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Abstract
In view of success stories of unicorn startups from the sharing and gig economy 
such as Airbnb, DiDi, or Uber, it is not surprising that postal service providers try 
to transfer the sharing idea toward their last-mile delivery services: owners of under-
used assets (here private crowdshippers traveling anyway) are connected with users 
willing to pay for the use of these assets (here postal service providers having to 
deliver parcels). In this paper, we consider a special form of crowdshipping where 
public transport users, steered by a smartphone app, pick up parcels from parcel 
lockers, take these shipments with them on their subway rides, and deposit these 
parcels into other lockers. Finally, the actual recipients can pick up their shipments 
from their most convenient parcel lockers, e.g., on their own way back home from 
work. We formulate the optimization problem that matches crowdshipping demand 
and supply and determines the routes along lockers and crowdshippers each par-
cel takes. Specifically, we allow that each parcel is moved by multiple cooperating 
crowdshippers and solve this problem with different objective functions capturing 
the individual aims of the main stakeholders: shippers, crowdshippers, recipients, 
and the platform provider. We evaluate the relationship of these objectives and quan-
tify the efficiency loss of a more restricted matching policy, where only a single 
crowdshipper can be assigned to each parcel’s complete path between origin and 
destination. Finally, we also explore the impact of delays and investigate whether 
specific objectives protect against unforeseen events.

Keywords Transportation · Urban logistics · Crowdshipping · Public transport

1 Introduction

Crowdshipping, defined as the application of individuals for delivery of other peo-
ples’ shipments on trips they would make anyway (Behrend and Meisel 2018), has 
received much attention in the recent years. This is mainly triggered by the follow-
ing general trends: 
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 (i) Increasing parcel volumes: In Germany, for instance, a study predicts that by 
2024 5.1 bn shipments will need to be processed per year compared to 2.47 
bn in 2011 (Statista 2022). Managing this sharp increase with the traditional 
courier service infrastructure seems barely possible, especially in the aging 
societies of many developed countries. Therefore, many postal service provid-
ers are on the lookout for novel forms of last-mile delivery.

 (ii) Gig economy: Large sharing platforms like Uber, Lyft, and AirBnB enjoy 
increasing popularity. In Europe, the sharing economy is estimated to have 
generated a total sales volume of €28 bn in 2015 (Vaughan and Daverio 2016). 
A sharing platform connects owners of under-used assets, such as cars, spare 
room, or parking spaces, with users willing to pay for the use of these assets. 
Naturally, unused transport capacity is also a potential asset to be shared.

 (iii) Ecological awareness: Road transport is among the most serious emis-
sion sources. It is estimated to contribute a 20% share of all CO2-emissions 
(Schroten et al. 2012). Obviously, utilizing unused transport capacity on trips 
made anyway is a simple means to reduce traffic volume and thus emissions.

Given these trends, crowdshipping is the attempt of retailers (e.g., Amazon Flex or 
Walmart), logistics companies (e.g., DHL), and specialized online platforms offer-
ing a matching of supply and demand as a service (e.g., Uber Freight or postmates.
com) to transfer the basic idea of the sharing economy to transport services, espe-
cially on the last mile. In this context, this paper treats a specific form of crowdship-
ping, which we call public transport crowdshipping.

On the demand side of public transport crowdshipping, we have shipments, e.g., 
parcels with goods ordered online, which have to be transported toward suitable par-
cel lockers. We assume that these lockers are located directly in the access paths of 
public transport, so that recipients can conveniently receive their shipments, e.g., on 
their way back home after work. Initially, the shipments to be transported are placed 
in other parcel lockers close to their origins. For instance, a small brick-and-mor-
tar store also running an online sales channel can place an online order in a parcel 
locker close to the store and can announce their transport demand on the crowdship-
ping platform. Alternatively, the platform organizer could also offer the service to 
pick up larger shipment volumes, e.g., at a distribution center of a retail chain, and 
place the parcels into well-frequented lockers where many potential crowdshippers 
pass by. On the supply side, public transport users can register on the central crowd-
shipping platform and announce their travel behavior, e.g., their daily commute to 
and from work via the metro system, in a smartphone app.

Once a sufficient number of potential crowdshippers is collected, the platform 
matches supply and demand, e.g., with the help of the solution procedures provided 
in this paper, and announces transport requests onto the smartphones of selected 
crowdshippers. Such a request advises a crowdshipper via the smartphone to pick up 
a shipment at a specific parcel locker and also contains the access code to open the 
respective locker compartment. The crowdshipper can accredit the pickup by scan-
ning a bar code on the parcel via the smartphone app, which is also the signal that 
the respective locker compartment is available again. Then, the crowdshippers take 
the parcels with them on their public transport rides. Once arrived, they place the 
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parcels into other parcel lockers advised by the app and accredit the deposit by scan-
ning the bar codes of parcels and locker compartments. These lockers can either be 
the parcels’ final destinations where they are picked up by the parcels’ actual recipi-
ents, or they are just intermediate lockers where the parcels wait for other crowd-
shippers to be moved onward.

The big advantage of public transport crowdshipping is its sustainability. Com-
pared to road transportation, trains are eco-friendly means of transportation 
(Schroten et  al. 2012) and, since public transport users make their trips anyway, 
this form of parcel delivery does not produce any additional traffic. Thus, especially 
environmentally aware travelers get intrinsically motivated and may request no high 
monetary compensation for their crowdshipping services, so that public transport 
crowdshipping can also become a low-cost parcel delivery mode. Long-term invest 
is only required for the development of the smartphone app, the setup of the IT 
infrastructure, and the parcel lockers to be positioned in stations of public transport. 
On the negative side, many crowdshipping platforms struggle with providing secure, 
scalable, and reliable transport services (Le et al. 2019). They depend on the volatile 
participation of crowdshippers, which varies from day to day and is hard to forecast. 
Ways to take on this challenge are, for instance, discussed by Savelsbergh and Ulmer 
(2022).

The basic idea of public transport crowdshipping is formulated in different publi-
cations, e.g., (Gatta et al. 2019a, b; Zhang et al. 2017), and companies such as Ama-
zon (ParcelHero 2016) and HistSystem Co. (2019) have announced their intentions 
to establish a network of parcel lockers in public transport stations. However, the (to 
the best of the authors’ knowledge) only company that established parts of the pub-
lic transport crowdshipping concept is the French platform Chronobee. Public trans-
port users can register on the Chronobee platform (https:// app. chron obee. com/) with 
their daily commute and are matched to transport requests also announced on the 
platform. However, parcel pickup and delivery are not organized via parcel lockers 
(but via direct interaction) and there is no option for multiple crowdshippers sharing 
the transport of a single parcel.

In this paper, we investigate the basic optimization problem of public transport 
crowdshipping and provide suitable solution methods to match crowdshipping sup-
ply and demand. The matching task also includes the planning of each parcel’s route 
through the public transportation network and its utilization of different parcel lock-
ers as well as crowdshippers until finally reaching the destination locker in time. 
Specifically, we formulate six alternative objective functions that consider the aims 
of different stakeholders. While the crowdshipping platform aims to maximize their 
profit consisting of postal charges for each delivered parcel minus crowdshipping 
fees, crowdshippers rather focus on their own crowdshipping fees. The customers 
of parcel delivery services, instead, prefer reliable services and want to avoid that 
parcel handovers between crowdshippers are missed in case of train delays. We 
formulate our public transport crowdshipping problem and provide computational 
complexity results for all problem versions. Furthermore, we provide a heuristic 
decomposition approach that is easily adaptable to solve all problem versions. This 
allows us to investigate the relationship of the stakeholders’ objectives. Furthermore, 
we compare our cooperative crowdshipping policy that allows multiple subsequent 

https://app.chronobee.com/
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crowdshippers to jointly transport a parcel from origin to destination with a more 
restrictive policy that excludes crowdshipper cooperation. Finally, we also investi-
gate the impact of train delays and explore which of our objectives produces robust 
plans where only a few parcels miss their recipients.

Thus, our paper makes the following contributions to the literature: (a) We detail 
the operational processes and the basic matching task of a novel form of crowdship-
ping: public transport crowdshipping. (b) We provide suitable solution methods for 
the basic matching task with six different objectives to cover the aims of all main 
stakeholders. (c) We apply our solution methods in a comprehensive computational 
study in order to identify critical success factors. Here, we show that a large crowd-
shipper base of volunteering public transport users must be recruited, explore the 
different aims of the main stakeholders, investigate how to protect against stranded 
parcels due to unforeseen train delays, and evaluate the gains of cooperative trans-
port where parcels take multiple legs with different crowdshippers toward their des-
tination lockers.

The remainder of the paper is structured as follows. Section 2 reviews the related 
literature. Section 3 defines our public transport crowdshipping problem with its six 
alternative objectives and explores computational complexity. In Sect.  4, we pro-
vide the basic model formulation and report on necessary adaptions when dealing 
with the different objectives. Our heuristic decomposition approach is introduced in 
Sect. 5. Insights into the computational performance and managerial issues are pro-
vided in Sect. 6 and 7, respectively. Finally, Sect. 8 concludes the paper.

2  Literature review

The sharing and gig economy in general and crowdshipping in particular have 
attracted a lot of research in the recent years. Thus, we refer the reader to the follow-
ing in-depth survey papers: Dablanc et al. (2017) (on-demand deliveries), Le et al. 
(2019) as well as Savelsbergh and Ulmer (2022) (crowdshipping), Boysen et  al. 
(2019) (matching of supply and demand in the sharing industry), and Boysen et al. 
(2021) (last-mile delivery). For an overview on different crowdshipping applica-
tions, our own literature review, first, elaborates on the different user groups that are 
targeted as potential crowdshippers:

(i) Hired drivers: Some crowdshipping platforms hire independent drivers, 
who are hourly paid, contribute their own vehicle, and sign up in advance for pre-
fixed time-slots. These platforms are either directly operated by large retailers like 
Amazon (with their Amazon Flex service) or by third-party companies offering a 
matching of supply and demand as a service (e.g., Uber Freight or postmates.com). 
Optimization approaches matching crowdshipping supply and demand as well as 
planning delivery routes are, for instance, provided by Archetti et  al. (2016) and 
Arslan et al. (2018). The main disadvantage of this form of crowdshipping is that 
parcel delivery is not processed on trips made anyway. Instead, extra traffic is gener-
ated and, from an environmental perspective, nothing is gained compared to tradi-
tional delivery modes.
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(ii) Occasional drivers: This disadvantage is avoided, if pickup and delivery 
requests of customers are properly integrated into existing trips, e.g., of private driv-
ers with their own cars having some flexibility regarding the timing of their regular 
(independently planned) journeys (Zehtabian et al. 2022) or taxis offering additional 
freight services (Li et al. 2014).

(iii) In-store customers: Attracting a sufficiently large external driver base can 
produce a lot of effort (Le et  al. 2019). Hence, it can be advantageous if specific 
groups of people, e.g., customers of large retail outlets, can directly be offered 
crowdshipping participation, e.g., for the purchases of their neighbors. Applications 
are reported for retail chain Walmart (Dayarian and Savelsbergh 2020), and optimi-
zation approaches are, for instance, provided by Gdowska et al. (2018).

(iv) Employees: Large brick-and-mortar retail outlets or distribution centers of 
online retailers employ hundreds of workers, who can increase their earnings by 
crowdshipping online orders to neighbors on their way back home from work. Test 
runs are reported for Walmart, and decision support matching parcels and employ-
ees is provided by Boysen et al. (2022).

(v) Air passengers: To exploit price differences between different countries and 
save on air mail freight tariffs, crowdshipping platforms such as piggybee.com 
broker crowdshipping air passengers with free luggage space.

(vi) Public transport users: In this paper, we consider public transport users as 
potential crowdshippers. The literature in this specific area of crowdshipping is sum-
marized in more detail in the following.

The main factors influencing the willingness to participate in public transport 
crowdshipping are investigated in (Gatta et al. 2019a, b). They report on a survey 
from Rome (Italy) and state that about 50% of the questioned metro users are willing 
to participate. A brief review on further empirical studies on crowdshipping partici-
pation is provided by Punel et al. (2019). In the following, we only focus on opera-
tions research contributions.

A combination of delivery by traditional delivery vans and public transport is 
considered by (Ghilas et al. 2016b, a, c, 2018). Here, company-owned delivery vans 
cooperate with public transport operating on fixed timetables. Shipments can be 
handed over and, after transport, received from public transport, which acts as an 
additional intermediate transport option. A problem definition and a first MIP is pre-
sented by Ghilas et al. (2016b). The same problem is tackled by Ghilas et al. (2016a) 
and Ghilas et al. (2018) with adaptive large neighborhood search and branch-and-
price, respectively. A stochastic problem version is treated by Ghilas et al. (2016c). 
A similar problem setting for alternative vehicles, i.e., cargo bikes and buses, is 
investigated by Masson et al. (2017); Azcuy et al. (2021) as well as Schmidt et al. 
(2022). Kou et  al. (2022) investigate the peculiarities of combining delivery vans 
and public transport in a rural setting. In our problem setting, we have no delivery 
vans (or cargo bikes), and we decouple the handover process by parcel lockers. Two 
crowdshippers cooperating in the transport of a specific parcel need to subsequently 
access the locker, but not at the same time. This leads to a completely different prob-
lem structure.

Crowdshipping between different parcel lockers is also considered by Chen 
et al. (2017) and Chen et al. (2016). They, however, consider taxis and not public 
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transport users as potential crowdshippers. This requires an additional coordination 
of parcel delivery with people transport and leaves more flexibility, because taxis are 
not bound to fixed timetables. Furthermore, crowdshipping between parcel lockers 
without any time constraints is considered by Wang et al. (2016) and Zhang et al. 
(2017). Finally, Kızıl and Yıldız (2022) consider the problem to decide the loca-
tion of parcel lockers, that is to choose the stations where parcel lockers are to be 
installed, and evaluate solutions, including backup services with zero-emission vehi-
cles for parcels that are not crowdshipped, using a scenario-based approach. The 
problem is formulated as a two-stage stochastic program and solved by a branch-
and-price approach.

The existing crowdshipping literature also includes transshipment nodes into 
operational routing and assignment problems (e.g., Macrina et  al. 2020; Vincent 
et  al. 2022). These nodes add flexibility where shipments, delivered by company 
owned vehicles, are finally picked up by the crowdshippers. In our problem setting, 
the origin position at the first parcel locker is fixed for each shipment. Instead, we 
allow that multiple crowdshippers can participate in delivering shipments to their 
destinations by handing the parcel over at intermediate lockers. This transshipment 
option rather relates our problem setting to multi-hop ridesharing (e.g., Masoud and 
Jayakrishnan 2017; Wang et  al. 2023), where passengers can hitch multiple sub-
sequent rides to finally reach their destinations. In this domain, however, vehicles 
(crowdshippers) typically do not operate on predefined routes without any time flex-
ibility and have a capacity for more than one passenger (parcel).

It can be concluded that the crowdshipping literature provides no suitable opti-
mization procedures where public transport users with known travel behavior are 
coordinated to crowdship other peoples’ parcels between parcel lockers.

Finally, there are other optimization problems from other domains that share 
some important structural similarities with our optimizations problem for public 
transport crowdshipping. However, we come back to these similarities after having 
defined this problem in the following section.

3  Problem definition

The critical element of any crowdshipping solution is a central IT platform that 
matches supply and demand. This also holds true for our specific crowdshipping 
application, where public transport users pick up and deliver parcels among parcel 
lockers located in stations s ∈ S with given locker capacity Ls for storing shipments 
in locker compartments. 

 (i) On the demand side, we have a set J of parcels. Beginning from release date 
rj , parcel j ∈ J is available at the parcel locker at origin station �j . To deliver 
a parcel successfully, it needs to arrive at the parcel locker at destination sta-
tion �j no later than deadline dj , which is the point of time when the parcel’s 
actual recipient passes the lockers at station �j , e.g., on the way back home 
from work. If parcel j ∈ J is successfully delivered, the platform receives a 
postal charge pj . If a parcel cannot be forwarded to its destination on time, it 
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cannot be accepted for crowdshipping services and the platform receives no 
postal charge.

 (ii) On the supply side, we have a set I of public transport users who have regis-
tered at the crowdshipping platform and are willing to participate in parcel 
delivery; we call them crowdshippers. Each crowdshipper i ∈ I is associated 
with a time-stamped path defining i’s movement through the public transpor-
tation network. Specifically, the time-stamped path is given as a sequence of 
tuples each referring to a departure time at a specific station. We presuppose 
that only those station visits are added to the time-stamped path, where the 
respective crowdshipper has enough time to pickup and/or deposit a parcel 
at a parcel locker. Hence, we do not explicitly consider a specific pickup 
and deposit duration. Furthermore, we only consider those stations where a 
parcel locker is located and where a parcel is to be picked up or delivered to 
(or at least one other crowdshipper can access the locker). When traversing a 
travel leg between two subsequent stations according to a time-stamped path, 
a crowdshipper has a capacity to carry at most one parcel.

We refer to the joint travel of a crowdshipper i and a parcel j starting with i pick-
ing j up at station s ∈ S , moving from s to another station s� ∈ S , and finally 
depositing j at station s′ as an entrainment. For each entrainment, an entrainment 
fee f is paid to the crowdshipper by the platform. For a station s and a point in 
time t a crowdshipper passes through s, we say that ns,t is the number of parcels 
stored in the lockers at s immediately after t. This number ns,t is composed of (i) 
parcels that originate from station s and have not been picked up yet at t, of (ii) 
parcels that have been intermediately deposited in s until t, but have not been 
picked yet, and of (iii) parcels with delivery station s that have already reached 
their destination until t and have not been picked up by the recipient yet since 
ds > t.

A parcel is moved from its origin to its destination station not necessarily by a 
single entrainment. Instead, a solution to our crowdshipping problem is a sequence 
�j of entrainments assigned to each parcel j ∈ J . An empty sequence �j reflects that 
parcel j is not delivered at all. We say a solution is delivery-feasible, if for each par-
cel j ∈ J with non-empty sequence (a) the first entrainment starts at station �j and 
does not start before release date rj , (b) each other entrainment starts at the station 
where the previous entrainment ended and does so not before the end time of the 
previous entrainment, and (c) the last entrainment ends at station �j and does not 
end after deadline dj.

Furthermore, we say a solution is capacity-feasible, if (i) the crowdshippers’ 
capacity is not exceeded. This means that for each crowdshipper i and each station s 
on the path there is at most one entrainment involving i that starts at s or a previous 
station on the path and ends at a station that is reached after s. Furthermore (ii), the 
parcel lockers’ capacities are not exceeded. That is for each station s and each point 
in time t where a crowdshipper passes through s, there are at most Ls parcels in the 
locker and we have ns,t ≤ Ls.

Finally, we say a solution is feasible, if it is both delivery-feasible and capac-
ity-feasible. Since we have different involved stakeholders, i.e., crowdshippers, 
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recipients, and the platform provider, there may be different views on what is a good 
solution among the feasible ones. We consider six problem versions in the following: 

(1) MAX-PROFIT: The problem is to find a feasible solution maximizing profit. The 
profit associated with a feasible solution is the total postal charge for successfully 
delivered parcels (i.e., those with non-empty sequences of entrainments) minus 
the entrainment fees for the crowdshippers (i.e., the total number of entrainments 
multiplied by fee f). This objective mirrors the aim of a crowdshipping platform 
maximizing its own profit.

(2) MAX-PARCELS: The problem is to find a feasible solution with a profit of at 
least a given threshold P that maximizes the number of delivered parcels. This 
objective aims to maximize the number of satisfied customers while granting 
the platform a minimum profit.

(3) MAX-INVOLVEMENT: The problem is to find a feasible solution with a profit 
of at least a given threshold P that maximizes the number of crowdshippers with 
at least one entrainment. This objective aims to engage a maximum number of 
crowdshippers, while granting the platform a minimum profit P.

(4) MIN-TOTAL-ENTRAINMENTS: The problem is to find a feasible solution with a 
profit of at least a given threshold P that minimizes the total number of entrain-
ments over all parcels. Since each entrainment involves a failure risk, e.g., a 
parcel missing its subsequent entrainment due to a delayed train, this objective 
reduces the risk of stranded parcels. This is something both the platform and the 
recipients prefer to avoid.

(5) MIN-MAX-ENTRAINMENTS: The problem is to find a feasible solution with 
a profit of at least a given threshold P that minimizes the maximum length of 
entrainment sequences among all parcels. A parcel is only successfully delivered 
toward its destination, if all its entrainments are successfully completed. Thus, 
reducing the number of entrainments per parcel should promote the number of 
successful deliveries by protecting against uncertainty. An obvious disadvantage 
of this objective is that in the worst case a single shipment with a large number 
of inevitable entrainments removes the optimization pressure from all other 
shipments. It will be part of our computational study in Sect. 7.3 to explore how 
severely this deteriorating effect impacts average results.

(6) MAX-MIN-SLACK: For each successfully delivered parcel j ∈ J , we consider 
the minimum slack time at �j and at each station j where it is picked up by a 
crowdshipper (including �j ). The slack time of parcel j at each such station s is 
the time it spends there in the locker between delivery and pickup. For the sake 
of convenience, we say that for each other pair of parcel j and those stations 
where j is not handled the slack time is infinite, so that they do not influence the 
minimum slack time. The problem is to find a feasible solution, which maximizes 
the minimum slack time among all pairs of parcels and stations while granting at 
least a minimum profit of P to the platform. Slack time protects against delays of 
trans and crowdshippers, and the larger the slack, the more delay of entrainments 
is acceptable without leading to stranded parcels. Note that in the field of robust 
optimization adding slack (buffer) time is one prominent approach to achieve 
solution-robustness (e.g., see Briskorn et al. 2011; Kouvelis and Yu 1996). Fur-
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ther note that again a single shipment that can only be feasibly transported if 
handed over among two specific crowdshippers with zero slack time removes 
the optimization pressure from all other parcels. It will be the task of our com-
putational study in Sect. 7.3 to explore whether this disadvantage significantly 
deteriorates average results.

Example: Consider the example instance given in Fig. 1(a). Here, we have three 
crowdshippers a, b, and c traveling along three subway lines (blue, green, and 
orange) with the crowdshippers’ departure times given next to their person icons. 
It is assumed that travel between two neighboring stations of a line takes one time 
unit, so that crowdshipper b leaves the origin station at the upper left at 5 and arrives 
at the destination at the upper right station at 8. Two parcels A and B are to be 
delivered, where the lower (higher) number within the respective parcel icon indi-
cates the earliest departure (latest arrival) at its origin (destination) station. Parcel 
pickup and deposit at a parcel locker is assumed to take negligible time, and the 
locker capacity is assumed to be non-restrictive. A solution that is both delivery-fea-
sible and capacity-feasible is depicted in Fig. 1(b). The numbers in the parcel icons 
indicate their departure at the respective station (or the arrival time at a destination). 
Parcel B, for instance, leaves its origin station in the lower left with crowdshipper c 
on the blue line, is deposited at time 6 in the station where the blue and green line 
meet, and travels its final leg with crowdshipper b. This solution leads to the follow-
ing objective values: 

(1) MAX-PROFIT: If we assume that the crowdshipping platform receives postal 
charge pj = 5 for each parcel j ∈ J and each crowdshipper receives f = 1 money 
unit per parcel entrainment, our solution results in a total profit of 6 money units.

(2) MAX-PARCELS: If we assume that the given minimum platform profit P does 
not exceed 6 money units, then both parcels are successfully processed and the 
objective value is 2. A profit of P > 6 , however, cannot be achieved and, hence, 
the solution in Fig. 1(b) would not meet the profit requirement.

(3) MAX-INVOLVEMENT: For P ≤ 6 , we have all three public transport users 
involved in crowdshipping.

Fig. 1  Example for  public transport crowdshipping
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(4) MIN-TOTAL-ENTRAINMENTS: For P ≤ 6 , our solution involves a total number 
of four entrainments.

(5) MIN-MAX-ENTRAINMENTS: For P ≤ 6 , the maximum number of entrainments 
per parcel amounts to 2, which is achieved by both parcels.

(6) MAX-MIN-SLACK: While the slack time of parcel A’s handover (departure) 
where the yellow and green lines meet (at its origin locker) is 1 (2) time unit(s), 
it arrives at its destination right at the deadline. Hence, parcel A’s minimum slack 
is 0. Parcel B has a slack time of 1 time unit at all its relevant lockers (i.e., at 
its destination in the lower left, at its handover locker where the blue and green 
lines meet, and at its destination in the upper right). Hence, in total we have a 
minimum slack time of 0 (provided that P ≤ 6).

Our crowdshipping problem is based on a few (simplifying) assumptions and pre-
requisites, which we discuss in the following: 

 (i) We presuppose deterministic information on the crowdshipper’s movement 
through the public transportation network. Thus, we assume that crowdship-
pers register at the platform and announce their time-stamped paths, e.g., 
before they head to work. Naturally, this assumption causes problems when-
ever crowdshippers cannot realize their announcement and are delayed. We 
address this type of uncertainty by our robustness-oriented objectives MIN-
TOTAL-ENTRAINMENTS, MIN-MAX-ENTRAINMENTS, and MAX-
MIN-SLACK. We test their abilities to protect against delays in Sect. 7.

 (ii) We only consider a static problem setting, which can, for instance, be applied 
to decide on order acceptance at the previous day, while the deterministic 
travel information is only applied to anticipate the shipments’ prospective 
traversal through the public transportation network. The operational routing 
based on continuously updated information, e.g., on delayed trains, canceled 
requests, or missing crowdshippers, is then left to another optimization task 
including dynamic and stochastic information. Even in a dynamic environ-
ment, however, our static problem version can be applied on a rolling planning 
horizon whenever new information occurs. Furthermore, the static version 
can be used to train a neural network to make online decisions or to establish 
bounds on the solution value of the dynamic version of the problem, which 
will facilitate the evaluation of heuristic approaches. Naturally, we only pro-
vide a first contribution to public transit crowdshipping that aims at inspiring 
further research.

 (iii) We presuppose the most basic compensation scheme for crowdshippers, which 
is very easy to communicate: a fixed entrainment fee f. Alternative schemes, 
for instance, influenced by parcel characteristics (e.g., weight or urgency), 
crowdshippers (e.g., their reliability rating or membership duration), and/or 
transportation legs (e.g., scarcity of crowdshippers on rarely used parts of the 
transportation network or the length of an entrainment) are possible, but left 
to future research.
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 (iv) We assume that a crowdshipper can transport at most one parcel at a time. 
Naturally, it may also be possible to transship two small parcels instead of one 
large shipment, but again this problem extension is left to future research.

 (v) We assume that capacity restrictions Ls can be measured in number of parcels 
that fit into a locker at station s ∈ S . This implies that differently sized parcels 
(and suitable locker compartments to hold them) are not differentiated. Since 
parcels are restricted in their size and weight to be conveniently handled by 
crowdshippers in public transport anyway, we assume that each parcel fits 
any compartment. Integrating differently sized parcels and compartments (or 
multiple shipments per customer) into our solution concepts seems straight-
forward, but is left to future research.

 (vi) We presuppose that parcels that end up with empty entrainment sequences 
do not occupy locker capacity at their origins. Since they cannot be feasibly 
crowdshipped, alternative delivery options beyond public transport must be 
utilized (e.g., a traditional postal service provider). Analogously, we assume 
that parcels with a slack of 0 at origin, handover, or destination lockers occupy 
no capacity. They are directly handed over among the persons meeting in front 
of the lockers.

 (vii) We do not include the shipments’ delivery toward the first locker and their final 
travel legs after the final locker. We assume that they are executed by the ship-
pers hiring crowdshipping services and the recipients, respectively. Naturally, 
when comparing public transport crowdshipping with other last-mile delivery 
modes (e.g., regarding their costs and emissions) these legs must not be for-
gotten. However, the choice of the first (last) locker where a sender induces 
a shipment into the system (a recipient picks up a shipment) could be part of 
the operational decision (analogously to Macrina et al. 2020; Vincent et al. 
2022) to circumvent scarce locker capacity. To extract the basic optimization 
setting, however, we leave this additional flexibility to future research.

Given this problem setting, the following paragraphs provide an analysis of com-
putational complexity.

Theorem  3.1 MAX-PARCELS is strongly NP-hard even if P = f = 0 , Ls = ∞ for 
each s ∈ S , and rj = 0 , dj = ∞ , and pj = 1 for each j ∈ J.

We show NP-completeness of the decision version of MAX-PARCELS, which 
asks whether we can deliver all parcels by reduction from the problem to find a 
number of edge-disjoint paths in a directed acyclic graph, namely DISJOINT-
PATHS, which is strongly NP-complete (see Slivkins 2010) and is restated in the 
following.

Given a directed graph G = (V ,E) with n nodes and m arcs, and k pairs of ter-
minals (s1, t1),… , (sk, tk) , DISJOINT-PATHS is to determine whether there exist a 
directed path from sl to tl for each l = 1,… , k , such that these paths do not share 
any edges. DISJOINT-PATHS is implied to be (strongly) NP-complete by Even 
et al. (1976), even if G is acyclic.
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Proof Given an instance I of DISJOINT-PATHS with G being acyclic, we construct 
an instance I′ of MAX-PARCELS as follows. We set P = f = 0 and assume that 
nodes in V are numbered according to a topological ordering, that is if there is an arc 
leading from v to v′ , then v′ > v.

• We have a station v ∈ S for each node v ∈ V  in G with Lv = ∞.
• We have a crowdshipper e ∈ I for each arc e ∈ E in G. The path of crowdship-

per e = (v, v�) leads from station v directly to station v′ and does not visit any 
other stations. We do not fully specify the time-stamps, here, but set them such 
that no crowdshipper leaves from v ∈ V  before each crowdshipper reaching v has 
arrived. This can be done easily since G is acyclic.

• Finally, we have J = {1,… , k} and each parcel j ∈ J has pj = 1 , �j = sj , �j = tj , 
rj = 0 , and dj = ∞.

Note that each feasible solution to I′ achieves the required profit of P = 0 since 
f = 0 . Note, furthermore, that a delivery-feasible solution to I′ with each parcel 
delivered has a sequence of entrainments for each delivered parcel j ∈ J , which 
reflects a path from sj to tj in G. Since each crowdshipper can carry at most one par-
cel, these paths are arc-disjoint.

Now, it is not hard to see that the answer to I is yes, if and only if all parcel can be 
delivered in I′ . This completes the proof.   ◻

With Theorem 3.1, we can easily conclude Corollary 3.1.

Corollary 3.1 MAX-PROFIT is strongly NP-hard and determining whether a feasi-
ble solution to MAX-INVOLVEMENT, MIN-TOTAL-ENTRAINMENTS, MIN-MAX-
ENTRAINMENTS, or MAX-MIN-SLACK exits is strongly NP-complete, even if 
f = 0 , Ls = ∞ for each s ∈ S , and rj = 0 , dj = ∞ , and pj = 1 for each j ∈ J.

It is not hard to see that MAX-PROFIT with f = 0 and pj = 1 for each parcel 
j ∈ J is equivalent to MAX-PARCELS with P = 0 . MAX-INVOLVEMENT, MIN-
TOTAL-ENTRAINMENTS, MIN-MAX-ENTRAINMENTS, and MAX-MIN-
SLACK generalize the decision version of MAX-PARCELS. We can set f and the 
profit threshold P in the former problems to 0 and the value achieved when all par-
cels are delivered, respectively, in order to determine whether it is possible to deliver 
all parcels.

4  Mixed integer programs

This section presents a basic mixed integer program (MIP) for MAX-PROFIT and 
details on necessary modifications to address the other objectives. We, first, intro-
duce parts of the notation summarized in Table 1.

Beside sets J, I, and S of parcels, crowdshippers, and stations as introduced in 
Sect.  3, we use various subsets. Sets Si and S′

i
 contain all stations visited by 
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crowdshipper i ∈ I on the fixed path and all stations visited but the last one on the 
path, respectively. The latter, thus, contains those stations where i can pick up a par-
cel. Sets Is and I′

s
 represent the set of crowdshippers visiting station s ∈ S and the set 

of crowdshippers visiting but not starting in s, respectively. The latter, hence, con-
tains all crowdshippers who can deliver a parcel to s. Sets I1

j
 and I2

j
 contain those 

crowdshippers who can pick up parcel j ∈ J at its origin station �j , that is who leave 
�j not earlier than rj , and who can deliver j timely to its destination �j (i.e., they 
reach �j not later than dj ), respectively. Sets I−

i,s
 and I+

i,s
 represent the set of crowd-

shippers who are present at s the same time or earlier than i and the set of crowd-
shippers who are present at s the same time or later than i, respectively. That is, 
crowdshipper i can pick up a parcel at s delivered to s by any crowdshipper in I−

i,s
 , 

and a parcel delivered to s by i can be picked up by each crowdshipper in I+
i,s

 . Finally, 
we have Ji,s = � if crowdshipper i does not visit station s, and Ji,s = {j ∣ rj ≤ ti,s ≤ dj} 
otherwise.

We employ two type of variables. First, we consider binary variable xi,s,j for each 
crowdshipper i ∈ I , each station s ∈ S�

i
 visited by i except the last one on the path, and 

Table 1  Notation for MAX-PROFIT-MIP

J set of parcels
I set of crowdshippers
S set of stations
Si set of stations visited by i ∈ I

S′
i

set of stations visited by i ∈ I except the last station of i
Is set of crowdshippers who visit s ∈ S

I′
s

set of crowdshippers who pass through or end at s ∈ S (and do not start in s)
I1
j

set of crowdshippers who are at �j not earlier than rj and, hence, can pick up j from �j
I2
j

set of crowdshippers who arrive at �j not later than dj and, hence, can deliver j to �j

I−
i,s

set of crowdshippers who are at s ∈ S before or at the same time as i ∈ Is (including i)
I+
i,s

set of crowdshippers who are at s ∈ S after or at the same time as i ∈ Is (including i)
Ji,s set of parcels such that j ∈ Ji,s if and only crowdshipper i is at station s ∈ Si in [rj, dj]
Ls locker capacity of station s ∈ S

�j origin of parcel j ∈ J

�j destination of parcel j ∈ J

rj release date of parcel j ∈ J

dj deadline of parcel j ∈ J

pj postal charge of parcel j ∈ J

ti,s point of time when crowdshipper i ∈ I is at s ∈ Si

f fixed entrainment fee
s
−
i,s

station visited by i ∈ I immediately before s ∈ S , i ∈ I�
s

s
+
i,s

station visited by i ∈ I immediately after s ∈ S�
i

xi,s,j binary variable: 1, if crowdshipper i ∈ I moves parcel j ∈ Ji,s from station s ∈ S�
i
 toward s+

i,s
 ; 0, 

otherwise
yi,s continuous variable: at least 1, if crowdshipper i ∈ I picks up a parcel at station s ∈ S�

i
 ; at least 0, 

otherwise
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each parcel j ∈ Ji,s which is compatible with rj ≤ ti,s ≤ dj . Binary variable xi,s,j equals 
1, if crowdshipper i ∈ I moves parcel j ∈ Ji,s from station s ∈ S�

i
 toward s+

i,s
 , and 0 oth-

erwise. Second, we have continuous variable yi,s for each crowdshipper i ∈ I and sta-
tion s ∈ S�

i
 where i might pick up a parcel (that is, each station s ∈ S�

i
 visited by i except 

the last one on the path). Continuous variable yi,s takes a value of at least 1, if crowd-
shipper i ∈ I picks up a parcel at station s ∈ S�

i
 , and a value of at least 0 otherwise. We 

will argue, however, that in optimum solutions yi,s takes only binary values.
Applying the notation summarized in Table 1, our MAX-PROFIT-MIP consists of 

objective function (1) and constraints (2) to (10).

(1)
MAX-PROFIT-MIP: Maximize

∑

j∈J

∑

i∈I1
j

pj ⋅ xi,�j,j −
∑

i∈I

∑

s∈S�
i

f ⋅ yi,s

(2)s.t.
∑

j∈Ji,s

xi,s,j ≤ 1 ∀ i ∈ I;s ∈ S�
i

(3)
∑

i∈I∶Ji,s∋j

xi,s,j ≤ 1 ∀ j ∈ J;s ∈ S

(4)
xi,s,j −

∑

i�∈I+
i,s+
i,s

xi�,s+
i,s
,j ≤ 0 ∀ i ∈ I;s ∈ S�

i
;j ∈ Ji,s ∶ s

+
i,s
≠ �j

(5)
∑

i∈I1
j

xi,�j,j −
∑

i∈I2
j

xi,s−
i,�j

,j = 0 ∀ j ∈ J

(6)

∑

j ∈ J,

�j = s, ti,s ≥ rj

∑

i�∈I1
j

xi�,�j,j +
∑

i�∈I−
i,s
∩I�

s

∑

j ∈ Ji�,s−
i� ,s

∶

�j ≠ s

xi�,s−
i� ,s

,j

+
∑

i�∈I−
i,s
∩I�

s

∑

j ∈ Ji�,s−
i� ,s

∶

�j = s, dj ≥ ti,s

xi�,s−
i� ,s

,j −
∑

i�∈I−
i,s

∑

j∈Ji� ,s

xi�,s,j ≤ Ls ∀ i ∈ I;s ∈ Si

(7)xi,s,j − xi,s−
i,s
,j ≤ yi,s ∀ s ∈ S�

i
;i ∈ I�

s
;j ∈ Ji,s

(8)xi,s,j ≤ yi,s ∀ i ∈ I;s ∈ S�
i
;i ∉ I�

s
;j ∈ Ji,s

(9)xi,s,j ∈ {0, 1} ∀ i ∈ I;s ∈ S�
i
;j ∈ Ji,s
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Objective function (1) defines the aim of the platform provider, which is the maxi-
mization of the total profit consisting of the sum of postal charges for all success-
fully delivered parcels minus the total entrainment fees to be paid to the crowdship-
pers. Note that for given x-variables yi,s gets assigned the smallest feasible value in 
optimum solutions due to (1). Constraints (2) enforce the capacity of (at most) a 
single parcel per travel leg for each crowdshipper. Only a single crowdshipper can 
move a parcel j from a specific station s due to (3). Naturally, this can be crowd-
shipper i ∈ I , if and only if parcel j is an element of Ji,s , which contains all parcels 
that can be moved from station s by i. Constraints (4) guarantee that each parcel j 
moved to a station s will be carried further unless �j = s , that is if s is its destina-
tion. Note that i ∈ I+

i,s
 and, hence, (4) covers the case where a parcel travels through 

s without being put in a locker. Note, furthermore, that (4) implies that a sequence 
of entrainments can only end at a parcel’s destination. Note, finally, that (4) together 
with (3) implies that parcels cannot travel in circles and, hence, each parcel that 
is picked up at all gets assigned a sequence of entrainments ending at the parcel’s 
destination. Constraints (5), then, ensures that such a parcel is transported from its 
origin. Violations of lockers’ capacities are prevented by constraints (6). The left 
side reflects ns,ti,s , that is the number of parcels in the lockers at s immediately after 
crowdshipper i has left s. The first sum counts the parcels which start at s ( �j = s ) 
and have been put into a locker until ti,s ( ti,s ≥ rj ). The second sum counts the parcels 
which do neither start nor end at s ( �j ≠ s ) and have been transported to s until ti,s 
( i� ∈ I−

i,s
∩ I�

s
 ). The third sum counts the parcels which end at s ( �j = s ), arrived at 

s until ti,s ( i� ∈ I−
i,s
∩ I�

s
 ), and have not been taken out of the locker by the recipients 

until ti,s ( dj ≥ ti,s ). Finally, the fourth sum counts the parcels that have been trans-
ported from s until immediately after ti,s . Note that a parcel which travels through s 
without ever being put into a locker at s never contributes to the capacity load. Con-
straints (7) and (8) enforce that yi,s ≥ 1 if j is picked up by i at s and s is not i’s first 
station and s is i’s first station, respectively. Note that in this case we obtain yi,s = 1 
in optimum solutions, since yi,s will get assigned a value as small as feasibly possi-
ble due to the objective function. Finally, (9) and (10) define the variables’ domains. 
If neither (7) nor (8) enforce yi,s ≥ 1 , then we obtain yi,s = 0 in optimum solutions, 
again, due to the objective function.

Note that it is not enforced that the sequence of entrainments actually starts at the 
parcel’s origin. We can, however, cut all entrainments leading to the parcel’s origin 
without decreasing the objective value or losing feasibility. We suggest to add Con-
straints (11) and (12) to MAX-PROFIT-MIP to restrict the solution space.

(10)yi,s ≥ 0 ∀ i ∈ I;s ∈ S�
i

(11)

∑

i∈I�
�j
∶j∈Ji,s−

i,�j

xi,s−
i,�j

,j ≤ 0 ∀ j ∈ J
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Constraints (11) cut solutions where the sequence of entrainments does not start at 
the parcel’s origin. Constraints (12) do not cut any solutions but make it explicit 
that a sequence of entrainments must end at a parcel’s destination. Preliminary 
computational test have shown that these extensions lead to a speed up of standard 
solver Gurobi, so that all computational tests reported in Sect. 6 include these valid 
inequalities.

Given our basic model MAX-PROFIT-MIP, the adaptions in order to cover our 
five alternative objectives are truly straightforward. While MAX-PROFIT directly 
aims to maximize the profit, the other problems rather have a minimum platform 
profit P that must be ensured by additional constraint

(12)
∑

i∈I�
�j
∶j∈Ji,�j

xi,�j,j
≤ 0 ∀ j ∈ J

Table 2  Additional notation for other objectives

M large value (BigM)
P minimum platform profit
Fi binary variables: 1, if crowdshipper i ∈ I moves any parcel j ∈ J ; 0, otherwise
Fe continuous variable: maximum number of entrainments among all crowdshippers
Fs continuous variable: minimum slack among all crowdshippers
zi,j binary variables: 1, if crowdshipper i ∈ I moves parcel j ∈ J ; 0, otherwise

Table 3  Extended MIP formulations for the remaining objectives

Problem Objective and new constraints in addition to (2)-(13)

MAX-PARCELS Maximize 
∑

j∈J

∑
i∈I1

j

xi,�j ,j

MAX-INVOLVE-
MENT

Maximize 
∑

i∈I Fi

∑
s∈S�

i

∑
j∈Ji,s

xi,s,j ≥ Fi ∀ i ∈ I

Fi ∈ [0, 1] ∀ i ∈ I

MIN-TOTAL-
ENTRAINMENTS

Minimize 
∑

i∈I

∑
s∈S�

i

yi,s

MIN-MAX-
ENTRAINMENTS

Minimize Fe

∑
s∈S zs,j ≤ Fe ∀ j ∈ J

xi,s,j − xi,s−
i,s
,j ≤ zs,j ∀ i ∈ I, s ∈ S�

i

zs,j ≥ 0 ∀ j ∈ J;s ∈ S

MAX-MIN-SLACK Maximize Fs

(2 − xi,s,j − x
i� ,s+

i,s
,j
) ⋅M + (t

i� ,s+
i,s

− t
i,s+
i,s
) ≥ Fs ∀ i ≠ i� ∈ I;s ∈ S�

i
;s+
i,s
∈ S�

i�
;j ∈ Ji,s ∩ Ji� ,s+

i,s

(1 − xi,�j ,j) ⋅M + (ti,�j − rj) ≥ Fs ∀ i ∈ I;s ∈ S�
i
;j ∈ Ji,s;s = �j

(1 − xi,s,j) ⋅M + (dj − ti,�j
) ≥ Fs ∀ i ∈ I;s ∈ S�

i
;j ∈ Ji,s, s

+
i,s
= �j
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Given constraints (2)-(13) and the notation reported in Table 2, the modified objec-
tive functions and the necessary additional constraints for our five alternative objec-
tives are summarized in Table 3.

Due to the complexity status of our problem versions, we cannot expect that our 
MIPs are solvable for an off-the-shelf solver if the numbers of parcels and crowd-
shippers reach dimensions relevant to real-world crowdshipping platforms. There-
fore, the following section provides an additional heuristic solution procedure.

5  A heuristic decomposition framework for all objectives

A suitable solution procedure should cover all of our six problem versions with only 
minor adaptions, and it should deliver close to optimal solutions in acceptable time 
even for considerable numbers of parcels and crowdshippers. Our suggestion to 
meet these requirements is a heuristic decomposition framework that consists of two 
stages. On the first stage, which we describe in more detail in Sect. 5.1, we intro-
duce a modification of Dijkstra’s algorithm to generate a pool of single-parcel tours 
through a given public transportation network. On the second stage (see Sect. 5.2), 
we apply a standard solver to select parcel tours from the pool by solving a MIP 
similar to the well-known set packing problem.

5.1  Generating a pool of single‑parcel tours

In the first stage, we generate a pool of single parcel tours for all parcels. If each 
parcel tour was optimized individually, then most of them would utilize the central 
resources where most traffic passes. Therefore, we apply a special mechanism where 
also tours via less central resources are generated to ensure diversity within the pool. 
Specifically, we consider a sequence � of all parcels in J and generate a tour for par-
cels one by one in the order indicated by � . When generating a tour for the k-th par-
cel in � , we account for capacities of crowdshippers occupied by tours for the first 
k − 1 parcels. Virtually, whenever a part of a crowdshipper’s path is occupied by the 
k-th parcel, we consider each remaining part of this path as a distinct crowdshipper 
(who is available throughout this path) for the (k + 1)-th parcel.

For a specific parcel j ∈ J , we then generate a path from �j to �j respecting 
release date rj , deadline dj , and the crowdshippers’ time-stamped paths as follows. 
The scheme loosely follows Dijkstra’s algorithm and the A ∗-algorithm (Ikeda et al. 
1994) with stations corresponding to nodes in a graph and paths of crowdshippers 
corresponding to paths in that graph. Rather than restricting ourselves to a purely 
time-driven evaluation of paths for j, we consider �s = w� ⋅ �s + wd ⋅ qs + wt ⋅ ts for 
each station s ∈ S , where �s is the number of entrainments on the path of j from �j to 
s, qs represents the Manhattan distance between stations s and �j , ts is time parcel j 
reaches s on the path, and w� , wd , and wt are weights.

(13)
∑

j∈J

∑

i∈I1
j

pj ⋅ xi,�j,j −
∑

i∈I

∑

s∈S�
i

f ⋅ yi,s ≥ P.
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We designed �s to reflect various aspects relevant for the different objectives. 
Furthermore, we maintain for each station s ∈ S the crowdshipper is , which brought 
j to s. Initially, we set ��j

= w� ⋅ 0 + wd ⋅ q�j + wt ⋅ rj and �s = ∞ for each s ≠ �j and 
initialize is = ⋅ for each s ∈ S with a dummy. In each iteration, the procedure then 
determines a station s∗ to which the best path is then fixated. Furthermore, we update 
the best found paths to stations which can be reached be traveling one station with a 
crowdshipper from s∗ , given that s∗ is reached at time ts∗ . In the course of the proce-
dure, S represents the set of stations with fixated paths toward them. Initially, we 
have S = �.

In each iteration, s∗ is determined as s∗ = argmin
{
�s ∣ s ∈ S⧵S

}
 . If s∗ = �j and 

ts∗ ≤ dj , we have found the (feasible) path from �j to �j . If s∗ = �j and ts∗ > dj , the 
procedure failed to find a feasible path. Finally, if s∗ ≠ �j , we determine the set Is∗ of 
crowdshippers starting from s∗ not before ts∗ . For each i ∈ Is∗ and the corresponding 
station s+

i,s∗
 to which i travels from s∗ , we determine the implied value �

s
+
i,s∗

,i of �
s
+
i,s∗

 as

In both cases, q
s
+
i,s∗

 reflects the distance between the next station s+
i,s∗

 and �j , and ti,s+
i,s∗

 
represents the time parcel j would reach the next station s+

i,s∗
 if it is carried from s∗ by 

crowdshipper i. In the upper case, this crowdshipper i is the same as the one that 
brought j to s∗ (that is, j travels through s∗ with i) and, hence, �

s
+
i,s∗

= �s∗ . In the lower 
case, crowdshipper i picks up j at s∗ and, hence, �

s
+
i,s∗

= �s∗ + 1 . Note that the same 
station s might be the next station for multiple crowdshippers in Is∗ and the implied 
values might differ among them. We update all path information for station s+

i,s∗
 for 

each i ∈ Is∗ , if

that is if the best implied path by any crowdshipper traveling from s∗ to s+
i,s∗

 yields a 
lower value of s+

i,s∗
.

To generate a pool with multiple tour candidates for each parcel, we repeatedly 
draw a random sequence � and employ the procedure detailed above for four different 
weight sets (w�,wd,wt) = (1∕3, 1∕3, 1∕3), (1∕3, 2∕3, 0), (0, 1∕2, 1∕2), (0, 2∕3, 1∕3) . 
These weight sets haven proven most effective in preliminary tests, which (for a mat-
ter of conciseness are not reported in this paper). A tour is admitted to the pool, if it 
generates a profit, that is if the postal charge exceeds the total entrainment fees. The 
pool is complete once we gathered 10 tours per parcel on average. The latter choice, 
too, has proven as a reasonable compromise between runtime and solution quality in 
preliminary tests not reported in this paper.

�
s
+
i,s∗

,i =

{
w� ⋅ �s∗ + wd ⋅ qs+

i,s∗
+ wt ⋅ ti,s+

i,s∗
i = is∗

w� ⋅ (�s∗ + 1) + wd ⋅ qs+
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5.2  Combining single‑parcel tours

After generating a set Tj of single-parcel tours for each parcel j ∈ J as detailed in 
Sect. 5.1, we use an off-the-shelf solver and a MIP model formulation in order to 
combine single-parcel tours to a feasible solution. We present the MIP model formu-
lation in the following, while using the additional notation summarized in Table 4.

Again, we describe our basic MIP for objective MAX-PROFIT first and report on 
necessary adaptions for our alternative objectives afterward.

Our MAX-PROFIT-SELECT model uses binary variable �� for each � ∈ Tj , j ∈ J , 
which takes value 1 if tour � is selected and value 0 otherwise. At most one tour can 
be selected per parcel j ∈ J , see (15), that is each parcel is delivered at most once. 
Two tours concerning different parcels cannot be selected simultaneously, if they 
occupy the same crowdshipper on the same travel leg, see (16). Similarly, at each 
relevant point of time no more than Ls parcels can be stored in a locker at station s, 

(14)MAX-PROFIT-SELECT: Maximize F(�) =
∑

j∈J

∑

�∈Tj

c� ⋅ ��

(15)s.t.
∑

�∈Tj

�� ≤ 1 ∀ j ∈ J

(16)
∑

j∈J

∑

�∈Tj

Ξi,s,� ⋅ �� ≤ 1 ∀ i ∈ I;s ∈ S�
i

(17)
∑

j∈J

∑

�∈Tj

Δi,s,� ⋅ �� ≤ Ls ∀ i ∈ I;s ∈ S�
i

(18)�� ∈ {0, 1} ∀� ∈ Tj, j ∈ T

Table 4  Additional notation for stage 2

Tj set of single-parcel tours for each parcel j ∈ J

c� profit of tour � ∈ Tj , j ∈ J

Ξi,s,� binary parameters: 1, if crowdshipper i ∈ I moves parcel j ∈ J 
from station s ∈ S�

i
 toward s+

i,s
 according to tour � ∈ Tj ; 0, 

otherwise
Δi,s,� binary parameters: 1, if parcel j ∈ J is stored in a locker at s ∈ S 

when i ∈ I leaves s according to tour � ∈ Tj ; 0, otherwise
Γ� minimum slack in tour � ∈ Tj , j ∈ J

Y� number of entrainments in tour � ∈ Tj , j ∈ J

�� binary variables: 1, if tour � ∈ Tj , j ∈ J , is selected; 0, otherwise
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see (17). Finally, objective function (14) represents the goal to maximize the total 
profit achieved.

To represent our five alternative objectives, additionally a minimum total profit 
P is ensured by constraint

Given constraints (15) to (19) and the notation listed in Table 4, our modified objec-
tive functions as well as the additional constraints are specified in Table 5.

Our MIP formulations extend the famous set packing problem (see Garey and 
Johnson 1979). Today’s default solvers are generally known to be quite capable in 
solving this kind of model. The computational performance analysis reported on in 
the following section explores whether this claim can be confirmed in our case.

6  Performance of algorithms

In this section, we test the performance of our solution approaches. Since no estab-
lished testbed is available for our public transport crowdshipping problem, we 
first elaborate how our instances have been generated in Sect.  6.1. Afterward, in 
Sect. 6.2, we benchmark the performance of our heuristic decomposition procedure 
with a standard solver solving our MIP models.

All computations have been executed on a 64-bit PC with an 7-3770 3.40 GHz 
CPU and 16.0 GB of RAM. All solution methods have been implemented using Vis-
ualBasic (Visual Studio 2019), and off-the-shelf solver Gurobi (version 9.1.2) has 
been applied for solving the MIP models with a general time limit of 300 s, if not 
explicitly stated otherwise.

(19)
∑

j∈J

∑

�∈Tj

c� ⋅ �� ≥ P.

Table 5  Extended set packing formulations for the different objectives

Problem Objective and new constraints in addition to (15)-(19)

MAX-PARCELS Maximize 
∑

j∈J

∑
�∈Tj

��

MAX-INVOLVEMENT Maximize 
∑

i∈I Fi∑
j∈J

∑
�∈Tj

∑
s∈S�

i

Ξi,s,� ⋅ �� ≥ Fi ∀ i ∈ I

Fi ∈ [0, 1] ∀ i ∈ I

MIN-TOTAL-ENTRAINMENTS Minimize 
∑

j∈J

∑
�∈Tj

(pj − c� )∕f ⋅ ��

MIN-MAX-ENTRAINMENTS Minimize Fe

(pj − c� )∕f ⋅ �� ≤ Fe ∀� ∈ Tj, j ∈ J

MAX-MIN-SLACK Maximize Fs

Γ� ⋅ �� + (1 − �� ) ⋅M ≥ Fs ∀� ∈ Tj, j ∈ J
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6.1  Data generator

This section reports on our data generator, which is based on the public transport 
system of Hamburg (Germany). Our data generator receives the number of parcels 
|J| and the number of crowdshippers |I| as its own input data. Given this input, each 
single instance is obtained as follows.

• Public transport network: Given the railway system of Hamburg, we utilize sub-
way lines U1, U2, U3, and U4 as well as urban railway lines S1, S21, S3, and 
S31 (see Fig. 2). Each line l ∈ L is defined by a sequence of stations Sl ⊆ S , so 
that our test bed consists of |S| = 147 stations in total. These stations of set S 
are partitioned into two subsets S = SC ∪ SS . Stations of sets SC and SS represent 
inner city and suburban stations and they are marked in gray and pink, respec-
tively. For each line l ∈ L , we use frequency fl given by the original schedule of 
the HVV during the working hours (i.e., fU1 = fU2 = fU3 = 5 ), and fl = 10 for 
the rest of the time. The travel times between any two consecutive stations of 
a line are drawn from U{1, 2, 3} , which is in line with the vast majority of real-
world stations. Finally, our planning horizon is set to 10 hours, i.e., T = 600 min-
utes.

• Lockers: For each station s ∈ S , we draw a locker capacity Ls proportional to 
the crowdshipper traffic. Parameter Ls is initially determined by normalized ratio 
vnorm
s

 , defined as the ’number of lines’ divided by the ’sum of corresponding fre-
quencies’. Subsequently, Ls is finally established through Ls =

1

8
|J| + 1

4
|J| ⋅ vnorm

s
. 

Fig. 2  Public transport system of Hamburg [Source: HVV]
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This ensures that the minimum capacity is 1
8
|J| , while the maximum capacity is 

3

8
|J|.

• Parcels: For each parcel j ∈ J , we draw a release date rj ∼ U{1,… , |T|∕10} and 
a deadline dj ∼ U{9 ⋅ |T|∕10,… , |T|} . We assume that with a probability of 50% 
a parcel has to be transported from a city center to a suburban station, where 
origin and destination stations are randomly chosen from sets SC and SS , respec-
tively, and with 50% vice versa. For each successfully delivered parcel, the plat-
form receives a constant postal charge of pj = p = 5.

• Crowdshippers: We assume that 40% of the crowdshippers move during the 
morning hours, i.e., we determine their departure time ti by drawing from a 
uniform distribution: ti ∼ U{1,… , 3 ⋅ |T|∕10} . Another 40% of crowdship-
pers move during the late hours ( ti ∼ U{6 ⋅ |T|∕10 + 1,… , 9 ⋅ |T|∕10} ), 
and the remaining 20% of crowdshippers move during main working hours 
( ti ∼ U{3 ⋅ |T|∕10 + 1,… , 6 ⋅ |T|∕10}).

  Crowdshippers of the morning hours needs to travel from a suburban area to a 
city center station (with a probability of 60%), while 30% move in the opposite 
direction, and 10% travel entirely within the city center. The origin and destina-
tion stations are randomly selected from sets SC and SS.

  During the late hours, the selection of origin and destination station is 
reversed, so that 60% move from the city center to the suburban area, while 30% 
move in the opposite direction, and again 10% stay in the city center.

  For crowdshippers that travel during the main working hours, we assume that 
they travel with equal probability from a suburban area to the city center, the 
other way round, or within the city center.

  Given the origin station, departure time, and destination of crowdshipper i ∈ I , 
we determine the shortest path by the standard Dijkstra algorithm through our 
network in order to determine their time-stamped paths ti,s . The fixed entrainment 
fee is f = 1.

Finally, we set the repetition counter to ten for each data setting defined by the num-
ber of parcels |J| and the number of crowdshippers |I|. Hence, ten instances, each 
derived as defined above, are returned by our data generator.

6.2  Computational results

Our performance tests benchmark our heuristic decomposition procedure (see 
Sect.  5) with off-the-shelf solver Gurobi when fed with the MIPs of Sect.  4. Our 
complete tests have shown that there are no significant performance differences of 
both competitors for the different objectives. To not overload this paper, we there-
fore decided to only report the performance results of objective MAX-PROFIT. 
When comparing the performance of these solution approaches in Table 6, we report 
on the average optimality gap in percent determined by Gurobi (column ’gap’), the 
average gap in percent to the best solution found among both competitors (column 
’gapb’), the number of instances where the approach found the best solution among 
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both competitors (column ’best’), the number of solutions proven to be optimal 
(column ’opt’), the number of instances where at least one feasible solution with 
an objective value ≥ 0 was obtained (column ’feas’), and the average CPU-seconds 
(column ’sec’). Note that time limit of the default solver was set to 15 min and the 
CPU-seconds of the heuristic include the preprocessing time of pool generation. In 
our study, we vary the number of parcels |J| and the number of crowdshippers |I|. For 
each combination of these parameters, ten instances as described in Sect. 6.1 have 
been obtained, so that in total 270 instances constitute this testbed. The results sum-
marized in Table 6 suggest the following findings:

Table 6  Performance test of Gurobi and the heuristic decomposition procedure for objective MAX-
PROFIT

Gurobi Decomposition heuristic

|J| |I| gap gapb best opt feas sec gapb best opt feas sec

20 20 0.00 0.00 10 10 10 0.72 2.33 8 8 10 3.56
20 40 0.00 0.00 10 10 10 1.51 14.19 2 2 10 2.42
20 60 0.00 0.00 10 10 10 3.52 7.03 1 1 10 1.85
30 30 0.00 0.00 10 10 10 1.58 7.90 3 3 10 3.85
30 60 0.00 0.00 10 10 10 5.82 5.82 4 3 10 3.31
30 90 0.00 0.00 10 10 10 26.82 3.55 2 1 10 3.49
40 40 0.00 0.00 10 10 10 3.40 2.40 5 5 10 5.50
40 80 0.29 0.00 10 9 10 115.57 7.54 1 0 10 4.92
40 120 1.61 0.10 9 7 10 377.50 5.42 3 1 10 5.61
50 50 0.00 0.00 10 10 10 14.12 6.96 2 2 10 7.80
50 100 2.52 2.55 6 6 10 457.02 4.65 4 0 10 7.68
50 150 7.60 0.85 8 0 10 920.24 4.60 3 0 10 9.00
60 60 0.00 0.00 10 10 10 18.64 5.21 1 1 10 9.25
60 120 4.52 0.00 10 0 10 918.19 8.00 0 0 10 11.12
60 180 17.71 5.13 4 0 10 935.84 1.91 7 0 10 13.98
70 70 0.38 0.00 10 8 10 315.41 7.31 1 1 10 11.69
70 140 8.43 0.00 10 0 10 925.98 6.36 0 0 10 16.25
70 210 31.33 12.20 1 0 10 952.31 0.29 9 0 10 20.48
80 80 0.41 0.00 10 7 10 387.24 6.50 0 0 10 16.20
80 160 21.74 2.65 4 0 10 935.14 1.27 7 0 10 22.00
80 240 91.68 69.93 0 0 10 977.49 0.00 10 0 10 27.83
90 90 1.62 0.00 10 5 10 672.58 6.47 0 0 10 19.79
90 180 49.20 18.87 2 0 10 952.45 0.00 10 0 10 29.19
90 270 55.77 27.59 0 0 9 1015.92 0.00 10 0 10 41.56
100 100 4.40 0.00 10 0 10 921.50 4.55 0 0 10 25.54
100 200 55.38 24.13 0 0 9 968.71 0.00 10 0 10 37.91
100 300 79404.22 3027.54 0 0 8 1743.52 0.00 10 0 10 54.09
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• Gurobi: Default solver Gurobi performs very well when handling smaller 
instance sizes of |J| ≤ 30 parcels. Here, it is able to verify all optimal solu-
tions within short computational times. However, Gurobi struggles with larger 
instance sizes of |J| ≥ 70 parcels, especially with a large crowdshipper base. 
Here, gaps as well as runtimes increase and less best solutions are obtained. For 
larger instances with fewer crowdshippers, however, Gurobi still outperforms our 
heuristic. Unfortunately, our computational evaluation in Sect. 7.1 will show that 
a large crowdshipper base is required to move a substantial number of parcels. In 
these cases, our heuristic seems the better option. Note that these results did not 
improve significantly in further tests, where we allowed the default solver longer 
running times up to one hour.

• Decomposition heuristic: Our heuristic, instead, produces a good compromise 
between solution quality and time, especially for large instances with many par-
cels and crowdshippers. It determines feasible solutions for all instances and 
requires less than one minute even for the largest instance sizes. The (optimality) 
gaps are reasonably small.

We conclude that both solution approaches seem an appropriate choice for our 
crowdshipping problem. Especially, for large instances with many shipments and 
potential crowdshippers, our heuristic seems the better choice, especially when fast 
decisions are required.

7  Managerial issues

This section is dedicated to managerial issues. We want to identify critical factors for 
the successful diffusion of public transport crowdshipping. Specifically, we explore 
how many volunteering crowdshippers must be recruited in order to successfully 
deliver a given amount of parcels in Sect.  7.1, we provide a relationship analysis 
between the different objectives in Sect.  7.2, and we address robustness issues to 
avoid stranded parcels in case of unforeseen train delays in Sect.  7.3. Finally in 
Sect. 7.4, we compare a splitting of a shipment’s travel from origin to destination 
among multiple crowdshippers with direct single-crowdshipper transports. The lat-
ter promise a better protection against unforeseen train delays but offer less planning 
flexibility.

If not explicitly stated otherwise, we generate our instances as described in 
Sect. 6.1 for a varying number of parcels |J| and available crowdshippers |I|. To not 
spoil our investigations by heuristic gaps, we decided to apply Gurobi (with a time 
limit of one hour) on smaller instances with up to |J| ≤ 60 parcels only.

7.1  How many crowdshippers need to be recruited?

Among the outstanding challenges to successfully establish crowdshipping as a reli-
able every-day delivery option is certainly the volatile participation of volunteering 
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crowdshippers (Le et al. 2019; Savelsbergh and Ulmer 2022). Therefore, recruiting 
a large enough base of participating crowdshippers is an important task for the suc-
cessful diffusion of public transport crowdshipping. The specific means how to suc-
cessfully attract public transport users for crowdshipping (e.g., a media campaign 
advertising the positive environmental impact and/or attractive entrainment fees) go 
beyond this paper. In this specific context, however, we want to explore how large 
the base of volunteering crowdshippers must be to successfully deliver a substantial 
amount of parcels via public transport crowdshipping.

To do so, we relate the parcel-to-crowdshipper-ratio to the delivery rate of suc-
cessfully crowdshipped parcels in Fig.  3. Specifically, we solve instances with 
|J| = {20, 40, 60} parcels to be transported, a volunteering crowdshipper base 
of |I| = {|J|, 2|J|, 3|J|, 4|J|, 5|J|} , and compare wide deadlines (as described in 
Sect. 6.1) and tight deadlines with dj = rj + 2 ⋅ |T|∕3 . Our optimization objective 
is MAX-PROFIT, and we report on the delivery rate, i.e., the number of success-
fully crowdshipped parcels divided by all parcels in %. The results of our compu-
tational test, summarized in Fig. 3, show us basically four things:

(1) Low impact of tighter deadlines: The urgency of deliveries impacts the size of 
the crowdshipper base that is necessary to reach substantial delivery rates, but 
not to a large extent. Tight deadlines reduce the flexibility to involve crowdship-
pers in public transport crowdshipping, but this effect reduces the delivery rates 
only by a few percentage points.

(2) More traffic on the platform increases the matches: We can also observe a phe-
nomenon, which is widely known for all kinds of matching problems (e.g., when 
organizing live kidney donations, see Roth et al. 2004). In Fig. 3, we can clearly 
observe that at a constant parcel-to-crowdshipper-ratio more traffic on the plat-
form (i.e., more registered parcels and thus more volunteering crowdshippers, 
but at a constant ratio) increases the delivery rates. The larger the pool of vol-
unteering crowdshippers and requested deliveries, the larger the flexibility to 
identify better matches.

Fig. 3  Delivery rates of parcels 
in % depending on the number 
of parcels |J|, participating 
crowdshippers |I|, and wide or 
tight deadlines
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(3) Large crowdshipper base required: Our results show that a crowdshipper base 
of significant size is required to reach noteworthy delivery rates. If we have the 
same number of crowdshippers than parcels (i.e., |I| = |J| ), then only less than 
38% of the registered shipments can feasibly be crowdshipped. At least twice as 
many crowdshippers than parcels are required to successfully crowdship about 
62% of the parcels, and delivery rates of about 80%, instead, already require 
about five times more crowdshippers (wide deadlines).

(4) The positive impact of additional crowdshippers quickly diminishes: Finally, 
our results also indicate that the marginal returns of an increasing crowdshipper 
base reduce quickly. If we have just a small crowdshipper base (i.e., |I| = |J| ), 
then adding another |J| crowdshippers to the participants almost doubles the 
delivery rates. The same increase of |J| additional crowdshippers if we already 
have a crowdshipper base of |I| = 3|J| volunteers, instead, only leads to mar-
ginal additional returns around 10%. This effect implies that even with a very 
large crowdshipper base it cannot be expected that all registered parcels can be 
feasibly crowdshipped.

Naturally, these results should not be mistaken as precise target values for the num-
ber of crowdshippers to be recruited. The results are also impacted by other factors, 
such as the size of the public transport network and the pricing scheme. Nonethe-
less, our first experiment leads us to the following managerial take-home message:

Actionable insights: To not disappoint large parts of shippers seeking crowdship-
ping services for their parcels, a platform must recruit an active daily base of reliable 
crowdshippers that is considerably larger than the amount of parcels to be moved. 
Before investing into (IT and parcel locker) infrastructure, a crowdshipping platform 
for public transport should thus critically evaluate whether it is actually realistic to 
recruit such a substantial crowdshipper base. If this evaluation is positive, however, 
even an excessively large crowdshipper base cannot guarantee that all shipments can 
feasibly be crowdshipped. Thus, the need for a flexible and reliable fall-back option 
(e.g., a professional postal service provider) must either openly be communicated to 
the shippers (if they must take care of rejected parcels by themselves) or must addi-
tionally be organized by the platform.

7.2  Relationship of objectives in a deterministic world

If we presuppose a deterministic world where no unforeseen delays occur and 
all shipments are crowdshipped just as planned, then we see the following match 
between the main stakeholders of public transport crowdshipping and our objectives: 

 (i) Platform provider ⇔ MAX-PROFIT: A private platform provider with the 
intention of earning money for organizing crowdshipping services certainly 
prefers the MAX-PROFIT objective. Despite this general fit, we openly admit 
that other objectives can also be important for the platform. For instance, espe-
cially in early phases of the life cycle it could also be reasonable to involve as 
many shippers and crowdshippers as possible in order to gain publicity and 
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investor awareness. However, MAX-PROFIT is certainly the most obvious 
choice for a profit-seeking platform.

 (ii) Shippers, recipients, and general public ⇔ MAX-PARCELS: Since public 
transport crowdshipping only applies transport capacities of public transport 
users on trips they make anyway, any parcel feasibly crowdshipped saves 
conventional delivery traffic. Hence, the MAX-PARCELS objective seems a 
good proxy for reducing the negative impact (e.g., greenhouse gas emissions) 
coming along with van-based parcel delivery. Therefore, for environmentally 
aware recipients, the general public, and shippers aiming to advertise their 
sustainable delivery services the MAX-PARCELS objective seems a good fit.

 (iii) Crowdshippers ⇔ MAX-INVOLVEMENT: Finally, crowdshippers may not 
exclusively be intrinsically motivated to protect the environment; at least an 
additional aim could be to earn money for their crowdshipping services. In 
this case, one possible objective is to maximize the number of involved crowd-
shippers, so that as many of them as possible can profit. Note that we leave 
even more involved objectives also including the sum of entrainment fees and 
fairness issues out of consideration.

Our other three objectives, i.e., MIN-TOTAL-ENTRAINMENTS, MIN-MAX-
ENTRAINMENTS, and MIN-MAX-SLACK, rather aim to protect against delays. 
In a deterministic world, however, unforeseen delays do not occur, so that we leave 
these objectives out of consideration for the moment and come back to them in 
the next section. Given our remaining three objectives and the underlying aims of 
the stakeholders discussed above, it is interesting to see how strong following one 
objective deteriorates the aims of the other stakeholders. In other words, this sec-
tion explores whether there is a compromise objective that fits the aims of all people 
involved without leading to significant losses of specific groups. If this is given, we 
do not have to fall back on a multi-objective approach (including all negative aspects 
coming along with such a more complex approach) when aiming to satisfy all (or at 
least most) stakeholders.

To explore this matter, we plot the percentage of parcels that are successfully 
crowdshipped and the percentage of volunteering crowdshippers whose services are 

Fig. 4  Impact of minimum 
platform profit P when set to 
different percentage values of 
the optimal MAX-PROFIT 
solution value for objectives 
MAX-PARCELS and MAX-
INVOLVEMENT
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actually selected when solving problems MAX-PARCELS and MAX-INVOLVE-
MENT for different values of minimum platform profits P in Fig. 4. The different 
P-values are derived by setting them to 70, 80, 90, 100 % of the maximum platform 
profit gained via MAX-PROFIT. Note that we furthermore presuppose |J| = 40 par-
cels and a volunteering crowdshipper base of |I| = 2|J| . We can observe that a strong 
focus on the profit of the crowdshipping platform (i.e., by selecting a large percent-
age value when fixing minimum platform profit P) significantly reduces the number 
of participating crowdshippers (i.e., represented by MAX-INVOLVEMENT) but 
has no impact on the number of feasibly crowdshipped parcels (i.e., represented by 
MAX-PARCELS). These results suggest the following finding.

Actionable insights: Next to providing the relevant infrastructure, the matching 
of crowdshipping demand and supply is certainly the essential service provided by 
a crowdshipping platform. When implementing a matching procedure, e.g., with the 
help of one of our optimization approaches, it is thus likely that a platform follows 
their own primary target and applies the MAX-PROFIT objective. A sharing plat-
form’s elementary matching approach is typically not openly revealed in order to 
protect against copycat competitors. Therefore, fairness aspects among the diverg-
ing aims of stakeholders are typically hard to judge for outsiders and a platform 
barely needs to expect negative effects when they opt for the MAX-PROFIT objec-
tive. When they do, this has the following effects on the other stakeholders: The 
revenue side of the profit is determined by the postal charges earned for feasibly 
crowdshipped parcels. Therefore, the profit increases the more parcels are crowd-
shipped. Hence, the MAX-PROFIT objective tends to also support the aims of all 
sustainability-oriented stakeholders who aim to reduce the negative effect of tra-
ditional van-based deliveries. The cost side, on the other hand, is constituted by 
the entrainment fees to be paid to the crowdshippers. They are reduced the fewer 
entrainments are involved, which tends to also reduce the total number of selected 
crowdshippers. Thus, a crowdshipping platform opting for the MAX-PROFIT objec-
tive must be aware that they do this against the general aims of the crowdshippers. 
Fewer of them get actively involved, which may negatively impact their motivation 
to further volunteer for crowdshipping each day. A large crowdshipper base has been 
identified as a mission-critical resource in our previous experiment. Thus, at least in 
earlier phases of the life cycle, when public transport users need to be accustomed to 
crowdshipping, following the MAX-INVOLVEMENT objective with a lower mini-
mum platform profit P to get more crowdshippers involved seems a valid option.

7.3  Impact of unexpected train delays

The real world is not deterministic. In public transport crowdshipping in particu-
lar, it is unforeseen train delays that jeopardize the realization of planned crowd-
shipping schedules. Delayed trains can lead to stranded parcels placed late into 
some locker, so that they get missed either by the finial recipient or a succes-
sor crowdshipper. In this case, recovery missions and compensation payments 
for delayed parcels produce additional costs that reduce the planned platform 
profit. To protect against these costs, this paper introduces three objective, namely 
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MIN-TOTAL-ENTRAINMENTS, MIN-MAX-ENTRAINMENTS, and MAX-
MIN-SLACK (see Sect. 3). This section investigates whether these objectives actu-
ally lead to more robust crowdshipping schedules in case of unforeseen delays and 
which of them performs best.

Specifically, our experiment is set up as follows. Using our instance generator of 
Sect.  6.1, we generate 10 instances with |J| = 30 registered parcels and |I| = 2|J| 
volunteering crowdshippers. The resulting instances are solved with each of our 
six objectives and each resulting solution undergoes the following simulation pro-
cess where parameters Pd and d steer the occurrence of unforeseen train delays. 
Pd ∈ {5, 15} defines the probability in % that each single train applied by the crowd-
shippers is delayed. If this is the case, a delay of d ∈ {3, 10} minutes occurs, so 
that all crowdshipper riding on this train place their parcels later into the designated 
locker. This may lead to stranded parcels, which reduce the planned profit by the 
postal charge to be restituted to the shipper. We assume that no further compensa-
tion payments on top of the restituted postal charges are required and presuppose 
that all entrainment fees are still paid to all crowdshippers even if they are delayed or 

Table 7  Post-delay profit of 
objectives MAX-PARCELS 
(MP), MAX-INVOLVEMENT 
(MI), MIN-TOTAL-
ENTRAINMENTS (MTE), 
MIN-MAX-ENTRAINMENTS 
(MME), and MAX-MIN-
SLACK (MMS) in relation to 
MAX-PROFIT in % depending 
on the percentage � of the 
maximum post-delay profit 
of MAX-PROFIT, delay 
probability Pd in %, and delay 
duration d in minutes

� Pd d MP MI MTE MME MMS

90 5 3 92.25 90.64 98.93 95.45 93.05
92 5 3 92.25 93.32 95.72 96.52 96.26
94 5 3 93.32 94.65 97.86 99.47 94.92
96 5 3 96.79 96.79 97.06 97.06 97.06
98 5 3 102.67 100 103.74 100.27 101.6
100 5 3 101.34 104.01 102.67 105.35 105.35

90 15 3 95.47 82.2 108.41 99.35 93.2
92 15 3 93.85 95.15 104.53 97.41 98.71
94 15 3 93.53 95.15 105.5 109.06 95.47
96 15 3 99.35 97.73 99.68 102.91 94.82
98 15 3 104.85 100 107.77 101.94 101.94
100 15 3 103.24 106.47 103.24 114.56 111.33

90 5 10 88.08 86.45 94.85 89.97 87.53
92 5 10 90.79 90.51 97.02 96.48 92.14
94 5 10 91.87 91.87 97.83 98.1 92.14
96 5 10 91.33 95.39 97.02 95.66 94.31
98 5 10 95.93 97.29 97.02 96.21 94.85
100 5 10 98.64 98.64 97.29 100 100

90 15 10 86.27 78.87 100.35 90.49 80.28
92 15 10 91.55 84.15 101.41 93.66 93.31
94 15 10 91.2 84.15 98.94 104.58 93.31
96 15 10 88.73 88.73 97.89 97.89 92.61
98 15 10 98.24 96.48 97.89 96.83 93.31
100 15 10 100 98.24 94.72 103.52 101.76
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miss their dedicated parcels due to a delayed predecessor crowdshipper. We call the 
resulting profit that includes restitutions for stranded parcels the post-delay profit.

In Table  7, we list the post-delay profits of objectives MAX-PARCELS (MP), 
MAX-INVOLVEMENT (MI), MIN-TOTAL-ENTRAINMENTS (MTE), MIN-
MAX-ENTRAINMENTS (MME), and MAX-MIN-SLACK (MMS) divided by the 
post-delay profit of MAX-PROFIT. Thus, a value larger (smaller) than 100% indi-
cates that the respective objective delivers a better (worse) post-delay solution than 
MAX-PROFIT. This performance measure is reported for different minimum plat-
form profits P that are determined by varying the percentage � ∈ {90, 92,… , 100} 
of the MAX-PROFIT objective value, the probability Pd in % that a train is delayed, 
and the duration d in minutes of a train delay. These results suggest the following 
findings:

(a) The minimum platform profit should be set to 100%: Next to the choice of the 
right objective, the platform must also decide on the minimum platform profit. 
We expect a trade-off: One the one hand, it is to be expected that a higher mini-
mum profit leads to more and tighter handovers, so that more stranded parcels 
and thus higher compensation payments occur. Thus, it should be advantageous 
to relinquish a few percent of pre-delay profit to give the objective more flexibil-
ity to better protect against unforeseen delays. On the other hand, if we relinquish 
too much pre-delay profit, we also give up parcels that are actually not affected 
by delays. Given this trade-off, our results suggest that the latter effect prevails, 
so that we should not give up too much pre-delay profit. There are only a few 
exceptions, where a minimum profit of 100% does not lead to the highest post-
delay profit.

(b) MIN-MAX-ENTRAINMENTS delivers the best post-delay profits: Given the best 
minimum platform profit for each objective, the bold-marked results of Table 7 
highlight the best options. From these results, we can conclude that the MIN-
MAX-ENTRAINMENTS objective (with a minimum platform profit of 100%) 
offers the best protection against unforeseen delays. Actually, this objective is 
the only one that consistently outperforms the MAX-PROFIT objective in all 
four delay scenarios. Even if it is just an average profit increase of 5,86 % over 
MAX-PROFIT (on average over all four delay scenarios with a minimum plat-
form profit of 100%), it is easily earned money, because the platform only has 
to slightly alter the matching objective.

Actionable insights: The handling of stranded parcels is certainly another critical 
success factor for public transit crowdshipping. Recovery missions and compensa-
tion payments reduce the planned platform profit but are also a threat for the reputa-
tion of a platform. A simple means to successfully reduce the occurrence of stranded 
parcels in case of unforeseen delays is to apply the MIN-MAX-ENTRAINMENTS 
objective with a maximum platform profit. Since each handover of a parcel among 
subsequent crowdshippers provides a stranding opportunity, reducing these events 
via the MIN-MAX-ENTRAINMENTS objective leads to more robust plans.



903

1 3

Public transport crowdshipping: moving shipments among parcel…

However, there may be even better objectives and the best choice among them 
is certainly only one lever. Future research should thus evaluate the impact of 
other objectives and further countermeasures, such as a dynamic replanning once 
delays have occurred with altered entrainment missions for crowdshippers already 
underway. The right compensation scheme, which properly trades off the impact of 
stranded parcels on customer satisfaction with losses of platform profit, is certainly 
an important choice.

7.4  Comparison with the single‑crowdshipper‑per‑parcel policy

French public transport crowdshipping platform Chronobee (see Sect. 1) applies 
the single-crowdshipper-per-parcel (SCPP) policy. This means that an accepted 
parcel is brought from origin to destination exclusively by a single crowdship-
per. On the positive side, SCPP offers more protection against unforeseen delays. 
Train delays can still lead to parcels missing the deadlines at their destinations, 
but at least the handover risk of crowdshippers missing each other is eliminated. 
Our research provides optimization approaches under the multi-crowdshipper-
per-parcel (MCPP) policy, where asynchronous parcel handovers via lockers 
between multiple crowdshippers are allowed. The asset of the MCPP policy is 
certainly the larger flexibility to move parcels with multiple crowdshippers. This 
promises higher delivery rates but increases the risk of stranded parcels. This 
section benchmarks both policies regarding their profits with and without train 
delays.

Specifically, our experiment is set up as follows. Using our instance genera-
tor of Sect.  6.1, we generate 10 instances with |J| = 30 registered parcels and 
|I| = 2|J| volunteering crowdshippers. To obtain the profits of both policies in a 
deterministic world where no unforeseen delays occur, these instances are solved 
with two approaches. For MCPP, we apply the approach that proved best in the 
previous section. This means, we utilize the MIN-MAX-ENTRAINMENTS 
objective with a minimum platform profit equal to the maximum profit obtained 
by MAX-PROFIT to solve the instances and record the resulting profit. Another 
advantage of the SCPP policy is a much easier matching task, which constitutes 
a linear assignment problem that can efficiently be solved, e.g., by the famous 
Hungarian method (Kuhn 1955). Here, we assign crowdshippers to parcels, where 
the assignment profit is either the parcel charge minus a single entrainment fee if 

20 30 40 50 60 70
(a) Pre-delay profit of SCPP in % of MCPP

20 30 40 50 60 70 80
(b) Post-delay profit of SCPP in % of MCPP

Fig. 5  Benchmark of MCPP and SCPP before (left) and after (right) delays: Profit of SCPP in % of 
MCPP’s profit (obtained by the MIN-MAX-ENTRAINMENTS objective with a minimum platform 
profit equal to the maximum profit obtained by MAX-PROFIT) in %
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the crowdshipper timely travels along the parcel’s origin and destination or zero 
if no feasible transport by a specific crowdshipper is possible. Solving the max-
profit linear assignment problem delivers the optimal profit of the SCPP policy. 
To also compare both policies if unforeseen train delays occur and stranded par-
cels may reduce the profit, we apply the high-risk-small-delay setting (i.e., with a 
delay risk of Pd = 15 % and d = 3 minute delays) and determine the actual profit 
of both solutions if the respective delays occur. In Fig. 5, we depict the pre-delay 
(i.e., deterministic world without delays) and the post-delay (i.e., actual profit 
including compensation for stranded parcels in case of delays) profits. The box 
plots show the distribution of the profit of SCPP divided by the profit of MCPP 
in % over the solved instances. Hence, a value below (above) 100% indicates that 
SCPP realizes a lower (higher) profit than MCPP.

The results of Fig. 5 indicate that MCPP clearly outperforms SCPP. The loss 
in flexibility if only a single crowdshipper may transport each parcel reduces the 
median profit of SCPP to only 40% of MCPP’s profit in a deterministic world. 
As expected, this disadvantage reduces if unforeseen delay occur, but the median 
profit of SCPP still merely reaches 47% of MCPP’s profit. However, there are 
three instances with high risk and long delays where the higher robustness of 
SCPP leads to even better results than MCPP. On average, however, our experi-
ment shows a clear advantage of MCPP, which leads us to our final managerial 
take-home message.

Actionable insights: The current business practice to only apply the SCPP policy 
should be reconsidered. Our computational results show that the increase of flexibil-
ity enabled by the parcel handover among multiple crowdshippers clearly overcom-
pensates the higher risk of stranded parcels in case of unforeseen delays.

8  Conclusions

This paper investigates public transport crowdshipping and provides matching meth-
ods to select shipments and their ways through a public transportation network when 
accompanying crowdshippers on their commute. Based on a computational study 
applying these methods, we identify the following critical success factors for this 
innovative last-mile delivery concept: 

(a) A large crowdshipper base of volunteering public transport users must be 
recruited that is significantly larger than the number of parcels to be transported. 
However, even if such a base can successfully be gathered, a platform cannot 
expect that all parcels can be transported. Thus, a reliable and flexible fall-back 
option must be at hand.

(b) Unfortunately, there is no single objective that can satisfy all involved stake-
holders equally. When only focusing on the platform profit, this tends to also 
maximize the number of successfully crowdshipped parcels (and thus the posi-
tive environmental impact) but reduces the number of involved crowdshippers. 
This can get in the way of our previous success factor.
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(c) To account for unforeseen train delays and to protect against stranded parcels, we 
identify the MIN-MAX-INVOLVEMENT objective, which restricts the maxi-
mum number of handovers among crowdshippers per parcel, as best suited.

(d) Finally, we show that allowing parcels to take multiple travel legs with more 
than a single crowdshipper greatly increased planning flexibility and promises 
much more transported parcels as well as higher platform profits than the single-
crowdshipper-per-parcel policy of current business practice.

Future research could take up our research in multiple ways: Other optimization 
objectives and more complex methods including multiple objectives and explicitly 
involving stochastic delay information should be developed. In this way, matchings 
that better serve all involved stakeholders, even if unforeseen delays occur, could be 
obtained. Furthermore, our solution methods should be challenged, such that they 
are suitable for large real-world crowdshipping platforms with thousands of ship-
ments and even more crowdshippers.
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