
Faldum, Stefan; Machate, Sarah; Gschwind, Timo; Irnich, Stefan

Article — Published Version

Partial dominance in branch-price-and-cut algorithms for
vehicle routing and scheduling problems with a single-
segment tradeoff

OR Spectrum

Suggested Citation: Faldum, Stefan; Machate, Sarah; Gschwind, Timo; Irnich, Stefan (2024) : Partial
dominance in branch-price-and-cut algorithms for vehicle routing and scheduling problems with
a single-segment tradeoff, OR Spectrum, ISSN 1436-6304, Springer Berlin Heidelberg, Berlin/
Heidelberg, Vol. 46, Iss. 4, pp. 1063-1097,
https://doi.org/10.1007/s00291-024-00766-y

This Version is available at:
https://hdl.handle.net/10419/313820

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00291-024-00766-y%0A
https://hdl.handle.net/10419/313820
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Vol.:(0123456789)

OR Spectrum (2024) 46:1063–1097
https://doi.org/10.1007/s00291-024-00766-y

1 3

ORIGINAL ARTICLE

Partial dominance in branch‑price‑and‑cut algorithms
for vehicle routing and scheduling problems
with a single‑segment tradeoff

Stefan Faldum1  · Sarah Machate2 · Timo Gschwind2  · Stefan Irnich1 

Received: 5 January 2024 / Accepted: 6 May 2024 / Published online: 26 June 2024
© The Author(s) 2024

Abstract
For many variants of vehicle routing and scheduling problems solved by a branch-
price-and-cut (BPC) algorithm, the pricing subproblem is an elementary shortest-
path problem with resource constraints (SPPRC) typically solved by a dynamic-pro-
gramming labeling algorithm. Solving the SPPRC subproblems consumes most of
the total BPC computation time. Critical to the performance of the labeling algo-
rithms and thus the BPC algorithm as a whole is the use of effective dominance
rules. Classical dominance rules rely on a pairwise comparison of labels and have
been used in many labeling algorithms. In contrast, partial dominance describes situ-
ations where several labels together are needed to dominate another label, which can
then be safely discarded. In this work, we consider SPPRCs, where a linear tradeoff
describes the relationship between two resources. We derive a unified partial domi-
nance rule to be used in ad hoc labeling algorithms for solving such SPPRCs as well
as insights into its practical implementation. We introduce partial dominance for two
important variants of the vehicle routing problem, namely the electric vehicle rout-
ing problem with time windows with a partial recharge policy and the split-delivery
vehicle routing problem with time windows (SDVRPTW). Computational experi-
ments show the effectiveness of the approach, in particular for the SDVRPTW, lead-
ing to an average reduction of 20% of the total BPC computation time, with savings
of 30% for the more difficult instances requiring more than 600 s of computation
time.

Keywords  Branch-price-and-cut · Partial dominance · Column generation · Labeling
algorithm · Vehicle routing and scheduling

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-024-00766-y&domain=pdf
http://orcid.org/0009-0001-6789-5940
http://orcid.org/0000-0002-7715-4994
http://orcid.org/0000-0001-9383-4546

1064	 S. Faldum et al.

1 3

1  Introduction

For many variants of the vehicle routing problem (VRP, Toth and Vigo 2014),
branch-and-price (BP, Desaulniers et al. 2005) based algorithms constitute the lead-
ing exact solution methodology (Costa et al. 2019). A BP algorithm is a branch-and-
bound algorithm in which the lower bounds are computed by column generation.
Column generation is an iterative procedure that can tackle linear programs contain-
ing a huge number of variables. At each iteration, it solves a restricted master prob-
lem (RMP) comprising only a subset of the variables of the original linear program
and one or several pricing subproblems to dynamically generate missing variables
with negative reduced cost or to prove that no such variable exists. Cutting planes
are added to strengthen the linear relaxations giving rise to a branch-price-and-
cut (BPC) algorithm. For details on the theory of BPC, we refer to Barnhart et al.
(1998), Lübbecke and Desrosiers (2005).

The master program is often an extended set-partitioning or set-covering for-
mulation for selecting the best routes, while the pricing subproblem is an elemen-
tary shortest-path problem with resource constraints (SPPRC) typically solved by
dynamic-programming labeling algorithms (for an overview of SPPRCs and labe-
ling algorithms, see Irnich and Desaulniers 2005). In a labeling algorithm, partial
paths are gradually extended in a network from a given source o to a sink d (the
origin and destination depot in the context of VRPs) seeking for a resource feasible
minimum-cost o-d-path. The partial paths are represented by labels that store infor-
mation on the accumulated resource consumption up to the endpoint of the partial
paths. Herein, resources are quantities necessary to compute the reduced cost and,
e.g., the load onboard and the start of the service, at the end of the partial path.
In particular, resources are used to decide on the feasibility of partial paths. The
propagation of the labels along the arcs of the network is performed with the help of
resource extension functions (REFs, Irnich 2008). Crucial for the performance of a
labeling algorithm is the dominance relation between partial paths. The dominance
relation is a relation between labels (i.e., partial paths) used to identify and discard
those that cannot lead to a better solution of the SPPRC than possible with a known
partial path. Dominance is typically realized by comparing the resource values of
the labels and avoids the enumeration of all feasible partial paths that can be found
in the network.

Classical dominance relations that have been used in many labeling algorithms
rely on a pairwise comparison of labels. Informally speaking, if one of the labels
is worse than the other, it can be safely discarded. Formally, we assume that the
network (V ,A) with source o ∈ V and sink d ∈ V are given. For a partial path p ,
i.e., an o-i-path ending at some vertex i ∈ V  , any i-d-path q that provides a feasi-
ble o-d-path r = (p, q) is called a feasible extension of p . Now, pairwise dominance
between two partial paths can be characterized with the help of feasible extensions
as follows:

Proposition 1  (Pairwise Dominance) Let p1 and p2 be two different partial paths
ending at the same vertex i ∈ V  . If, for each feasible extension q2 of p2 ,

1065

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

	 (i)	 the path q2 is also a feasible extension of p1 , i.e., r1 = (p1, q2) is feasible
	 (ii)	 or there exists a feasible extension q1 of p1 (the extension q1 is allowed to differ

from q2 ) so that r1 = (p1, q1) is feasible,

and r1 has a smaller or identical reduced cost than r2 , then the partial path p2 is
dominated.

Because the conditions (i) and (ii) in Proposition 1 are difficult to verify for
two arbitrary partial paths p1 and p2 , labeling algorithms typically test sufficient
conditions, so-called dominance rules. Dominance rules do not directly consider
extensions, but they compare the resource values of the labels of p1 and p2.

In contrast to pairwise dominance, partial dominance describes the situation that sev-
eral labels together are, informally speaking, better than another label which can then be
safely discarded. A formal characterization of partial dominance is given in the following
proposition.

Proposition 2  (Partial Dominance) Let P be a set of partial paths and p2 ∉ P be
another partial path all ending at the same vertex i ∈ V  . If, for each feasible exten-
sion q2 of p2 , there exists a p1 ∈ P such that the condition (i) or the condition (ii)
of Proposition 1 is fulfilled and the resulting o-d-path r1 has a smaller or identical
reduced cost than r2 = (p2, q2), then the partial path p2 is dominated.

The notion of partial dominance reflects the concept that any path p1 ∈ P gener-
ally fulfills the dominance conditions in Proposition 1 only for some extensions q2 of
p2 , i.e., p1 partially dominates p2 . Considering all the paths in P together, all exten-
sions q2 of p2 are dominated so that p2 can be discarded.

In the VRP literature, partial dominance has been employed in different situa-
tions like SPPRCs with a tradeoff between resources, handling relaxations of the
elementarity condition in SPPRCs, and other use cases (see Sect. 2). The focus of
this paper is on partial dominance for SPPRCs with a tradeoff between resources
and, in particular, on the most basic type of such a tradeoff, i.e., a linear tradeoff
with a single linear piece as depicted in Fig. 1. An example of a linear tradeoff can
be found in the context of the electric vehicle routing problem with time windows
(EVRPTW) with partial recharging (Schneider et al. 2014): Battery electric vehi-
cles have a limited driving range, which can be extended by charging the battery at
dedicated recharging stations. The tradeoff is between the amount to be recharged
and the time required to do so. Longer charging increases the driving range, but may
hinder the timely arrival at later customers due to their service time windows. In
Fig. 1, the x-axis represents the time when a service can begin, and the y-axis repre-
sents the amount of energy that could be feasibly recharged: Being early in the time
window [a, b] allows more energy (up to u) to be recharged, while being late limits
it (down to l).

In general, Fig. 1 shows the feasible domain of two resources x and y for a par-
tial path represented by label F . For the resource x , the minimum feasible resource
consumption is Fa and the maximum feasible resource consumption is Fb . Likewise,
it is Fl and Fu for the resource y . For both resources, smaller values are preferable.

1066	 S. Faldum et al.

1 3

The tradeoff function f characterizes the nature of the tradeoff: Whenever we allow
resource x to increase by one unit (recall that smaller values are preferable), the con-
sumption of resource y can be decreased by m units, i.e., the slope of f is −m.

The contributions of this paper are the following. We provide a formal charac-
terization of linear tradeoffs between resources with a single linear piece within
SPPRCs and derive a unified partial dominance rule to be used in ad hoc labeling
algorithms for the solution of corresponding SPPRCs as well as insights on its prac-
tical implementation. Our results apply to both the elementary and the non-elemen-
tary version of the SPPRC. Furthermore, we exemplify the application of partial
dominance for two important variants of the VRP with a linear tradeoff in their
SPPRC pricing subproblems, namely the EVRPTW with a partial recharge policy
and the split-delivery vehicle routing problem with time windows (SDVRPTW).
Finally, we report an extensive computational analysis of using partial dominance
compared to the classical pairwise dominance for the EVRPTW and the SDVRPTW
on their standard benchmarks.

The remainder of the paper is structured as follows. In Sect. 2, we categorize
different use cases in which partial dominance has been used within SPPRC sub-
problems and review the corresponding literature. Section 3 provides the theoreti-
cal analysis of partial dominance for linear tradeoffs between resources. Section 4
details its application to the EVRPTW and the SDVRPTW. Our computational
study on the EVRPTW and the SDVRPTW is reported in Sect. 5. Final conclusions
are drawn in Sect. 6.

2 � Literature review

Partial dominance has been used for different types of SPPRC subproblems. We cat-
egorize into linear tradeoff functions and non-linear tradeoff functions describing
the relationship of two resources, partial dominance in SPPRC with elementarity
constraints, and other forms of partial dominance.

Fig. 1   Tradeoff with a single
linear piece between two
resources x and y

x

y

a b

u

l

f

S

dominated area D(S)

m

1

1067

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

Linear Tradeoff Functions First, SPPRC subproblems that have a tradeoff between
two resources can benefit from partial dominance. This type of dominance started
with the works (Ioachim et al. 1998, 1999) for airplane flight scheduling. In this
application, the only resources are time and reduced cost such that a partial path
can be completely characterized by a continuous, piecewise linear tradeoff function.
The seminal paper of Desaulniers et al. (1998) clarifies when and how such linear
tradeoffs between resources result from resource constraints in extensive path-based
formulations solved with column-generation algorithms: Resource constraints in
the master program referring to resource levels at vertices or at arcs result in lin-
ear node/vertex and arc costs. For continuous, piecewise linear tradeoff functions,
Desaulniers and Villeneuve (2000) developed an implicit form of partial dominance
for the respective SPPRC subproblems: Whenever the minimum of several trade-
off functions of a set of paths is completely below the tradeoff function of another
path, this path can be eliminated. Such continuous, piecewise linear tradeoff func-
tions between two resources arise in several vehicle scheduling and routing prob-
lems. Examples of this form of partial dominance used for solving SPPRC subprob-
lems are the VRP with soft time windows (Liberatore et al. 2010), the time-window
assignment VRP (Spliet and Gabor 2015; Spliet et al. 2018), the active-passive VRP
(Tilk et al. 2018), the time-dependent VRP with time windows (VRPTW) (Lera-
Romero et al. 2020), and the SDVRPTW with linear weight-related cost (Luo et al.
2017).

The handling of piecewise defined functions per label is somewhat inconven-
ient, in particular when the number of pieces is not bounded (by a small instance-
independent number). For the EVRPTW with partial recharges (Desaulniers et al.
2016b) and the SDVRPTW (Desaulniers 2010), there is only one linear piece which
includes the case of a single point. The EVRPTW and the SDVRPTW are the two
VRP variants that we consider in the computational analysis, see Sect. 4. In a fol-
low up publication on a variant of the inventory-routing problem, Desaulniers et al.
(2016a) apply similar solution methods, because also this problem can be modeled
with REFs with not more than one linear piece.

Even if we did not find works suggesting partial dominance for some applica-
tions, it should also be applicable when solving SPPRC subproblems of the follow-
ing problems: the dial-a-ride problem with ride-time constraints (Gschwind and
Irnich 2015), the synchronized pickup and delivery problem (Gschwind 2015), the
truck-and-trailer VRP with quantity-dependent transfer times (Rothenbächer et al.
2018), and the VRP with partial outsourcing (Baller et al. 2020). This list should not
be considered complete.

Non-Linear Tradeoff Functions Also non-linear tradeoffs between some resource
and reduced cost have been considered. Comparing piecewise defined non-linear
tradeoff functions and herewith establishing a partial dominance is more intricate
but still beneficial. In the VRPTW with convex inconvenience cost functions (He
et al. 2019), a customer-specific tradeoff function is defined over the customer’s time
windows.

Elementarity Partial dominance improves dominance for relaxations of the elemen-
tary SPPRC: For the SPPRC with 2-cycle elimination (Houck et al. 1980; Kohl et al.
1999), i.e., short cycles of the form (i, j, i), two labels that have mutually different

1068	 S. Faldum et al.

1 3

predecessor vertices can dominate another label by resource values. For the SPPRC
with k-cycle elimination, i.e., all cycles of length up to k are forbidden, Irnich and Vil-
leneuve (2006) generalize this partial dominance. Up to six labels with different pre-
decessor sequences are needed for 3-cycle elimination. For the general case, Irnich
and Villeneuve prove that not more than k!(k − 1)! different predecessor sequences
are needed. For a SPPRC with combined 2-cycle and k-cycle elimination, Bode and
Irnich (2014) further generalize the partial dominance. Such a combined cycle elimina-
tion occurs in BPC algorithms for the capacitated arc routing problem when branching
decisions and k-cycle free subproblems defined on the street network are considered
simultaneously. For the SPPRC subproblem of the minimum latency problem, Bulhões
et al. (2018) derive a partial dominance for the ng-route relaxation of the subproblem.
In this context, a first label that dominates a second label with respect to all resources
but not with respect to the ng-route restrictions (it cannot be extended to one or several
customers to which the second label can be extended) does however partially dominate
the second. This partial dominance results in so-called dominated extensions, i.e., ver-
tices to which an extension of the second label can be safely avoided. Full dominance
occurs when a label cannot be extended either due to the set of dominated extensions
or due to ng-route restrictions. These ideas were further exploited by Costa et al. (2021)
where even stronger arc-ng-route dominance rules were proven in the context of selec-
tive pricing (Desaulniers et al. 2019).

Other Forms of Partial Dominance We found some works using a partial domi-
nance that does not fall into one of the above categories. For the basic multi-com-
partment VRP, Heßler and Irnich (2023) use labels that represent partial paths for
which (at least) one feasible packing of delivery items into compartment exists.
The decision about the concrete packing finally used is, however, postponed until
the partial path reaches the destination. In particular, one label generally represents
many alternative packings. Partial dominance is used to allow that packings of one
label are dominated by some packings of a second label.

Two-arc fixing using reduced costs as suggested by Desaulniers et al. (2020) is an
acceleration technique for solving SPPRC pricing problems faster without compro-
mising optimality of the overall BPC approach. Sequences of two consecutive arcs
that cannot occur in an optimal solution are identified and the labeling algorithm
ensures that after traversing the first arc of the sequence, the label is not extended
along the second arc. In order to maintain optimality of the pricing, a label must be
extended by the information which (second) arcs must not be used for an extension.
This information must be taken into account in the dominance. The authors rely on
partial dominance, since otherwise the majority of the labels is not comparable with
the standard pairwise dominance.

3 � Partial dominance for linear decreasing tradeoff functions

In this section, we formally define the linear tradeoff between two resources and
describe the basic theory for partial dominance between labels. Furthermore, we
address general issues for the application of partial dominance within labeling algo-
rithms for SPPRCs. Finally, we provide some details of our implementations.

1069

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

3.1 � Basic theory

We assume that the linear tradeoff exists between two resources with real-valued
resource values x and y . For a partial path and its label F , a proper tradeoff can be
described by a segment S in ℝ2 with endpoints (Fa,Fu) and (Fb,Fl) with Fa < Fb and
Fu > Fl , see Fig. 1. Formally, the segment is the convex hull of its endpoints, i.e.,
S = conv({(Fa,Fu), (Fb,Fl)}) . The intuitive interpretation of the tradeoff described by
the segment is that if resource x is allowed to increase by one unit, the consumption of
resource y can be decreased by m = (Fu − Fl)∕(Fb − Fa) > 0 units.

Every point (x, y) on the segment S can be described with the help of a linear func-
tion f ∶ ℝ

1
→ ℝ

1 defined by

Note that we have intentionally defined this underlying function f on the entire real
space, and not only on the interval [Fa,Fb] . Moreover, we can also cope with the
case of a one-point segment, i.e., that the two endpoints (Fa,Fu) and (Fb,Fl) are
identical, i.e., Fa = Fb and Fl = Fu . In this case, we still use (1) by defining the
(negative) slope to be m = 1 . With this definition, also the inverse of f is well-
defined, it is x = f −1(y) = Fa − 1∕m ⋅ (y − Fu).

For both resources, smaller values are preferable so that a combination (x, y) of two
resource values (hereafter referred to as a point) dominates (x�, y�) if x ≤ x′ and y ≤ y′
hold. Graphically speaking, a point (x, y) dominates all points that lie on the top right
of it. This dominance between points can be extended to sets. In particular, for the seg-
ment S , the dominated area is

see also Fig. 1.

3.1.1 � Full dominance

We first describe the standard full dominance with respect to the two resources that are
traded against each other. Note that a partial path typically has more resources than just
these two. As a consequence, the following conditions for full dominance regarding the
two resources are only necessary conditions for dominance between labels (see also the
dominance for the EVRPTW and the SDVRPTW described in Sects. 4.1 and 4.2).

We assume that two labels F1 and F2 with corresponding segments S
1
 defined by

(Fa
1
,Fu

1
) and (Fb

1
,Fl

1
) and S

2
 defined by (Fa

2
,Fu

2
) and (Fb

2
,Fl

2
) are given. Label F1 fully

dominates F2 if S2 ⊂ D(S
1
) . An example where S

2
 lies completely in the dominated

area of S
1
 is illustrated in Fig. 2.

Full dominance can be verified using the following four conditions, which must all
hold true:

(1)y = f (x) = Fu − m ⋅ (x − Fa).

D(S) = {(x�, y�) ∈ ℝ
2 ∶ ∃(x, y) ∈ S with (x, y) dominates (x�, y�)},

(DC1)Fa
1
≤ Fa

2
,

1070	 S. Faldum et al.

1 3

Condition (DC1) compares the minimum x-values and checks whether Fa
1
 lies fur-

ther on the left than Fa
2
 . Likewise, condition (DC2) compares the minimum y-values

and checks whether Fl
1
 is below Fl

2
 . Condition (DC3) compares the values of f1 and

f2 at x = Fa
2
 . Finally, Condition (DC4) compares the values of f1 and f2 at x = Fb

2
 .

The four dominance conditions are visualized in Fig. 2.
If both segments S

1
 and S

2
 consist of a single point each, i.e., Fa

1
= Fb

1
 and Fa

2
= Fb

2
 ,

these conditions collapse into the standard dominance of the form Fa
1
≤ Fa

2
 and Fl

1
≤ Fl

2

between independent resources, i.e., (DC1) and (DC2).

3.1.2 � Partial dominance

We now characterize partial dominance between the two resources for which a tradeoff
occurs. Reusing the same notation as in Sect. 3.1.1, we define that a label F1 partially
dominates F2 if

Recalling that full dominance requires S
2
⊂ D(S

1
) , we speak of a proper partial

domination if (2) and S
2
⊄ D(S

1
) are fulfilled. In the spirit of Proposition 2, a set F

of labels together dominates a label F2 , if

(DC2)Fl
1
≤ Fl

2
,

(DC3)Fu
1
− (Fa

2
− Fa

1
) ⋅ m1 ≤ Fu

2
,

(DC4)Fu
1
− (Fb

2
− Fa

1
) ⋅ m1 ≤ Fl

2
,

(2)D(S
1
) ∩ S

2
≠ �.

(3)S
2
⊂

⋃

F1∈F

D(S
1
).

Fig. 2   Full dominance of seg-
ment S

1
 over S

2

x

y

a2 b2

u2

l2

a1 b1

u1

l1

S2

S1

(DC1)

(DC2)

(DC3)

(DC4)

1071

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

An important question is now how condition (3) can be tested effectively within a
labeling algorithm. Therefore, we analyze the sets Sd

2
∶= D(S

1
) ∩ S

2
 of dominated

points and their complements Su
2
∶= S

2
⧵D(S

1
) , i.e., the sets of undominated points,

in more detail. To this end, we categorize proper partial domination into

•	 partial dominance from the left with (Fa
2
,Fu

2
) ∈ D(S

1
) and (Fb

2
,Fl

2
) ∉ D(S

1
),

•	 partial dominance from the right (Fa
2
,Fu

2
) ∉ D(S

1
) and (Fb

2
,Fl

2
) ∈ D(S

1
) , and

•	 partial dominance over a central piece with (Fa
2
,Fu

2
) ∉ D(S

1
) and (Fb

2
,Fl

2
) ∉ D(S

1
).

Moreover, we distinguish the cases in which S
1
∩ S

2
 is either

	 (i)	 the empty set (without intersection),
	 (ii)	 a single point (xs, ys) (with proper intersection), or
	 (iii)	 a segment consisting of more than one point (overlapping).

Note that in case of overlapping segments, the underlying functions are identical,
i.e., f1 = f2 in case (iii).

Overall, we distinguish full dominance and seven different types of proper partial
dominance as exemplified in Fig. 3 and further explained below. We provide identi-
fication features regarding the dominance conditions (DC1)–(DC4).

FD:	� Full dominance. All dominance conditions (DC1)–(DC4) are
fulfilled.

PD1:	� Partial dominance from the left without intersection or over-
lapping. Dominance conditions (DC1) and (DC3) are fulfilled,
dominance condition (DC2) is violated. In addition, either
(DC4) is fulfilled (necessary for overlapping segments) or
(DC4) is violated and S

1
∩ S

2
= � . See Fig. 3a.

PD2:	� Partial dominance from the left with proper intersection. Domi-
nance conditions (DC1) and (DC3) are fulfilled, dominance
condition (DC4) is violated and S

1
∩ S

2
≠ � . Dominance condi-

tion (DC2) can either be fulfilled or violated. See Fig. 3b.

PD3:	� Partial dominance from the right without intersection or over-
lapping. Dominance conditions (DC2) and (DC4) are fulfilled,
and dominance condition (DC1) is violated. In addition, either
(DC3) is fulfilled (necessary for overlapping segments) or
(DC3) is violated and S

1
∩ S

2
= � . See Fig. 3c.

PD4:	� Partial dominance from the right with proper intersec-
tion. Dominance conditions (DC2) and (DC4) are fulfilled,

1072	 S. Faldum et al.

1 3

Fig. 3   Different cases of partial dominance

1073

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

dominance condition (DC3) is violated and S
1
∩ S

2
≠ � . Domi-

nance condition (DC1) can either be fulfilled or violated. See
Fig. 3d.

PD5:	� Partial dominance over a central piece without intersec-
tion or overlapping. Dominance conditions (DC1) and (DC2)
are violated. In addition, either dominance conditions (DC3)
and (DC4) are both fulfilled (necessary for overlapping seg-
ments) or only one of them is fulfilled and S

1
∩ S

2
= � . See

Fig. 3e.

PD6a and PD6b:	� Partial dominance over a central piece with proper intersec-
tion. The following two cases are possible: In case PD6a, only
dominance condition (DC3) is fulfilled, dominance condi-
tions (DC1), (DC2) and (DC4) are violated and S

1
∩ S

2
≠ � .

See Fig. 3f. In case PD6b, only dominance condition (DC4) is
fulfilled, dominance conditions (DC1)–(DC3) are violated and
S
1
∩ S

2
≠ � . See Fig. 3g.

 An overview of the relation between the four dominance conditions (DC1)–(DC4)
and the above types is given in Table 1.

A label F2 with a single-point segment S
2
 is either fully dominated (FD) or not

dominated at all. Proper partial domination is impossible. For testing full domi-
nance, conditions DC1 and DC2 suffice, since conditions DC3 and DC4 are implied
by the former. However, labels with a single-point segment can dominate other
labels both fully or proper partially.

Two labels with segments that have identical slopes m cannot intersect. Under
this assumption, the dominance types PD2, PD4, PD6a, and PD6b with proper inter-
section are impossible.

The set of dominated points Sd
2
 is always a closed interval (segment), i.e., the

endpoints belong to the set. In contrast, the complement with respect to the seg-
ment, which is the set of undominated points Su

2
 (of the segment), is either the

Table 1   Fulfillment of dominance conditions of different types of (partial) dominance

Symbols have the following meaning: ✓ fulfillment; ✗ non-fulfillment; – fulfillment is not relevant for
identification of dominance type; a at least one of the conditions (DC3) and (DC4) needs to be fulfilled

From the left From the right Over a central piece

Condition FD PD1 PD2 PD3 PD4 PD5 PD6a PD6b

DC1 ✓ ✓ ✓ ✗ – ✗ ✗ ✗
DC2 ✓ ✗ – ✓ ✓ ✗ ✗ ✗
DC3 ✓ ✓ ✓ – ✗ –a ✓ ✗
DC4 ✓ – ✗ ✓ ✓ –a ✗ ✓

S
1
∩ S

2
– (i) ∨ (iii) (ii) (i) ∨ (iii) (ii) (i) ∨ (iii) (ii) (ii)

1074	 S. Faldum et al.

1 3

Ta
bl

e 
2  

R
es

ul
tin

g
se

t o
f u

nd
om

in
at

ed
 p

oi
nt

s S
u 2
 o

f a
 la

be
l F

2
 a

fte
r p

ro
pe

r p
ar

tia
l d

om
in

an
ce

 o
f a

 la
be

l F
1
 w

ith
 se

gm
en

t S
1

Fo
r t

he
 c

as
es

 P
D

2,
 P

D
4,

 P
D

6a
, a

nd
 P

D
6b

 w
ith

 p
ro

pe
r i

nt
er

se
ct

io
n,

 le
t (
x s
,
f 1
(x

s
))
=
(x

s
,
f 2
(x

s
))

 d
en

ot
e

th
e

in
te

rs
ec

tio
n

po
in

t o
f t

he
 tw

o
se

gm
en

ts
 S

1 a
nd

 S
2

Ty
pe

s o
f p

ar
tia

l d
om

in
an

ce
Se

t S
u 2
 o

f u
nd

om
in

at
ed

 p
oi

nt
s

PD
1

c
o
n
v
({
(f

−
1

2
(F

l 1
),
F
l 1
),
(F

b 2
,
F
l 2
)}
)
⧵
{
(f

−
1

2
(F

l 1
),
F
l 1
)}

PD
2

c
o
n
v
({
(x

s
,
f 2
(x

s
))
,
(F

b 2
,
F
l 2
)}
)
⧵
{
(x

s
,
f 2
(x

s
))
}

PD
3

c
o
n
v
({
(F

a 2
,
F
u 2
),
(F

a 1
,
f 2
(F

a 1
))
}
)
⧵
{
(F

a 1
,
f 2
(F

a 1
))
}

PD
4

c
o
n
v
({
(F

a 2
,
F
u 2
))
,
(x

s
,
f 2
(x

s
))
}
)
⧵
{
(x

s
,
f 2
(x

s
))
)}

PD
5

c
o
n
v
({
(f

−
1

2
(F

l 1
),
F
l 1
),
(F

b 2
,
F
l 2
)}
)
⧵
{
(f

−
1

2
(F

l 1
),
F
l 1
)}

⊎
c
o
n
v
({
(F

a 2
,
F
u 2
),
(F

a 1
,
f 2
(F

a 1
))
}
)
⧵
{
(F

a 1
,
f 2
(F

a 1
))
}

PD
6a

c
o
n
v
({
(F

a 2
,
F
u 2
),
(F

a 1
,
f 2
(F

a 1
))
}
)
⧵
{
(F

a 1
,
f 2
(F

a 1
))
}

⊎
c
o
n
v
({
(x

s
,
f 2
(x

x
))
,
(F

b 2
,
F
l 2
))
}
)
⧵
{
(x

s
,
f 2
(x

x
))
}

PD
6b

c
o
n
v
({
(F

a 2
,
F
u 2
),
(x

s
,
f 2
(x

s
))
}
)
⧵
{
(x

s
,
f 2
(x

s
))
}

⊎
c
o
n
v
({
(f

−
1

2
(F

l 1
),
F
l 1
),
(F

b 2
,
F
l 2
))
}
)
⧵
{
(f

−
1

2
(F

l 1
),
F
l 1
)}

1075

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

empty set, a half-open interval in ℝ2 , or a union of the latter. The seven cases are
summarized in Table 2. Hence, the remaining undominated area comprises one
or two half-open intervals in ℝ2 (in the following, we use the term half-open seg-
ment). If S

2
 is further proper partially dominated by other segments, the undomi-

nated set continues to decompose into a union of sub-segments, each of which
could be open, half-open (from the left or right), or closed.

It is cumbersome to always distinguish between the four cases. Moreover,
additional binary attributes (flags) would be needed to properly classify the cases.
Instead, we assume that each undominated set Su is a closed set. Note first that
simply replacing all (half-)open sub-segments by their closure does not impact
the correctness on the labeling algorithm, since it does not lead to incorrectly
discarded labels. However, partial dominance becomes slightly weaker, since a
single point sub-segment might be left over although it is already redundant.

Second, in many applications, the underlying feasible domains of x and y are
discrete or can be reduced to discrete sets, e.g., the integers (see examples in
Sect. 4). For example, if all travel times, service times, and time windows are
defined by integer values, then a feasible schedule can also be found in the integer
domain. In particular, x , Fa , and Fb can be assumed integer in this case. Then, the
(half-)open intervals (Fa,Fb] , [Fa,Fb) , and (Fa,Fb) can be replaced by the closed
intervals [Fa + 1,Fb] , [Fa,Fb − 1] , and [Fa + 1,Fb − 1] , respectively. Likewise, if
the other resource y is integer, a similar procedure can be applied to the (half-)
open intervals formed with Fl and Fu . The adaptation of the sets of undominated
points for the types PD1–PD6b of partial dominance is straightforward for the
integer case. We refer to this as rounding in the following.

3.2 � Storage and use of partial dominance within labeling algorithms

The advantage of the standard full dominance is that, for each pair of labels F1
and F2 , it suffices to test S

2
⊂ D(S

1
) , i.e., (DC1)–(DC4), just once. If the test

fails, the two partial paths are incomparable and this relation does not change
in the course of the labeling algorithm. In contrast, if the test (3) fails at one
point, the labeling algorithm may generate additional labels such that a new set
F may result in a true test (3), which allows to eliminate F2 . However, repeat-
ing the test (3) multiple times in the course of the labeling algorithm is highly
undesirable and typically prohibitively time-consuming. Therefore, a labeling
algorithm using partial dominance needs to have a mechanism that sequentially
compares every two labels F1 and F2 only once, and stores in a cumulative fashion
the (intermediate) result within the labels.

In general, there are at least the following possibilities to maintain and utilize
the dominance information for each partial path:

(1)	 either store one segment,
(2)	 or store two segments,
(3)	 or store a variable number of segments; this can be realized by

1076	 S. Faldum et al.

1 3

(a)	 either storing and updating the information in the original label F2,
(b)	 or creating (possibly multiple) new labels.

We first elaborate on possibilities (1)–(3) and discuss advantages and disadvan-
tages. We then discuss the two variants (a) and (b) to store variable numbers of
segments for partial paths.

Possibility (1) When a partial path, i.e., the corresponding label, is freshly gen-
erated (at initialization) the segment S describes the undominated set Su = S of
points with the help of the attributes Fa,Fb,Fl , and Fu . A consequence of storing
a single segment only is that, if a label F1 partially dominates F2 , then Fa

2
,Fb

2
,Fl

2
,

and Fu
2
 should again describe the resulting set of undominated points Su

2
 . This can

be realized by directly modifying the values Fa
2
,Fb

2
,Fl

2
, and Fu

2
 accordingly (see

Table 2).
Overall, such an implementation of partial dominance gradually reduces the

set of undominated points Su
2
 of a label F2 by replacing Su

2
 with Su

2
⧵D(S

1
) whenever

a label F1 partially dominates it (and Su
2
⧵D(S

1
) is a single segment). The new cri-

terion to test whether F2 becomes redundant, i.e., completely dominated by (one
or) several labels in the sense of Proposition 2, is Su

2
⊂ D(S

1
) for some label F1.

An immediate advantage of this type of implementation is that no additional
information needs to be maintained. However, it has the following disadvantages:

	 (i)	 It can only rely on dominance from the left (PD1 and PD2) and from the right
(PD3 and PD4), because only in these cases a single segment describes the
set of undominated points Su

2
 . Dominance over central pieces (PD5, PD6a, and

PD6b) produces two segments of undominated points and is therefore not com-
patible with possibility (1). Neglecting partial dominance over central pieces
obviously weakens the overall dominance. An additional undesirable effect
is the following: The order of pairwise comparisons influences the overall
outcome. More precisely, the resulting set of undominated points Su of a label
F can be different for two different orders of comparison with other labels.
Figure 4a shows an example with three segments S

1
 , S

2
 , and S

3
 . Segment S

1

x

y

S1

S2

S3

(a)

x

y

S1

S2

S3

(b)

Fig. 4   Examples of partial dominance

1077

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

partially dominates S
3
 from the left, and S

2
 partially dominates S

3
 over a cen-

tral piece. If the labeling algorithm first compares S
2
 and S

3
 , it neglects this

fact. The subsequent comparison of S
1
 and S

3
 results in a partial dominance

of S
1
 over S

3
 from the left. The resulting set of undominated points comprises

more than half of the original segment S
3
 . If the order of the two pairwise

comparisons is swapped, partial dominance from the left of S
1
 over S

3
 allows

the subsequent partial dominance from the left of S
2
 over S

3
 . In comparison,

the remaining set of undominated points of S
3
 is much smaller.

	 (ii)	 The capability to partially dominate another label can be reduced or lost. Con-
sider the example shown in Fig. 4b. It depicts three segments S

1
 , S

2
 , and S

3
 ,

where segment S
2
 fully dominates S

3
 , and segment S

1
 partially dominates S

2

and S
3
 from the left. If first S

1
 partially dominates S

2
 , then S

2
 is updated to

describe the remaining set of undominated points as highlighted by the thick
line. Now, the reduced segment S

2
 only partially dominates S

3
 from the right.

Both S
1
 and S

2
 together are needed to completely dominate S

3
.

Possibility (2) A second type of implementation stores two segments: the initial
segment S as well as the remaining set Su of undominated points. We assume that the
initial segment is represented by Fa,Fb,Fl, and Fu . Storing Su can be accomplished
by introducing four additional attributes Fa,Fb,Fl , and Fu . Note that the two attrib-
utes Fa and Fb are sufficient, because Fu = f (Fa) and Fl = f (Fb) and the function f
can be expressed with the original attributes.

This type of implementation is denoted double bookkeeping in the following,
because it keeps the information about both the largest possible segment for dominat-
ing other labels as well as the segment of undominated points that we want to become
as small as possible (recall that the label is completely dominated once this set is the
empty set). Hence, double bookkeeping overcomes the above disadvantage (ii). How-
ever, because the stored information is limited to only two segments, no dominance
over central pieces can be performed so that disadvantage (i) remains.

Possibility (3) Storing a variable number of segments allows to exactly describe
the initial segment S as well as the sets of dominated and undominated points of a
partial path resulting from all possible types of partial dominance (PD1–PD6b), in
particular including dominance over a central piece. Formally, if partial domination
has been performed with a subset F of labels F1 ∈ F  , then the set of undominated
points is

and may consist of up to |F| + 1 segments. Alternatively, storing the complement
S
2
∩
⋃

F1∈F
D(S

1
) , i.e., the set of dominated points, may require representing |F| seg-

ments. If S
2
 is given, dominated points can be reproduced from undominated points,

and vice versa. We can formalize the set of undominated points of a partial path with
the help of a variable number K of sub-segments S1,u,… , SK,u with Su =

⋃K

k=1
Sk,u.

Partial dominance can then be realized similar to possibilities (1) and (2) by
gradually reducing the set of undominated points Su . This requires updating all

Su
2
= S

2
⧵
⋃

F1∈F

D(S
1
)

1078	 S. Faldum et al.

1 3

sub-segments S1,u
2
,… , S

K,u

2
 accordingly. In particular, in each update, some sub-seg-

ments may remain unchanged, some sub-segments may become empty sets (and can
be eliminated), some sub-segments may be reduced (if dominated from the left or
from the right), and some sub-segments may decompose into two new sub-segments
(if dominated over central pieces).

Overall, this type of representation overcomes both of the above disadvantages (i)
and (ii). The drawback is that the number of sub-segments is variable, which is more
complex to implement. Even more, it requires the allocation and deallocation of
memory during the dominance algorithm slowing down the computational speed in
which the dominance algorithm can be completed. Note that the dominance is typi-
cally the most time-critical part of a labeling algorithm.

We now comment on the two possibilities to represent variable numbers of seg-
ments for partial paths.

Possibility (a) A first type of implementation maintains the classical one-to-one
correspondence between partial paths and labels. All initial and intermediate infor-
mation about a partial path, its capability to dominate other labels, and its own state
of being partially dominated are stored within a single label (the original label cre-
ated at initialization) whose attributes are updated whenever it is partially domi-
nated by other labels. In particular, in each label the segment S is represented and
maintained using the original attributes Fa,Fb,Fl, and Fu . Furthermore, the K sub-
segments (Sk,u)K

k=1
 can be described with 4K additional values (Fk,a,Fk,b,Fk,l,Fk,u)K

k=1

(again 2K values (Fk,a,Fk,b) suffice, since Fk,l = f (Fk,b) and Fk,u = f (Fk,a) and f is
known). At initialization, the assignments K = 1 and S1,u = S have to be made, i.e.,
F1,a = Fa,F1,b = Fb,F1,l = Fl , and F1,u = Fu.

The main advantage of possibility (a) is that all information of a partial path
is stored only once (non-redundant, memory efficient). A disadvantage is that it
requires a variable-sized representation of the sub-segments of either dominated or
undominated points of the segment S . This may be time-critical when labels them-
selves are stored in dynamically allocated memory and their variable-sized attributes
are also stored in dynamically allocated memory. Moreover, the pairwise compari-
son is more intricate from a implementation point of view.

Possibility (b) In contrast, some works mention that they create several labels per
partial path when convenient for storing the information about partial domination or
in the presence of multiple extensions per arc, e.g., when items can alternatively be
loaded in different compartments of a vehicle (Cherkesly and Gschwind 2022; Aerts-
Veenstra et al. 2023). An alternative type of implementation could, for example, use
labels like with double bookkeeping in possibility (2). Instead of restricting partial
dominance to PD1–PD4, partial dominance over central pieces can be established
by creating a new copy F′

2
 of a label F2 whenever two sub-segments are created

from one sub-segment of undominated points. One sub-segment is then stored in
the original label F2 and the other sub-segment in the new copy F′

2
 . In general, with

this implementation, a partial path with set of undominated points Su =
⋃K

k=1
Sk,u is

represented by K labels, one for each sub-segment (Sk,u)K
k=1

 . In the spirit of double

1079

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

bookkeeping, each label maintains the initial segment S using the original attributes
Fa,Fb,Fl, and Fu and its corresponding sub-segment Sk,u with the additional attrib-
utes Fa,Fb,Fl , and Fu.

3.3 � Implementation details of our labeling algorithm

Concerning possibilities (a) and (b) to represent variable numbers of segments in
partial dominance, we see no strong point in possibility (b) except for being rather
simple to code. In comparison, possibility (a) allows to keep all information about a
partial path within a single label.

Regarding the alternatives (1)–(3) to maintain and utilize dominance informa-
tion, the main question is whether or not partial dominance over a central piece is
essential. To answer this question, we recommend to conduct pretests to quantify
how often the partial dominance types PD5, PD6a, and PD6b occur compared to
partial dominance from the left and from the right. On the basis of such pretests (see
also Sect. 4), we decided not to consider partial dominance over a central piece in
our BPC algorithms. The additional computational overhead to cope with a variable
number of segments is high. In comparison, the impact caused by additional domi-
nance was low, i.e., we did not see a strong reduction in the number of labels and
dominance tests when omitting partial dominance over a central piece.

It is clear that double bookkeeping, i.e., possibility (2), leads to a stronger domi-
nance compared to possibility (1). The necessary addition of the (often integer)
attributes Fa,Fb,Fl , and Fu to a label F is rather harmless for a computer imple-
mentation; the main effect is a slightly higher memory consumption and, as a conse-
quence, a possible higher number of cache misses.

There is one more refinement related to double bookkeeping that we would like
to discuss now. Recall that the resources whose dependency is described by the seg-
ment are problem-specific. Independent from a specific problem, the segment of a
given label Fi referring to a vertex i is typically used to define the segment of an
extension to a vertex j represented by label Fj . REFs Refij are used for this purpose
(see Sect. 4 for examples), i.e., (Fa

j
,Fb

j
,Fl

j
,Fu

j
) = Refij(F

a
i
,Fb

i
,Fl

i
,Fu

i
) . This offers the

opportunity to initialize the set of undominated points Su
j
 for a newly created label Fj

based on information about partial dominance of its predecessor Fi . The related
attributes are computed with the same REFs as

The advantage is that labels Fj with a smaller set of undominated points Su
j
 can be

eliminated sooner, i.e., with less applications of partial dominance.
In summary, we have chosen possibility (2), i.e., double bookkeeping, together

with the refinement that undominated sets of points are propagated with REFs.

(F
a

j
,F

b

j
,F

l

j
,F

u

j
) = Refij(F

a

i
,F

b

i
,F

l

i
,F

u

i
).

1080	 S. Faldum et al.

1 3

4 � Two variants of the VRPTW

In this section, we present two variants of the VRPTW with tradeoff resources and
discuss the application as well as specific adaptations of the theory from Sect. 3 to
these variants. First, we formally define the VRPTW as the base problem of the
considered variants and introduce the common notation, followed by a description
of the two variants, namely the EVRPTW and the SDVRPTW. For convenience, we
use the same notation, e.g., for index sets, for all variants even though their defini-
tion may be slightly different. The correct meaning should be clear from the con-
text. We then describe the use of partial dominance within the labeling algorithms to
solve the pricing subproblems of column-generation approaches for the EVRPTW
and the SDVRPTW.

The VRPTW can be defined on a directed graph G = (V ,A) . The vertex set
V = N ∪ {o, d} comprises the customer vertices N and two copies o and d of the
depot. A travel time tij and routing cost cij are associated with each arc (i, j) ∈ A . Both
travel times and routing costs are assumed to satisfy the triangle inequality. For each
vertex i ∈ V  , a non-negative demand qi , a service duration si , and a time window
[ei, li] in which the service must start are given. We assume qo = qd = si = si = 0 for
the depot copies o and d . A fleet K of homogeneous vehicles each with a capacity of
Q is available at the common depot to serve the customers. The VRPTW is the prob-
lem of finding at most |K| vehicle routes such that the total routing cost is minimized,
each customer is served by exactly one route, and each route is feasible, i.e., it is an
elementary o-d-path in G satisfying the capacity and time-window constraints. For
further details on the VRPTW and its solution by BPC-based approaches, we refer
to Costa et al. (2019).

The EVRPTW is an extension of the VRPTW that takes into account the lim-
ited driving range of electric commercial vehicles and the possibility of recharg-
ing the vehicle’s battery en route at recharging stations. We consider two vari-
ants of the EVRPTW that employ a so-called partial recharging policy where
any amount of energy can be recharged when visiting a recharging station. The
two variants differ in the number of allowed recharges per route: at most a single
(S) or multiple (M) recharges are allowed. They are referred to as EVRPTW-
S and EVRPTW-M, respectively, in the following. To model these EVRPTW
variants, the set R of recharging stations can be added to the vertex set V  , i.e.,
V = N ∪ {o, d} ∪ R . Each vehicle in the homogeneous fleet is equipped with an
electric battery of maximum capacity B . Moreover, each arc (i, j) ∈ A is associ-
ated with an energy consumption bij . As described by Desaulniers et al. (2016b),
we assume that the battery capacity and the energy consumptions are given in
recharging time units so that, e.g., B equals the time to fully recharge a com-
pletely empty battery. In particular, there is a one-to-one relationship between
the recharging duration and the amount of recharged energy, i.e., recharging for
Δ units of time increases the state of charge (SoC) by exactly Δ units. A route
is feasible in the EVRPTW, if it is feasible for the underlying VRPTW (timing
constraints now include also recharging times) and the SoC is never negative or

1081

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

greater than the battery’s capacity B . In addition, the number of recharges per
route must comply with the recharging policy (S or M). Also the EVRPTW has
the objective of minimizing the total routing cost. A detailed description of the
considered EVRPTW variants and corresponding BPC algorithms for their solu-
tion can be found in Desaulniers et al. (2016b), Desaulniers et al. (2020) and
Duman et al. (2021).

The SDVRPTW is a relaxation of the VRPTW in which customers may be visited
more than once, i.e., the customer demands can be satisfied through multiple visits by
different vehicles. This also allows finding feasible solutions to instances with customer
demands qn > Q . Contrary to the VRPTW, a route in the SDVRPTW is not only char-
acterized by a sequence of customers but also by a corresponding delivery pattern �
which specifies the quantities d�n delivered to each customer n visited on the route.
A route is capacity-feasible if the sum the quantities d�n does not exceed the vehicle
capacity Q . Each customer’s demand must be fulfilled by the sum of received delivery
quantities of all routes. Again, the objective is the minimization of the total routing
cost.

Desaulniers (2010) proposed a BPC approach to the SDVRPTW in which only
routes with extreme delivery pattern have to be explicitly considered. In an extreme
delivery pattern, only one customer n receives a split delivery, i.e., 0 < d𝜌n < qn . All
other customers receive either a zero delivery ( d�n = 0 ) or a full delivery ( d�n = qi ).
Routes with general delivery patterns are considered implicitly in the RMP by convex
combinations of routes with extreme delivery patterns. For details we refer to Desaul-
niers (2010), Archetti et al. (2011).

4.1 � Labeling with partial dominance for the EVRPTW

We now show how partial dominance can be used in the labeling algorithm
proposed by Desaulniers et al. (2016b) to solve the elementary SPPRC pricing
problem of the EVRPTW. After visiting a recharging station, there is a trade-
off between time and SoC: the more energy to charge, the later the time, but the
higher the SoC. Since the amount to be recharged, i.e., the recharging duration,
depends on the part of the partial path after this recharging station, it can only
be determined a posteriori. Consequently, the labels must maintain the relevant
tradeoff segment of feasible times, which implies different recharging durations
and achievable SoCs. If no recharging station has been visited on the partial path,
there is no tradeoff, i.e., the segment reduces to a single point. For the sake of
brevity, we only briefly discuss the resources and dominance rules used in the
original algorithm. We also limit the presentation to the forward part of the labe-
ling, since the backward labeling is similar. For more details on the original labe-
ling algorithm, see Desaulniers et al. (2016b).

A partial path p starting at the origin depot o and ending at vertex i ∈ V is
represented by a label Fi = (Fcost

i
,Fload

i
, (F

custn
i

)n∈N ,F
rch
i
,FtMin

i
,FtMax

i
,FrtMax

i
) . The

6 + |N| components of the label have the following meaning:

Fcost
i

:	� the reduced cost of path p;

1082	 S. Faldum et al.

1 3

Fload
i

:	� the accumulated customer demands along path p;

F
custn
i

:	� for each n ∈ N , the number of times customer n has been visited along
path p;

Frch
i

:	� the number of recharges performed along path p;

FtMin
i

:	� the earliest service start time at vertex i assuming that, if a recharging sta-
tion is visited prior to i along p , a minimum recharge that ensures battery
feasibility up to i has been performed;

FtMax
i

:	� the earliest service start time at vertex i assuming that, if a recharging sta-
tion is visited prior to i along p , a maximum recharge respecting time-win-
dow feasibility up to i has been performed;

FrtMax
i

:	� with the artificial assumption that recharging is possible at all verti-
ces, FrtMax denotes the maximum possible recharging duration at vertex i
assuming that, if a recharging station is visited prior to i along p , a mini-
mum recharge that ensures battery feasibility up to i has been performed.
Note that this assumption is used only to propagate the information along
the path, but a real recharge never occurs at a customer.

 To simplify the notation, we omit the index i of the residing vertex so that we
write, e.g., Fcost instead of Fcost

i
.

Instead of modeling the SoC directly, Desaulniers et al. implicitly represented
it by the maximum feasible additional recharging duration FrtMax (= maximum
feasible amount of energy to be recharged) with respect to the earliest service
start time FtMin at the current vertex. With this representation, for both tradeoff
resources time and maximum possible recharging duration, smaller values are
preferable. Therefore, the theory of Sect. 3 is immediately applicable to realize
partial dominance. Moreover, by the above definition of the battery related data
(capacity, consumption, and recharging rate), the negative slope of all tradeoff
functions is m = 1 , which simplifies the representation and dominance conditions.
As a result,

so that only the three attributes FtMin,FtMax,FrtMax are needed to describe the trade-
off and the corresponding segment. The classical dominance rule of Desaulniers
et al. (2016b) for pairwise dominance is as follows. Let F1 and F2 be two labels rep-
resenting partial paths ending at the same vertex i . Label F1 dominates F2 , if

Fa = FtMin,

Fb = FtMax,

Fl = FrtMax − (FtMax − FtMin),

Fu = FrtMax,

1083

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

In the EVRPTW-S, Frch
1

≤ Frch
2

 is additionally required. Since segments have iden-
tical slope with m1 = m2 = 1 , conditions (DC1)–(DC3) imply condition (DC4).
Alternatively, one could require conditions (DC1), (DC2), and (DC4), which imply
condition (DC3).

Having identical slopes also simplifies partial dominance between two trade-
off segments. First, the two segments can never have a proper intersection (see
Sect. 3.1.2) meaning that only PD1 and PD3 are relevant (recall that we do not
employ partial dominance over a central piece). Second, also the identification of
them is simplified. For PD1, conditions (DC1) and (DC3) are fulfilled (implying
(DC4)), while condition (DC2) is violated. For PD3, conditions (DC2) and (DC3)
are fulfilled (implying (DC4)), while condition (DC1) is violated. Furthermore,
the determination of the undominated points is simplified (see Table 2), since
the tradeoff function and its inverse are identical with (negative) slopes given by
m = 1.

Finally, for time windows and travel times defined by integer values, all battery
related data can also be assumed to be integer. Thus, the feasible domains of the
tradeoff resources time and SoC can be reduced to integers, and rounding can be
applied to the segments in partial dominance as described in Sect. 3.1.2. The inte-
ger assumption is satisfied for the standard benchmark instances of the EVRPTW
used in the computational experiments presented in Sect. 5.

4.2 � Labeling with partial dominance for the SDVRPTW

In the following, we detail the application of partial dominance to the labeling algo-
rithm of Desaulniers (2010) for pricing routes and associated extreme delivery pat-
terns for the SDVRPTW. Here, the pricing subproblem is an elementary SPPRC com-
bined with the linear relaxation of a bounded knapsack problem. Since there is a dual
price for each unit to be delivered to a customer, there is a tradeoff between the two
resources vehicle load and reduced cost: The question of how much to deliver to the
(unique) customer receiving a split delivery is, in turn, the question of how much to
earn from each unit delivered. Similar to the recharging duration in the EVRPTW,
the quantity to be delivered is not known when visiting the split customer. Therefore,
the label represents this tradeoff with a segment indicating the possible vehicle load
(implying the delivery quantity to the split customer) and the achievable reduced cost.
If no split delivery has been made along a partial path, there is no tradeoff, resulting in
a single-point segment.

For brevity, we only present the attributes of a label and the dominance rules of
the original algorithm only for the case of forward labeling (backward labeling is

Fcost
1

≤ Fcost
2

,

Fload
1

≤ Fload
2

,

F
custn
1

≤ F
custn
2

∀ n ∈ N,

and (DC1)–(DC3).

1084	 S. Faldum et al.

1 3

symmetric with respect to the tradeoff). A partial path p from source o to a vertex i ∈ V
is represented by a label Fi = (Fcost

i
,Ftime

i
,Fload

i
, (F

custn
i

)n∈N ,F
split

i
,FsMax

i
,Fs�

i
) with

6 + |N| components defined as follows:

Fcost
i

:	� the reduced cost of path p without the cost for a potential split delivery;

Ftime
i

:	� the earliest service start time at vertex i;

Fload
i

:	� the accumulated customer demands of full deliveries along path p;

F
custn
i

:	� for each n ∈ N , the number of times customer n has been visited along path
p;

F
split

i
:	� binary indicator whether or not a split delivery has occurred on path p;

FsMax
i

:	� the maximum quantity that can be delivered to the split delivery customer
on path p;

Fs�
i

:	� dual price per unit delivered to the split delivery customer on path p.

Smaller values are preferable for both tradeoff resources load and reduced cost. As
a result, the theory of Sect. 3 is also applicable here, and the segment describing the
tradeoff in the SDVRPTW is defined by

which are given by the four components Fload , Fcost , FsMax , and Fs� where the lat-
ter describes the negative slope m . However, unlike for the EVRPTW, the negative
slopes given by m = Fs� are generally different for different labels so that a proper
intersection is possible. Consequently, no direct simplifications can be made.

The classical rule of Desaulniers (2010) for pairwise dominance is as follows: Let
F1 and F2 be two labels representing partial paths ending at the same vertex i , then
label F1 dominates F2 , if

Fa = Fload,

Fb = Fload + FsMax,

Fl = Fcost − FsMaxFs� ,

Fu = Fcost,

Ftime
1

≤ Ftime
2

,

F
split

1
≤ F

split

2
,

F
custn
1

≤ F
custn
2

∀ n ∈ N,

and (DC1)–(DC4).

1085

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

For partial dominance between labels, all types PD1–PD6b are relevant. Finally, it is
known that, for each SDVRPTW instance, there exists an optimal solution in which
all delivery quantities are integer, under the precondition that all demand values and
the vehicle capacity are integer (Archetti et al. 2006). The integer assumption is sat-
isfied for the standard benchmark instances used in Sect. 5, so that rounding is appli-
cable as described in Sect. 3.1.2.

5 � Computational results

In this section, we report an extensive computational study of partial dominance
within the BPC algorithms for the EVRPTW and the SDVRPTW. The two BPC
algorithms were implemented in C++ and compiled into 64-bit single-thread code
with MS Visual Studio 2019. CPLEX 20.10 with default parameters (except for the
time limit and allowing only a single thread) was used to reoptimize the RMPs. All
computations were performed on the high performance computing cluster Elwe-
tritsch of the RPTU Kaiserslautern-Landau, consisting of several Intel Xeon Gold
6126 processors running at 2.60 GHz. Note that the performance of a single thread
on the cluster is comparable to that of a standard desktop processor.

5.1 � BPC algorithms

The BPC algorithms for the EVRPTW and the SDVRPTW share the same code
basis, which is adapted to each of the problem variants. The base code uses several
acceleration techniques that are well established in the literature. For the EVRPTW,
the computational setup of the BPC algorithm is completely identical to that used in
Desaulniers et al. (2020). For the SDVRPTW, a modified setup seems more favora-
ble. Both computational setups are summarized below.

Pricing To speed up the pricing, we apply bidirectional labeling with a dynamic
half-way point using the time as the monotone resource (Tilk et al. 2017), i.e.,
FtMin for the EVRPTW and Ftime for the SDVRPTW. Furthermore, instead of solv-
ing the strongly NP-hard elementary versions of the SPPRCs, we rely on the well-
known ng-path relaxations of them (Baldacci et al. 2011). In our implementation,
the neighborhood sizes are set to 14 (EVRPTW) and 4 (SDVRPTW). In addition,
we use the concept of unreachable customers who cannot be reached due to their
resource levels (Feillet et al. 2004). We use pricing heuristics based on families of
arc-reduced networks as proposed by Desaulniers et al. (2008), where the networks
have a limited number of incoming and outgoing arcs for each customer vertex. The
number of arcs chosen in our implementation are 2, 5, 10, 15 (EVRPTW) and 3, 10
(SDVRPTW). For the SDVRPTW, we additionally consider another heuristic pric-
ing strategy that only allows full deliveries and zero deliveries to customers, i.e.,
split deliveries are disregarded, resulting in an SPPRC without tradeoffs. The latter
strategy is combined with the arc-reduced networks. Finally, our labeling algorithms
are based on a bucket-based implementation using a one-dimensional bucketing on
the time resource (Sadykov et al. 2021).

1086	 S. Faldum et al.

1 3

Valid Inequalities To strengthen the linear relaxation of the master program,
rounded capacity inequalities (RCIs, Naddef 2002) and subset-row inequalities
(SRIs, Jepsen et al. 2008) are added as two families of valid inequalities. Violated
inequalities are separated only at the root node (level zero) for the EVRPTW and
up to level one of the search tree for the SDVRPTW. For the SDVRPTW, additional
inequalities that upper bound the flow by one on every pair of anti-parallel customer
arcs are also dynamically added (see Desaulniers 2010, Corollary 2, Eq. (7), and
Sect. 5.2.2). The separation procedures add inequalities to the RMP only if they are
violated by at least 0.05.

RCIs are robust cuts because their dual prices can be incorporated by modify-
ing the reduced cost of the associated arcs; they do not change the structure of the
pricing problem. For the SDVRPTW, RCIs are critical to the overall performance
of our BPC algorithm and are, therefore, extensively separated using the extended
and greedy shrinking heuristics of Ralphs et al. (2003), the route-based algorithm
of Archetti et al. (2011) for the SDVRPTW, and using an exact mixed-integer pro-
gramming (MIP) formulation following the ideas of Martinelli et al. (2013). The
route-based algorithm is invoked only when the shrinking heuristics fail to find a
violated RCI. Similarly, the MIP is only used if the route-based algorithm also fails
to identify a violated RCI. To avoid prohibitively long computation times, CPLEX is
given a hard time limit of 10 s for solving the MIP. For the EVRPTW, RCIs are less
important and only the shrinking heuristics are used.

SRIs are non-robust cuts so that, for each active SRI, an additional resource needs
to be added in the labeling algorithms making the pricing problem more difficult
to solve. Therefore, we use the limited memory variant of the SRIs as proposed by
Pecin et al. (2017a). Furthermore, as done in most works, we limit ourselves to SRIs
with row sets of size three. Our implementation uses the same separation algorithm
and vertex memory as presented by Pecin et al. (2017b).

Branching Branching is necessary to finally ensure integer solutions. For the
EVRPTW, we use the hierarchical branching scheme of Desaulniers et al. (2016b),
i.e., we branch on (i) the total number of routes, (ii) the total number of recharges,
(iii) the total number of recharges at a recharging station, and (iv) the total flow on
an arc.

For the SDVRPTW, we use the scheme of Desaulniers (2010), i.e., we branch on
(i) the total number of routes, (ii) the total number of visits to a customer, (iii) the
total flow on an arc, and (iv) whether two arcs are used in succession.

On all levels, we select a branching variable with fractional value closest to 0.5.
The search tree is explored using a best-bound first node selection strategy.

For the SDVRPTW, we additionally apply strong branching as follows. In each
node of the search tree, a set of branching candidates is selected by considering a
given number of branching variables with the largest fractional values. For each can-
didate, a rough evaluation of both child nodes is performed by solving the RMP with
the corresponding branching constraint without any column generation. The most
promising candidate is selected according to the product rule proposed by Achter-
berg (2007). At the root node, the maximum size of the candidate set is 15, and the
size of the candidate set decreases by two for each level of the search tree. How-
ever, the minimum size of the candidate set is five. Note that this implementation of

1087

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

strong branching, i.e., no pricing in the evaluation of the candidates, decreases the
share of the total time that is spent in pricing and, thus, reduces the impact of partial
dominance on the overall performance.

5.2 � Instances

Our computational study uses the standard benchmark instances for the EVRPTW
and SDVRPTW from the literature. Both instance sets extend the well-known
(Solomon 1987) benchmark for the VRPTW. The original benchmark consists of
56 instances with 100 customers each. For each instance, two smaller instances
were derived by considering only the first 25 and 50 customers, respectively. The
benchmark consists of six groups with instances characterized by different geo-
graphical distributions of the customers, namely clustered (C), random (R), and
a mixture of both (RC). Also, different lengths of the scheduling horizon, namely
short horizon with narrow time windows (series 1) and long horizon with wide
time windows (series 2). In all instances, the common depot hosts an unlimited
fleet of homogeneous vehicles with capacities varying between 200 and 1000.

EVRPTW Instances The Solomon instances were adapted to the EVRPTW by
Schneider et al. (2014). They introduced 21 randomly positioned recharging stations
together with battery capacities for the vehicles, consumption and recharging rates,
and modified time windows for some customers. For more details we refer to Sch-
neider et al. (2014). The EVRPTW benchmark comprises a total of 56 × 3 = 168
instances. The online supplement of Desaulniers et al. (2016b) provides instance
files that directly include all necessary parameters in a precomputed and rounded
form. Best-known solutions are taken from Desaulniers et al. (2020).

SDVRPTW Instances Desaulniers (2010) adapted the original Solomon bench-
mark to the SDVRPTW. To foster split deliveries, the modified instance set consid-
ers three smaller values Q = {30, 50, 100} for the vehicle capacity for each original
instance. The total number of SDVRPTW instances is therefore 56 × 3 × 3 = 504 .
Travel times and routing costs between all pairs of vertices are set to the Euclid-
ean distance, rounded down to one decimal place. Since the triangle inequality is
assumed to hold for both, the resulting travel time and routing cost matrices must
be further processed. We follow the approach of Bianchessi and Irnich (2019), who
compute shortest paths between all pairs of vertices using the travel times (including
customer service times at the tail of each arc) and independently the routing costs.

Table 3   Percentage of the
created labels that have a proper
tradeoff

Instance size n

Problem 25 50 100 All

EVRPTW-S 31.07 33,96 33.66 32.87
EVRPTW-M 44.96 47.78 45.98 46.23
SDVRPTW 56.85 63.83 66.13 62.14

1088	 S. Faldum et al.

1 3

5.3 � Analysis of ratio of labels with tradeoff

In a first experiment, we evaluate the potential of partial dominance for the three
VRPTW variants. To this end, we analyze how often feasible labels with a trade-
off are created. Table 3 provides an overview for the three VRPTW variants aggre-
gated by instance size n. It shows the geometric mean of the percentage of labels
with a proper tradeoff out of all created labels over the respective instances. The
numbers reveal that the differences are mainly between the problem variants rather
than between instances of different sizes. For the EVRPTW-S, the share of labels
with a tradeoff is only about one-third, while this number is nearly double for the
SDVRPTW. With a percentage of labels with a tradeoff of 46.23%, the EVRPTW-M
is in between the two variants.

These differences are due to the nature of the considered problems. They become
particularly pronounced because of the bidirectional labeling: For the EVRPTW-S,
a proper tradeoff only results if the single allowed visit to a recharging station has
been performed. With multiple recharging visits allowed, longer routes – all con-
taining visits to recharging stations – become battery feasible in the EVRPTW-M,
which increases the share of tradeoff labels. In the bidirectional labeling approach,
these long routes are always broken down into a shorter forward and a shorter back-
ward partial path. As a result, tradeoffs occur less often. For the SDVRPTW, the
extension to any customer may result in a tradeoff.

Overall, we expect that partial dominance should have a much more positive
effect on the performance of the BPC algorithm for the SDVRPTW than for the
EVRPTW variants. Of the two latter variants, the EVRPTW-M is expected to ben-
efit more than the EVRPTW-S. On the other hand, the differences in the percentages
of labels with a tradeoff are negligible for different instance sizes within the same
problem variant. Note that the same holds true also when considering alternative
groupings by instance characteristics (e.g., we analyzed the groups C, R, and RC as
well as series 1 and 2 without finding significant dependencies).

5.4 � Comparison on identical pricing instances

In a second experiment, we evaluate the impact of using partial dominance over
classical pairwise dominance within SPPRC labeling algorithms. There are two
main opposing effects that affect the performance: On the one hand, partial domi-
nance allows more labels to be eliminated, resulting in fewer total labels and fewer
dominance comparisons, the number of which is quadratic in the number of labels.
On the other hand, the individual dominance comparisons between labels are more
complex in the case of partial dominance. Furthermore, the implementation of par-
tial dominance comes with some additional overhead due to the additional resources
required in the labeling. In general, it is not clear a priori, which of the two effects
prevails and whether partial dominance pays off at the end.

1089

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

Fig. 5   Geometric mean of ratios of the number of created labels (-L), the number of dominance tests
(-D), and the solution time (-T) for either all pricing problems solved (AP) or only exact pricing over the
full network (EP). Results are grouped according to total runtimes ≥ t

1090	 S. Faldum et al.

1 3

A fair comparison of two different SPPRC labeling algorithms is delicate,
because already one different route generated by one of the algorithms is likely to
result in a completely different overall trajectory of the BPC algorithm. To elimi-
nate such effects, which may distort the true behavior, we implemented a special
version of the BPC algorithm in which the same dual solution is always passed to
both SPPRC labeling algorithms, i.e., to the classical labeling algorithm using only
pairwise dominance and to the labeling algorithm using partial dominance. Only the
routes generated by one of the algorithms are passed to the RMP. To further reduce
possible side effects due to the order in which the different labeling algorithms are
executed, we perform an additional warm-up run of each algorithm before execut-
ing the run for which data is tracked (in particular, we noticed that warm-up runs
improve the stability and replicability of the recorded computation times). In this
setting, each individual pricing problem is thus solved four times in a row, and
extend the maximal total computation time to four hours per instance. Note that the
total computation times achieved in this particular setting do not reflect real-world
solution times.

Figure 5 summarizes the comparison for the EVRPTW-S, the EVRPTW-M, and
the SDVRPTW. It shows the number of feasible labels generated (-L), the number
of dominance tests performed (-D), and the solution time (-T). All three indica-
tors are presented as the ratio of the number of the labeling with partial dominance
divided by those of the labeling with classical pairwise dominance. The informa-
tion in Fig. 5 is aggregated as follows. For each instance, we compute the geomet-
ric means over the pricing iterations so that each iteration contributes equally. We
then take the geometric means over the instances (again, each instance contributes
equally). In addition, we present results not only for all pricing (AP) iterations but
also for exact pricing (EP) iterations only. Typically, only very few EP iterations are
necessary within the BPC algorithm, but they often consume the majority of the
total computation time. Therefore, the information related to EP iterations is better
suited to reflect the impact of partial dominance on the BPC algorithms.

In addition, Fig. 5 groups the results for different subsets of instances according
to their solution time. The underlying data is available in tabular form in the appen-
dix. For example, there are n = 362 SDVRPTW instances with a runtime of at least
one second ( ≥ 1 ) shown in Fig. 5c. Finally, the results shown in Fig. 5 refer to the
root node solution only. The results for the extended root node (root plus cuts) and
the full BPC algorithm are very similar so that we omit them.

We highlight three main observations from Fig. 5: First, partial dominance is
never detrimental for any of the considered VRPTW variants and labeling algo-
rithms. Second, the positive effect of partial dominance is much stronger for the
SDVRPTW (Fig. 5c) and weaker for the two EVRPTW variants, with the EVRPTW-
M (Fig. 5b) benefiting more than the EVRPTW-S (Fig. 5a). This is in line with the
analysis performed in the previous section. Third, the general trends are the same
for all three problem variants: The effect of partial dominance is stronger for EP
than for AP. More difficult instances, i.e., those with longer solution times, benefit

1091

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

more. The smallest effect (=largest ratios) is obtained for the number of labels, the
strongest for the number of dominance tests (recall that their number is quadratic in
the number of labels), and the actual savings in computation time lies between the
latter two. The explanation is that with the more complex dominance tests, labeling
with partial dominance cannot translate the savings in dominance tests to savings in
computation times in a one-to-one fashion.

We can quantify the benefits of partial dominance for solving individual pric-
ing problem instances: For the SDVRPTW, about 20% (30%) of the computation
time can be saved when considering AP iterations (EP iterations). These numbers
increase to approximately 30% (AP) and 40% (EP) for the most difficult instances.
For the EVRPTW variants, the savings are much smaller, as only about 2% to 5% of
the computation time can be saved on average across all EVRPTW instances. For
the more difficult instances, savings of up to 6% (EVRPTW-S) and 10% (EVRPTW-
M) are possible in the EP iterations.

In summary, our results on identical pricing instances suggest that the applica-
tion of partial dominance should lead to a noticeable/significant improvement in the
overall BPC algorithm for the SDVRPTW. For the EVRPTW, however, the effect is
expected to be small.

5.5 � Comparison on individual BPC runs

In a final experiment, we evaluate the performance of the BPC algorothm with par-
tial dominance compared to an otherwise identical BPC algorithm that uses only the
classical pairwise dominance. To be conform with other works from the literature,
we allow up to two hours of computation time for the EVRPTW and one hour for
the SDVRPTW. In the light of Sect. 5.4, we restrict the evaluation to the EVRPTW-
M and the SDVRPTW.

Fig. 6   Performance profiles of individual runs of the BPC algorithms with partial dominance and with
only classical pairwise dominance. Note that the abscissa has a logarithmic scale

1092	 S. Faldum et al.

1 3

The performance profiles of the two BPC algorithms are shown in Fig. 6a for the
EVRPTW-M and in Fig. 6b for the SDVRPTW. The performance profile of an algo-
rithm specifies the number of instances solved by that algorithm within � times the
time taken by the fastest algorithm in an instance-by-instance comparison (Dolan
and Moré 2002).

For both variants, the performance profiles reveal that the BPC using partial
dominance is superior to the one using only classical pairwise dominance. While
the difference is rather small for the EVRPTW-M, a substantial advantage of partial
dominance is evident for the SDVRPTW. For the latter, an average reduction of 20%
of the total BPC computation time is achieved. Even higher savings of 30% result
for the more difficult instances requiring more than 600 s of computation time. This
result is consistent with what we reported for identical pricing instances in the previ-
ous section. The results also show that the BPC algorithm with partial dominance
is able to solve more instances to proven optimality (132 vs. 131 for the EVRPTW-
M and 293 vs. 288 for the SDVRPTW) than the BPC algorithm with only classi-
cal pairwise dominance. Note that unlike in the identical pricing case, where partial
dominance was consistently always better, the picture here is more mixed, i.e., there
are several instances where the BPC algorithm with classical pairwise dominance is
the faster algorithm. This can be explained by generally different trajectories of the
algorithms (caused by different dual solutions, the use of separation heuristics, and
different branching decisions) resulting from different columns being priced out in
some iterations.

6 � Conclusions

A crucial building block of column generation based solution approaches like BPC for
many VRPs is the effective solution of instances of the SPPRC, which constitute the pric-
ing subproblems of the overall approach. The focus of this paper has been on SPPRCs
with tradeoffs between resources. For these type of problems, partial dominance can
improve the classical pairwise dominance between labels that is typically employed
in labeling algorithms to solve variants of SPPRCs. Partial dominance allows labels to
be dominated by sets of other labels, where each of these labels dominates the former
only partially, i.e., only for a certain subset of label extensions. The two main (opposing)
effects of partial dominance are (i) the potential to dominate more labels implying that
overall less labels are created and less dominance comparisons are necessary; and (ii) a
more complex dominance rule to be tested.

We have studied in detail the most basic tradeoff between two resources, namely a
tradeoff with a single linear piece: We have provided a formal characterization of the cor-
responding tradeoff segments and have derived a unified partial dominance rule to be used
in ad hoc labeling algorithms for solving SPPRCs with such a tradeoff. Furthermore, we
have discussed issues related to the practical implementation of partial dominance. The

1093

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

application of partial dominance has been exemplified for two variants of the EVRPTW
with a partial recharge policy and the SDVRPTW, two important variants of VRP.

Computational results on standard benchmark instances for the considered problems
have revealed the following main insights. On a per pricing problem basis, i.e., on truly
identical instances of SPPRCs, we have found that the labeling algorithms applying par-
tial dominance never performed worse than their counterparts with classical pairwise
dominance. Furthermore, partial dominance has proved more beneficial for the pricing
problems of the more difficult EVRPTW and SDVRPTW instances. It has also proved
more beneficial for the EP instances rather than for heuristic pricing iterations on reduced
networks. Overall, for the SDVRPTW, average speedups of up to 40% (EPs of the more
difficult instances) could be realized by using partial dominance. For the two EVRPTW
variants, savings were much smaller. This behavior can be explained by the fact that much
less labels actually show a tradeoff in the EVRPTW variants (33% and 46%) compared to
62% in the SDVRPTW. Such a straightforward analysis can, thus, help to a priori estimate
a potential gain from implementing partial dominance. We leave it to future research to
conduct related experiments for other problems with a linear tradeoff and a single seg-
ment, such as the dial-a-ride problem with ride-time constraints, the synchronized pickup
and delivery problem, the truck-and-trailer VRP with quantity-dependent transfer times,
and the VRP with partial outsourcing (see Sect. 2). In addition, the consideration of non-
linear tradeoffs may be the next step in generalizing partial dominance. The latter is rel-
evant, e.g., for more realistic charging functions for battery electric vehicles.

Finally, we have found that the results for the individual pricing instances do
translate also to an improvement of an overall BPC, which employs many well-
established acceleration techniques and whose performance is influenced also by
many other effects that are not immediately related to the solution of the pricing
problems. Again, these benefits are substantial for the SDVRPTW while they
are rather minor for the EVRPTW. Future research could consider non-linear
tradeoffs and more than one segment, for which the categorization as well as the
computer implementation become much more complicated.

Table 4   Data to Fig. 5a for the EVRPTW-S

All pricing problems (AP) Exact pricing problems (EP)

Comp Labels Dominance Time Labels Dominance Time

time ≥ #Instances AP-L AP-D AP-T EP-L EP-D EP-T

0 168 0.9957 0.9948 0.9739 0.9880 0.9704 0.9875
1 148 0.9955 0.9944 0.9751 0.9870 0.9672 0.9859
10 98 0.9954 0.9938 0.9786 0.9852 0.9564 0.9819
60 64 0.9956 0.9938 0.9795 0.9830 0.9456 0.9729
100 55 0.9960 0.9939 0.9802 0.9835 0.9432 0.9701
600 29 0.9961 0.9934 0.9753 0.9812 0.9319 0.9501
1200 25 0.9969 0.9937 0.9728 0.9835 0.9274 0.9525
1800 22 0.9970 0.9937 0.9699 0.9824 0.9226 0.9393
3600 19 0.9972 0.9940 0.9710 0.9839 0.9265 0.9413

1094	 S. Faldum et al.

1 3

Appendix

In Tables 4, 5, and 6, we provide the underlying values to Fig. 5. For the solutions
of the root node, we distinguish two cases: we aggregate over all pricing prob-
lems (AP) solved or only the exact pricing problems (EP) defined over the full
network. The tables display the geometric mean of ratios of the number of created
labels (-L), the number of dominance tests (-D), and the solution time (-T) in sec-
onds. In addition, we filter results according to different total computation times
in seconds. The column #Instances gives the corresponding number of instances.
Table 4 provides the values for the EVRPTW-S, Table 5 for the EVRPTW-M,
and Table 6 for the SDVRPTW.

Acknowledgements  This research was supported by the Deutsche Forschungsgemeinschaft (DFG) under
Grants GS 83/1-1 and IR 122/10-1 of Project 418727865. This support is gratefully acknowledged.

Table 5   Data to Fig. 5b for the EVRPTW-M

All pricing problems (AP) Exact pricing problems (EP)

Comp Labels Dominance Time Labels Dominance Time

time ≥ #Instances AP-L AP-D AP-T EP-L EP-D EP-T

0 168 0.9943 0.9926 0.9671 0.9860 0.9574 0.9603
1 156 0.9942 0.9923 0.9683 0.9853 0.9545 0.9583
10 113 0.9938 0.9915 0.9710 0.9830 0.9427 0.9470
60 71 0.9939 0.9908 0.9708 0.9795 0.9250 0.9331
100 65 0.9941 0.9907 0.9714 0.9797 0.9227 0.9310
600 43 0.9950 0.9907 0.9682 0.9811 0.9141 0.9181
1200 31 0.9952 0.9907 0.9639 0.9802 0.9078 0.9015
1800 28 0.9957 0.9908 0.9617 0.9827 0.9059 0.9019
3600 24 0.9956 0.9909 0.9604 0.9818 0.9039 0.9037

Table 6   Data to Fig. 5c for the SDVRPTW

All pricing problems (AP) Exact pricing problems (EP)

Comp Labels Dominance Time Labels Dominance Time

time ≥ #Instances AP-L AP-D AP-T EP-L EP-D EP-T

0 504 0.8302 0.6793 0.8059 0.7817 0.6250 0.7093
1 362 0.8245 0.6587 0.7882 0.7709 0.5974 0.6795
10 207 0.8080 0.6217 0.7555 0.7519 0.5567 0.6350
60 122 0.7945 0.5953 0.7297 0.7404 0.5334 0.6077
100 97 0.7886 0.5835 0.7190 0.7318 0.5208 0.5957
600 49 0.7706 0.5536 0.6898 0.7302 0.5154 0.5897
1200 34 0.7678 0.5506 0.6857 0.7339 0.5240 0.5979
1800 29 0.7628 0.5444 0.6807 0.7374 0.5284 0.6026
3600 21 0.7445 0.5191 0.6578 0.7293 0.5175 0.5938

1095

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Achterberg T (2007) Constraint integer programming. Ph.D. thesis, Technische Universität Berlin,
Fakultät II—Mathematik und Naturwissenschaften, Berlin, Germany

Aerts-Veenstra M, Cherkesly M, Gschwind T (2023) A unified branch-price-and-cut algorithm for multi-
compartment pickup and delivery problems. Les Cahiers du GERAD G-2023-26, Groupe d’études
et de recherche en analyse des décisions, GERAD, Montréal QC H3T 2A7, Canada

Archetti C, Speranza MG, Hertz A (2006) A tabu search algorithm for the split delivery vehicle routing
problem. Transp Sci 40(1):64–73

Archetti C, Bouchard M, Desaulniers G (2011) Enhanced branch and price and cut for vehicle routing
with split deliveries and time windows. Transp Sci 45(3):285–298

Baldacci R, Mingozzi A, Roberti R (2011) New route relaxation and pricing strategies for the vehicle
routing problem. Oper Res 59(5):1269–1283

Baller AC, Dabia S, Dullaert WEH, Vigo D (2020) The vehicle routing problem with partial outsourcing.
Transp Sci 54(4):1034–1052

Barnhart C, Johnson E, Nemhauser G, Savelsbergh M, Vance P (1998) Branch-and-price: column genera-
tion for solving huge integer programs. Oper Res 46(3):316–329

Bianchessi N, Irnich S (2019) Branch-and-cut for the split delivery vehicle routing problem with time
windows. Transp Sci 53(2):442–462

Bode C, Irnich S (2014) The shortest-path problem with resource constraints with (k, 2)-loop elimination
and its application to the capacitated arc-routing problem. Eur J Oper Res 238(2):415–426

Bulhões T, Sadykov R, Uchoa E (2018) A branch-and-price algorithm for the minimum latency problem.
Comput Oper Res 93:66–78

Cherkesly M, Gschwind T (2022) The pickup and delivery problem with time windows, multiple stacks,
and handling operations. Eur J Oper Res 301(2):647–666

Costa L, Contardo C, Desaulniers G (2019) Exact branch-price-and-cut algorithms for vehicle routing.
Transp Sci 53(4):946–985

Costa L, Contardo C, Desaulniers G, Pecin D (2021) Selective arc-ng pricing for vehicle routing. Int
Trans Oper Res 28(5):2633–2690

Desaulniers G (2010) Branch-and-price-and-cut for the split-delivery vehicle routing problem with time
windows. Oper Res 58(1):179–192

Desaulniers G, Villeneuve D (2000) The shortest path problem with time windows and linear waiting
costs. Transp Sci 34(3):312–319

Desaulniers G, Desrosiers J, Loachim I, Solomon MM, Soumis F, Villeneuve D (1998) A unified frame-
work for deterministic time constrained vehicle routing and crew scheduling problems. In: Crainic
TG, Laporte G (eds) Fleet management and logistics. Springer, Cham, pp 57–93

Desaulniers G, Desrosiers J, Solomon M (eds) (2005) Column generation. Springer, New York
Desaulniers G, Lessard F, Hadjar A (2008) Tabu search, partial elementarity, and generalized k-path ine-

qualities for the vehicle routing problem with time windows. Transp Sci 42(3):387–404
Desaulniers G, Rakke JG, Coelho LC (2016) A branch-price-and-cut algorithm for the inventory-routing

problem. Transp Sci 50(3):1060–1076
Desaulniers G, Errico F, Irnich S, Schneider M (2016) Exact algorithms for electric vehicle-routing prob-

lems with time windows. Oper Res 64(6):1388–1405

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1096	 S. Faldum et al.

1 3

Desaulniers G, Pecin D, Contardo C (2019) Selective pricing in branch-price-and-cut algorithms for vehi-
cle routing. EURO J Transp Logist 8:147–168

Desaulniers G, Gschwind T, Irnich S (2020) Variable fixing for two-arc sequences in branch-price-and-
cut algorithms on path-based models. Transp Sci 54(5):1170–1188

Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Pro-
gram 91(2):201–213

Duman EN, Taş D, Çatay B (2021) Branch-and-price-and-cut methods for the electric vehicle routing
problem with time windows. Int J Prod Res 60(17):5332–5353

Feillet D, Dejax P, Gendreau M, Guéguen C (2004) An exact algorithm for the elementary shortest
path problem with resource constraints: application to some vehicle routing problems. Networks
44(3):216–229

Gschwind T (2015) A comparison of column-generation approaches to the synchronized pickup and
delivery problem. Eur J Oper Res 247(1):60–71

Gschwind T, Irnich S (2015) Effective handling of dynamic time windows and its application to solving
the dial-a-ride problem. Transp Sci 49(2):335–354

He Q, Irnich S, Song Y (2019) Branch-and-cut-and-price for the vehicle routing problem with time win-
dows and convex node costs. Transp Sci 53(5):1409–1426

Heßler K, Irnich S (2023) Partial dominance in branch-price-and-cut for the basic multi-compartment
vehicle routing problem. INFORMS J Comput 35(1):50–65

Houck D, Picard J, Queyranne M, Vemuganti R (1980) The travelling salesman problem as a constrained
shortest path problem: theory and computational experience. Opsearch 17:93–109

Ioachim I, Gélinas S, Desrosiers J, Soumis F (1998) A dynamic programming algorithm for the shortest
path problem with time windows and linear node costs. Networks 31:193–204

Ioachim I, Desrosiers J, Soumis F, Bélanger N (1999) Fleet assignment and routing with schedule syn-
chronization constraints. Eur J Oper Res 119(1):75–90

Irnich S (2008) Resource extension functions: properties, inversion, and generalization to segments. OR
Spectrum 30(1):113–148

Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. In: Desaulniers G,
Desrosiers J, Solomon M (eds) Column generation. Springer, New York, pp 33–65

Irnich S, Villeneuve D (2006) The shortest path problem with resource constraints and k-cycle elimina-
tion for k ≥ 3 . INFORMS J Comput 18(3):391–406

Jepsen M, Petersen B, Spoorendonk S, Pisinger D (2008) Subset-row inequalities applied to the vehicle-
routing problem with time windows. Oper Res 56(2):497–511

Kohl N, Desrosiers J, Madsen O, Solomon M, Soumis F (1999) 2-path cuts for the vehicle routing prob-
lem with time windows. Transp Sci 33(1):101–116

Lera-Romero G, Miranda Bront JJ, Soulignac FJ (2020) Linear edge costs and labeling algorithms: the
case of the time-dependent vehicle routing problem with time windows. Networks 76(1):24–53

Liberatore F, Righini G, Salani M (2010) A column generation algorithm for the vehicle routing problem
with soft time windows. 4OR 9(1):49–82

Luo Z, Qin H, Zhu W, Lim A (2017) Branch and price and cut for the split-delivery vehicle routing prob-
lem with time windows and linear weight-related cost. Transp Sci 51(2):668–687

Lübbecke M, Desrosiers J (2005) Selected topics in column generation. Oper Res 53(6):1007–1023
Martinelli R, Poggi M, Subramanian A (2013) Improved bounds for large scale capacitated arc routing

problem. Comput Oper Res 40(8):2145–2160
Naddef D (2002) Polyhedral theory. In: Gutin G, Punnen A (eds) The traveling salesman problem and its

variations, volume 12 of combinatorial optimization, chapter 2. Kluwer, Dordrecht, pp 29–116
Pecin D, Pessoa A, Poggi M, Uchoa E (2017) Improved branch-cut-and-price for capacitated vehicle

routing. Math Program Comput 9(1):61–100
Pecin D, Contardo C, Desaulniers G, Uchoa E (2017) New enhancements for the exact solution of the

vehicle routing problem with time windows. INFORMS J Comput 29(3):489–502
Ralphs T, Kopman L, Pulleyblank W, Trotter L (2003) On the capacitated vehicle routing problem. Math

Program 94(2–3):343–359
Rothenbächer A-K, Drexl M, Irnich S (2018) Branch-and-price-and-cut for the truck-and-trailer routing

problem with time windows. Transp Sci 52(5):1174–1190
Sadykov R, Uchoa E, Pessoa A (2021) A bucket graph–based labeling algorithm with application to vehi-

cle routing. Transp Sci 55(1):4–28
Schneider M, Stenger A, Goeke D (2014) The electric vehicle-routing problem with time windows and

recharging stations. Transp Sci 48(4):500–520

1097

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

Solomon MM (1987) Algorithms for the vehicle routing and scheduling problems with time window con-
straints. Oper Res 35(2):254–265

Spliet R, Gabor AF (2015) The time window assignment vehicle routing problem. Transp Sci
49(4):721–731

Spliet R, Dabia S, Van Woensel T (2018) The time window assignment vehicle routing problem with
time-dependent travel times. Transp Sci 52(2):261–276

Tilk C, Rothenbächer A-K, Gschwind T, Irnich S (2017) Asymmetry matters: dynamic half-way points in
bidirectional labeling for solving shortest path problems with resource constraints faster. Eur J Oper
Res 261(2):530–539

Tilk C, Bianchessi N, Drexl M, Irnich S, Meisel F (2018) Branch-and-price-and-cut for the active-passive
vehicle-routing problem. Transp Sci 52(2):300–319

Toth P, Vigo D (eds) (2014) Vehicle routing: problems, methods, and applications. MOS-SIAM Series on
Optimization. Society for Industrial and Applied Mathematics, Philadelphia

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Stefan Faldum1  · Sarah Machate2 · Timo Gschwind2  · Stefan Irnich1 

 *	 Timo Gschwind
	 gschwind@rptu.de

	 Stefan Faldum
	 stfaldum@uni-mainz.de

	 Sarah Machate
	 sarah.machate@rptu.de

	 Stefan Irnich
	 irnich@uni-mainz.de

1	 Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes
Gutenberg University Mainz, Jakob‑Welder‑Weg 9, 55128 Mainz, Germany

2	 Chair of Logistics, School of Business and Economics, RPTU Kaiserlautern-Landau,
Gottlieb‑Daimler‑Straße 42, 67663 Kaiserlautern, Germany

http://orcid.org/0009-0001-6789-5940
http://orcid.org/0000-0002-7715-4994
http://orcid.org/0000-0001-9383-4546

	Partial dominance in branch-price-and-cut algorithms for vehicle routing and scheduling problems with a single-segment tradeoff
	Abstract
	1 Introduction
	2 Literature review
	3 Partial dominance for linear decreasing tradeoff functions
	3.1 Basic theory
	3.1.1 Full dominance
	3.1.2 Partial dominance

	3.2 Storage and use of partial dominance within labeling algorithms
	3.3 Implementation details of our labeling algorithm

	4 Two variants of the VRPTW
	4.1 Labeling with partial dominance for the EVRPTW
	4.2 Labeling with partial dominance for the SDVRPTW

	5 Computational results
	5.1 BPC algorithms
	5.2 Instances
	5.3 Analysis of ratio of labels with tradeoff
	5.4 Comparison on identical pricing instances
	5.5 Comparison on individual BPC runs

	6 Conclusions
	Appendix
	Acknowledgements
	References

