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Abstract
For many variants of vehicle routing and scheduling problems solved by a branch-
price-and-cut (BPC) algorithm, the pricing subproblem is an elementary shortest-
path problem with resource constraints (SPPRC) typically solved by a dynamic-pro-
gramming labeling algorithm. Solving the SPPRC subproblems consumes most of 
the total BPC computation time. Critical to the performance of the labeling algo-
rithms and thus the BPC algorithm as a whole is the use of effective dominance 
rules. Classical dominance rules rely on a pairwise comparison of labels and have 
been used in many labeling algorithms. In contrast, partial dominance describes situ-
ations where several labels together are needed to dominate another label, which can 
then be safely discarded. In this work, we consider SPPRCs, where a linear tradeoff 
describes the relationship between two resources. We derive a unified partial domi-
nance rule to be used in ad hoc labeling algorithms for solving such SPPRCs as well 
as insights into its practical implementation. We introduce partial dominance for two 
important variants of the vehicle routing problem, namely the electric vehicle rout-
ing problem with time windows with a partial recharge policy and the split-delivery 
vehicle routing problem with time windows (SDVRPTW). Computational experi-
ments show the effectiveness of the approach, in particular for the SDVRPTW, lead-
ing to an average reduction of 20% of the total BPC computation time, with savings 
of 30% for the more difficult instances requiring more than 600  s of computation 
time.
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1  Introduction

For many variants of the vehicle routing problem (VRP, Toth and Vigo 2014), 
branch-and-price (BP, Desaulniers et al. 2005) based algorithms constitute the lead-
ing exact solution methodology (Costa et al. 2019). A BP algorithm is a branch-and-
bound algorithm in which the lower bounds are computed by column generation. 
Column generation is an iterative procedure that can tackle linear programs contain-
ing a huge number of variables. At each iteration, it solves a restricted master prob-
lem (RMP) comprising only a subset of the variables of the original linear program 
and one or several pricing subproblems to dynamically generate missing variables 
with negative reduced cost or to prove that no such variable exists. Cutting planes 
are added to strengthen the linear relaxations giving rise to a branch-price-and-
cut (BPC) algorithm. For details on the theory of BPC, we refer to Barnhart et al. 
(1998), Lübbecke and Desrosiers (2005).

The master program is often an extended set-partitioning or set-covering for-
mulation for selecting the best routes, while the pricing subproblem is an elemen-
tary shortest-path problem with resource constraints (SPPRC) typically solved by 
dynamic-programming labeling algorithms (for an overview of SPPRCs and labe-
ling algorithms, see Irnich and Desaulniers 2005). In a labeling algorithm, partial 
paths are gradually extended in a network from a given source o to a sink d (the 
origin and destination depot in the context of VRPs) seeking for a resource feasible 
minimum-cost o-d-path. The partial paths are represented by labels that store infor-
mation on the accumulated resource consumption up to the endpoint of the partial 
paths. Herein, resources are quantities necessary to compute the reduced cost and, 
e.g., the load onboard and the start of the service, at the end of the partial path. 
In particular, resources are used to decide on the feasibility of partial paths. The 
propagation of the labels along the arcs of the network is performed with the help of 
resource extension functions (REFs, Irnich 2008). Crucial for the performance of a 
labeling algorithm is the dominance relation between partial paths. The dominance 
relation is a relation between labels (i.e., partial paths) used to identify and discard 
those that cannot lead to a better solution of the SPPRC than possible with a known 
partial path. Dominance is typically realized by comparing the resource values of 
the labels and avoids the enumeration of all feasible partial paths that can be found 
in the network.

Classical dominance relations that have been used in many labeling algorithms 
rely on a pairwise comparison of labels. Informally speaking, if one of the labels 
is worse than the other, it can be safely discarded. Formally, we assume that the 
network (V ,A) with source o ∈ V  and sink d ∈ V  are given. For a partial path  p , 
i.e., an o-i-path ending at some vertex i ∈ V  , any i-d-path q that provides a feasi-
ble o-d-path r = (p, q) is called a feasible extension of p . Now, pairwise dominance 
between two partial paths can be characterized with the help of feasible extensions 
as follows:

Proposition 1  (Pairwise Dominance) Let p1 and p2 be two different partial paths 
ending at the same vertex i ∈ V  . If, for each feasible extension q2 of p2 , 
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	 (i)	 the path q2 is also a feasible extension of p1 , i.e., r1 = (p1, q2) is feasible
	 (ii)	 or there exists a feasible extension q1 of p1 (the extension q1 is allowed to differ 

from q2 ) so that r1 = (p1, q1) is feasible,

and r1 has a smaller or identical reduced cost than r2 , then the partial path p2 is 
dominated.

Because the conditions (i) and (ii) in Proposition 1 are difficult to verify for 
two arbitrary partial paths p1 and p2 , labeling algorithms typically test sufficient 
conditions, so-called dominance rules. Dominance rules do not directly consider 
extensions, but they compare the resource values of the labels of p1 and p2.

In contrast to pairwise dominance, partial dominance describes the situation that sev-
eral labels together are, informally speaking, better than another label which can then be 
safely discarded. A formal characterization of partial dominance is given in the following 
proposition.

Proposition 2  (Partial Dominance) Let P be a set of partial paths and p2 ∉ P be 
another partial path all ending at the same vertex i ∈ V  . If, for each feasible exten-
sion q2 of p2 , there exists a p1 ∈ P such that the condition (i) or the condition (ii) 
of Proposition 1 is fulfilled and the resulting o-d-path r1 has a smaller or identical 
reduced cost than r2 = (p2, q2), then the partial path p2 is dominated.

The notion of partial dominance reflects the concept that any path p1 ∈ P gener-
ally fulfills the dominance conditions in Proposition 1 only for some extensions q2 of 
p2 , i.e., p1 partially dominates p2 . Considering all the paths in P together, all exten-
sions q2 of p2 are dominated so that p2 can be discarded.

In the VRP literature, partial dominance has been employed in different situa-
tions like SPPRCs with a tradeoff between resources, handling relaxations of the 
elementarity condition in SPPRCs, and other use cases (see Sect. 2). The focus of 
this paper is on partial dominance for SPPRCs with a tradeoff between resources 
and, in particular, on the most basic type of such a tradeoff, i.e., a linear tradeoff 
with a single linear piece as depicted in Fig. 1. An example of a linear tradeoff can 
be found in the context of the electric vehicle routing problem with time windows 
(EVRPTW) with partial recharging (Schneider et  al. 2014): Battery electric vehi-
cles have a limited driving range, which can be extended by charging the battery at 
dedicated recharging stations. The tradeoff is between the amount to be recharged 
and the time required to do so. Longer charging increases the driving range, but may 
hinder the timely arrival at later customers due to their service time windows. In 
Fig. 1, the x-axis represents the time when a service can begin, and the y-axis repre-
sents the amount of energy that could be feasibly recharged: Being early in the time 
window [a, b] allows more energy (up to u) to be recharged, while being late limits 
it (down to l).

In general, Fig. 1 shows the feasible domain of two resources x and y for a par-
tial path represented by label F . For the resource x , the minimum feasible resource 
consumption is Fa and the maximum feasible resource consumption is Fb . Likewise, 
it is Fl and Fu for the resource y . For both resources, smaller values are preferable. 
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The tradeoff function  f  characterizes the nature of the tradeoff: Whenever we allow 
resource x to increase by one unit (recall that smaller values are preferable), the con-
sumption of resource y can be decreased by m units, i.e., the slope of f  is −m.

The contributions of this paper are the following. We provide a formal charac-
terization of linear tradeoffs between resources with a single linear piece within 
SPPRCs and derive a unified partial dominance rule to be used in ad hoc labeling 
algorithms for the solution of corresponding SPPRCs as well as insights on its prac-
tical implementation. Our results apply to both the elementary and the non-elemen-
tary version of the SPPRC. Furthermore, we exemplify the application of partial 
dominance for two important variants of the VRP with a linear tradeoff in their 
SPPRC pricing subproblems, namely the EVRPTW with a partial recharge policy 
and the split-delivery vehicle routing problem with time windows (SDVRPTW). 
Finally, we report an extensive computational analysis of using partial dominance 
compared to the classical pairwise dominance for the EVRPTW and the SDVRPTW 
on their standard benchmarks.

The remainder of the paper is structured as follows. In Sect.  2, we categorize 
different use cases in which partial dominance has been used within SPPRC sub-
problems and review the corresponding literature. Section 3 provides the theoreti-
cal analysis of partial dominance for linear tradeoffs between resources. Section 4 
details its application to the EVRPTW and the SDVRPTW. Our computational 
study on the EVRPTW and the SDVRPTW is reported in Sect. 5. Final conclusions 
are drawn in Sect. 6.

2 � Literature review

Partial dominance has been used for different types of SPPRC subproblems. We cat-
egorize into linear tradeoff functions and non-linear tradeoff functions describing 
the relationship of two resources, partial dominance in SPPRC with elementarity 
constraints, and other forms of partial dominance.

Fig. 1   Tradeoff with a single 
linear piece between two 
resources x and y
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Linear Tradeoff Functions First, SPPRC subproblems that have a tradeoff between 
two resources can benefit from partial dominance. This type of dominance started 
with the works (Ioachim et  al. 1998, 1999) for airplane flight scheduling. In this 
application, the only resources are time and reduced cost such that a partial path 
can be completely characterized by a continuous, piecewise linear tradeoff function. 
The seminal paper of Desaulniers et al. (1998) clarifies when and how such linear 
tradeoffs between resources result from resource constraints in extensive path-based 
formulations solved with column-generation algorithms: Resource constraints in 
the master program referring to resource levels at vertices or at arcs result in lin-
ear node/vertex and arc costs. For continuous, piecewise linear tradeoff functions, 
Desaulniers and Villeneuve (2000) developed an implicit form of partial dominance 
for the respective SPPRC subproblems: Whenever the minimum of several trade-
off functions of a set of paths is completely below the tradeoff function of another 
path, this path can be eliminated. Such continuous, piecewise linear tradeoff func-
tions between two resources arise in several vehicle scheduling and routing prob-
lems. Examples of this form of partial dominance used for solving SPPRC subprob-
lems are the VRP with soft time windows (Liberatore et al. 2010), the time-window 
assignment VRP (Spliet and Gabor 2015; Spliet et al. 2018), the active-passive VRP 
(Tilk et  al. 2018), the time-dependent VRP with time windows (VRPTW) (Lera-
Romero et al. 2020), and the SDVRPTW with linear weight-related cost (Luo et al. 
2017).

The handling of piecewise defined functions per label is somewhat inconven-
ient, in particular when the number of pieces is not bounded (by a small instance-
independent number). For the EVRPTW with partial recharges (Desaulniers et al. 
2016b) and the SDVRPTW (Desaulniers 2010), there is only one linear piece which 
includes the case of a single point. The EVRPTW and the SDVRPTW are the two 
VRP variants that we consider in the computational analysis, see Sect. 4. In a fol-
low up publication on a variant of the inventory-routing problem, Desaulniers et al. 
(2016a) apply similar solution methods, because also this problem can be modeled 
with REFs with not more than one linear piece.

Even if we did not find works suggesting partial dominance for some applica-
tions, it should also be applicable when solving SPPRC subproblems of the follow-
ing problems: the dial-a-ride problem with ride-time constraints (Gschwind and 
Irnich 2015), the synchronized pickup and delivery problem (Gschwind 2015), the 
truck-and-trailer VRP with quantity-dependent transfer times (Rothenbächer et  al. 
2018), and the VRP with partial outsourcing (Baller et al. 2020). This list should not 
be considered complete.

Non-Linear Tradeoff Functions Also non-linear tradeoffs between some resource 
and reduced cost have been considered. Comparing piecewise defined non-linear 
tradeoff functions and herewith establishing a partial dominance is more intricate 
but still beneficial. In the VRPTW with convex inconvenience cost functions (He 
et al. 2019), a customer-specific tradeoff function is defined over the customer’s time 
windows.

Elementarity Partial dominance improves dominance for relaxations of the elemen-
tary SPPRC: For the SPPRC with 2-cycle elimination (Houck et al. 1980; Kohl et al. 
1999), i.e., short cycles of the form (i,  j,  i), two labels that have mutually different 
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predecessor vertices can dominate another label by resource values. For the SPPRC 
with k-cycle elimination, i.e., all cycles of length up to k are forbidden, Irnich and Vil-
leneuve (2006) generalize this partial dominance. Up to six labels with different pre-
decessor sequences are needed for 3-cycle elimination. For the general case, Irnich 
and Villeneuve prove that not more than k!(k − 1)! different predecessor sequences 
are needed. For a SPPRC with combined 2-cycle and k-cycle elimination, Bode and 
Irnich (2014) further generalize the partial dominance. Such a combined cycle elimina-
tion occurs in BPC algorithms for the capacitated arc routing problem when branching 
decisions and k-cycle free subproblems defined on the street network are considered 
simultaneously. For the SPPRC subproblem of the minimum latency problem, Bulhões 
et al. (2018) derive a partial dominance for the ng-route relaxation of the subproblem. 
In this context, a first label that dominates a second label with respect to all resources 
but not with respect to the ng-route restrictions (it cannot be extended to one or several 
customers to which the second label can be extended) does however partially dominate 
the second. This partial dominance results in so-called dominated extensions, i.e., ver-
tices to which an extension of the second label can be safely avoided. Full dominance 
occurs when a label cannot be extended either due to the set of dominated extensions 
or due to ng-route restrictions. These ideas were further exploited by Costa et al. (2021) 
where even stronger arc-ng-route dominance rules were proven in the context of selec-
tive pricing (Desaulniers et al. 2019).

Other Forms of Partial Dominance We found some works using a partial domi-
nance that does not fall into one of the above categories. For the basic multi-com-
partment VRP, Heßler and Irnich (2023) use labels that represent partial paths for 
which (at least) one feasible packing of delivery items into compartment exists. 
The decision about the concrete packing finally used is, however, postponed until 
the partial path reaches the destination. In particular, one label generally represents 
many alternative packings. Partial dominance is used to allow that packings of one 
label are dominated by some packings of a second label.

Two-arc fixing using reduced costs as suggested by Desaulniers et al. (2020) is an 
acceleration technique for solving SPPRC pricing problems faster without compro-
mising optimality of the overall BPC approach. Sequences of two consecutive arcs 
that cannot occur in an optimal solution are identified and the labeling algorithm 
ensures that after traversing the first arc of the sequence, the label is not extended 
along the second arc. In order to maintain optimality of the pricing, a label must be 
extended by the information which (second) arcs must not be used for an extension. 
This information must be taken into account in the dominance. The authors rely on 
partial dominance, since otherwise the majority of the labels is not comparable with 
the standard pairwise dominance.

3 � Partial dominance for linear decreasing tradeoff functions

In this section, we formally define the linear tradeoff between two resources and 
describe the basic theory for partial dominance between labels. Furthermore, we 
address general issues for the application of partial dominance within labeling algo-
rithms for SPPRCs. Finally, we provide some details of our implementations.
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3.1 � Basic theory

We assume that the linear tradeoff exists between two resources with real-valued 
resource values x and  y . For a partial path and its label F , a proper tradeoff can be 
described by a segment S in ℝ2 with endpoints (Fa,Fu) and (Fb,Fl) with Fa < Fb and 
Fu > Fl , see Fig.  1. Formally, the segment is the convex hull of its endpoints, i.e., 
S = conv({(Fa,Fu), (Fb,Fl)}) . The intuitive interpretation of the tradeoff described by 
the segment is that if resource x is allowed to increase by one unit, the consumption of 
resource y can be decreased by m = (Fu − Fl)∕(Fb − Fa) > 0 units.

Every point (x, y) on the segment S can be described with the help of a linear func-
tion  f ∶ ℝ

1
→ ℝ

1 defined by

Note that we have intentionally defined this underlying function  f  on the entire real 
space, and not only on the interval [Fa,Fb] . Moreover, we can also cope with the 
case of a one-point segment, i.e., that the two endpoints (Fa,Fu) and (Fb,Fl) are 
identical, i.e., Fa = Fb and Fl = Fu . In this case, we still use  (1) by defining the 
(negative) slope to be m = 1 . With this definition, also the inverse of f  is well-
defined, it is x = f −1(y) = Fa − 1∕m ⋅ (y − Fu).

For both resources, smaller values are preferable so that a combination (x, y) of two 
resource values (hereafter referred to as a point) dominates (x�, y�) if x ≤ x′ and y ≤ y′ 
hold. Graphically speaking, a point (x, y) dominates all points that lie on the top right 
of it. This dominance between points can be extended to sets. In particular, for the seg-
ment S , the dominated area is

see also Fig. 1.

3.1.1 � Full dominance

We first describe the standard full dominance with respect to the two resources that are 
traded against each other. Note that a partial path typically has more resources than just 
these two. As a consequence, the following conditions for full dominance regarding the 
two resources are only necessary conditions for dominance between labels (see also the 
dominance for the EVRPTW and the SDVRPTW described in Sects. 4.1 and 4.2).

We assume that two labels F1 and F2 with corresponding segments S
1
 defined by 

(Fa
1
,Fu

1
) and (Fb

1
,Fl

1
) and S

2
 defined by (Fa

2
,Fu

2
) and (Fb

2
,Fl

2
) are given. Label F1 fully 

dominates F2 if S2 ⊂ D(S
1
) . An example where S

2
 lies completely in the dominated 

area of S
1
 is illustrated in Fig. 2.

Full dominance can be verified using the following four conditions, which must all 
hold true:

(1)y = f (x) = Fu − m ⋅ (x − Fa).

D(S) = {(x�, y�) ∈ ℝ
2 ∶ ∃(x, y) ∈ S with (x, y) dominates (x�, y�)},

(DC1)Fa
1
≤ Fa

2
,
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Condition (DC1) compares the minimum x-values and checks whether Fa
1
 lies fur-

ther on the left than Fa
2
 . Likewise, condition (DC2) compares the minimum y-values 

and checks whether Fl
1
 is below Fl

2
 . Condition (DC3) compares the values of f1 and 

f2 at x = Fa
2
 . Finally, Condition (DC4) compares the values of f1 and f2 at x = Fb

2
 . 

The four dominance conditions are visualized in Fig. 2.
If both segments S

1
 and S

2
 consist of a single point each, i.e., Fa

1
= Fb

1
 and Fa

2
= Fb

2
 , 

these conditions collapse into the standard dominance of the form Fa
1
≤ Fa

2
 and Fl

1
≤ Fl

2
 

between independent resources, i.e., (DC1) and (DC2).

3.1.2 � Partial dominance

We now characterize partial dominance between the two resources for which a tradeoff 
occurs. Reusing the same notation as in Sect. 3.1.1, we define that a label F1 partially 
dominates F2 if

Recalling that full dominance requires S
2
⊂ D(S

1
) , we speak of a proper partial 

domination if (2) and S
2
⊄ D(S

1
) are fulfilled. In the spirit of Proposition 2, a set F  

of labels together dominates a label F2 , if

(DC2)Fl
1
≤ Fl

2
,

(DC3)Fu
1
− (Fa

2
− Fa

1
) ⋅ m1 ≤ Fu

2
,

(DC4)Fu
1
− (Fb

2
− Fa

1
) ⋅ m1 ≤ Fl

2
,

(2)D(S
1
) ∩ S

2
≠ �.

(3)S
2
⊂

⋃

F1∈F

D(S
1
).

Fig. 2   Full dominance of seg-
ment S

1
 over S

2

x

y

a2 b2

u2

l2

a1 b1

u1

l1

S2

S1

(DC1 )

(DC2 )

(DC3 )

(DC4 )



1071

1 3

Partial dominance in branch‑price‑and‑cut algorithms for…

An important question is now how condition (3) can be tested effectively within a 
labeling algorithm. Therefore, we analyze the sets Sd

2
∶= D(S

1
) ∩ S

2
 of dominated 

points and their complements Su
2
∶= S

2
⧵D(S

1
) , i.e., the sets of undominated points, 

in more detail. To this end, we categorize proper partial domination into

•	 partial dominance from the left with (Fa
2
,Fu

2
) ∈ D(S

1
) and (Fb

2
,Fl

2
) ∉ D(S

1
),

•	 partial dominance from the right (Fa
2
,Fu

2
) ∉ D(S

1
) and (Fb

2
,Fl

2
) ∈ D(S

1
) , and

•	 partial dominance over a central piece with (Fa
2
,Fu

2
) ∉ D(S

1
) and (Fb

2
,Fl

2
) ∉ D(S

1
).

Moreover, we distinguish the cases in which S
1
∩ S

2
 is either

	 (i)	 the empty set (without intersection),
	 (ii)	 a single point (xs, ys) (with proper intersection), or
	 (iii)	 a segment consisting of more than one point (overlapping).

Note that in case of overlapping segments, the underlying functions are identical, 
i.e., f1 = f2 in case (iii).

Overall, we distinguish full dominance and seven different types of proper partial 
dominance as exemplified in Fig. 3 and further explained below. We provide identi-
fication features regarding the dominance conditions (DC1)–(DC4). 

FD:	� Full dominance. All dominance conditions (DC1)–(DC4) are 
fulfilled.

PD1:	� Partial dominance from the left without intersection or over-
lapping. Dominance conditions (DC1) and (DC3) are fulfilled, 
dominance condition  (DC2) is violated. In addition, either 
(DC4) is fulfilled (necessary for overlapping segments) or 
(DC4) is violated and S

1
∩ S

2
= � . See Fig. 3a.

PD2:	� Partial dominance from the left with proper intersection. Domi-
nance conditions  (DC1) and  (DC3) are fulfilled, dominance 
condition (DC4) is violated and S

1
∩ S

2
≠ � . Dominance condi-

tion (DC2) can either be fulfilled or violated. See Fig. 3b.

PD3:	� Partial dominance from the right without intersection or over-
lapping. Dominance conditions (DC2) and (DC4) are fulfilled, 
and dominance condition (DC1) is violated. In addition, either 
(DC3) is fulfilled (necessary for overlapping segments) or 
(DC3) is violated and S

1
∩ S

2
= � . See Fig. 3c.

PD4:	� Partial dominance from the right with proper intersec-
tion. Dominance conditions  (DC2) and  (DC4) are fulfilled, 
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Fig. 3   Different cases of partial dominance
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dominance condition (DC3) is violated and S
1
∩ S

2
≠ � . Domi-

nance condition  (DC1) can either be fulfilled or violated. See 
Fig. 3d.

PD5:	� Partial dominance over a central piece without intersec-
tion or overlapping. Dominance conditions  (DC1) and  (DC2) 
are violated. In addition, either dominance conditions  (DC3) 
and  (DC4) are both fulfilled (necessary for overlapping seg-
ments) or only one of them is fulfilled and S

1
∩ S

2
= � . See 

Fig. 3e.

PD6a and PD6b:	� Partial dominance over a central piece with proper intersec-
tion. The following two cases are possible: In case PD6a, only 
dominance condition  (DC3) is fulfilled, dominance condi-
tions  (DC1), (DC2) and  (DC4) are violated and S

1
∩ S

2
≠ � . 

See Fig. 3f. In case PD6b, only dominance condition (DC4) is 
fulfilled, dominance conditions (DC1)–(DC3) are violated and 
S
1
∩ S

2
≠ � . See Fig. 3g.

 An overview of the relation between the four dominance conditions (DC1)–(DC4) 
and the above types is given in Table 1.

A label F2 with a single-point segment S
2
 is either fully dominated (FD) or not 

dominated at all. Proper partial domination is impossible. For testing full domi-
nance, conditions DC1 and DC2 suffice, since conditions DC3 and DC4 are implied 
by the former. However, labels with a single-point segment can dominate other 
labels both fully or proper partially.

Two labels with segments that have identical slopes m cannot intersect. Under 
this assumption, the dominance types PD2, PD4, PD6a, and PD6b with proper inter-
section are impossible.

The set of dominated points Sd
2
 is always a closed interval (segment), i.e., the 

endpoints belong to the set. In contrast, the complement with respect to the seg-
ment, which is the set of undominated points Su

2
 (of the segment), is either the 

Table 1   Fulfillment of dominance conditions of different types of (partial) dominance

Symbols have the following meaning: ✓  fulfillment; ✗ non-fulfillment; –  fulfillment is not relevant for 
identification of dominance type; a at least one of the conditions (DC3) and (DC4) needs to be fulfilled

From the left From the right Over a central piece

Condition FD PD1 PD2 PD3 PD4 PD5 PD6a PD6b

DC1 ✓ ✓ ✓ ✗ – ✗ ✗ ✗
DC2 ✓ ✗ – ✓ ✓ ✗ ✗ ✗
DC3 ✓ ✓ ✓ – ✗ –a ✓ ✗
DC4 ✓ – ✗ ✓ ✓ –a ✗ ✓

S
1
∩ S

2
– (i) ∨ (iii) (ii) (i) ∨ (iii) (ii) (i) ∨ (iii) (ii) (ii)
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empty set, a half-open interval in ℝ2 , or a union of the latter. The seven cases are 
summarized in Table 2. Hence, the remaining undominated area comprises one 
or two half-open intervals in ℝ2 (in the following, we use the term half-open seg-
ment). If S

2
 is further proper partially dominated by other segments, the undomi-

nated set continues to decompose into a union of sub-segments, each of which 
could be open, half-open (from the left or right), or closed.

It is cumbersome to always distinguish between the four cases. Moreover, 
additional binary attributes (flags) would be needed to properly classify the cases. 
Instead, we assume that each undominated set Su is a closed set. Note first that 
simply replacing all (half-)open sub-segments by their closure does not impact 
the correctness on the labeling algorithm, since it does not lead to incorrectly 
discarded labels. However, partial dominance becomes slightly weaker, since a 
single point sub-segment might be left over although it is already redundant.

Second, in many applications, the underlying feasible domains of x and y are 
discrete or can be reduced to discrete sets, e.g., the integers (see examples in 
Sect.  4). For example, if all travel times, service times, and time windows are 
defined by integer values, then a feasible schedule can also be found in the integer 
domain. In particular, x , Fa , and Fb can be assumed integer in this case. Then, the 
(half-)open intervals (Fa,Fb] , [Fa,Fb) , and (Fa,Fb) can be replaced by the closed 
intervals [Fa + 1,Fb] , [Fa,Fb − 1] , and [Fa + 1,Fb − 1] , respectively. Likewise, if 
the other resource y is integer, a similar procedure can be applied to the (half-)
open intervals formed with Fl and Fu . The adaptation of the sets of undominated 
points for the types PD1–PD6b of partial dominance is straightforward for the 
integer case. We refer to this as rounding in the following.

3.2 � Storage and use of partial dominance within labeling algorithms

The advantage of the standard full dominance is that, for each pair of labels F1 
and F2 , it suffices to test  S

2
⊂ D(S

1
) , i.e., (DC1)–(DC4), just once. If the test 

fails, the two partial paths are incomparable and this relation does not change 
in the course of the labeling algorithm. In contrast, if the test  (3) fails at one 
point, the labeling algorithm may generate additional labels such that a new set 
F  may result in a true test  (3), which allows to eliminate F2 . However, repeat-
ing the test  (3) multiple times in the course of the labeling algorithm is highly 
undesirable and typically prohibitively time-consuming. Therefore, a labeling 
algorithm using partial dominance needs to have a mechanism that sequentially 
compares every two labels F1 and F2 only once, and stores in a cumulative fashion 
the (intermediate) result within the labels.

In general, there are at least the following possibilities to maintain and utilize 
the dominance information for each partial path: 

(1)	 either store one segment,
(2)	 or store two segments,
(3)	 or store a variable number of segments; this can be realized by 
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(a)	 either storing and updating the information in the original label F2,
(b)	 or creating (possibly multiple) new labels.

We first elaborate on possibilities  (1)–(3) and discuss advantages and disadvan-
tages. We then discuss the two variants (a) and (b) to store variable numbers of 
segments for partial paths.

Possibility (1) When a partial path, i.e., the corresponding label, is freshly gen-
erated (at initialization) the segment S describes the undominated set Su = S of 
points with the help of the attributes Fa,Fb,Fl , and Fu . A consequence of storing 
a single segment only is that, if a label F1 partially dominates F2 , then Fa

2
,Fb

2
,Fl

2
, 

and Fu
2
 should again describe the resulting set of undominated points Su

2
 . This can 

be realized by directly modifying the values Fa
2
,Fb

2
,Fl

2
, and Fu

2
 accordingly (see 

Table 2).
Overall, such an implementation of partial dominance gradually reduces the 

set of undominated points Su
2
 of a label F2 by replacing Su

2
 with Su

2
⧵D(S

1
) whenever 

a label F1 partially dominates it (and Su
2
⧵D(S

1
) is a single segment). The new cri-

terion to test whether F2 becomes redundant, i.e., completely dominated by (one 
or) several labels in the sense of Proposition 2, is Su

2
⊂ D(S

1
) for some label F1.

An immediate advantage of this type of implementation is that no additional 
information needs to be maintained. However, it has the following disadvantages: 

	 (i)	 It can only rely on dominance from the left (PD1 and PD2) and from the right 
(PD3 and PD4), because only in these cases a single segment describes the 
set of undominated points Su

2
 . Dominance over central pieces (PD5, PD6a, and 

PD6b) produces two segments of undominated points and is therefore not com-
patible with possibility (1). Neglecting partial dominance over central pieces 
obviously weakens the overall dominance. An additional undesirable effect 
is the following: The order of pairwise comparisons influences the overall 
outcome. More precisely, the resulting set of undominated points Su of a label 
F can be different for two different orders of comparison with other labels. 
Figure 4a shows an example with three segments S

1
 , S

2
 , and S

3
 . Segment S

1
 

x

y

S1

S2

S3

(a)

x

y

S1

S2

S3

(b)

Fig. 4   Examples of partial dominance
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partially dominates S
3
 from the left, and S

2
 partially dominates S

3
 over a cen-

tral piece. If the labeling algorithm first compares S
2
 and S

3
 , it neglects this 

fact. The subsequent comparison of S
1
 and S

3
 results in a partial dominance 

of S
1
 over S

3
 from the left. The resulting set of undominated points comprises 

more than half of the original segment S
3
 . If the order of the two pairwise 

comparisons is swapped, partial dominance from the left of S
1
 over S

3
 allows 

the subsequent partial dominance from the left of S
2
 over S

3
 . In comparison, 

the remaining set of undominated points of S
3
 is much smaller.

	 (ii)	 The capability to partially dominate another label can be reduced or lost. Con-
sider the example shown in Fig. 4b. It depicts three segments S

1
 , S

2
 , and S

3
 , 

where segment S
2
 fully dominates S

3
 , and segment S

1
 partially dominates S

2
 

and S
3
 from the left. If first S

1
 partially dominates S

2
 , then S

2
 is updated to 

describe the remaining set of undominated points as highlighted by the thick 
line. Now, the reduced segment S

2
 only partially dominates S

3
 from the right. 

Both S
1
 and S

2
 together are needed to completely dominate S

3
.

Possibility (2) A second type of implementation stores two segments: the initial 
segment S as well as the remaining set Su of undominated points. We assume that the 
initial segment is represented by Fa,Fb,Fl, and Fu . Storing Su can be accomplished 
by introducing four additional attributes Fa,Fb,Fl , and Fu . Note that the two attrib-
utes Fa and Fb are sufficient, because Fu = f (Fa) and Fl = f (Fb) and the function  f  
can be expressed with the original attributes.

This type of implementation is denoted double bookkeeping in the following, 
because it keeps the information about both the largest possible segment for dominat-
ing other labels as well as the segment of undominated points that we want to become 
as small as possible (recall that the label is completely dominated once this set is the 
empty set). Hence, double bookkeeping overcomes the above disadvantage (ii). How-
ever, because the stored information is limited to only two segments, no dominance 
over central pieces can be performed so that disadvantage (i) remains.

Possibility (3) Storing a variable number of segments allows to exactly describe 
the initial segment S as well as the sets of dominated and undominated points of a 
partial path resulting from all possible types of partial dominance (PD1–PD6b), in 
particular including dominance over a central piece. Formally, if partial domination 
has been performed with a subset F  of labels F1 ∈ F  , then the set of undominated 
points is

and may consist of up to |F| + 1 segments. Alternatively, storing the complement 
S
2
∩
⋃

F1∈F
D(S

1
) , i.e., the set of dominated points, may require representing |F| seg-

ments. If S
2
 is given, dominated points can be reproduced from undominated points, 

and vice versa. We can formalize the set of undominated points of a partial path with 
the help of a variable number K of sub-segments S1,u,… , SK,u with Su =

⋃K

k=1
Sk,u.

Partial dominance can then be realized similar to possibilities  (1) and  (2) by 
gradually reducing the set of undominated points Su . This requires updating all 

Su
2
= S

2
⧵
⋃

F1∈F

D(S
1
)
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sub-segments S1,u
2
,… , S

K,u

2
 accordingly. In particular, in each update, some sub-seg-

ments may remain unchanged, some sub-segments may become empty sets (and can 
be eliminated), some sub-segments may be reduced (if dominated from the left or 
from the right), and some sub-segments may decompose into two new sub-segments 
(if dominated over central pieces).

Overall, this type of representation overcomes both of the above disadvantages (i) 
and (ii). The drawback is that the number of sub-segments is variable, which is more 
complex to implement. Even more, it requires the allocation and deallocation of 
memory during the dominance algorithm slowing down the computational speed in 
which the dominance algorithm can be completed. Note that the dominance is typi-
cally the most time-critical part of a labeling algorithm.

We now comment on the two possibilities to represent variable numbers of seg-
ments for partial paths.

Possibility (a) A first type of implementation maintains the classical one-to-one 
correspondence between partial paths and labels. All initial and intermediate infor-
mation about a partial path, its capability to dominate other labels, and its own state 
of being partially dominated are stored within a single label (the original label cre-
ated at initialization) whose attributes are updated whenever it is partially domi-
nated by other labels. In particular, in each label the segment S is represented and 
maintained using the original attributes Fa,Fb,Fl, and Fu . Furthermore, the K sub-
segments (Sk,u)K

k=1
 can be described with 4K additional values (Fk,a,Fk,b,Fk,l,Fk,u)K

k=1
 

(again 2K values (Fk,a,Fk,b) suffice, since Fk,l = f (Fk,b) and Fk,u = f (Fk,a) and f  is 
known). At initialization, the assignments K = 1 and S1,u = S have to be made, i.e., 
F1,a = Fa,F1,b = Fb,F1,l = Fl , and F1,u = Fu.

The main advantage of possibility  (a) is that all information of a partial path 
is stored only once (non-redundant, memory efficient). A disadvantage is that it 
requires a variable-sized representation of the sub-segments of either dominated or 
undominated points of the segment S . This may be time-critical when labels them-
selves are stored in dynamically allocated memory and their variable-sized attributes 
are also stored in dynamically allocated memory. Moreover, the pairwise compari-
son is more intricate from a implementation point of view.

Possibility (b) In contrast, some works mention that they create several labels per 
partial path when convenient for storing the information about partial domination or 
in the presence of multiple extensions per arc, e.g., when items can alternatively be 
loaded in different compartments of a vehicle (Cherkesly and Gschwind 2022; Aerts-
Veenstra et al. 2023). An alternative type of implementation could, for example, use 
labels like with double bookkeeping in possibility (2). Instead of restricting partial 
dominance to PD1–PD4, partial dominance over central pieces can be established 
by creating a new copy F′

2
 of a label F2 whenever two sub-segments are created 

from one sub-segment of undominated points. One sub-segment is then stored in 
the original label F2 and the other sub-segment in the new copy F′

2
 . In general, with 

this implementation, a partial path with set of undominated points Su =
⋃K

k=1
Sk,u is 

represented by K labels, one for each sub-segment (Sk,u)K
k=1

 . In the spirit of double 
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bookkeeping, each label maintains the initial segment S using the original attributes 
Fa,Fb,Fl, and Fu and its corresponding sub-segment Sk,u with the additional attrib-
utes Fa,Fb,Fl , and Fu.

3.3 � Implementation details of our labeling algorithm

Concerning possibilities  (a) and (b) to represent variable numbers of segments in 
partial dominance, we see no strong point in possibility (b) except for being rather 
simple to code. In comparison, possibility (a) allows to keep all information about a 
partial path within a single label.

Regarding the alternatives  (1)–(3) to maintain and utilize dominance informa-
tion, the main question is whether or not partial dominance over a central piece is 
essential. To answer this question, we recommend to conduct pretests to quantify 
how often the partial dominance types  PD5, PD6a, and PD6b occur compared to 
partial dominance from the left and from the right. On the basis of such pretests (see 
also Sect. 4), we decided not to consider partial dominance over a central piece in 
our BPC algorithms. The additional computational overhead to cope with a variable 
number of segments is high. In comparison, the impact caused by additional domi-
nance was low, i.e., we did not see a strong reduction in the number of labels and 
dominance tests when omitting partial dominance over a central piece.

It is clear that double bookkeeping, i.e., possibility (2), leads to a stronger domi-
nance compared to possibility  (1). The necessary addition of the (often integer) 
attributes Fa,Fb,Fl , and Fu to a label F is rather harmless for a computer imple-
mentation; the main effect is a slightly higher memory consumption and, as a conse-
quence, a possible higher number of cache misses.

There is one more refinement related to double bookkeeping that we would like 
to discuss now. Recall that the resources whose dependency is described by the seg-
ment are problem-specific. Independent from a specific problem, the segment of a 
given label Fi referring to a vertex i is typically used to define the segment of an 
extension to a vertex j represented by label Fj . REFs Refij are used for this purpose 
(see Sect. 4 for examples), i.e., (Fa

j
,Fb

j
,Fl

j
,Fu

j
) = Refij(F

a
i
,Fb

i
,Fl

i
,Fu

i
) . This offers the 

opportunity to initialize the set of undominated points Su
j
 for a newly created label Fj 

based on information about partial dominance of its predecessor Fi . The related 
attributes are computed with the same REFs as

The advantage is that labels Fj with a smaller set of undominated points Su
j
 can be 

eliminated sooner, i.e., with less applications of partial dominance.
In summary, we have chosen possibility  (2), i.e., double bookkeeping, together 

with the refinement that undominated sets of points are propagated with REFs.

(F
a

j
,F

b

j
,F

l

j
,F

u

j
) = Refij(F

a

i
,F

b

i
,F

l

i
,F

u

i
).
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4 � Two variants of the VRPTW

In this section, we present two variants of the VRPTW with tradeoff resources and 
discuss the application as well as specific adaptations of the theory from Sect. 3 to 
these variants. First, we formally define the VRPTW as the base problem of the 
considered variants and introduce the common notation, followed by a description 
of the two variants, namely the EVRPTW and the SDVRPTW. For convenience, we 
use the same notation, e.g., for index sets, for all variants even though their defini-
tion may be slightly different. The correct meaning should be clear from the con-
text. We then describe the use of partial dominance within the labeling algorithms to 
solve the pricing subproblems of column-generation approaches for the EVRPTW 
and the SDVRPTW.

The VRPTW can be defined on a directed graph G = (V ,A) . The vertex set 
V = N ∪ {o, d} comprises the customer vertices N and two copies o and d of the 
depot. A travel time tij and routing cost cij are associated with each arc (i, j) ∈ A . Both 
travel times and routing costs are assumed to satisfy the triangle inequality. For each 
vertex i ∈ V  , a non-negative demand qi , a service duration si , and a time window 
[ei, li] in which the service must start are given. We assume qo = qd = si = si = 0 for 
the depot copies o and d . A fleet K of homogeneous vehicles each with a capacity of 
Q is available at the common depot to serve the customers. The VRPTW is the prob-
lem of finding at most |K| vehicle routes such that the total routing cost is minimized, 
each customer is served by exactly one route, and each route is feasible, i.e., it is an 
elementary o-d-path in G satisfying the capacity and time-window constraints. For 
further details on the VRPTW and its solution by BPC-based approaches, we refer 
to Costa et al. (2019).

The EVRPTW is an extension of the VRPTW that takes into account the lim-
ited driving range of electric commercial vehicles and the possibility of recharg-
ing the vehicle’s battery en route at recharging stations. We consider two vari-
ants of the EVRPTW that employ a so-called partial recharging policy where 
any amount of energy can be recharged when visiting a recharging station. The 
two variants differ in the number of allowed recharges per route: at most a single 
(S) or multiple (M) recharges are allowed. They are referred to as EVRPTW-
S and EVRPTW-M, respectively, in the following. To model these EVRPTW 
variants, the set R of recharging stations can be added to the vertex set V  , i.e., 
V = N ∪ {o, d} ∪ R . Each vehicle in the homogeneous fleet is equipped with an 
electric battery of maximum capacity B . Moreover, each arc (i, j) ∈ A is associ-
ated with an energy consumption bij . As described by Desaulniers et al. (2016b), 
we assume that the battery capacity and the energy consumptions are given in 
recharging time units so that, e.g., B equals the time to fully recharge a com-
pletely empty battery. In particular, there is a one-to-one relationship between 
the recharging duration and the amount of recharged energy, i.e., recharging for 
Δ units of time increases the state of charge (SoC) by exactly Δ units. A route 
is feasible in the EVRPTW, if it is feasible for the underlying VRPTW (timing 
constraints now include also recharging times) and the SoC is never negative or 
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greater than the battery’s capacity B . In addition, the number of recharges per 
route must comply with the recharging policy (S or M). Also the EVRPTW has 
the objective of minimizing the total routing cost. A detailed description of the 
considered EVRPTW variants and corresponding BPC algorithms for their solu-
tion can be found in Desaulniers et  al. (2016b), Desaulniers et  al. (2020) and 
Duman et al. (2021).

The SDVRPTW is a relaxation of the VRPTW in which customers may be visited 
more than once, i.e., the customer demands can be satisfied through multiple visits by 
different vehicles. This also allows finding feasible solutions to instances with customer 
demands qn > Q . Contrary to the VRPTW, a route in the SDVRPTW is not only char-
acterized by a sequence of customers but also by a corresponding delivery pattern � 
which specifies the quantities d�n delivered to each customer n visited on the route. 
A route is capacity-feasible if the sum the quantities d�n does not exceed the vehicle 
capacity Q . Each customer’s demand must be fulfilled by the sum of received delivery 
quantities of all routes. Again, the objective is the minimization of the total routing 
cost.

Desaulniers (2010) proposed a BPC approach to the SDVRPTW in which only 
routes with extreme delivery pattern have to be explicitly considered. In an extreme 
delivery pattern, only one customer n receives a split delivery, i.e., 0 < d𝜌n < qn . All 
other customers receive either a zero delivery ( d�n = 0 ) or a full delivery ( d�n = qi ). 
Routes with general delivery patterns are considered implicitly in the RMP by convex 
combinations of routes with extreme delivery patterns. For details we refer to Desaul-
niers (2010), Archetti et al. (2011).

4.1 � Labeling with partial dominance for the EVRPTW

We now show how partial dominance can be used in the labeling algorithm 
proposed by Desaulniers et  al. (2016b) to solve the elementary SPPRC pricing 
problem of the EVRPTW. After visiting a recharging station, there is a trade-
off between time and SoC: the more energy to charge, the later the time, but the 
higher the SoC. Since the amount to be recharged, i.e., the recharging duration, 
depends on the part of the partial path after this recharging station, it can only 
be determined a posteriori. Consequently, the labels must maintain the relevant 
tradeoff segment of feasible times, which implies different recharging durations 
and achievable SoCs. If no recharging station has been visited on the partial path, 
there is no tradeoff, i.e., the segment reduces to a single point. For the sake of 
brevity, we only briefly discuss the resources and dominance rules used in the 
original algorithm. We also limit the presentation to the forward part of the labe-
ling, since the backward labeling is similar. For more details on the original labe-
ling algorithm, see Desaulniers et al. (2016b).

A partial path p starting at the origin depot o and ending at vertex i ∈ V  is 
represented by a label Fi = (Fcost

i
,Fload

i
, (F

custn
i

)n∈N ,F
rch
i
,FtMin

i
,FtMax

i
,FrtMax

i
) . The 

6 + |N| components of the label have the following meaning: 

Fcost
i

:	� the reduced cost of path p;
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Fload
i

:	� the accumulated customer demands along path p;

F
custn
i

:	� for each n ∈ N , the number of times customer  n has been visited along 
path p;

Frch
i

:	� the number of recharges performed along path p;

FtMin
i

:	� the earliest service start time at vertex i assuming that, if a recharging sta-
tion is visited prior to i along p , a minimum recharge that ensures battery 
feasibility up to i has been performed;

FtMax
i

:	� the earliest service start time at vertex i assuming that, if a recharging sta-
tion is visited prior to i along p , a maximum recharge respecting time-win-
dow feasibility up to i has been performed;

FrtMax
i

:	� with the artificial assumption that recharging is possible at all verti-
ces, FrtMax denotes the maximum possible recharging duration at vertex  i 
assuming that, if a recharging station is visited prior to i along p , a mini-
mum recharge that ensures battery feasibility up to i has been performed. 
Note that this assumption is used only to propagate the information along 
the path, but a real recharge never occurs at a customer.

 To simplify the notation, we omit the index  i of the residing vertex so that we 
write, e.g., Fcost instead of Fcost

i
.

Instead of modeling the SoC directly, Desaulniers et al. implicitly represented 
it by the maximum feasible additional recharging duration FrtMax (= maximum 
feasible amount of energy to be recharged) with respect to the earliest service 
start time FtMin at the current vertex. With this representation, for both tradeoff 
resources time and maximum possible recharging duration, smaller values are 
preferable. Therefore, the theory of Sect. 3 is immediately applicable to realize 
partial dominance. Moreover, by the above definition of the battery related data 
(capacity, consumption, and recharging rate), the negative slope of all tradeoff 
functions is m = 1 , which simplifies the representation and dominance conditions. 
As a result,

so that only the three attributes FtMin,FtMax,FrtMax are needed to describe the trade-
off and the corresponding segment. The classical dominance rule of Desaulniers 
et al. (2016b) for pairwise dominance is as follows. Let F1 and F2 be two labels rep-
resenting partial paths ending at the same vertex i . Label F1 dominates F2 , if

Fa = FtMin,

Fb = FtMax,

Fl = FrtMax − (FtMax − FtMin),

Fu = FrtMax,
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In the EVRPTW-S, Frch
1

≤ Frch
2

 is additionally required. Since segments have iden-
tical slope with m1 = m2 = 1 , conditions  (DC1)–(DC3) imply condition  (DC4). 
Alternatively, one could require conditions (DC1), (DC2), and (DC4), which imply 
condition (DC3).

Having identical slopes also simplifies partial dominance between two trade-
off segments. First, the two segments can never have a proper intersection (see 
Sect. 3.1.2) meaning that only PD1 and PD3 are relevant (recall that we do not 
employ partial dominance over a central piece). Second, also the identification of 
them is simplified. For PD1, conditions (DC1) and (DC3) are fulfilled (implying 
(DC4)), while condition (DC2) is violated. For PD3, conditions (DC2) and (DC3) 
are fulfilled (implying (DC4)), while condition  (DC1) is violated. Furthermore, 
the determination of the undominated points is simplified (see Table  2), since 
the tradeoff function and its inverse are identical with (negative) slopes given by 
m = 1.

Finally, for time windows and travel times defined by integer values, all battery 
related data can also be assumed to be integer. Thus, the feasible domains of the 
tradeoff resources time and SoC can be reduced to integers, and rounding can be 
applied to the segments in partial dominance as described in Sect. 3.1.2. The inte-
ger assumption is satisfied for the standard benchmark instances of the EVRPTW 
used in the computational experiments presented in Sect. 5.

4.2 � Labeling with partial dominance for the SDVRPTW

In the following, we detail the application of partial dominance to the labeling algo-
rithm of Desaulniers (2010) for pricing routes and associated extreme delivery pat-
terns for the SDVRPTW. Here, the pricing subproblem is an elementary SPPRC com-
bined with the linear relaxation of a bounded knapsack problem. Since there is a dual 
price for each unit to be delivered to a customer, there is a tradeoff between the two 
resources vehicle load and reduced cost: The question of how much to deliver to the 
(unique) customer receiving a split delivery is, in turn, the question of how much to 
earn from each unit delivered. Similar to the recharging duration in the EVRPTW, 
the quantity to be delivered is not known when visiting the split customer. Therefore, 
the label represents this tradeoff with a segment indicating the possible vehicle load 
(implying the delivery quantity to the split customer) and the achievable reduced cost. 
If no split delivery has been made along a partial path, there is no tradeoff, resulting in 
a single-point segment.

For brevity, we only present the attributes of a label and the dominance rules of 
the original algorithm only for the case of forward labeling (backward labeling is 

Fcost
1

≤ Fcost
2

,

Fload
1

≤ Fload
2

,

F
custn
1

≤ F
custn
2

∀ n ∈ N,

and (DC1)–(DC3).
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symmetric with respect to the tradeoff). A partial path p from source o to a vertex i ∈ V  
is represented by a label Fi = (Fcost

i
,Ftime

i
,Fload

i
, (F

custn
i

)n∈N ,F
split

i
,FsMax

i
,Fs�

i
) with 

6 + |N| components defined as follows: 

Fcost
i

:	� the reduced cost of path p without the cost for a potential split delivery;

Ftime
i

:	� the earliest service start time at vertex i;

Fload
i

:	� the accumulated customer demands of full deliveries along path p;

F
custn
i

:	� for each n ∈ N , the number of times customer n has been visited along path 
p;

F
split

i
:	� binary indicator whether or not a split delivery has occurred on path p;

FsMax
i

:	� the maximum quantity that can be delivered to the split delivery customer 
on path p;

Fs�
i

:	� dual price per unit delivered to the split delivery customer on path p.

Smaller values are preferable for both tradeoff resources load and reduced cost. As 
a result, the theory of Sect. 3 is also applicable here, and the segment describing the 
tradeoff in the SDVRPTW is defined by

which are given by the four components Fload , Fcost , FsMax , and Fs� where the lat-
ter describes the negative slope m . However, unlike for the EVRPTW, the negative 
slopes given by m = Fs� are generally different for different labels so that a proper 
intersection is possible. Consequently, no direct simplifications can be made.

The classical rule of Desaulniers (2010) for pairwise dominance is as follows: Let 
F1 and F2 be two labels representing partial paths ending at the same vertex i , then 
label F1 dominates F2 , if

Fa = Fload,

Fb = Fload + FsMax,

Fl = Fcost − FsMaxFs� ,

Fu = Fcost,

Ftime
1

≤ Ftime
2

,

F
split

1
≤ F

split

2
,

F
custn
1

≤ F
custn
2

∀ n ∈ N,

and (DC1)–(DC4).
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For partial dominance between labels, all types PD1–PD6b are relevant. Finally, it is 
known that, for each SDVRPTW instance, there exists an optimal solution in which 
all delivery quantities are integer, under the precondition that all demand values and 
the vehicle capacity are integer (Archetti et al. 2006). The integer assumption is sat-
isfied for the standard benchmark instances used in Sect. 5, so that rounding is appli-
cable as described in Sect. 3.1.2.

5 � Computational results

In this section, we report an extensive computational study of partial dominance 
within the BPC algorithms for the EVRPTW and the SDVRPTW. The two BPC 
algorithms were implemented in C++ and compiled into 64-bit single-thread code 
with MS Visual Studio 2019. CPLEX 20.10 with default parameters (except for the 
time limit and allowing only a single thread) was used to reoptimize the RMPs. All 
computations were performed on the high performance computing cluster Elwe-
tritsch of the RPTU Kaiserslautern-Landau, consisting of several Intel Xeon Gold 
6126 processors running at 2.60 GHz. Note that the performance of a single thread 
on the cluster is comparable to that of a standard desktop processor.

5.1 � BPC algorithms

The BPC algorithms for the EVRPTW and the SDVRPTW share the same code 
basis, which is adapted to each of the problem variants. The base code uses several 
acceleration techniques that are well established in the literature. For the EVRPTW, 
the computational setup of the BPC algorithm is completely identical to that used in 
Desaulniers et al. (2020). For the SDVRPTW, a modified setup seems more favora-
ble. Both computational setups are summarized below.

Pricing To speed up the pricing, we apply bidirectional labeling with a dynamic 
half-way point using the time as the monotone resource (Tilk et  al. 2017), i.e., 
FtMin for the EVRPTW and Ftime for the SDVRPTW. Furthermore, instead of solv-
ing the strongly NP-hard elementary versions of the SPPRCs, we rely on the well-
known ng-path relaxations of them (Baldacci et al. 2011). In our implementation, 
the neighborhood sizes are set to 14 (EVRPTW) and 4 (SDVRPTW). In addition, 
we use the concept of unreachable customers who cannot be reached due to their 
resource levels (Feillet et al. 2004). We use pricing heuristics based on families of 
arc-reduced networks as proposed by Desaulniers et al. (2008), where the networks 
have a limited number of incoming and outgoing arcs for each customer vertex. The 
number of arcs chosen in our implementation are 2, 5, 10, 15 (EVRPTW) and 3, 10 
(SDVRPTW). For the SDVRPTW, we additionally consider another heuristic pric-
ing strategy that only allows full deliveries and zero deliveries to customers, i.e., 
split deliveries are disregarded, resulting in an SPPRC without tradeoffs. The latter 
strategy is combined with the arc-reduced networks. Finally, our labeling algorithms 
are based on a bucket-based implementation using a one-dimensional bucketing on 
the time resource (Sadykov et al. 2021).
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Valid Inequalities To strengthen the linear relaxation of the master program, 
rounded capacity inequalities (RCIs, Naddef 2002) and subset-row inequalities 
(SRIs, Jepsen et al. 2008) are added as two families of valid inequalities. Violated 
inequalities are separated only at the root node (level zero) for the EVRPTW and 
up to level one of the search tree for the SDVRPTW. For the SDVRPTW, additional 
inequalities that upper bound the flow by one on every pair of anti-parallel customer 
arcs are also dynamically added (see Desaulniers 2010,  Corollary 2, Eq.  (7), and 
Sect. 5.2.2). The separation procedures add inequalities to the RMP only if they are 
violated by at least 0.05.

RCIs are robust cuts because their dual prices can be incorporated by modify-
ing the reduced cost of the associated arcs; they do not change the structure of the 
pricing problem. For the SDVRPTW, RCIs are critical to the overall performance 
of our BPC algorithm and are, therefore, extensively separated using the extended 
and greedy shrinking heuristics of Ralphs et al. (2003), the route-based algorithm 
of Archetti et al. (2011) for the SDVRPTW, and using an exact mixed-integer pro-
gramming (MIP) formulation following the ideas of Martinelli et  al. (2013). The 
route-based algorithm is invoked only when the shrinking heuristics fail to find a 
violated RCI. Similarly, the MIP is only used if the route-based algorithm also fails 
to identify a violated RCI. To avoid prohibitively long computation times, CPLEX is 
given a hard time limit of 10 s for solving the MIP. For the EVRPTW, RCIs are less 
important and only the shrinking heuristics are used.

SRIs are non-robust cuts so that, for each active SRI, an additional resource needs 
to be added in the labeling algorithms making the pricing problem more difficult 
to solve. Therefore, we use the limited memory variant of the SRIs as proposed by 
Pecin et al. (2017a). Furthermore, as done in most works, we limit ourselves to SRIs 
with row sets of size three. Our implementation uses the same separation algorithm 
and vertex memory as presented by Pecin et al. (2017b).

Branching Branching is necessary to finally ensure integer solutions. For the 
EVRPTW, we use the hierarchical branching scheme of Desaulniers et al. (2016b), 
i.e., we branch on (i) the total number of routes, (ii) the total number of recharges, 
(iii) the total number of recharges at a recharging station, and (iv) the total flow on 
an arc.

For the SDVRPTW, we use the scheme of Desaulniers (2010), i.e., we branch on 
(i) the total number of routes, (ii) the total number of visits to a customer, (iii) the 
total flow on an arc, and (iv) whether two arcs are used in succession.

On all levels, we select a branching variable with fractional value closest to 0.5. 
The search tree is explored using a best-bound first node selection strategy.

For the SDVRPTW, we additionally apply strong branching as follows. In each 
node of the search tree, a set of branching candidates is selected by considering a 
given number of branching variables with the largest fractional values. For each can-
didate, a rough evaluation of both child nodes is performed by solving the RMP with 
the corresponding branching constraint without any column generation. The most 
promising candidate is selected according to the product rule proposed by Achter-
berg (2007). At the root node, the maximum size of the candidate set is 15, and the 
size of the candidate set decreases by two for each level of the search tree. How-
ever, the minimum size of the candidate set is five. Note that this implementation of 
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strong branching, i.e., no pricing in the evaluation of the candidates, decreases the 
share of the total time that is spent in pricing and, thus, reduces the impact of partial 
dominance on the overall performance.

5.2 � Instances

Our computational study uses the standard benchmark instances for the EVRPTW 
and SDVRPTW from the literature. Both instance sets extend the well-known 
(Solomon 1987) benchmark for the VRPTW. The original benchmark consists of 
56  instances with 100  customers each. For each instance, two smaller instances 
were derived by considering only the first 25 and 50 customers, respectively. The 
benchmark consists of six groups with instances characterized by different geo-
graphical distributions of the customers, namely clustered  (C), random  (R), and 
a mixture of both (RC). Also, different lengths of the scheduling horizon, namely 
short horizon with narrow time windows  (series  1) and long horizon with wide 
time windows (series  2). In all instances, the common depot hosts an unlimited 
fleet of homogeneous vehicles with capacities varying between 200 and 1000.

EVRPTW Instances The Solomon instances were adapted to the EVRPTW by 
Schneider et al. (2014). They introduced 21 randomly positioned recharging stations 
together with battery capacities for the vehicles, consumption and recharging rates, 
and modified time windows for some customers. For more details we refer to Sch-
neider et  al. (2014). The EVRPTW benchmark comprises a total of 56 × 3 = 168 
instances. The online supplement of Desaulniers et  al. (2016b) provides instance 
files that directly include all necessary parameters in a precomputed and rounded 
form. Best-known solutions are taken from Desaulniers et al. (2020).

SDVRPTW Instances Desaulniers (2010) adapted the original Solomon bench-
mark to the SDVRPTW. To foster split deliveries, the modified instance set consid-
ers three smaller values Q = {30, 50, 100} for the vehicle capacity for each original 
instance. The total number of SDVRPTW instances is therefore 56 × 3 × 3 = 504 . 
Travel times and routing costs between all pairs of vertices are set to the Euclid-
ean distance, rounded down to one decimal place. Since the triangle inequality is 
assumed to hold for both, the resulting travel time and routing cost matrices must 
be further processed. We follow the approach of Bianchessi and Irnich (2019), who 
compute shortest paths between all pairs of vertices using the travel times (including 
customer service times at the tail of each arc) and independently the routing costs.

Table 3   Percentage of the 
created labels that have a proper 
tradeoff

Instance size n

Problem 25 50 100 All

EVRPTW-S 31.07 33,96 33.66 32.87
EVRPTW-M 44.96 47.78 45.98 46.23
SDVRPTW 56.85 63.83 66.13 62.14



1088	 S. Faldum et al.

1 3

5.3 � Analysis of ratio of labels with tradeoff

In a first experiment, we evaluate the potential of partial dominance for the three 
VRPTW variants. To this end, we analyze how often feasible labels with a trade-
off are created. Table 3 provides an overview for the three VRPTW variants aggre-
gated by instance size n. It shows the geometric mean of the percentage of labels 
with a proper tradeoff out of all created labels over the respective instances. The 
numbers reveal that the differences are mainly between the problem variants rather 
than between instances of different sizes. For the EVRPTW-S, the share of labels 
with a tradeoff is only about one-third, while this number is nearly double for the 
SDVRPTW. With a percentage of labels with a tradeoff of 46.23%, the EVRPTW-M 
is in between the two variants.

These differences are due to the nature of the considered problems. They become 
particularly pronounced because of the bidirectional labeling: For the EVRPTW-S, 
a proper tradeoff only results if the single allowed visit to a recharging station has 
been performed. With multiple recharging visits allowed, longer routes – all con-
taining visits to recharging stations – become battery feasible in the EVRPTW-M, 
which increases the share of tradeoff labels. In the bidirectional labeling approach, 
these long routes are always broken down into a shorter forward and a shorter back-
ward partial path. As a result, tradeoffs occur less often. For the SDVRPTW, the 
extension to any customer may result in a tradeoff.

Overall, we expect that partial dominance should have a much more positive 
effect on the performance of the BPC algorithm for the SDVRPTW than for the 
EVRPTW variants. Of the two latter variants, the EVRPTW-M is expected to ben-
efit more than the EVRPTW-S. On the other hand, the differences in the percentages 
of labels with a tradeoff are negligible for different instance sizes within the same 
problem variant. Note that the same holds true also when considering alternative 
groupings by instance characteristics (e.g., we analyzed the groups C, R, and RC as 
well as series 1 and 2 without finding significant dependencies).

5.4 � Comparison on identical pricing instances

In a second experiment, we evaluate the impact of using partial dominance over 
classical pairwise dominance within SPPRC labeling algorithms. There are two 
main opposing effects that affect the performance: On the one hand, partial domi-
nance allows more labels to be eliminated, resulting in fewer total labels and fewer 
dominance comparisons, the number of which is quadratic in the number of labels. 
On the other hand, the individual dominance comparisons between labels are more 
complex in the case of partial dominance. Furthermore, the implementation of par-
tial dominance comes with some additional overhead due to the additional resources 
required in the labeling. In general, it is not clear a priori, which of the two effects 
prevails and whether partial dominance pays off at the end.
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Fig. 5   Geometric mean of ratios of the number of created labels (-L), the number of dominance tests 
(-D), and the solution time (-T) for either all pricing problems solved (AP) or only exact pricing over the 
full network (EP). Results are grouped according to total runtimes ≥ t
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A fair comparison of two different SPPRC labeling algorithms is delicate, 
because already one different route generated by one of the algorithms is likely to 
result in a completely different overall trajectory of the BPC algorithm. To elimi-
nate such effects, which may distort the true behavior, we implemented a special 
version of the BPC algorithm in which the same dual solution is always passed to 
both SPPRC labeling algorithms, i.e., to the classical labeling algorithm using only 
pairwise dominance and to the labeling algorithm using partial dominance. Only the 
routes generated by one of the algorithms are passed to the RMP. To further reduce 
possible side effects due to the order in which the different labeling algorithms are 
executed, we perform an additional warm-up run of each algorithm before execut-
ing the run for which data is tracked (in particular, we noticed that warm-up runs 
improve the stability and replicability of the recorded computation times). In this 
setting, each individual pricing problem is thus solved four times in a row, and 
extend the maximal total computation time to four hours per instance. Note that the 
total computation times achieved in this particular setting do not reflect real-world 
solution times.

Figure 5 summarizes the comparison for the EVRPTW-S, the EVRPTW-M, and 
the SDVRPTW. It shows the number of feasible labels generated (-L), the number 
of dominance tests performed  (-D), and the solution time  (-T). All three indica-
tors are presented as the ratio of the number of the labeling with partial dominance 
divided by those of the labeling with classical pairwise dominance. The informa-
tion in Fig. 5 is aggregated as follows. For each instance, we compute the geomet-
ric means over the pricing iterations so that each iteration contributes equally. We 
then take the geometric means over the instances (again, each instance contributes 
equally). In addition, we present results not only for all pricing (AP) iterations but 
also for exact pricing (EP) iterations only. Typically, only very few EP iterations are 
necessary within the BPC algorithm, but they often consume the majority of the 
total computation time. Therefore, the information related to EP iterations is better 
suited to reflect the impact of partial dominance on the BPC algorithms.

In addition, Fig. 5 groups the results for different subsets of instances according 
to their solution time. The underlying data is available in tabular form in the appen-
dix. For example, there are n = 362 SDVRPTW instances with a runtime of at least 
one second ( ≥ 1 ) shown in Fig. 5c. Finally, the results shown in Fig. 5 refer to the 
root node solution only. The results for the extended root node (root plus cuts) and 
the full BPC algorithm are very similar so that we omit them.

We highlight three main observations from Fig.  5: First, partial dominance is 
never detrimental for any of the considered VRPTW variants and labeling algo-
rithms. Second, the positive effect of partial dominance is much stronger for the 
SDVRPTW (Fig. 5c) and weaker for the two EVRPTW variants, with the EVRPTW-
M (Fig. 5b) benefiting more than the EVRPTW-S (Fig. 5a). This is in line with the 
analysis performed in the previous section. Third, the general trends are the same 
for all three problem variants: The effect of partial dominance is stronger for EP 
than for AP. More difficult instances, i.e., those with longer solution times, benefit 
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more. The smallest effect (=largest ratios) is obtained for the number of labels, the 
strongest for the number of dominance tests (recall that their number is quadratic in 
the number of labels), and the actual savings in computation time lies between the 
latter two. The explanation is that with the more complex dominance tests, labeling 
with partial dominance cannot translate the savings in dominance tests to savings in 
computation times in a one-to-one fashion.

We can quantify the benefits of partial dominance for solving individual pric-
ing problem instances: For the SDVRPTW, about 20% (30%) of the computation 
time can be saved when considering AP iterations (EP iterations). These numbers 
increase to approximately 30% (AP) and 40% (EP) for the most difficult instances. 
For the EVRPTW variants, the savings are much smaller, as only about 2% to 5% of 
the computation time can be saved on average across all EVRPTW instances. For 
the more difficult instances, savings of up to 6% (EVRPTW-S) and 10% (EVRPTW-
M) are possible in the EP iterations.

In summary, our results on identical pricing instances suggest that the applica-
tion of partial dominance should lead to a noticeable/significant improvement in the 
overall BPC algorithm for the SDVRPTW. For the EVRPTW, however, the effect is 
expected to be small.

5.5 � Comparison on individual BPC runs

In a final experiment, we evaluate the performance of the BPC algorothm with par-
tial dominance compared to an otherwise identical BPC algorithm that uses only the 
classical pairwise dominance. To be conform with other works from the literature, 
we allow up to two hours of computation time for the EVRPTW and one hour for 
the SDVRPTW. In the light of Sect. 5.4, we restrict the evaluation to the EVRPTW-
M and the SDVRPTW.

Fig. 6   Performance profiles of individual runs of the BPC algorithms with partial dominance and with 
only classical pairwise dominance. Note that the abscissa has a logarithmic scale
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The performance profiles of the two BPC algorithms are shown in Fig. 6a for the 
EVRPTW-M and in Fig. 6b for the SDVRPTW. The performance profile of an algo-
rithm specifies the number of instances solved by that algorithm within � times the 
time taken by the fastest algorithm in an instance-by-instance comparison (Dolan 
and Moré 2002).

For both variants, the performance profiles reveal that the BPC using partial 
dominance is superior to the one using only classical pairwise dominance. While 
the difference is rather small for the EVRPTW-M, a substantial advantage of partial 
dominance is evident for the SDVRPTW. For the latter, an average reduction of 20% 
of the total BPC computation time is achieved. Even higher savings of 30% result 
for the more difficult instances requiring more than 600 s of computation time. This 
result is consistent with what we reported for identical pricing instances in the previ-
ous section. The results also show that the BPC algorithm with partial dominance 
is able to solve more instances to proven optimality (132 vs. 131 for the EVRPTW-
M and 293 vs. 288 for the SDVRPTW) than the BPC algorithm with only classi-
cal pairwise dominance. Note that unlike in the identical pricing case, where partial 
dominance was consistently always better, the picture here is more mixed, i.e., there 
are several instances where the BPC algorithm with classical pairwise dominance is 
the faster algorithm. This can be explained by generally different trajectories of the 
algorithms (caused by different dual solutions, the use of separation heuristics, and 
different branching decisions) resulting from different columns being priced out in 
some iterations.

6 � Conclusions

A crucial building block of column generation based solution approaches like BPC for 
many VRPs is the effective solution of instances of the SPPRC, which constitute the pric-
ing subproblems of the overall approach. The focus of this paper has been on SPPRCs 
with tradeoffs between resources. For these type of problems, partial dominance can 
improve the classical pairwise dominance between labels that is typically employed 
in labeling algorithms to solve variants of SPPRCs. Partial dominance allows labels to 
be dominated by sets of other labels, where each of these labels dominates the former 
only partially, i.e., only for a certain subset of label extensions. The two main (opposing) 
effects of partial dominance are (i) the potential to dominate more labels implying that 
overall less labels are created and less dominance comparisons are necessary; and (ii) a 
more complex dominance rule to be tested.

We have studied in detail the most basic tradeoff between two resources, namely a 
tradeoff with a single linear piece: We have provided a formal characterization of the cor-
responding tradeoff segments and have derived a unified partial dominance rule to be used 
in ad hoc labeling algorithms for solving SPPRCs with such a tradeoff. Furthermore, we 
have discussed issues related to the practical implementation of partial dominance. The 
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application of partial dominance has been exemplified for two variants of the EVRPTW 
with a partial recharge policy and the SDVRPTW, two important variants of VRP.

Computational results on standard benchmark instances for the considered problems 
have revealed the following main insights. On a per pricing problem basis, i.e., on truly 
identical instances of SPPRCs, we have found that the labeling algorithms applying par-
tial dominance never performed worse than their counterparts with classical pairwise 
dominance. Furthermore, partial dominance has proved more beneficial for the pricing 
problems of the more difficult EVRPTW and SDVRPTW instances. It has also proved 
more beneficial for the EP instances rather than for heuristic pricing iterations on reduced 
networks. Overall, for the SDVRPTW, average speedups of up to 40% (EPs of the more 
difficult instances) could be realized by using partial dominance. For the two EVRPTW 
variants, savings were much smaller. This behavior can be explained by the fact that much 
less labels actually show a tradeoff in the EVRPTW variants (33% and 46%) compared to 
62% in the SDVRPTW. Such a straightforward analysis can, thus, help to a priori estimate 
a potential gain from implementing partial dominance. We leave it to future research to 
conduct related experiments for other problems with a linear tradeoff and a single seg-
ment, such as the dial-a-ride problem with ride-time constraints, the synchronized pickup 
and delivery problem, the truck-and-trailer VRP with quantity-dependent transfer times, 
and the VRP with partial outsourcing (see Sect. 2). In addition, the consideration of non-
linear tradeoffs may be the next step in generalizing partial dominance. The latter is rel-
evant, e.g., for more realistic charging functions for battery electric vehicles.

Finally, we have found that the results for the individual pricing instances do 
translate also to an improvement of an overall BPC, which employs many well-
established acceleration techniques and whose performance is influenced also by 
many other effects that are not immediately related to the solution of the pricing 
problems. Again, these benefits are substantial for the SDVRPTW while they 
are rather minor for the EVRPTW. Future research could consider non-linear 
tradeoffs and more than one segment, for which the categorization as well as the 
computer implementation become much more complicated.

Table 4   Data to Fig. 5a for the EVRPTW-S

All pricing problems (AP) Exact pricing problems (EP)

Comp Labels Dominance Time Labels Dominance Time

time ≥ #Instances AP-L AP-D AP-T EP-L EP-D EP-T

0 168 0.9957 0.9948 0.9739 0.9880 0.9704 0.9875
1 148 0.9955 0.9944 0.9751 0.9870 0.9672 0.9859
10 98 0.9954 0.9938 0.9786 0.9852 0.9564 0.9819
60 64 0.9956 0.9938 0.9795 0.9830 0.9456 0.9729
100 55 0.9960 0.9939 0.9802 0.9835 0.9432 0.9701
600 29 0.9961 0.9934 0.9753 0.9812 0.9319 0.9501
1200 25 0.9969 0.9937 0.9728 0.9835 0.9274 0.9525
1800 22 0.9970 0.9937 0.9699 0.9824 0.9226 0.9393
3600 19 0.9972 0.9940 0.9710 0.9839 0.9265 0.9413
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In Tables 4, 5, and 6, we provide the underlying values to Fig. 5. For the solutions 
of the root node, we distinguish two cases: we aggregate over all pricing prob-
lems (AP) solved or only the exact pricing problems (EP) defined over the full 
network. The tables display the geometric mean of ratios of the number of created 
labels (-L), the number of dominance tests (-D), and the solution time (-T) in sec-
onds. In addition, we filter results according to different total computation times 
in seconds. The column #Instances gives the corresponding number of instances. 
Table  4 provides the values for the EVRPTW-S, Table  5 for the EVRPTW-M, 
and Table 6 for the SDVRPTW.
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Table 5   Data to Fig. 5b for the EVRPTW-M

All pricing problems (AP) Exact pricing problems (EP)

Comp Labels Dominance Time Labels Dominance Time

time ≥ #Instances AP-L AP-D AP-T EP-L EP-D EP-T

0 168 0.9943 0.9926 0.9671 0.9860 0.9574 0.9603
1 156 0.9942 0.9923 0.9683 0.9853 0.9545 0.9583
10 113 0.9938 0.9915 0.9710 0.9830 0.9427 0.9470
60 71 0.9939 0.9908 0.9708 0.9795 0.9250 0.9331
100 65 0.9941 0.9907 0.9714 0.9797 0.9227 0.9310
600 43 0.9950 0.9907 0.9682 0.9811 0.9141 0.9181
1200 31 0.9952 0.9907 0.9639 0.9802 0.9078 0.9015
1800 28 0.9957 0.9908 0.9617 0.9827 0.9059 0.9019
3600 24 0.9956 0.9909 0.9604 0.9818 0.9039 0.9037

Table 6   Data to Fig. 5c for the SDVRPTW

All pricing problems (AP) Exact pricing problems (EP)

Comp Labels Dominance Time Labels Dominance Time

time ≥ #Instances AP-L AP-D AP-T EP-L EP-D EP-T

0 504 0.8302 0.6793 0.8059 0.7817 0.6250 0.7093
1 362 0.8245 0.6587 0.7882 0.7709 0.5974 0.6795
10 207 0.8080 0.6217 0.7555 0.7519 0.5567 0.6350
60 122 0.7945 0.5953 0.7297 0.7404 0.5334 0.6077
100 97 0.7886 0.5835 0.7190 0.7318 0.5208 0.5957
600 49 0.7706 0.5536 0.6898 0.7302 0.5154 0.5897
1200 34 0.7678 0.5506 0.6857 0.7339 0.5240 0.5979
1800 29 0.7628 0.5444 0.6807 0.7374 0.5284 0.6026
3600 21 0.7445 0.5191 0.6578 0.7293 0.5175 0.5938
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