additional requirements that B0 ⊆ A and B1 ⊆ A.

The structure hM ∪ {ω0},B0,B1, I,Ai defined above is an augmented frame.
For every α ∈ M, let A(α) = {ω ∈ M : αAω}. Consider the canonical model
based on this frame defined by kpk = {ω ∈ M : p ∈ ω}, for every atomic
proposition p. For every formula φ define kφk according to the semantic rules
given in Section 2, with the following modified truth conditions for the operators
I and A: α |= Iφ if and only if I(α) = kφk ∩A(α) and α |= Aφ if and only if
A(α) ⊆ kφk. The proof of the following lemma is along the lines of Goranko
and Passy [17] (p. 25).

Lemma 25 For every formula φ, kφk = {ω ∈M : φ ∈ ω}.

Proof. The proof is by induction on the complexity of φ. For the non-modal
formulas and for the cases where φ is either B0ψ or B1ψ or Aψ, for some ψ, the
proof is standard (see Chellas, 1984, Theorem 5.7, p. 172). That proof makes
use of rule of inference RK for the modal operators. Since this rule of inference
does not hold for I (see Remark 8), we need a different proof for the case where
φ = Iψ for some ψ. By the induction hypothesis, kψk = {ω ∈ M : ψ ∈ ω}. We
need to show that kIψk = {ω ∈M : Iψ ∈ ω}, that is, that
(1) if α |= Iψ (i.e. I(α) = kψk ∩A(α)) then Iψ ∈ α, and
(2) if Iψ ∈ α then I(α) = kψk ∩A(α) (i.e. α |= Iψ).

For (1) we prove the contrapositive, namely that if α ∈ M and Iψ /∈ α then
I(α) 6= kψk ∩A(α). Suppose that α ∈ M and Iψ /∈ α. Two cases are possible:
(1.a) Iχ /∈ α for every formula χ, or (1.b) Iχ ∈ α for some χ. In case (1.a),
by definition of I, I(α) = {ω0}. Since ω0 /∈ M (and A(α) ⊆ M) it follows that
I(α) 6= kψk∩A(α). In case (1.b) it must be that (Iχ→ Iψ) /∈ α (since Iψ /∈ α).
By axiom I2, A(χ ↔ ψ) → (Iχ → Iψ) ∈ α. Thus A(χ ↔ ψ) /∈ α. Since α
is a MCS, ¬A(χ ↔ ψ) ∈ α. Now, ¬A(χ ↔ ψ) is propositionally equivalent to
¬A¬¬(χ↔ ψ), which in turn is equivalent to ¬A¬ ((χ ∧ ¬ψ) ∨ (ψ ∧ ¬χ)). Thus
this formula belongs to α. Hence there is a β such that αAβ and either (1.b.1)
(χ ∧ ¬ψ) ∈ β or (1.b.2) (ψ ∧ ¬χ) ∈ β. In case (1.b.1), χ ∈ β and ψ /∈ β. By
definition of I, since αAβ and Iχ ∈ α and χ ∈ β, we have that β ∈ I(α) while
β /∈ kψk , since ψ /∈ β and, by the induction hypothesis, kψk = {ω ∈M : ψ ∈ ω}.
Thus I(α) 6= kψk ∩ A(α). In case (1.b.2), χ /∈ β and ψ ∈ β, so that, by the
induction hypothesis, β ∈ kψk; furthermore, β ∈ A(α). We want to show that
β /∈ I(α), so that I(α) 6= kψk∩A(α). To see this, suppose by contradiction that
β ∈ I(α). Then by definition of I, there is some ζ such that Iζ ∈ α and ζ ∈ β.
By Lemma 23 {θ : Iθ ∈ α} ⊆ β, implying that χ ∈ β, since, by hypothesis,
Iχ ∈ α . But this contradicts χ /∈ β. This completes the proof of (1).
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Next we prove (2). Suppose that Iψ ∈ α. First we show that kψk ∩A(α) ⊆
I(α). Fix an arbitrary β ∈ kψk ∩ A(α). Since β ∈ kψk, by the induction
hypothesis, ψ ∈ β and, therefore, by definition of I, β ∈ I(α). Next we show
that I(α) ⊆ kψk ∩ A(α). Fix an arbitrary β ∈ I(α). By definition of I,
β ∈ A(α) and there exists a χ such that Iχ ∈ α and χ ∈ β. By Lemma
23, {θ : Iθ ∈ α} ⊆ β and therefore, since Iψ ∈ α, ψ ∈ β. By the induction
hypothesis, kψk = {ω ∈M : ψ ∈ ω}. Thus β ∈ kψk ∩A(α).

Proposition 26 Logic L is sound and complete with respect to the class of
augmented frames hΩ,B0,B1, I,Ai under the semantic rules given in Section 2,
with the following modified truth conditions for the operators I and A: α |= Iφ
if and only if I(α) = kφk∩A(α) and α |= Aφ if and only if A(α) ⊆ kφk, where
A(α) = {ω ∈ Ω : αAω}.

Proof. (A) SOUNDNESS. It is straightforward to show that the inference rules
MP and NECA are validity preserving and axioms K0, K1, KA, TA, 5A, Incl0
and Incl1, are valid in all augmented frames. Thus we only show that axioms
I1 and I2 are valid in all augmented frames.
1. Validity of axiom I1: Iφ ∧ Iψ → A(φ↔ ψ). Fix an arbitrary model, and

suppose that α |= Iφ ∧ Iψ. Then I(α) = kφk ∩A(α) and I(α) = kψk ∩A(α).
Thus kφk ∩ A(α) = kψk ∩ A(α) and hence A(α) ⊆ kφ↔ ψk, yielding α |=
A(φ↔ ψ).
2. Validity of axiom I1: A(φ ↔ ψ) → (Iφ ↔ Iψ). Fix an arbitrary model

and suppose that α |= A(φ ↔ ψ). Then A(α) ⊆ kφ↔ ψk and, therefore,
kφk ∩A(α) = kψk ∩A(α). Thus, α |= Iφ if and only if I(α) = kφk ∩A(α) if
and only if I(α) = kψk ∩A(α), if and only if α |= Iψ. Hence α |= Iφ↔ Iψ.

(B) COMPLETENESS. Let φ be a formula that is valid in all augmented
frames. Then φ is valid in the canonical structure hM ∪ {ω0},B0,B1, I,Ai de-
fined above, which is an augmented frame. Thus φ is valid in the canonical
model based on this frame. By Lemma 25, for every formula ψ, kψk = {ω ∈M :
ψ ∈ ω}. Thus φ belongs to every MCS and therefore is a theorem of L (Chellas,
1984, Theorem 2.20, p. 57).

To prove Proposition 10, namely that logic L is sound and complete with
respect to the class of frames hΩ,B0,B1,Ii, we only need to invoke the result
(Chellas, 1984, Theorem 3.12, p. 97) that soundness and completeness with
respect to the class of augmented frames (where A is an equivalence relation)
implies soundness and completeness with respect to the generated sub-frames
(where A is the universal relation). The latter are precisely what we called
frames. In a frame where the relation A is the universal relation the semantic
rule α |= Iφ if and only if I(α) = kφk ∩ A(α) becomes α |= Iφ if and only if
I(α) = kφk and the semantic rule α |= Aφ if and only if A(α) ⊆ kφk becomes
α |= Aφ if and only if kφk = Ω, since A(α) = Ω.
Next we turn to the proof of Proposition 11, namely that logicR is sound

and complete with respect to the class of frames hΩ,B0,B1,Ii that satisfy the
Qualitative Bayes Rule (QBR).
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Proof. (A) SOUNDNESS. This follows from Propositions 3 and 10.
(B) COMPLETENESS. By Proposition 10 we only need to show that the

frame associated with the canonical model is a QBR frame. First we show that

∀ω ∈M, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) ⊆ I(ω). (5)

Let β ∈ B0(α) ∩ I(α). Since B0(α) ⊆ M, β ∈ M and therefore, by definition
of I, there exists a formula φ such that Iφ ∈ α and φ ∈ β. Since β ∈ B0(α),
¬B0¬φ ∈ α (Chellas, 1984, Theorem 5.6, p. 172). Thus (Iφ ∧ ¬B0¬φ) ∈ α.
Since Qualified Acceptance is a theorem, (Iφ ∧ ¬B0¬φ) → B1φ ∈ α. Thus
B1φ ∈ α. We want to show that B1(α) ⊆ I(α). Fix an arbitrary γ ∈ B1(α).
Then, by definition of B1, {ψ : B1ψ ∈ α} ⊆ γ. In particular, since B1φ ∈ α,
φ ∈ γ. By definition of I, since Iφ ∈ α and φ ∈ γ, γ ∈ I(α).
Next we show that

∀ω ∈M, if B0(ω) ∩ I(ω) 6= ∅ then B1(ω) ⊆ B0(ω). (6)

Let β ∈ B0(α)∩I(α). As shown above, there exists a φ such that Iφ ∈ α, φ ∈ β
and ¬B0¬φ ∈ α. By Persistence, for every formula ψ, (Iφ∧¬B0¬φ)→ (B0ψ →
B1ψ) ∈ α. Thus

(B0ψ → B1ψ) ∈ α. (7)

Fix an arbitrary γ ∈ B1(α). Then, by definition of B1, {ψ : B1ψ ∈ α} ⊆ γ. We
want to show that γ ∈ B0(α), that is, that {ψ : B0ψ ∈ α} ⊆ γ. Let ψ be such
that B0ψ ∈ α. By (7) B1ψ ∈ α and therefore ψ ∈ γ.
Finally we show that

∀ω ∈M, B0(ω) ∩ I(ω) ⊆ B1(ω). (8)

Fix an arbitrary α ∈ M. If B0(α) ∩ I(α) = ∅, there is nothing to prove.
Suppose therefore that β ∈ B0(α) ∩ I(α) for some β. Then there exists a φ
such that Iφ ∈ α and φ ∈ β. Fix an arbitrary γ ∈ B0(α) ∩ I(α). We want
to show that γ ∈ B1(α), that is, that {ψ : B1ψ ∈ α} ⊆ γ. Let ψ be an
arbitrary formula such that B1ψ ∈ α. Then (Iφ ∧ B1ψ) ∈ α. By Minimality,
(Iφ ∧ B1ψ) → B0(φ → ψ) ∈ α. Thus B0(φ → ψ) ∈ α. Since γ ∈ B0(α),
(φ→ ψ) ∈ γ. Since Iφ ∈ α, I(α) = kφk. Thus, since γ ∈ I(α), γ |= φ and, by
Lemma 25, φ ∈ γ. It follows from this and (φ→ ψ) ∈ γ that ψ ∈ γ.
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