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I. Reductionist and Structuralist Accounts of Causality  
 
Economists have intermittently concerned themselves with causality at least since David 

Hume in the 18th century.  Hume is the touchstone for all subsequent philosophical 

analyses of causality.  He is frequently regarded as a causal skeptic; yet, as an economist, 

he put a high priority on causal knowledge.1  In “On Interest” (Hume 1754, p. 304), one 

of his justly famous economic essays, he writes:   

it is of consequence to know the principle whence any phenomenon arises, and to 
distinguish between a cause and a concomitant effect . . . nothing can be of more 
use than to improve, by practice, the method of reasoning on these subjects . . . 
 

The utility of causal knowledge in economics is captured in Hume’s conception of what it 

is to be a cause:  “we may define a cause to be an object, followed by another, . . . where, 

if the first had not been, the second never had existed” (Hume 1777, p. 62).  Causal 

knowledge lays the groundwork for counterfactual analyses that underwrite economic 

and political policy judgments. 

 At least two questions remain open:  first, what exactly are causes “in the objects” 

(Hume 1739. p. 165)?  second, how can we infer them from experience?  Hume answers 

the first question by observing that the idea of cause comprises spatial contiguity of cause 

to effect, temporal precedence of cause over effect, and necessary connection between 

cause and effect.  Necessary connection “is of much greater importance” then the other 

two elements (Hume 1739, p. 77).  Necessary connection is the basis for practical 

counterfactual analysis.   

 Hume answers the second question by pointing out that contiguity and temporal 

precedence are given in experience, but that no experience corresponds to the notion of 

                                                 
1 See Hoover (2001, ch. 1) for a fuller discussion of Hume’s views on causality as a philosophical and 
economic problem. 
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necessary connection.  Since Hume famously believed that all knowledge is either logical 

and mathematical or empirical, the failure to find an a priori or an empirical provenance 

for the idea of necessary connection provides the basis for the view that Hume is a causal 

skeptic.   

 According to Hume, the closest that we can come to an empirical provenance for 

the idea of necessary connection is the habit of mind that develops when two objects or 

events are constantly conjoined.  Unfortunately, constant conjunction is too weak a reed 

to support a satisfactory account of the connection between causal knowledge and 

counterfactual analysis – however practically important Hume deemed the latter. 

 After Hume, the dominant strategy in the analysis of causality has been reductive.  

Its objects are, first, to define causes in terms of something less mysterious with the 

object of eliminating causality as a basic ontological category and, second, to provide a 

purely empirically grounded mode of causal inference.  An important modern example is 

found in Patrick Suppes (1970) probabilistic theory of causality.  For Suppes, A prima 

facie causes B, if the probability of B conditional on A is higher than the unconditional 

probability of B (P(B|A) > P(B)).  The type of empirical evidence that warrants calling 

one thing the cause of another becomes, in this approach, the meaning of cause:  the 

ontological collapses to the inferential.   

 Such approaches are not successful.  As Suppes and others realized, the concept 

of cause must be elaborated in order to capture ordinary understandings of its meaning.  

For example, cause is asymmetrical:  if A causes B, B does not (in general) cause A.  It is  

 2
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easy to prove that if A is a prima facie cause of B, then B is a prima facie cause of A.2  

Asymmetry can be restored by the Humean device of requiring causes to occur before 

their effects:  P(Bt+1|At) > P(Bt+1) does not imply P(At+1|Bt) > P(At+1). 

 Another standard counterexample to prima facie cause as an adequate rendering 

of cause simpliciter is found in the correlation between a falling barometer and the onset 

of a storm.  Although these fulfill the conditions for prima facie cause, we are loath to 

say that the barometer causes the storm.  The standard device for avoiding this conclusion 

is to say the barometer will not be regarded as a cause of the storm if some other variable 

– say, falling air pressure – screens off the correlation between the putative cause and 

effect.  The probability of a storm conditional on a falling barometer and falling air 

pressure is the same as the probability of a storm conditional on falling air pressure alone.  

The falling barometer does not raise the probability of the storm once we know the air 

pressure.  Such a screening variable is known either as a common cause (as in this 

example in which the falling air pressure causes both the falling barometer and the storm) 

or as an intermediate cause (when the variable is a more direct cause that stands between 

the effect and a less direct cause in a chain). 

 These are only two examples of the various additional conditions that have to be 

added to bring the simple notion of prima facie cause into line with our ordinary notions 

of causation.  Such strategies suggest, however, that the reductive notion is haunted by 

the ghost of a more fundamental concept of causality and that we will not be satisfied 

until the reductive notion recapitulates this more fundamental notion.   

                                                 
2 See Hoover (2001, p. 15).  The joint probability of A and B can be factored two ways into a conditional 
and a marginal distribution:  P(B, A) = P(B|A)P(A) = P(A|B)P(B).  If A is a prima facie cause of B, then 
P(B|A) > P(B).  Substituting for P(B) in the joint probability distribution gives us P(B|A)P(A) < 
P(A|B)P(B|A) or P(A|B) > P(A) – that is, B is a prima facie cause of A. 
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 Recognition of the specter of necessary connection suggests another possibility:   

simply give the reductive strategy up as a bad job and to embrace causality as a primitive 

category, admitting that no satisfactory reduction is possible.  Such an approach once 

again distinguishes the ontology of causality from the conditions of causal inference that 

had been conflated in reductivist accounts.  Such a non-reductive strategy implies that we 

can never step outside of the causal circle:  to learn about particular causes requires some 

prior knowledge of other causes.  Nancy Cartwright (1989, ch. 2) expresses this 

dependence in a slogan:  “no causes in; no causes out.”  It is also the basis for James 

Woodward’s (2003) “manipulability” account of causality (cf. Holland 1986).  Roughly, 

a relationship is causal if an intervention on A can be used to alter B.  The notion of a 

manipulation or an intervention may appear to be, but is not in fact, an anthropomorphic 

one, since it can be defined in terms of independent variations that may arise with or 

without human agency.  Nor is the circularity implicit in this approach vicious.  What is 

needed is that some causal relationship (say, C causes A) permits manipulation of A, 

while what is demonstrated is the existence of a causal relationship between A and B – 

what is proved is not what is assumed. 

 Causal knowledge in a manipulability account is the knowledge of the structure of 

counterfactual dependence among variables – for example, how a clock works or how it 

will react to various interventions.  Whereas in reductive accounts of causality, the 

connection between the structure of causes and counterfactual analysis was too weak to 

be satisfactory, here it is basic.  Woodward’s account is closely allied with the analyses 

of Pearl (2000) and Hoover (2001).  I prefer the term structural account to manipulability 

account, since manipulations are used to infer structures and structures are manipulated.  
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Still, that preference is merely a matter of terminology – the underlying causal ontology 

is the same in all three accounts. 

 A structural account seems particularly suited to economics.  Economics is 

distinguished from other social sciences in its dedication to a core theory that is shared, to 

one degree or another, by most economists.  The core theory can be seen as articulating 

economic mechanisms or structures not unlike physical mechanisms that provide the 

classic illustrations of causal structure.  While the very notion of an economic structure 

seems to favor the manipulability or structural account of causality, with its 

fundamentally causal ontology, the same tensions already evident in Hume’s account of 

causality are recapitulated through the history of economics.  These tensions are reflected 

in two problems:  the inferential problem (how do we isolate causes or identify 

structure?) and counterfactual problem (how do we use a knowledge of causal structure 

to reason to unobserved outcomes?).  

 John Stuart Mill, one of a distinguished line of philosopher/economists, 

contributed answers to both questions.  In his System of Logic (1851), he describes 

various canons for inferring causes from empirical data.  But in his Principles of Political 

Economy (1848) he denies that economic structures can be inferred from these or other 

inductive rules.  For Mill, economics involves many considerations and many 

confounding causes, as well as human agency.  While there may be some coarse 

regularities, it is implausible that any economic laws or any strict causal relationships 

could be inferred from data.  But economics is not, therefore, hopeless as a counterfactual 

science.  Rather it is “an inexact and separate science” (Hausman 1992).  Economics is 

the science of wealth in which the choices of human actors, known to us by direct 
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acquaintance, interact with the production possibilities given by nature and social 

organization.  From our a priori understanding, we can deduce axiomatically the effects 

of causes in cases in which there are no interfering factors.  When we compare our 

deductions to the data, however, we do not expect a perfect fit, because there are in fact 

interfering factors and our deductions must be thought of as, at best, tendencies.  There is 

no simple mapping between the deductions of theory and any sort of empirical test or 

measurement.  Implicitly at least, Mill’s view has been highly influential in economics.  

Yet it gives rise to a perennial conundrum:  if we know the true theory, we can dispense 

with empirical study; but how do we know that the theory is true? 

 I shall use the tension between the epistemological, inferential problem and the 

ontological, counterfactual problem as a background against which to situate four 

approaches to causality in economics.  These four approaches are different, yet 

overlapping and sometimes complementary.  The goal will not be to ask, which is right?  

Rather, what is right about each?  They are 1) the notion of causal order implicit in the 

Cowles Commission (Koopmanns 1950; Hood and Koopmanns 1953) analysis of 

structural estimation, revived in, for example, Heckman (2000); 2) Granger-causality 

(Granger 1969, 1980; Sims 1972); 3) the structural account of causality that appeals to 

invariance under intervention as an inferential tool (Hoover 2001); and 4) the graph-

theoretic approaches associated with Judea Pearl (2000) and Glymour, Spirtes, and 

Scheines (2000).   

 Both economic theory and econometrics have become sciences expressed in 

models.  My approach will be to discuss causality in relationship to the mapping between 

theoretical and econometric models.  This mapping is related in a complex way to the 
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distinction between the inferential and the counterfactual problems.  To keep things 

concrete, I will use macroeconomic models to illustrate the key points. 

 

II.  Structual Estimation and Causality 

Trygve Haavelmo’s monograph “The Probability Approach in Econometrics” (1944) 

marks a watershed in the history of empirical economics.  Appropriately defined, 

econometrics is an old discipline, going back perhaps to William Petty and the tradition 

of “political arithmetic.”  Some of the characteristic tools of econometrics are traceable to 

William Stanley Jevons if not to earlier economists (see Morgan 1990).  Yet, until 

Haavelmo there was considerable doubt whether classical statistics had any relevance for 

econometrics at all.  Haavelmo’s great innovation was to suggest how economic 

tendencies could be extracted from nonexperimental economic data – that is, to suggest 

how to do what Mill thought could not be done.  The true interpretation of Haavelmo’s 

monograph is highly disputed (see Spanos 1995).  On one interpretation, economic theory 

permits us to place enough structure on an empirical problem that the errors can be 

thought to conform to a probability model analyzable by standard statistical tools.  On 

another interpretation (associated with the “LSE (London School of Economics) 

approach” in econometrics), analysis is possible only if the econometric model can 

deliver errors that in fact conform to standard probability models and the key issue is 

finding a structure that ensures such conformity (Mizon 1995). 

 The Cowles Commission took the first approach.  The problem, as they saw it, 

was how to identify and measure the strength of the true causal linkages between 
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variables.  To do this, one started with theory.  Suppose, to take a textbook example, that 

theory told us that money (m) depended on GDP (y) and GDP on money as 

 

(1)    m = αy + εm 

 

(2)    y = βm + εy, 

 

where the variables should be thought of as the logarithms of the natural variables and εm 

and εy are error terms that indicate those factors that are irregular and cannot be 

explained.  Following Haavelmo, the Cowles Commission program argues that if a model 

is structural then these error terms will follow a definite probability distribution and can 

be analyzed using standard statistical tools.  Furthermore, if the structural model is 

complete, then the error terms will be independent of (and uncorrelated with) each other. 

 If we have a model like equations (1) and (2), including knowledge of α and β 

and of the statistical properties of εm and εy, then answering counterfactual questions 

(probabilistically) would be easy.  The problem in the Cowles Commission view is that 

we do not know the values of the parameters or the properties of the errors.  The real 

problem is the inferential one:  given data on y and m, can we infer the unknown values?  

As the problem is set out, the answer is clearly, “no.”   

 The technique of multivariate regression, which chooses the coefficients of an 

equation in such a manner as to minimize the variance of the residual errors, implicitly 

places a directional arrow running from the right-hand to the left-hand side of an 

equation.  The error terms are themselves estimated, not observed, and are chosen to be 
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orthogonal to the left-hand side regressors – the implicit causes.  Although if we knew the 

direction of causation, a regression run in that direction would quantify the relationship, 

we cannot use the regression itself to determine that direction.  Any regression run in one 

direction can be reversed, and the coefficient estimates are just different normalizations 

of the correlations among the variables – here of the single correlation between m and y.3  

We have no reason to prefer one normalization over another.   

 Of course, if we knew the values of εm and εy, it would be easy to distinguish 

equation (1) from equation (2).  But this is just what we do not know.  Our best guesses 

of the values of εm and εy are determined by our estimates of α and β, and not the other 

way round. 

 The problem is made easier if equations (1) and (2) are influenced by other, and 

different, observable factors.  Suppose the theoretical model is  

 

(3)    m = αy + δr + εm 

 

(4)    y = βm + γp + εy, 

 

where r is the interest rate and p is the price level.  Relative to the two-equation structure 

y and m are endogenous and r and p are exogenous variables.  The values of the 

parameters can be inferred from regressions of the endogenous variables on the 

                                                 
3 If ρ is the correlation between y and m, then the regression estimate of α is 22ˆ ym σσρα =  and the 

estimate of β is 22ˆ
my σσρβ = , where ρ is the correlation coefficient between y and m,  is the estimated 

variance of m, and  is the estimated variance of y. 

2
mσ

2
yσ
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exogenous variables.  First, eliminate the endogenous variables by substituting each 

equation into the other and simplifying to yield: 

 

(3’)   myrpm ε
αβ

ε
αβ

α
αβ

δ
αβ

αγ
−

+
−

+
−

+
−

=
1

1
111

 

 

(4’)   yyrpy ε
αβ

ε
αβ

β
αβ

γ
αβ

βδ
−

+
−

+
−

+
−

=
1

1
111

. 

 

Next estimate regressions of the form 

 

(5)    m = Π1p+ Π2r + Εm 

 

(6)    y = Γ1p + Γ2r + Εy, 

 

where Π1, Π2, Γ1 and Γ2 are estimated coefficients and Εm and Εy are regression residuals.  

Such a regression is known as a reduced form because it expresses the endogenous 

variables as functions of the exogenous variables and errors only. 

 The estimated coefficients of (5) and (6) can be matched with the coefficients on 

the corresponding variables in (3’) and (4’):  
αβ

αγ
−

=Π
11 , 

αβ
δ

−
=Π

12 , 
αβ

βδ
−

=Γ
11 , 

and 
αβ

γ
−

=Γ
12 .  Given this identification of the estimated coefficients with the 

theoretical coefficients, the parameters are easily recovered.  A little calculation shows 
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that 
2

1
Γ

Π=α , 
2

1
Π

Γ=β , 
1122

2
2
2

ΓΠ−ΓΠ
ΓΠ

=δ , and 
1122

2
22

ΓΠ−ΓΠ
ΓΠ

=γ .  It is only the 

assumption that we know the theoretical structure of (3’) and (4’) that allows us to 

recover these parameter estimates.  In the argot of econometrics, we have achieved 

identification through “exclusion restrictions”:  theory tells us that p is excluded as a 

cause of m and that r is excluded as a cause of y.   

 It is easy to see why we need factors that are included in one equation and 

excluded from another simply by looking at the formulae that define the mapping 

between the theoretical and estimated coefficients.  For example, if r did not appear in 

(3’), we could interpret δ as equal to zero, so that (3’) would collapse to (3).  Then Π2 and 

Γ1 would both equal zero, and β (the causal strength of m on y in (4’), the other equation) 

would not be defined. 

 The Cowles Commission approach privileges economic theory in manner that is 

strikingly anti-empirical.  We can use the strategy to measure a causal strength, such as β, 

only on the assumption that we have the form of the structure correct as in (3’) and (4’).  

Not only is that assumption untested, it is untestable.  Only if the theory implies more 

restrictions than the minimum needed to recover the structural parameters – that is, only 

if it implies “over-identifying restrictions” – is a statistical test possible.  What is more, 

the Neyman-Pearson statistical testing strategy adopted by Haavelmo and the Cowles 

Commission has been interpreted as implying one-shot tests, in which the theoretical 

implication to be tested must be designated in advance (see Spanos 1995).  Mutual 

adaptation between the empirical tests and the theory that generated the testable 
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implications invalidates the statistical model.4  While there is some possibility of 

adapting the Neyman-Pearson procedures to account for specification search, only the 

simplest cases can be analyzed.  Mutual adaptation is certainly practiced, but it lacks a 

sound foundation given the statistical approach generally adopted in economics. 

 Herbert Simon (1953) clarified how identified structural models could be 

interpreted causally.  If we know that the parameters α, β, δ, and γ are mutually 

independent – that is, the values taken by one places no restrictions on the range of values 

open to the others – we can place the arrows of causation in a system like (3) and (4), say, 

as 

 

(3’’)    m ⇐ αy + δr + εm 

 

(4’’)    y ⇐ βm + γp + εy, 

 

where the symbol “⇐” is interpreted as a directional equality.  In this case, m and y are 

mutual causes.  If α were zero under all circumstances – that is, if y were omitted from 

equation (4’’), then m would cause y, but y would not cause m.  Such systems with a one-

way causal order are called recursive. 

 Simon pointed out an inferential problem closely related to the identification 

problem.  To keep things simple, consider a recursive system without error terms: 

                                                 
4 In the simplest cases, this is obvious.  If one adopts a rule of trying different regressors until one finds one 
that passes a t-test at a 5 percent critical value, then the probability of finding a “significant” relationship 
when the null hypothesis of no relationship is in fact true is much greater than one in twenty.  For more 
complicated search procedures, the effect of search on the true size of statistical tests is hard to work out 
analytically.  In can be shown, however, that some search procedures impose a large cost to search, while 
others impose quite small costs (Hoover and Perez 1999, 2004). 
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(7)    m = δr,  

 

(8)    y = βm + γp. 

 

In this system, if β, δ, and γ are mutually independent parameters, m causes y.  But can 

we infer the causal structure from data alone?  Unfortunately not.  Adding (7) and (8) 

yields 

 

(7’)   rpym
β

δ
β

γ
β −

+
−

+
−
−

=
111

1 , 

While substituting (7) into (8) yields 

 

(8’)    y = γp + βδr. 

 

Every solution to (7) and (8) is also a solution to (7’) and (8’), yet in the first system m 

appears to cause y, and in the second system y appears to cause m.  One might say, “yes, 

but the second system is clearly derived from the first.”  But this is not so clear.  If we 

replace the second system with 

 

(7’’)    rpym µλφ ++= , 

 

(8’’)     y = θp + ρr, 
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then what appear to be coefficients that are functions of more basic parameters in (7’) and 

(8’) can be treated as themselves basic parameters.  Taking an appropriate linear 

transformation of (7’’) and (8’’) will convert it to a system with a causal order like that of 

(7) and (8) in which the coefficients are functions of its parameters.  The same set of 

values for m, y, r, and p are consistent with this new system as with the three previous 

systems.  The data alone do not seem to prefer one causal order over another.  This is the 

problem of observational equivalence. 

 If we had some assurance that we knew which coefficients were true parameters 

and which were functions of more basic parameters, or even if we knew for certain which 

exogenous variables could be excluded from which equations, then we could recover the 

causal order.   

 At this point, the theoretical causal analyst is apt to turn to the economist and say, 

“we rely on you to supply the requisite subject matter knowledge.”  Surprisingly, 

economists have often been willing to oblige on the basis of a priori theory or detailed 

knowledge of the economy.  But we are entitled to ask:  “Where did such detailed 

knowledge come from?  How was the theory validated?  Was the validation done in a 

way that did not merely assume that the problem of observational equivalence had been 

solved at some earlier stage?  And, if it were soluble, at the earlier stage, why is it a 

problem now?” 
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III. The Assault on Macroeconometric Models 

 The epistemic problem of inferring causal strengths threatens to undermine the 

counterfactual uses of causal structure.  Macroeconometric models are wanted in large 

part to conduct policy analysis.  Without knowledge of the parameter values true policy 

analysis – that is, working out the effects of previously unobserved policy – is not 

possible (see Marschak 1953).  Despite the fact that the Cowles Commission program 

had clearly articulated the central difficulties in inferring causal structure, macromodeling 

in the 1950s and 1960s was undaunted.  I believe that the main reason for ignoring the 

vast epistemic problems of structural modeling can be traced to the confidence in our 

direct, nonempirical acquaintance with true economic theory that many economists 

shared with (or inherited from) Mill.  The Cowles Commission program pointed to the 

need for a priori theory.  Yet, this was not a problem, because what most distinguished 

economics from all other social sciences was, as Cartwright (1989, p. 14) later put it, 

“economics is a discipline with a theory.” 

 But was it well enough articulated?  The structural econometric models of Jan 

Tinbergen, starting in the 1930s, through Lawrence Klein in the 1950s were models of 

macroeconomic aggregate data reflecting commonsensical assumptions about their 

interrelationships.  Deep economic theory typically referred to the decision problems of 

individual agents – it was microeconomic.  Even Keynes’s General Theory (1936), the 

bible of macroeconomics, had referred to individual behavior as a basis for aggregate 

relationships, such as the consumption function or the money-demand function.  In his 

early review of the General Theory, Leontief (1936) called for grounding these 

relationships in a general-equilibrium framework in which the interactions of all agents 

 15



Hoover, “Economic Theory and Causal Inference” 
16 September 2005 

had to be mutually consistent.  Klein (1947) himself called for deriving each 

macroeconomic relationship from the optimization problems of individual economic 

actors.  Together these quests formed the program of microfoundations for 

macroeconomics. 

 Klein’s leg of the microfoundational program developed more rapidly than 

Leontief’s.  It was soon discovered that because decision-making is oriented toward the 

future, expectations are important.  This was particularly clear in the investment literature 

of the late 1950s and early 1960s and led to a flowering of theoretical studies of 

expectation formation associated with the Carnegie Institute (now Carnegie-Mellon 

University).  Because expectations must be grounded in past information and because the 

economic effects are slow to unfold, the current values of variables depend on past 

values.  In other words, the quest for microfoundations underscored the dynamical 

character of economic relationships, reviving lines of inquiry that had begun in the 

interwar period.  

 The Leontief leg of the microfoundational program finally took off around 1970.  

Robert Lucas, in a series of papers that launched the new classical macroeconomics, 

insisted that models should respect the constraints of general equilibrium.5  Lucas made 

two key assumptions.  Up to this point, most economists had thought that macroeconomic 

phenomena arose in part because one market or other failed to clear.  Modeling non-

clearing markets is theoretically difficult.  Lucas’s first assumption is that markets in fact 

(at least to a first approximation) clear.  His second assumption is that expectations are 

formed according to Muth’s (1961) rational expectations hypothesis.  The rational 

expectations hypothesis assumed that what economic actors expect is, up to a random 
                                                 
5 See Hoover (1988, 1992a, b). 
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error, what the economic model predicts.  Rational expectations are appealing to 

economists because they do not imply an informational advantage on the part of the 

modeler.  If models could actually outpredict economic actors, then there would be easy 

profit opportunities for the modeler.  But the modelers are themselves economic actors 

(and inform other economic actors) who would themselves take advantage of the profit 

opportunities with the effect of changing prices in such a way that the opportunity 

disappeared (the process referred to as arbitrage).  In effect, acting on non-rational 

expectations would help to make the economy conform to rational expectations. 

 Lucas’s assumptions had strong implications for monetary policy as well.  In a 

world in which markets clear, under conditions that many economists regard as 

reasonable, increases in the stock of money raise prices but do not change real quantities:  

there is pure inflation.  In such a world, only an expectational error would allow a 

monetary-policy action to have a real (as opposed to a purely inflationary) effect.  If 

people have rational expectations, then monetary policy actions can induce such errors at 

best randomly.  Systematic monetary policy cannot, therefore, have real effects on the 

economy.  This is the policy-ineffectiveness proposition, which was the most startling 

result of the early new classical macroeconomics (Sargent and Wallace 1976). 

 We can see how Lucas’s analysis relates to causality and the Cowles Commission 

program through a simple structural model (again the variables should be interpreted as 

the logarithms of natural variables): 

 

  (9)        yt = α(pt – ) + εyt, e
tp

(10)       pt = mt – yt, 
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(11)      mt = γ1mt-1 + γ2yt-1 + εmt, 

(12)     = E(pt|Ωt-1). e
tp

 

The variables are the same as those defined earlier, except that now the dynamic 

relationships are indicated by time subscripts.  Equation (9) says that prices affect real 

GDP only if they differ from expectations formed a period earlier.  Equation (10) shows 

that the level of prices is determined by the size of the money stock relative to real GDP.  

Equation (11) is the monetary-policy rule:  the central bank sets the money supply in 

response to last period’s levels of money and real GDP.  Finally, (12) says that expected 

prices are formed according to the rational expectations hypothesis – i.e., they are the 

mathematical expectation of actual prices based on all the information available up to 

time t – 1.  The information set (Ωt-1) includes the structure of the model and the values 

of all variables and parameters known at t – 1, but does not include the values of the 

current error terms. 

 The model is easily solved for an expression governing GDP, 

 

(13)   yttttt ymmy ε
αα

αγ
α

αγ
α

α
+

+
+

−
+

−
+

= −− 1
1

111 1
2

1
1 ,  

 

as well as one governing money that merely recapitulates the earlier equation  

 

(11)    mt = γ1mt-1 + γ2yt-1 + εmt. 
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 The system (11) and (13) is identified.  In some sense, it shows mutual causality:  

m causes y, and y causes m.  Yet, if we restrict ourselves to current (time t) values, then 

contemporaneously mt causes yt. 

 The coefficients in (13) are functions of the parameters of the model (9)-(12) 

because of the way expectations are formed:  economic actors are seen as accounting for 

the structure of the model itself in forming expectations.  Lucas (1976) criticized 

macromodelers for failing to incorporate expectations formation of this sort into their 

models.  In his view, despite the claim that they were “structural,” previous 

macromodelers had estimated forms such as 

 

(14)    yttttt ymmy Ε+Π+Π+Π= −− 13121 ,  

 

(15)    mt = Γ1mt + Γ2 mt-1 + Γ3yt-1 + Emt, 

 

with enough exclusion restrictions to claim identification.  He argued that these estimates 

were not grounded in theory – at least not in a theory that took dynamics, general 

equilibrium, and rational expectations seriously.  In effect, Lucas argued that the 

coefficients in (14) and (15) were not casual, structural parameters but coefficients that 

were functions of deeper parameters.  Mapping these coefficients onto those in (11) and 

(13) yields:  
α

α
+

=Π
11 , 

α
αγ
+

−
=Π

1
1

2 , 
α

αγ
+

−
=Π

1
2

3 , Γ1 = 0, Γ2 = γ1, and  Γ3 = γ2.   

 Notice that Γ2  and  Γ3 just recapitulate the parameters of the policy function (11).  

In contrast Π1, Π2, and Π3 are coefficients that shift with any change in one of the policy 

parameters.  Equation (14) may have appeared to the macromodeler to be a structural 
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relationship, but if Lucas’s theory is correct it would not be invariant to policy 

manipulation, as Haavelmo and the Cowles Commission had insisted that a causal 

relationship should be.  This is the policy noninvariance proposition or Lucas critique.   

 While the Lucas critique is a celebrated contribution to macroeconomic analysis, 

in this context it is secondary.  It might be interpreted as little threat to the Cowles 

Commission program.  Instead of identifying structure through exclusion restrictions, 

Lucas seems to show us that a more complicated, nonlinear identification is needed.  The 

demands on a priori theoretical knowledge are higher, but they are of the same kind.  

Once the parameters are identified and estimated, counterfactual analysis can proceed 

using (11) and (13).  In fact, the combination of the idea that only unexpected prices can 

have real effects (encapsulated in the “surprise-only” aggregate-supply function (9)) and 

rational expectations renders counterfactual analysis impossible.  To see this, substitute 

(11) into (13) to yield 

 

(16)     ( )ytmtty εαε
α

+⎟
⎠
⎞

⎜
⎝
⎛

+
=

1
1 . 

 

Equation (16) says that real GDP depends only on random shocks and on the shape of the 

aggregate-supply function (the parameter α), but not in any way on the policy parameters 

γ1 and γ2.  This is the formal derivation of the policy-ineffectiveness proposition.   

 One might be inclined to dismiss policy-ineffectiveness as a very special and very 

likely non-robust result.  In particular, economists typically place less confidence in 

dynamic theory than in equilibrium theory.  But, as it turns out, policy ineffectiveness is a 

generic property of models with a surprise-only supply structure and rational 
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expectations.  Although there are alternatives, it characterizes a broad and attractive class 

of models. 

 The new classical approach can be seen as placing extreme faith in economic 

theory and, nevertheless, completely undermining the counterfactual analysis that causal 

analysis in the Cowles Commission framework was meant to support. Toward the end of 

the 1970s, macromodels were assaulted from the opposite extreme.  Rejecting the typical 

identifying restrictions used in macromodels as literally “incredible” – not grounded in 

theory or other sure knowledge – Christopher Sims (1980) advocated the abandonment of 

the Cowles Commission program in favor of a nonstructural characterization of 

macroeconomic data, the so-called vector autoregression (VAR).  A VAR might take a 

form such as 

 

(17)    yttttt pmyy Ε+Π+Π+Π= −−− 131211 ,  

 

(18)    mttttt pmym Ε+Γ+Γ+Γ= −−− 131211 , 

 

(19)    pttttt pmyp Ε+Λ+Λ+Λ= −−− 131211 . 

 

These equations should be understood as reduced forms.  The coefficients are not 

structural and the error terms are not in general independent.  While only a single lagged 

value of each variable is shown, in general these lags should be taken as standing for a set 

of longer (possibly infinite) lagged values. 
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 Having eschewed structure, the Cowles Commission analysis of causal order is 

not available to the VAR modeler.  VAR analysis, however, grew out of an older 

tradition in time-series statistics.  Sims (1972) had introduced Granger’s (1969) approach 

to causality into macroeconometric analysis.  Granger’s notion is temporal (causes must 

precede effects) and informational (A causes B if A carries incremental information useful 

in predicting B).  In (17), for instance, m does not Granger-cause y if the estimate of Π2 is 

statistically insignificant. 

 Granger-causality does not suffer from the inferential problem:  systems like (17)-

(19) are easily estimated and the statistical tests are straightforward.  But it is no help 

with the counterfactual problem, despite the ease with which many practicing economists 

have jumped from a finding of Granger-causality to an assumption of controllability.  Just 

recalling that the reduced-form parameters of the VAR must be complicated functions of 

the underlying structure should convince us of the unsuitability of Granger-causal 

ordering to counterfactual analysis.   

 More specifically, Granger-causality is easily shown not to be necessary for 

counterfactual control.  Imagine that structurally m causes y, and that m is chosen in such 

a way to offset any systematic (and, therefore, predictable) fluctuations in y, then m will 

not be conditionally correlated with y (i.e., Π2 = 0).  For example, suppose that the wheel 

of ship causes it to turn port or starboard, but that the helmsman tries to hold a perfectly 

steady course.  The ship is buffeted by the waves and swells.  Yet, if the helmsman is 

successful, the ship travels in straight line, while the wheel moves from side to side in an 

inverted counterpoint to the movements of the sea.  There should be no observable 

correlation between the direction of the ship and that of the wheel along a single heading. 
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 Granger-causality may not be sufficient in practice for counterfactual control.  

Suppose that ceteris paribus the higher the stock of money or the  lower the demand for 

money, the higher the price level.  Further suppose that the demand for money will be 

lower when people anticipate inflation (i.e., prices higher in future than today).  If people 

know that the money stock will rise in future, then prices will rise in future, so that 

inflation is higher and the demand for money is lower today.  In that case, prices will rise 

somewhat today as a fixed supply of money would otherwise exceed the lower demand.  

Now if people are better able to predict the future course of money than are 

econometricians, then the econometricians will find that prices today help to predict the 

future stock of money.  In this case, prices Granger-cause money, even though money 

structurally causes prices ex hypothesi (Hoover 1993, 2001, ch. 2). 

 One might counter this argument by saying that it simply shows that the 

econometrician has relied on incomplete information.  It raises an important ontological 

issue for macroeconomics.  Given the way that macroeconomic aggregates are formed, it 

is likely that there is always more information reflected in the behavior of people than is 

reflected in even an ideal aggregate.  If that is so, then conflicts between structural and 

Granger-causality are inevitable. 

 A similar point applies to the assumption of time order implicit in Granger-

causality:  causes strictly precede effects.  Practically, this is clearly not true.  

Contemporaneous Granger-causality easily shows up with data sampled at coarse 

intervals:  months, quarters, years.  But would it go away if we could take finer and finer 

cuts of the data?  The existence of an aggregate such as real GDP as a stable, causally 

significant variable is threatened by taking too fine a cut.  Real GDP measures the flow of 
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goods and services – the amount of final products produced over a unit of time.  While 

one could in principle add up such a quantity over intervals of an hour or a second, such 

an aggregate would fluctuate wildly with the time of day (think what happens to GDP at 

night or meal times) in a way that has no causal significance in macroeconomics.  At any 

interval over which it is causally significant, the relationships may be contemporaneous 

rather than strictly time-ordered. 

 As already observed, the most developed theory is about static equilibrium or 

steady states.  The relationships in such steady states are essentially timeless, yet this 

does not rule out a structural causal order (notice that there are no time subscripts in (3’’) 

and (4’’) above). 

 Economists have found it hard to get by with just Granger-causality and VARs.  

This is because they are not ready to abandon counterfactual analysis.  The VAR program 

started at the nonstructural extreme.  It has gradually added just enough structure to 

permit a minimal counterfactual analysis.  A key feature of the VAR is that all variables 

are modeled as endogenous.  Ultimately, it is only the errors (or “shocks”) that cause 

movements in the variables.  But the shocks in (17)-(19) are intercorrelated.  What does it 

mean to evaluate, say,  a money shock when any randomly selected value of Emt changes 

the probability distribution of Eyt  and Ept as well?  In the wake of criticism from Cooley 

and LeRoy (1985), Leamer (1985) and others, Sims (1982, 1986) and other VAR analysts 

quickly admitted that contemporaneous structure was needed. 

 The preferred structures involved a linear transformations of the VAR that 

eliminated the correlation between the error terms.  A typical structural VAR (or SVAR) 

takes the form: 
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(20)   yttttt pmyy Ε+Π+Π+Π= −−− 131211 ,  

 

(21)   mtttttyt pmyym Ε′+Γ′+Γ′+Γ′+Γ′= −−− 131211 , 

 

(22)   ptttttytmt pmyymp Ε′+Λ′+Λ′+Λ′+Λ′+Λ′= −−− 131211 . 

 

This system is recursively ordered with yt causing mt, and yt and mt causing pt.  (The 

transformation of the VAR into an SVAR in which each variable is a direct cause of 

every variable below it in the recursive order is called triangular and is achieved through 

a Choleski decomposition.)  At all other lags the system remains causally unstructured.  

But this minimal structure is enough to eliminate the correlations among the error terms.  

So now, a unique shock to the money equation or the price equation makes sense.  The 

typical way of evaluating SVARs is to calculate the effects of a shock to a single 

equation, setting all other shocks to zero.  These are called impulse-response functions 

and are usually displayed as a separate graph of the path of each variable in response to 

each shock.  

 Unfortunately, the Choleski transformation that generated the triangular ordering 

of the contemporaneous variables is not unique.  There are six possible Choleski 

orderings.  These are observationally equivalent in the sense that they are all 

transformations of the same reduced form.  And with n variables, as long as at least  

n(n – 1)/2 restrictions are imposed to secure identification, there can be non-Choleski 

(i.e., not strictly recursive) orderings as well. 
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 Not only does formal economic theory not often express a preference for a 

particular contemporaneous ordering, the founding sentiment of the VAR program was 

that theory was not to be trusted to provide structure.  In practice macroeconomists have 

offered casual, often temporal, arguments to support particular orderings.  For example, 

commodity prices are observed daily but the Federal Reserve’s policy action must act 

slowly, so the commodity-price index must be ordered ahead of the Federal Reserve’s 

targeted interest rate.  These are mostly “Just So” stories and easily fall foul of some of 

the problems with temporal arguments that applied in the case of Granger-causality. 

 Structural VARs have become the dominant tool of empirical macroeconomics, 

often adopted by researchers who subscribe to the fundamental tenets of the new classical 

macroeconomics, even while distrusting the details of any theoretical model that could 

generate identifying restrictions.  But the SVAR stands in an uneasy relationship with the 

new classical analysis.6  If the Lucas critique is correct, then are not the coefficients of 

the SVAR likely to shift with changes in economic policy, rendering the impulse-

response functions inaccurate?   

 One response has been to admit the Lucas critique on principle but to argue that 

true changes in policy are rare (Sims 1986).  Most monetary-policy actions are seen as 

realizations of particular processes.  Impulse-response functions may prove to be accurate 

on this view; yet, once again, how is one to conduct counterfactual analysis?  LeRoy 

(1995) has argued – unpersuasively in my view – that a policymaker can be seen as 

delivering a set of nonrandom shocks without violating rational expectations.  Leeper and 

Zha (2003) do not go quite so far.  They argue that there is a threshold of perceptibility 

                                                 
6 On the tension within the new classical macroeconomics between the SVAR and structural approaches, 
see Hoover (2005). 
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for violations of randomness.  Below that threshold (defined by the duration of the string 

and the size of the shocks), a policymaker can deliver a string of nonrandom shocks that 

do not trigger the Lucas critique and, yet, are economically significant.   

 The example of the new classical model in (9)-(13) demonstrates a generalizable 

point that in those cases in which the Lucas critique is relevant, policy is innocuous.  

Counterfactual analysis needs some structure, the SVAR does not provide enough.  I 

return to this point in Section V below. 

 

IV.  Inferring Causes From Interventions 

The Cowles Commission approach put theory to the forefront in order to support 

counterfactual policy analysis.  The skeptical SVAR program tried to do with as little 

theory as possible.  The SVAR program sees the Lucas critique as a threat, since true 

changes in policy regime would vitiate the VAR estimates.  My own approach in earlier 

work (summarized in Hoover 2001, chs. 8-10) is, in sense, to embrace the Lucas critique 

as a source of information about the underlying causal structure.  The idea is an essential 

one for the structural or manipulability account:  the causal relationship is defined as one 

that possesses a certain type of invariance.  The previous equations used to illustrate 

Simon’s account of causal order can be used to show this point.   

 Suppose that the system (7) and (8), in which m causes y, reflect the true – but 

unknown – causal order.  A policy intervention might be a change in the parameter δ.  

The parameter may not be identified, and, so, the change will not be directly observed.  

Yet, we may know from, for example, institutional (or other nonstatistical) information 

that a policy change has occurred.  Such a change would, however, not alter the 
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parameters of (8).  Now suppose that the system (7’) and (8’), which could be interpreted 

(incorrectly, of course) as reflecting y causing m, is considered as an alternative.  Again, 

if we know that a policy change has occurred, we see that both the coefficients of the m 

equation (7’) and the y equation (8’) have shifted.  The stability of (7) and (8) against the 

instability of (7’) and (8’) argues in favor of the causal direction running from m to y.  

There is no free lunch here.  Where identification in structural models is achieved 

through a priori theoretical knowledge, identification of causal direction is achieved here 

through knowledge of independent interventions. 

 This invariance approach is closely related to the econometric notion of 

superexogeneity (Engle, Hendry, and Richard 1983; Hendry 1995).  Superexogeneity is 

defined with reference to the stability of the statistical distribution in the face of 

interventions.  My own approach emphasizes the importance of referring to the causal 

structure itself and is, in that sense, more fundamentally indebted to the Cowles 

Commission analysis of structure.  The importance of this distinction can be seen in the 

new classical model whose solution is given in (11) and (13).  On a superexogeneity 

standard, the instability of the coefficients of (13) in the face of a change in policy that 

(observable or not) changes γ1 or γ2, might be taken to count against mt 

contemporaneously causing yt.  Yet, on the Cowles Commission standard, the causal 

order clearly runs from mt to yt.  The important point is that the effects of interventions do 

not run against the arrow of causation.  This is still true in this case, an intervention in the 

aggregate-supply process (a change in α) does not result in any shift of the coefficients of 

(11).  
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 Favero and Hendry (1992) and Ericsson and Hendry (1999) have used 

superexogeneity tests to check whether the Lucas critique matters in practice (see also 

Ericsson and Irons 1995).  This is exactly right.  And if it does not – probably because 

expectations are not formed according to the rational-expectations hypothesis – then the 

inference of causal direction from invariance is easier.  But if the Lucas critique in fact 

matters, then more subtlety is needed to tease causal direction out of information about 

invariance.   

 The key point is that it is not invariance but structure that defines causality; 

invariance only provides information that is often helpful in causal inference.  There is 

always invariance at some level, but not always at the level of ordinary correlations or 

regression relationships.   

 

V. Graph-theoretic Accounts of Causal Structure  

Causal inference using invariance testing is easily overwhelmed by too much happening 

at once.  It works best when one or, at most, a few causal arrows are in question, and it 

requires (in economic applications, at least) the good fortune to have a few – but not too 

many – interventions in the right parts of the structure.  Over the past twenty years, a new 

analysis of causal structure based in graph theory has provided important theoretical and 

practical advances in causal analysis (Spirtes, Glymour, Scheines 2000; Pearl 2000).  

These advances have, however, barely touched economics, yet they may help to 

overcome some of the limitations of the invariance approach.   

 In the Cowles Commission account an adequate econometric model has two 

distinct but related parts:  the probability distribution of the variables and their causal 
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structure.  Spirtes et al. (2000) and Pearl (2000) subscribe completely to this view of 

structure, but offer a more perspicacious way of keeping track of causal relations.  Graphs 

have been used for more than a century to indicate causal structure, but only recently 

have the mathematical tools of graph theory given researchers a highly efficient way to 

express causal connections and to analyze and manipulate them in relations to the 

associated probability distributions. 

 The key idea of the graph-theoretic approach is related to Reichenbachs (1956) 

principle of the common cause.  If A and B are probabilistically dependent, then either A 

causes B or B causes A or both have a common cause.  The common cause might be a 

parent as in Figure 1 or a set of ancestors as in Figure 2.  The causal Markov condition is 

closely related to Reichenbach’s principle.  Roughly, it says that if C is a set of ancestors 

to A and B and if  A and B are not directly causally connected and are not probabilistically 

independent, then A and B are independent conditional on C.   

 In practice, independence is usually judged by estimating (conditional) 

correlations among variables.  This raises three issues.  First, independence implies an 

absence of correlation, but an absence of correlation does not imply independence.  (For 

an example, see Lindgren (1976, p. 136).)   

 Second, the independence relationships of interest are those of the population, and 

not the sample.  Inference about sample correlations is statistical and thus reliable only 

subject to the usual caveats of statistical inference.   

 But, third, even measured correlations are meaningful only in the context of a 

maintained model of the probability distribution of the variables.  This distinction 

becomes important when statistics that apply to stationary or homogeneous data 

 30



Hoover, “Economic Theory and Causal Inference” 
16 September 2005 

interpreted as applying equally well to nonstationary or inhomogeneous data.  For 

example, the well-known counterexample to Reichenbach’s principle of the common 

causes due to Elliott Sober (1994, 2001) states that bread prices in England and sea levels 

in Venice, which ex hypothesi, are not causally connected are nonetheless correlated, 

violating Reichenbach’s principle.  Hoover (2003) shows that Sober implicitly assumes a 

stationary probability model when the best model would involve variables that either 

trend or follow a random walk.  Time-series statisticians have known for a long time than 

ordinary measures of correlation fail to indicate probabilistic dependence in such models.  

Keeping these caveats in mind, we shall, for purposes of exposition, assume that 

correlations measure independence.   

 The idea of vanishing conditional correlation is also found in the notion of 

screening, familiar from the literature on probabilistic causation.  If cor(A, B) ≠ 0 and C 

is causally between A and B (A  → C → B or A  ← C ← B), then cor(A, B|C) = 0. 

 Conditioning can also induce correlation.  The classic example if shown in Figure 

3.  Here cor(A, B) = 0, but cor(A, B|C) ≠0.  C is called an unshielded collider on the path 

ACB.  It is a “collider” because two causal arrows point into it, and it is “unshielded” 

because A and B are not directly causally connected.  Figure 4 shows two shielded 

colliders.  In each case cor(A, B) ≠ 0. 

 There is a number of algorithms that start with all the first-order correlations of a 

set of variables and search for patterns of unshielded colliders, common causes, and 

screens consistent with the observed correlations.  The best known software for 

implementing these algorithms is the Tetrad program of Sprites et al. (1996). 
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 The Observational Equivalence Theorem (Pearl 2000, p. 19, Theorem 1.2.8; 

Sprites et al. 2000, ch. 4) states that any probability distribution that can be faithfully 

represented in a causally sufficient, acyclical (or what econometricians would call a 

recursive) graph can equally well be represented by any other acyclical graph that has the 

same skeleton (i.e., the same causal connections ignoring direction) and the same 

unshielded colliders.  Such graphs form an observationally equivalent class.  Figure 4 

shows two observationally equivalent graphs.  In each case, they have the same causal 

connections but differ in the direction of causation between C and D.  In the first case, a 

program such as Tetrad can direct the arrow.  In the second case, it cannot. 

 How can graph-theoretic ideas be applied to macroeconomics?  One limitation is 

worth noting at the outset.  Search algorithms based on the causal Markov condition can 

easily miss causal linkages in situations of optimal control (for example, the helmsman in 

section III who tries to steer on a constant heading) for exactly the same reason that 

Granger-causality tests failed:  in the ideal case, the values of the control variable are 

chosen to minimize the variability of the controlled variable, and the correlation between 

them vanishes (Hoover 2001, pp. 168-170).  Spirtes et al. (2000, p. 66) and Pearl (2000, 

p. 63) dismiss this as a “Lebesgue measure-zero” result.  While this may do in some 

cases, it will not do in economics, because such cases arise naturally in economics when 

policies are chosen optimally to minimize the variability of a target.  (Stabilizing GDP 

around its trend is much like stabilizing the movements of a ship around the preferred 

heading.)  This, by no means, renders the approach or the algorithms useless, but it does 

serve remind us that it is the causal structure that is primary and not the tools that are 
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used to uncover it.  When tools do not work in some circumstances, other tools are 

needed. 

 Another problem in applying these tools to macroeconomic applications is that, in 

most cases, they have been developed with stationary, non-time-dependent data in mind.  

But macroeconomics works primarily with time-series and often with nonstationary time 

series.  Swanson and Granger (1997) made a first pass at applying these methods to 

VARs.  Their method can be explained with reference to the VAR in (17)-(19).  Although 

the variables the variables themselves are time-dependent and possibly nonstationary, the 

error terms are not.  If the VAR is correctly specified, then the residual errors are serially 

uncorrelated with a zero mean and constant variance.  Instead of looking at the 

correlations among the primary variables, Swanson and Granger look at the correlations 

among their corresponding error terms, reinterpreted as the variables with their time-

series dynamics filtered out.   

 Swanson and Granger limit themselves to causation in a line without considering 

common causes (e.g., tY~   → tM~ → tP~ , where the tildes over the variables indicate that 

they are filtered).  They do not use the common algorithms available in Tetrad.  Instead, 

they check for screening directly.  This allows them to put the variables in order, but not 

to orient the arrows of causation.  Like other VAR analysts, once they have selected an 

order, they rely on an argument of temporal priority to orient the chain of causation.  

Once they have determined the order among the filtered variables, they impose them on 

the original VAR and transform it into an SVAR.  

 

VI. A Synthetic Program for Uncovering the Causal Structure of VARs 

 33



Hoover, “Economic Theory and Causal Inference” 
16 September 2005 

I have been highlighting the tensions between causal inference and the counterfactual 

uses of causation and the parallel tensions between structural and non-structural 

econometric models.  But despite these tensions, my aim is essentially the irenic one of 

looking for the best in the various approaches.  The best available account of causal order 

in economics is found in the Cowles Commission structural analysis.  But as a strategy of 

causal inference it is infeasible.  It provides no mechanism for effective feedback from 

empirical facts about the world to the theory that is used to structure the empirical 

measurement of causes.  The VAR program has that much right.  The identification 

assumptions of the Cowles Commission program are incredible.  Unfortunately, the VAR 

program also needs structure to proceed.  The questions are:  how little structure can we 

get away with and still have something useful to say?  and how are we to learn about 

structure?  I want to conclude by briefly describing my research program on the causal 

orderings of VARs (joint work with Selva Demiralp and Stephen J. Perez).  Our approach 

emphasizes the complementarity of various approaches to causation in macroeconomics. 

 We start where Swanson and Granger left off.  Their useful idea is that the 

contemporaneous causal order of the SVARs can be determined by applying graph-

theoretic methods to the filtered variables.  Along with a small group of other researchers, 

we have extended their methods to consider recursive or acylical orderings more 

generally and not just simple causal chains (see Demiralp and Hoover 2003 and the 

references therein).  For this we used the PC algorithm in Tetrad.  What makes this a 

nontrivial exercise is that the algorithms in Tetrad are data search procedures in which 

the search path involves multiple sequential testing.  Economists are famously wedded to 

a Neyman-Pearson statistical testing philosophy in which such “data mining” is viewed 
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with the greatest skepticism.  Previously, Hoover and Perez (1999 and 2004) have 

investigated LSE search methodologies in Monte Carlo studies and have demonstrated 

that properly disciplined search algorithms can, despite economists fears, have extremely 

well-behaved statistical properties.  Demiralp and Hoover (2003) demonstrate in a Monte 

Carlo study that the PC algorithm is very effective when applied to the SVAR at 

recovering the skeleton of underlying causal graphs and, provided that signal strengths 

are high enough, at oriented the edges as well.   

 The problem of whether or not (or to what degree) an algorithm identifies a causal 

order is not as straightforward as determining the distribution of a statistical test – the 

typical application of Monte Carlo studies.  In particular, the effectiveness is likely to be 

highly dependent on the true underlying causal structure – something that cannot be 

known in advance in actual empirical applications.  Demiralp, Hoover, and Perez (2005) 

have therefore developed a bootstrap method in which simulations can be adapted to 

actual data without knowing the true underlying structure.  The bootstrap method starts 

by estimating a VAR, in the same way as one normally obtains the filtered variables, but 

then treats the error terms as a pool of random variates from which to construct a large 

number of simulated data sets.  A causal search algorithm is then applied to each 

simulated data set and the chosen causal order is recorded.  Statistics summarizing the 

frequency of occurrence of different causal structures are then used in the manner of 

Monte Carlo simulations in the earlier study to construct measures of the reliability of the 

causal identification for the specific case under study.   

 Graph-theoretic methods are attractive in the VAR context partly because they are 

well suited to handle relative large numbers of variables.  Nevertheless, as we have 
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already seen, there may remain some observational equivalence, so that some causal links 

cannot be oriented.  Macroeconomics quite commonly involves policy regime changes 

and structural breaks that can be exploited as in my own earlier approach to causal 

inference. 

 The impulse-response functions of VARs are known to be inaccurately estimated.  

In part, this arises because they include large numbers of lagged and often highly 

correlated regressors.  Conditional on the contemporaneous causal order being held fixed, 

it should be possible to conduct systematic exclusion restrictions of variables and their 

lags from the different equations of the structure.  These are effectively Granger-causality 

tests.  The elimination of variables which are not Granger-causal should help to sharpen 

the estimates. 

 This program of discovering the structure of the VAR from data helps to preserve 

the insight that a priori theory alone cannot get us too far.  But let me end on a cautionary 

note.  The discovery of the contemporaneous causal VAR through graph-theoretic 

methods supplemented by invariance-based methods and refined by Granger-causality 

tests may still not deliver enough structure to support counterfactual analysis.   

To illustrate the problem, the structure in (11) and (13) is compatible with an 

SVAR in which contemporaneous money causes contemporaneous real GDP.  And, as 

we have seen, it delivers policy ineffectiveness.  It is a simple model, but policy 

ineffectiveness generalizes to complex models.   

 Since the 1970s, however, many – if not most – macroeconomists have come to 

believe that, in the short run, systematic monetary policy does have real effects.  This 

might be because expectations are not formed rationally (or because economic actors 
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follow rules of thumb that make no reference to expectations at all) or because slowly 

adjusting wages and prices undermine the surprise-only aggregate supply relationship.  

To make the point in a simple way, we can imagine that for either of these reasons (11) is 

replaced by  

 

(23)     yt = βmt + εyt, 

 

which shows that money directly affects real GDP.   

 Notice that (11) and (23) form a system which is, again, consistent with an SVAR 

in which money is contemporaneously causally ordered ahead of real GDP.  But the 

system (11) and (23) does not display policy ineffectiveness.  Indeed, systematic 

monetary policy can be quite powerful in this system.  Both the system (11) and (13) and 

the system (11) and (23) are compatible with the same SVAR.  But the counterfactual 

experiment of what happens to real GDP when systematic monetary policy is changed 

(that is, what happens when γ1 or γ2) is changed are radically different:  in the first case, 

nothing; in the second case, a great deal (Cochrane 1998). 

 In a sense, we have come full circle.  The initial problem was that we needed to 

assume that we already knew the causal structure in order to make measurements of 

causal strengths and to conduct counterfactual analysis.  We argued that a variety of 

methods of causal inference may allow us to discover large parts of causal structure.  And 

now we see that even if we are very successful, it still may not be enough for 

counterfactual analysis.  None of our methods definitively resolves the initial tension. 
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 It is, perhaps, not ultimately resolvable.  Yet, I do not view the process as 

hopeless.  Rather it is one of iterating between whichever pole is most immediately 

obstructing our progress.  For example, in a more complicated version of the problem just 

set out Òscar Jordá and I (Hoover and Jordá 2001) assume that the economy consists 

partly of agents who follow an analogue to (11) and (13) and partly agents who follow an 

analogue of (11) and (23).  On the assumption that the shares of each type of agent is 

stable, we use changes in monetary policy regimes to recover the shares and to identify 

the underlying structure.  This approach parallels closely the invariance-based methods of 

causal inference.  But notice that it still relies on strong assumptions not only of the 

constancy of the shares, but also of the particular forms of the two aggregate-supply 

functions.  We try to make these as generic and general as possible, but they cannot be 

perfectly general.  So, we are again brought round to the conclusion that counterfactual 

analysis requires strong untestable, a priori assumptions, and to the open question:  how 

do we know that they are true?  
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Figure 1 
A Common Cause 
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Common Ancestors 
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Figure 3 
An Unshielded Collider 
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Figure 4 
Observational Equivalence 
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