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Abstract
Using scenarios to model a stochastic system’s behavior poses a dilemma. While a 
large(r) set of scenarios usually improves the model’s accuracy, it also causes dras-
tic increases in the model’s size and the computational effort required. Multi-period 
descriptive sampling (MPDS) is a new way to generate a small(er) set of scenarios 
that yield a good fit both to the periods’ probability distributions and to the con-
voluted probability distributions of stochastic variables (e.g., period demands) over 
time. MPDS uses descriptive sampling to draw a sample of S representative random 
numbers from a period’s known (demand) distribution. Now, to create a set of S rep-
resentative scenarios, MPDS heuristically combines these random numbers (period 
demands) period by period so that a good fit is achieved to the convoluted (demand) 
distributions up to any period in the planning interval. A further contribution of this 
paper is an (accuracy) improvement heuristic, called fine-tuning, executed once the 
fix-and-optimize (FO) heuristic to solve a scenario-based mixed integer program-
ming model has been completed. Fine-tuning uses linear programming (LP) with 
fixed binary variables (e.g., setup decisions) generated by FO and iteratively adapts 
production quantities so that compliance with given expected service level con-
straints is reached. The LP is solved with relatively little computational effort, even 
for large(r) sets of scenarios. We show the advancements possible with MPDS and 
fine-tuning by solving numerous test instances of the stochastic capacitated lot-siz-
ing problem under a static uncertainty approach.

Keywords  Scenario generation · Stochastic lot-sizing · Service level constraints · 
Sample average approximation
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1  Introduction

Many practical problems are subject to stochastic effects. Even if the underlying 
distributions of the random variables are known, analytical results cannot always 
be derived.

For stochastic lot-sizing, Bookbinder and Tan (1988) present three strategies 
for coping with stochastic effects: the static, static–dynamic, and dynamic uncer-
tainty strategies. These strategies differ in terms of which decisions are fixed at 
the beginning of a (production) plan and which decisions can be revised over the 
planning periods as stochastic effects are realized. In this paper, we consider a 
stochastic capacitated lot-sizing problem (S-CLSP) with uncertain demand and 
follow a static uncertainty strategy. With the static uncertainty strategy, all deci-
sions are determined before the realization of the stochastic effects. Hence, good 
representations of the stochastic effects are needed a priori.

The S-CLSP with static uncertainty strategy is solved by models that mini-
mize expected costs subject to certain constraints, which may also be subject to 
stochastic effects (e.g., service levels (SL)). Since the S-CLSP cannot be solved 
analytically approximation methods come into consideration.

Two prominent approaches for the S-CLSP with static uncertainty strategy are 
sample average approximation (SAA) and piecewise linear approximation (PLA) 
(Brandimarte 2006; Helber et  al. 2013; Tempelmeier and Hilger 2015; Rossi 
et al. 2015). In both approaches, the S-CLSP is often formulated as a mixed inte-
ger program (MIP). Under the SAA approach, the stochastic effects are usually 
approximated by using scenarios. The advantage of this approach is its flexibil-
ity. Adaptations of constraints, such as the use of different SL formulations, can 
be implemented with little effort. However, the approximation quality is greatly 
dependent on the scenarios chosen. The computation times of these models 
increase heavily with the number of scenarios. Thus, the challenge of scenario 
generation is to achieve a high approximation quality of the stochastic effects 
while keeping the number of scenarios as low as possible.

In the PLA approach, the stochastic effects are approximated by piecewise 
linear functions. Even with just a few linearization points, the results achieved 
can be superior to those generated using an SAA approach (Helber et al. 2013). 
The difficulty with the PLA approach is that the functions to approximate the 
stochastic effects usually depend on specific probability distributions and the 
model assumptions. For example, a �-SL (synonym: fill rate) requires different 
piecewise linear functions than a � - or �-SL (Helber et al. 2013; Tempelmeier and 
Hilger 2015 the latter with the corrigendum in Tempelmeier et al. (2018)).

Other formulations such as a grace fill rate have an SAA formulation instead 
of a PLA formulation. The grace fill rate is a fill rate for which unit penalty costs 
are charged when undershooting a certain fill rate. This is not unusual in practice 
(Chen and Thomas 2018).

A main aim of this paper is to show that the SAA approach can compete with 
the PLA approach in terms of solution quality. For this purpose, we develop a 
scenario-generation algorithm, multi-period descriptive sampling (MPDS), which 
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approximates the stochastic effects over multiple periods. We show that MPDS 
leads to better solutions than the Helber et  al. (2013) scenario-generation algo-
rithm based on the common descriptive sampling (DS) developed by Saliby 
(1990) and scenarios based on low-discrepancy sequences, namely Halton and 
Sobol sequences (Halton 1960; Sobol’ 1967).

DS deterministically selects sample values of a stochastic variable with a known 
continuous distribution such that the closest fit with the represented distribution is 
reached, ”...instead of letting the sample histogram vary at random” (Saliby 1990). Hel-
ber et al. (2013) combine these samples randomly, period by period, to produce sce-
narios for a finite horizon. Likewise, MPDS can be defined as an algorithm designed to 
generate a prespecified number of scenarios for a finite horizon. It uses DS for select-
ing sample values for each period’s stochastic variable, each with a known continuous 
distribution, and combines these sample values stage by stage (i.e., period by period) in 
such a way that the convoluted distributions are approximated as accurately as possible. 
MPDS is applicable not only in the context of stochastic lot-sizing but also in many 
areas where stochastic effects are relevant over multiple periods.

Our research contribution consists of the following three aspects:

•	 We develop a scenario-generation algorithm, MPDS, to represent distributions 
over multiple periods.

•	 We extend the solution heuristic for the SAA approach presented in Helber et al. 
(2013) by adding a second improvement heuristic we named fine-tuning. As a 
result, the expected target SL can even be met using the Helber et  al. (2013) 
scenario-generation algorithm (but at a higher cost than MPDS).

•	 We show that an SAA approach using MPDS markedly closes the gap with the 
PLA approach in terms of the quality of solutions generated by a large computa-
tional study.

This paper is structured as follows.
First, we position our work in the literature on scenario generation and stochas-

tic lot-sizing (Chapter 2). We then describe MPDS in Chapter 3. The two S-CLSP 
models (SAA and PLA) are presented in Chapter  4. We also present the solution 
heuristics for the two models there. Chapter 5 documents and analyzes our compu-
tational study. There, we compare the Helber et al. (2013) scenario-generation algo-
rithm with MPDS, as well as the PLA and SAA approaches using MPDS. We also 
compare the above scenario-generation algorithms with Sobol and Halton sequences 
as benchmarks (Sobol’ 1967; Halton 1960).  Finally, our results are summarized in 
Chapter 6, which also provides suggestions for future research.

2 � Literature

As the literature on stochastic lot-sizing is extensive, a typology is needed to posi-
tion our work. We distinguish between the different lot-sizing problems and the 
resulting models. For stochastic lot-sizing, we further differentiate them based on 
the uncertainty strategy pursued.
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Lot-sizing problems can be characterized in several ways (Karimi et  al. 2003; 
Melega et  al. 2018). The main characteristics are single or multiple products, 
machines and periods, single- or multi-stage production, and limited or unlimited 
capacity. We consider a single stage with a single machine, limited capacities, and 
multiple products and periods (CLSP). An overview of the CLSP and the solution 
methods can be found in the literature (Drexl and Kimms 1997; Jans and Degraeve 
2008; Buschkühl et  al. 2010). It should be noted that the CLSP was originally a 
deterministic model. In recent years, research has also addressed stochastic effects 
(Tempelmeier 2013; Aloulou et al. 2014).

Demand is the most commonly considered stochastic effect, but stochastic effects 
can be considered for everything from costs over capacities to all parameters (Alou-
lou et  al. 2014). In the case of stochastic demand, there are two ways to manage 
shortages, namely as backorders or backlogs. To limit shortages, different SL defini-
tions are available. The upper bounds on shortages may be either hard or soft con-
straints. In the latter, penalty costs come into play [for further discussions, we refer 
to Tempelmeier (2020)]. Our paper addresses stochastic demand with known distri-
bution function(s) and SL constraints on backlogs.

The uncertainty strategy to be pursued has a major impact on the modeling. 
Bookbinder and Tan (1988) introduce three strategies for solving stochastic lot-siz-
ing problems under SL constraints: dynamic, static, and static-dynamic strategies. 
With the static uncertainty strategy, setups and production quantities are determined 
before the realization of the stochastic effects. With the dynamic uncertainty strat-
egy, decisions about production quantities and setups are made in each period after 
the stochastic effects have been realized. The static-dynamic uncertainty strategy 
combines both approaches, so setups are determined before and production quanti-
ties after the stochastic effects have been realized. Meistering and Stadtler (2017) 
extend these strategies with the stabilized cycle strategy. We consider the static 
uncertainty strategy, i.e., all decisions are made and fixed at the beginning of the 
planning period and are independent of the various realizations of the stochastic var-
iables possible.

Finally, we can distinguish between different approximations to grasp the evolu-
tion of realizations of stochastic variables.

Scenario-based and probabilistic approaches dominate the literature. However, 
other approaches such as stochastic discrete-event simulation and game theory also 
exist for stochastic lot-sizing. For a review of the literature on stochastic lot-sizing 
categorized with respect to solution approaches and assumptions, we refer the reader 
to Aloulou et al. (2014). We focus on scenario-based and probabilistic approaches 
because our work belongs to these domains.

Scenario-based approaches belong to SAA (Kleywegt et al. 2001). Here, the sto-
chastic effects are approximated by a certain number of samples. For this purpose, 
Saliby (1990) developed an unbiased approach known as DS. For periodic functions, 
this approach has been further improved (Tari and Dahmani 2006) and extended to 
dependent random variables (Kebaili et  al. 2021). These approaches provide sam-
ples for single-stage stochastic processes. Helber et  al. (2013) use DS to generate 
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scenarios for multiple periods by combining the DS samples randomly period by 
period. We simply refer to this scenario generation as DSRN  in the following. How-
ever, the period-by-period combination of DS samples may not correctly represent 
the development of a stochastic process over time. Therefore, we extend the DS to 
multiple periods–the MPDS–to represent the development of a stochastic process 
correctly over time as well.

MPDS can be seen as a moment-matching method for scenario generation. 
Moment-matching was originally introduced by Fleishman (1978). The goal is to 
approximate the moments of a distribution as accurately as possible. For this pur-
pose, Mehrotra and Papp (2013) developed an optimization approach. MPDS dif-
fers from moment-matching by making the moments representation a result of the 
algorithm instead of the primary goal. In MPDS, the goal is to achieve a representa-
tion of the probability interval by using cumulative distribution functions, as in DS. 
Furthermore, MPDS simultaneously approximates multiple convoluted distributions 
resulting from a stochastic process rather than just one distribution function. For 
an overview of the different methods of scenario generation, we refer to Löhndorf 
(2016).

Another method to find a set of scenarios representing stochastic effects is sce-
nario reduction (Growe-Kuska and Romisch 2003). It aims to select a suitable sub-
set from a (large) initial set of scenarios. Based on a distance measure for each pair 
of scenarios, a subset is chosen that is as close as possible to the initial set. For sce-
nario reduction clustering methods are usually used (see, e.g., the survey paper on 
k-means algorithms by Ahmed et al. (2020)).

The idea of MPDS is similiar to Low-discrepancy sequences. These (often 
referred to as quasi-random point sets) are sequences designed to uniformly cover a 
domain. In contrast to purely random sequences, which may cluster or be distributed 
unevenly, quasi-random sequences ensure a more consistent spread throughout the 
domain. Halton and Sobol sequences are two of the most prominent sequences (Hal-
ton 1960; Sobol’ 1967). The first uses prime bases for different dimensions to gener-
ate sequences, while the latter uses a base of “2.” Also, Sobol sequences are known 
for providing the most effective uniform point sets for Monte Carlo integration of all 
low-discrepancy sequences (Glasserman 2004; Koivu 2005).

Halton and Sobol sequences are implemented in standard software like Matlab. 
We use both, Halton and Sobol sequences to benchmark DSRNand MPDS to the 
literature.

Löhndorf (2016) also used Sobol sequences for comparing various scenario gen-
eration methods like moment-matching and methods based on probability metrics. 
His findings suggest that no single method consistently outperforms the others; 
rather, the superior method depend upon specific parameters.

Probabilistic approaches represent the stochastic effects analytically. Since this 
is not always possible, the stochastic effects are often approximated. One famous 
method for this is PLA, but other approaches also exist.

Tempelmeier and Herpers (2010) present an A/B/C heuristic for solving an 
S-CLSP with cycle �-SL. It extends the deterministic A/B/C heuristic of Maes 
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and Van Wassenhove (1986) to the case of random demands. For the same prob-
lem, Tempelmeier (2011) develops a column-generation approach. The result is that 
the column-generation approach is much superior to the A/B/C heuristic in terms 
of computation times. Tempelmeier and Hilger (2015) present a PLA approach for 
the S-CLSP with cycle �-SL, which is solved by the Helber and Sahling (2010) fix-
and-optimize (FO) heuristic. They compare it with the column-generation approach 
of Tempelmeier (2011) and find that the PLA approach provides better solutions 
for test instances with a small number of products or a high capacity utilization. A 
further advantage is that the PLA approach can take setup times into account, in 
contrast to the column-generation approach. A revised approach to this is provided 
by Tempelmeier et al. (2018).

Helber et al. (2013) present a PLA approach for the S-CLSP using the �-SL. The 
�-SL differs from the �-SL insofar as the expected backlogs are proportioned to the 
maximum possible number of backlogs instead of the expected demand. They com-
pare the PLA approach with an SAA approach using DSRN   to generate scenarios. 
The PLA and SAA approaches are solved with an FO heuristic. The result is that the 
PLA approach can meet the expected target SL in all test instances and often yields 
lower expected costs, while the SAA approach nearly always misses the expected 
target SL and even often shows higher expected costs.

Based on the results of Helber et  al. (2013), we show that the SAA approach 
can compete with the PLA approach. We consider a static uncertainty strategy and 
an S-CLSP with �-SL. We extend and modify a solution algorithm of Helber et al. 
(2013) for the SAA approach that enables the expected SL target to be met, just like 
the PLA approach. Furthermore, we present a new scenario-generation algorithm, 
MPDS, with which the stochastic effects can be represented with considerably fewer 
scenarios than with the DSRN.

3 � Multi‑period descriptive sampling

First, we introduce DS and show the strengths and weaknesses of using it for a sto-
chastic process. We then define all necessary notations for MPDS and present our 
construction heuristic. All notations used in this chapter are found in Table 1.

A stochastic process is a system of random variables (Dt)t∈T  with a set of stages 
T  . Note, that demand here can equivalently also be modeled as a multivariate ran-
dom variable with dimension PxT. The underlying distributions of the independent 
random variables may differ from each other. We consider continuous random vari-
ables in the following.

The distribution of a random variable Dt can be approximated with a random-
number generator and a certain number of realizations S. This method is called ran-
dom sampling (RS). It is very easy to implement once we have a random-number 
generator. The downside is that an a priori evaluation of the fitness of the generated 
realizations as a function of S is not possible. For a set of S realizations, random 



645

1 3

Multi‑period descriptive sampling for scenario generation…

cluster points may occur that do not reflect the underlying distribution. It is also 
noted that the expected value and standard deviation can deviate greatly from the 
theoretical distribution. Therefore, RS usually requires a large number of realiza-
tions to represent the distribution well.

The DS proposed by Saliby (1990) provides a remedy for this. For this pur-
pose, the probability interval [0, 1] of the distribution function is divided into S 
equidistant supporting points ed1,… , edS . The distance between two supporting 
points is 1

S
 . The first supporting point is set to ed1 ∶=

1

2 S
 . The other supporting 

points are calculated based on ed1 and the distance 1
S
:

Using these supporting points, realizations d1 ∶= F−1(ed1),… , dS ∶= F−1(edS) 
can be calculated based on the inverse function F−1 of the distribution function. If 
these realizations are shuffled, we obtain pseudorandom numbers that exactly meet 
the expected value of the underlying distribution. However, the standard devia-
tion is underestimated due to the distribution being truncated at the tails. How 
much the standard deviation is underestimated by depends on the distribution and 
the number of supporting points S: For a normal distributed random variable with 
expected value � = 4 and standard deviation � = 1 , we get a standard deviation of 
0.876 for S = 5 supporting points. For S = 10 supporting points, the standard devia-
tion increases to 0.938. For S = 50 , it increases to 0.987. In contrast to RS, in DS, 
each pseudorandom number stream for a fixed number of realizations always has 
the same standard deviation. However, a slightly more extensive algorithm must be 
implemented than for RS.

Helber et al. (2013) applied DS to generate a limited number of S scenarios 
over a planning interval of T periods (we call this scenario generation DSRN ). In 
a first step, S sample values are generated by DS for each period separately. In a 
second step, these sample values are combined randomly, period by period, up 

(1)eds = ed1 +
s − 1

S
=

s −
1

2

S
∀s = 2,… , S

Table 1   Notation for MPDS
A∗
s,t

Area s for convoluted realizations in stage t
ds Value of realization s
Dt Random variable in stage t
eds ∈ [0, 1] Supporting point for realization s
ed∗

s
∈ [0, 1] Supporting point for convoluted realization s

F−1(Dt) Inverse distribution function for Dt

F∗
t

Convoluted distribution function up to t
S = {1,… , S} Set of scenarios/realizations
T = {1,… ,T} Set of stages
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to the end of the planning interval. This has the following implications: Assume 
that we generate scenarios for a stochastic process (Dt)t=1,…,T by combining 
pseudorandom numbers generated with DS randomly between two stages. This 
results in scenarios with the same expected value as the convoluted distributions 
F(D1) +… + F(Dt) up to a stage t ∈ {1,… , T} . However, the standard deviation 
of the combined pseudorandom numbers can deviate greatly from the theoretical 
one. For example, if the probability density function is symmetric (like the nor-
mal distribution), the pseudorandom numbers of two stages can be combined in 
such a way that the cumulated pseudorandom numbers have a standard deviation 
of 0. Suppose the distributions in both stages are identical with expected value 
� . It always holds that eds + edS+1−s = 1 . The expected value for the combination 
of both stages is 2 ⋅ � and, because of symmetry, we can combine:

Thus, a standard deviation of 0 follows for this combination because every combina-
tion results in the expected value of the convoluted distribution.

As such, even if the standard deviation is met perfectly in each stage, the combi-
nation may greatly miss the standard deviation over several stages.

The goal of MPDS is to construct scenarios in such a way that the expected value 
is always met and the standard deviation is met as accurately as possible for the 
convoluted distributions up to a period t ∈ {1,… , T} . The idea is analogous to DS, 
meaning that in MPDS the probability interval of the convoluted distribution of each 
stage will be divided equidistantly. However, the combination of realizations of each 
two stages is no longer done randomly but according to a construction heuristic. 
Analogously to DS, the probability interval of the convoluted distribution is divided 
into equally sized subintervals. Combinations are made so that exactly one combina-
tion represents a subinterval. It should be noted that the realizations in each stage 
are determined with DS. The number of realizations S in each stage is identical to 
the number of scenarios being constructed. We specify below the algorithm for the 
construction heuristic.

Let S be the set of scenarios and T  be the set of stages of the stochastic pro-
cess. Let F∗

t
∶= F1 +…+ Ft denote the convoluted distribution from stage 1 to 

stage t ∈ T  . Definitions that apply to the convoluted distribution are marked with 
a superscript ∗ to distinguish them from the definitions that apply to the distribution 
of a stage. The supporting points of the probability interval eds are identical in each 
stage and are calculated according to (1). The realizations ds,t in a stage t result from 
ds,t ∶= F−1

t
(eds) . Dt ∶= {ds,t ∣ s ∈ S} denotes the set of realizations in a stage. The 

probability interval of the convoluted distribution is divided into S subintervals with 
S + 1 supporting points ed∗

s
:

2 ⋅ � = F−1(edS+1−s) + F−1(eds) ∀s = 1,… , S

ed∗
s
∶=

s − 1

S
∀s = 1,… , S + 1



647

1 3

Multi‑period descriptive sampling for scenario generation…

It holds that:

The center of each subinterval corresponds to the supporting points of the probabil-
ity interval of the distribution for a single stage. Based on the supporting points ed∗

s
 , 

areas A∗
s,t

 are built for the realizations of the convoluted distributions F∗
t
:

The creation of areas is illustrated in Fig. 1.
The objective is that all areas A∗

s,t
 of the convoluted distributions up to each 

period t are represented exactly once by the constructed scenarios. More precisely, 
let Ω ∶= {

(
𝜔s,1,… ,𝜔s,T

)
∈ D1x… xDT ∣ 𝜔s,t ≠ 𝜔s̃,t, s̃ ∈ S⧵{s}, ∀t, s} be the set of 

scenarios. The following condition should then hold:

Let the subscenarios �∗
s,t−1

∶=
(
�s,1,… ,�s,t−1

)
 be already calculated for a stage t. 

We can then assign all the possible combinations 
(
�∗
s1,t−1

, ds2,t

)
 with s1, s2 ∈ S to the 

respective areas A∗
s,t

 . Let A∗
s,t

 be the sets containing the possible combinations for an 
area A∗

s,t
:

eds = 0.5 ⋅
(
ed∗

s
+ ed∗

s+1

)

A∗
s,t
=

⎧
⎪⎨⎪⎩

�
a∗
t,s
, a

∗

t,s

�
= (F∗

t
)−1

� �
ed∗

s
, ed∗

s+1

� �
s < S�

a∗
t,s
, a

∗

t,s

�
= (F∗

t
)−1

� �
ed∗

s
, ed∗

s+1

� �
s = S

(2)∀t ∈ T∀s ∈ S ∃! s1 ∈ S with

t∑
t1=1

�s1,t1
∈ A∗

s,t

Fig. 1   Construction of areas
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Note that there are S2 different pairs, but not every set A∗
s,t

 must contain the same 
number of pairs.

Having described the necessary definitions, the construction heuristic works 
as follows. We iteratively build subscenarios until all stages have been covered. 
The subscenarios �∗

s,1
 are generated by DS. Suppose now that we have generated 

the subscenarios �∗
s,t

 up to a period t. We then construct the subscenarios up to 
period t + 1 by combining each subscenario �∗

s,t
 with a realization ds,t+1 . To do 

so, we draw one realization ds1,t+1 randomly. For this realization ds1,t+1 , a score is 
determined for each possible combination 

(
�∗
s2,t

, ds1,t+1

)
 . For this, we check how 

many pairs would remain in each set A∗
s,t

 if we chose that combination. More 
precisely, we define the operator ⊖ as:

Meaning that ⊖ removes all pairs from A∗
s,t

 that contain �∗
s2,t

 or ds1,t+1 . Then the 
score results from the smallest number of pairs that a set A∗

s,t
 would still contain is:

We then select the pair with maximal score.
The purpose of this is to ensure that there are still enough possible combina-

tions in the next iteration for areas that have not yet been selected. Note that if a 
pair 

(
�∗
s1,t−1

, ds,t

)
 is selected, any pairs containing �∗

s2,t−1
 or ds1,t will not be 

selectable in any future iteration. We would like to add that our MPDS algo-
rithm is a heuristic and thus will not guarantee finding a solution where all areas 
A∗
s,t

 are assigned to a scenario in a one-to-one correspondence.
In case a solution with a one-to-one correspondence is not found then at least one 

A∗
s,t

 will remain empty while another area is assigned more than one combination. 
Still this solution, i.e., the set of scenarios created by the MPDS-heuristic, can and 
will be used as an input to the MIP-model of the S-CLSP. Note that in order to avoid 
solutions with ”empty” areas our MPDS-heuristic always selects the combination 
with the maximum score. If all remaining combinations fall into an already assigned 
area, the score for all combinations is "0" and a combination is selected at random. 
Algorithms 1 and 2 describe the MPDS construction heuristic for one iteration by a 
pseudocode.

A
∗
s,t
∶=

{(
�∗
s1,t−1

, ds2,t

)
∣ s1, s2 ∈ S, �s1,t1

+ ds2,t ∈ A∗
s,t

}

A
∗
s,t
⊖

(
𝜔∗
s2,t

, d
s1,t+1

)

∶=
{(

𝜔∗
s3,t

, d
s4,t+1

)
∈ A

∗
s,t
∣ 𝜔∗

s3,t
≠ 𝜔∗

s2,t
or d

s4,t+1
≠ d

s1,t+1

}

min
s

∣ A∗
s,t
⊖

(
𝜔∗
s2,t

, ds1,t+1

)
∣
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Algorithm 1   Calculate subscenarios �∗
s,t

Input: ω∗
s,t−1 ∀s ∈ S

Output: ω∗
s,t ∀s ∈ S

1: Build sets As,t

2: Set SubScn := {ω∗
s,t−1 | s ∈ S}

3: Set Realization := {ds,t | ds,t = F−1
t (eds) ∀s, t}

4: while Realization �= ∅ do
5: Draw randomly d ∈ Realization
6: Remove d from the set Realization
7: Find ω∗

s,t−1 ∈ SubScn with maximal Score(ω∗
s,t−1, d)

8: if multiple ω∗
s,t−1 with maximal Score exist then

9: Choose one randomly
10: end if
11: Set ω∗

s,t = ω∗
s,t−1, d

)

12: Remove ω∗
s,t−1 from SubScn

13: for s ∈ S do
14: A∗

s,t := A∗
s,t � (ω∗

s,t−1, d)
15: end for
16: Flag set A∗

s,t containing pair (ω∗
s,t−1, d) for Algorithm 2

17: end while

Algorithm 2   Function Score()

Input: Pair (ω∗
s,t−1, d)

1: Set Score =| A∗
s,t |

2: if Pair (ω∗
s,t−1, d) is contained in a set A∗

s,t which is flagged then
3: Score = 0
4: return Score
5: end if
6: for s ∈ S do
7: Count how many pairs exist in A∗

s,t not containing ω∗
s,t−1 or d

8: Count =| A∗
s,t � (ω∗

s,t−1, d) |
9: if Count < Score then

10: Set Score = Count
11: end if
12: end for
13: return Score
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4 � S‑CLSP

In this chapter, we present the two S-CLSP models that approximate the actual non-
linear stochastic model as stated in Helber et al. (2013). We refer to the SAA model 
with scenarios as S-CLSPSCNand the PLA model as S-CLSPPLA . These are adopted 
from Helber et al. (2013), with some minor changes, as explained below. For both 
models, the classical assumptions of the CLSP hold.

The number of periods is finite with horizon T. We consider a single machine 
that can produce P different products. The capacity of the machine is limited in 
each period. Multiple setups are possible in one period (big bucket model). This can 
cause setup times and costs that are independent of the sequence. Product-dependent 
setup costs are charged for each setup. The following assumptions hold for the sto-
chastic effects:

Demand is stochastic with normal distribution of the random variable Dt in each 
period. Unfulfilled demand is backordered. Over the periods T ∶= {1,… , T} (the 
planning period), an expected �-SL for each product must be met. We define the 
expected �-SL according to Helber et al. (2013) as:

Here BLt denotes the backlogs at the end of period t. This distinguishes the �-SL 
from the �-SL, which only considers the shortages occurring in the current period. 
The �-SL thus simultaneously measures the shortages and the waiting time. How-
ever, it should be noted when using the formulation (3) that the �-SL is a random 
variable:

The proper expected value of this random variable is:

This may differ from the definition in (3), because in general equivalence only holds 
if the nominator and denominator random variables are stochastically independent. 
Since backlogs depend on demand, this is not the case here. In our calculations, we 
found that (3) was larger than (4) in many test instances. However, the S-CLSPPLA
can only be modeled with formulation (3). The S-CLSPSCN on the other hand can 
model both formulations. To make the two models comparable, we use the formula-
tion (3), even though it does not correctly represent the expected value of the �-SL.

The sequence of events in a period t for each product p is as follows:
The final inventory Ip,t−1 of the previous period is carried forward to period t as 

the initial inventory. If a lot is planned for product p, the production quantity Xp,t is 

(3)�exp ∶=

∑T

t=1
E[BLt]∑T

t=1
E[Dt]

� =

∑T

t=1
BLt∑T

t=1
Dt

(4)E[�] = E

�∑T

t=1
BLt∑T

t=1
Dt

�
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produced and added to the inventory. If backlogs BLp,t−1 of the previous period 
are still pending, they are satisfied immediately. Then, demand dt,p occurs and 
is satisfied. If not all backlogs and demand can be satisfied, the backlogs add up to 
BLp,t = dp,t + BLp,t−1 −

(
Ip,t−1 + Xp,t

)
 . Otherwise, the final inventory Ip,t adds up to 

Ip,t = −dp,t − BLp,t−1 +
(
Ip,t−1 + Xp,t

)
.

4.1 � S-CLSPSCN

First, we present the S-CLSPSCN . The necessary notations are found in Table 2.

(5)

minimize
1

|S| ⋅
∑

s∈S,p∈P,t∈T

hcp ⋅ Is,p,t +
∑

p∈P,t∈T

scp ⋅ Yp,t

+
∑
p∈P

ucp ⋅ OBp +
∑
t∈T

oct ⋅ OTt

(6)Is,p,t−1 − BLs,p,t−1 + Xp,t − ds,p,t = Is,p,t − BLs,p,t ∀s, p, t

Table 2   Notation for the S-CLSPSCN

Indices and index sets
P Set of products indexed by p (P = {1,… ,P})

S Set of scenarios indexed by s (S = {1,… , S})

T Set of periods indexed by t (T = {1,… ,T})

Parameters
capt Capacity limit in period t
�p Expected gamma target SL of product p
ds,p,t Demand in scenario s, product p in period t
hcp Holding cost per inventory unit of product p
Is,p,0 Deterministic initial inventory (and thus equal for any scenario s)
mp Big m for product p
oct Overtime cost when overshooting the capacity in period t
pcp Production coefficient of product p
scp Setup cost of product p
stp Setup time of product p
ucp Unit penalty cost of product p when undershooting  

the expected � for product p in the planning period
Decision variables
BLs,p,t Backlog in scenario s for product p in period t
Is,p,t Final inventory in scenario s for product p in period t
OBp Undershooting SL for product p
OTt Overtime unit for exceeding the capacity in period t
Xp,t Lot size of product p in period t
Yp,t 1, if a lot of product p is produced in period t; 0, otherwise
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In the objective function (5), expected holding costs, as well as setup, unit penalty, 
and overtime costs, are minimized. It should be noted that only the holding costs 
are dependent on the given scenarios. The remaining costs are deterministic. The 
unit penalty costs are charged for each unit that falls below the expected SL target. 
We do not include these costs in our analyses, but we use them to ensure that we 
always get a feasible solution. Therefore, we consider a solution that uses overtime 
or unit penalty costs as invalid for our analyses in Chapter 5 (the same applies to the 
S-CLSPPLA ). Constraints (6) are the inventory balance equations, where Is,p,0 is fixed 
as initial inventory. Capacity compliance, including the option of capacity expan-
sion, is ensured in constraint (8). Constraints (9) require that a lot can only be pro-
duced if it is set up. To ensure that no shortages in the expected value are built up at 
the end of the planning period, the cumulative production quantity must be at least 
as high as the expected cumulative demand in the planning period due to (7). (10) is 
the SL constraint. It should be noted that this formulation corresponds to the formu-
lation in (4). The S-CLSPSCNpresented here differs from the model of Helber et al. 
(2013) by using an expected �-SL instead of the expected �-SL, unit penalty costs 
for undershooting SLs, and known non-negative initial inventories.

(7)
∑
t∈T

Xp,t −
1

|S| ⋅
∑

s∈S,t∈T

ds,p,t ≥ 0 ∀p

(8)
∑
p∈P

(
stp ⋅ Yp,t + pcp ⋅ Xp,t

)
≤ capt + OTt ∀t

(9)Xp,t ≤ Yp,t ⋅ mp ∀p, t

(10)OBp + (1 − �p) ⋅
∑

s∈S,t∈T

ds,p,t ≥
∑

s∈S,t∈T

BLs,p,t ∀p

(11)OTt ≥ 0 ∀t

(12)OBp ≥ 0 ∀p

(13)Xp,t ≥ 0 ∀t, p

(14)Is,p,t ≥ 0 ∀s, t, p

(15)BLs,p,t ≥ 0 ∀s, t, p

(16)Yp,t ∈ {0, 1} ∀t, p
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4.2 � S-CLSPPLA

Instead of using scenarios, the S-CLSPPLAemploys piecewise linear functions to 
approximate the expected backlogs and physical inventories. Additional notations 
for the S-CLSPPLAare found in Table 3.

subject to (7), (8), (9), (11), (12), (13), (16)

In the objective function (17), expected holding costs, as well as setup, unit penalty, 
and overtime costs, are minimized. As in the S-CLSPSCN , only the holding costs are 
stochastic and are approximated by a piecewise linear function (for more details, see 

(17)
minimize

∑
p∈P,t∈T

hck ⋅

(
eip,t,0 +

∑
l∈L

eip,t,l − eip,t,l−1

cp,t,l − cp,t,l−1
⋅Wp,t,l

)

+
∑

p∈P,t∈T

scp ⋅ Yp,t +
∑
p∈P

uc ⋅ OBp +
∑
t∈T

oct ⋅ OTt

(18)Xp,t =
∑
l∈L

Wp,t,l −Wp,t−1,l ∀p, l

(19)Wp,t,l ≤ cp,t,l − cp,t,l−1 ∀p, t, l

(20)

OBp + (1 − 
p) ⋅
∑
t∈T

E[Dp,t]

≥
∑
t∈T

ebp,t,0 +
∑
l∈L

ebp,t,l − ebp,t,l−1

cp,t,l − cp,t,l−1
⋅Wp,t,l ∀p

(21)Wp,t,l ≥ 0 ∀l, t, p

Table 3   Additional notations for the S-CLSPPLA

Indices and index sets
L Set of linearization points indexed by l (L = {1,… ,L})

Parameters
cp,t,l Cumulated production for product p in period t for linearization point l 
eip,t,l Expected holding cost for product p in period t for linearization point l
ebp,t,l Expected backlogs for product p in period t for linearization point l
Decision variables
Wp,t,l Cumulated production associated with linearization point l and product p 

in period t
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Helber et al. (2013)). Constraints (18) determine the production quantities based on 
the cumulative production quantities of the respective linearization points. The par-
tial cumulative production quantities of the respective linearization point are deter-
mined in constraints (19). Note that decision variables Wp,t,l are properly determined 
by the optimization direction and constraints (20) (Helber et al. 2013).

4.3 � Solution algorithms

S-CLSPPLAand S-CLSPSCNcannot be solved optimally for all test instances in accept-
able computation times by a standard MIP solver. Therefore, like Helber et al. (2013), 
we employ the solution heuristic FO for both models. We also use an improvement 
heuristic for the S-CLSPSCNthat we call fine-tuning. We briefly explain FO and fine-
tuning below.

In FO, all setup variables of a starting solution are fixed at the beginning (e.g., by the 
corresponding deterministic CLSP with expected period demands as an input which is 
solved to a gap of 5%). Steps are then executed until the improvement of the solution 
quality falls below a certain threshold. Each step covers one iteration over all products. 
In an iteration for a product p, setup variables Yp,t are set free for p and all t, while all 
other products have fixed setup variables. The production quantities for all products are 
still free. The resulting reduced MIP has considerably fewer binary variables ( Yp,t ) and 
is thus easier to solve.

It is then solved, and the resulting setup variables for the product p will be fixed. 
Next follows the product p + 1 until all products have been considered once.

For the fine-tuning (see Algorithm 3), the setup variables of the last FO’s solution 
are fixed. The resulting S-CLSPSCNwith fixed setup variables is a linear program (LP). 
Thus, a considerably larger number of scenarios can be handled in the model. This 
allows for a better approximation of the stochastic effects.

In each fine-tuning iteration, the S-CLSPSCN is solved as an LP and the solution is 
evaluated ex post in terms of SL achievement (e.g., by Monte Carlo simulation). If 
a product meets the expected target �-SL, its production quantities will be fixed. To 
ensure that the expected target �-SL does not decrease, the cumulative production 
quantities from the previous iteration step are set as lower bounds for the cumulative 
production quantities in the current iteration (for products not meeting the expected �
-SL). To do this, the following constraints are added to the S-CLSPSCNmodel:

Constraints (22) ensure that the decision variable Xcum
p,t

 represents the cumulative 
production quantities. The lower bounds for the cumulative production quantities 
are set in constraints (23). The lower bound xlow

p,t
 is updated within each fine-tuning 

(22)Xcum
p,t

= Xcum
p,t−1

+ Xp,t ∀p, t

(23)Xcum
p,t

≥ xlow
p,t

∀p, t

(24)Xcum
p,0

∶= 0 ∀p
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iteration by the cumulative production of the previous step and is set to "0" at 
initialization.

Fine-tuning iterations are repeated until either each product meets the expected 
target � SL or an upper limit of iteration steps is reached. The iterations are 
divided into two phases.

In the first phase, a new scenario set is generated in every iteration to solve 
the S-CLSPSCN as an LP. In the second phase, the scenario set is fixed and the 
product-specific parameter � in constraints (10) is successively increased. A pseu-
docode for the fine-tuning algorithm is given in Algorithm 3. Figure 2 illustrates 
the solution heuristic for the S-CLSPPLAand S-CLSPSCN.

Algorithm 3   Fine-tuning

Input: Setup variables Yp,t

1: Set number of scenarios S (we used 200)
2: Set stopping criterion conditions for Phase 1 and Phase 2
3: Fix setup variables Yp,t

4: Set xlow
p,t = 0

5: Solve S-CLSPSCN with S scenarios as LP
6: while Phase 1 do
7: Generate new scenario set
8: Solve S-CLSPSCN with new scenarios as LP with constraints (23), (24)
9: Evaluate SL (e.g., by simulation or first-order loss function)

10: Fix Xp,t for all products fulfilling the SL
11: Update lower bound with cumulative production xlow

p,t := Xcum
p,t

12: end while
13: while Phase 2 do
14: Fix scenario set
15: Raise γp for all products not fulfilling the target SL γp
16: Solve S-CLSPSCN as LP with constraints (23), (24)
17: Evaluate SL
18: Fix Xp,t for all products fulfilling the SL
19: Update lower bound with cumulative production xlow

p,t := Xcum
p,t

20: end while

5 � Computational study

In this chapter, we document and analyze our computational study for the pro-
posed solution heuristics of the S-CLSP. First, we consider only the S-CLSPSCN
and compare the DS approach with our new MPDS approach. Then we com-
pare the S-CLSPSCNwith MPDS approach with the S-CLSPPLA . In the following, 
DSSOL  (MPDSSOL ) means the complete solution approach consisting of scenar-
ios generated by DSRN  (MPDS), the FO heuristic, and the subsequent fine-tuning 
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heuristic ( PLASOL  analogously). First, we present the test instances of the computa-
tional study.

5.1 � Parameter generation and instances

The parameters for generating test instances closely correspond to parameters used 
in Helber et al. (2013), with the following exceptions. We use the well-known �-SL 
instead of a �-SL. Of particular note is that this results in fewer allowed shortages 
to meet the expected target SL. We also use higher capacity utilization rates and 
a longer planning period, as well as more products. Table 4 shows the respective 
parameter specifications. A test instance results from a combination of these specifi-
cations. In total, there are 576 different test instances for the S-CLSPSCNand 1152 for 
the S-CLSPPLA.

The setup cost scp of a product p is calculated from the economic order quan-
tity formula and time between orders (TBO):

While the holding cost coefficient is set to 1 for all products, the production coef-
ficient is normalized to 1 only as an average over all products to reduce symmetry:

Here mod means the modulo function. For example, if P = 12 , product 1 and prod-
uct 7 have a production coefficient of 0.97. We calculate the setup time for a product 
based on the production coefficient and the relative targeted setup time (relative pro-
portion of total capacity utilization):

The parameter capt results from the capacity utilization util under the assumption 
that util is the share of used capacity to available capacity:

scp = 0.5 ⋅

(
TBO2

⋅ hcp ⋅

T∑
t=1

E[Dp,t]

)

pcp = 0.95 + 0.02 ⋅ (p mod 6)

stp = strel ⋅ pcp ⋅ TBO ⋅

∑T

t=1
E[Dp,t]

T

Fig. 2   Solution algorithms
−

−
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Instead of zero initial inventories, we introduce product-dependent non-negative 
inventories to better represent lot-sizing in rolling schedules and to reduce backlogs 
in the first period of the planning interval. For this purpose, we divide the products 
into as many groups as the value of the TBO. Each group of products has an initial 
inventory equal to the cumulated expected demand of a certain number of periods 
plus half the demand of the following period. On average over all products, inven-
tory covers half of the TBO range. The initial inventory is calculated as follows:

with t1 ∶= p mod TBO.

capt =

�
1 + strel

�
⋅

∑T

t1=1

∑P

p=1
pcp ⋅ E[Dp,t1

]

T ⋅ util

Ip,0 =

t1∑
t=1

E[Dp,t] + 0.5 ⋅ E[Dp,t1+1
]

Table 4   Parameter values  
of the computational  
study

Parameter values
T = 12, 24 Number of periods
P = 12, 24 Number of products
S = 30, 40, 50 Number of scenarios

(only S-CLSPSCN)
L = 20, 30, 40, 50, 75, 100 Number of supporting points

(only S-CLSPPLA)
hc = 1 holding cost coefficient (normalized)
util = 75%, 90% Capacity utilization
TBO= 1, 2, 4 Time between orders
� = 90%, 95% Expected target �-SL
strel = 0%, 25% setup time relative to capacity
oc = 10000 Overtime cost
ucp = 150 ⋅ oc unit penalty cost of product p when under-

shooting the service level
CV = 0.1, 0.3 Coefficient of variation of demand distribution
Calculated parameters 

based on test instance
scp Setup cost of product p
stp Setup time of product p
pcp Production coefficient of product p
capt Capacity limit in period t
mp Big m for product p
Ip,0 Initial inventory for product p
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Analogous to Helber et al. (2013), the ”big m” is defined in the PLA as twice the 
expected demand over all periods. For the S-CLSPSCN , we set ”big m” to the maxi-
mum cumulative demand of a scenario:

Demand is normally distributed, with expected values differing by product and 
period as given in the Appendix of Helber et al. (2013). Likewise, the standard devi-
ation �p for a product p is calculated using the expected demand and the coefficient 
of variation (CV):

Thus, the standard deviation for a product is identical in each period, but the 
expected demand varies between periods.

As a normally distributed stochastic variable can take negative values, we set the 
negative values to 0 when generating demands. To generate scenarios that are still 
consistent with the expected values, we normalize the scenario’s realizations with 
E[Dp,t]

Ẽp,t

 , where Ẽp,t denotes the expected value of the scenarios with no negative val-
ues. Note that this may change the standard deviation.

For fine-tuning, a scenario set always contains 200 scenarios. We set a maxi-
mum number of 22 iterations as an upper limit. Phase 1 is three iterations long, 
and the adjustments in Phase 2 are divided into two steps. Up to iteration 8, the 
�p in constraints (10) are increased by the difference between the achieved 
expected SL and the expected target SL. However, the increase is set to a maxi-
mum of 0.01 and a minimum of 0.0001. If a product has not met the expected 
target SL by iteration 9, the increase is dynamic and may lead to a higher over-
shoot of the expected target SL: Let Δit−1 be the increase of the parameter � of 
the previous iteration it − 1 and �it−1 be the observed increase in the expected SL 
(after evaluation). We then multiply the difference between the achieved 
expected SL and the expected target SL by Δit−1

�it−1
 , the ratio between the target 

increase and the observed increase. In any case, the parameter � is limited to 
100%.

In our analysis, we only compare valid test instances, meaning that these 
instances do not exceed the capacities or use unit penalty cost. The solutions 
were evaluated ex post by simulation with one million repetitions.

All calculations were performed on a workstation with an AMD EPYC 7301 
16-Core processor and 48 GB RAM. The algorithms were implemented in C# 
and GAMS, with the models solved using CPLEX Version 22.1.0.0. For our 

mPLA
p

= 2 ⋅

T∑
t=1

E[Dp,t]

mSCN
p

= max
s

T∑
t=1

ds,p,t

�p ∶=

∑T

t=1
E[Dp,t]

T
⋅ CV
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purposes, we employed Matlab (2023a) to generate extensive multidimensional 
sequences of both Halton and Sobol point sets.

5.2 � Comparison of scenario‑generation algorithms

This chapter focuses on the comparison between MPDSSOLand DSSOL . Given 
that DSSOL  has not been previously compared with other prevalent scenario gen-
eration methods, we also benchmark against low-discrepancy sequences, specifi-
cally Sobol and Halton. These sequences bear conceptual similarities to MPDS. 
We will initially outline how the Sobol and Halton sequences are generated, fol-
lowed by a comparison of the computational results among the four scenario 
generation methods.

For our purposes, we employed Matlab to generate extensive multidimen-
sional sequences of both Halton and Sobol point sets. The dimension of these 
sequences is set to the number of periods. We then produce a scenario set com-
prising S scenarios by selecting S consecutive multidimensional points and tak-
ing the inverse distribution function. This approach allows us to create a dis-
tinct scenario set for each test instance, similar to our procedure with DS and 
MPDS. Since Hobol and Sobol sequences do not guarantee to meet the expected 
value, we normalized each demand by multiplying it by the respective given 
expected period demand divided by the expected period demand achieved by the 
sequence. As for MPDS, DS and PLA, in the following, HaltonSOL  (SobolSOL ) 
means the complete solution approach consisting of scenarios generated by Hal-
ton  (Sobol) sequences, the FO heuristic, and the fine-tuning heuristic.

5.2.1 � Results

Table  5 shows the expected SL fulfillment by the FO heuristic for the respective 
scenario-generation algorithms.

SL0 denotes the proportion of test instances in which all products meet the 
expected SL. SLP0 denotes the proportion of products over all test instances that 
meet the expected SL. SLX.X denotes the proportion of test instances in which 
all products undershot the expected SL by no more than X.X percentage points 
(SLPX.X analogously). It was found that, at the end of the FO, there is no test 
instance in which all products meet the expected target �-SL. Overall, the results 
for Halton, Sobol, and DS are quite similar. However, among the three, Sobol yields 
the best results, while DS produces the worst. If we consider SLX.X, we see that the 
MPDS achieves better results with 20 scenarios than DS, Halton and Sobol do with 
50 scenarios. Just to be able to make this statement, we also tested the MPDS proce-
dure with 20 scenarios.

However, the proportion of products that meet the expected �-SL (SLP0) is 
greater in DSSOL , Halton and Sobol. That is due to the variation of the input sce-
narios being greater in these three. Therefore, there are also more products that 
exceed the SL in the expected value. This can also be seen in the high variance. 
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In the DSSOL , more than 3% of the products still fail to meet the expected SL by at 
least 2% (SLP2.0). Although Sobol and Halton outperform DS slightly, they still 
fall short of all products meeting the service level by at least 2% (SPL2.0) (2.6% of 
products fail for Halton and 1.9% for Sobol). In contrast, the MPDSSOL  has a much 
lower variance and, as of SLP0.1, has a considerably higher proportion of products 
that meet the expected SL.

The following analyses in this chapter only consider solutions obtained after fine-
tuning. Since the FO generates the setup pattern for fine-tuning, we still distinguish 
between the number of scenarios in FO. Note that after fine-tuning, all products 
meet the expected SL in all valid test instances. A test instance is considered valid if 
its solution does not make use of overtime. Across all 576 test instances, MPDSSOL  
and SobolSOL   each have 7 invalid instances, HaltonSOL   has 5, and DSSOL   has 8. 
Table  6 shows by how many percentage points the respective scenario-generation 
algorithm exceeds the expected target SL.

The DSSOL  (HaltonSOL , SobolSOL ) exceeds the expected target SL by more than 
0.5 (0.4) percentage points, on average, whereas the MPDSSOL  exceeds the expected 
target SL by an average of only 0.03 percentage points. This is also reflected in the 
expected costs.

Table 7 shows the average expected cost savings after fine-tuning in percentages 
when switching from the DSSOL  approach to the HaltonSOL , SobolSOL  or MPDSSOL  
approach.

Here, we average the test instances over the expected target SL, CV, utilization, 
and TBO. The column heading 50/30 indicates that 50 scenarios in the DSSOL  are 
compared with 30 scenarios in the MPDSSOL . In the other columns, DSSOL  is com-
pared with the respective approach using the same number of scenarios.

When switching from DSSOL , the low-discrepancy sequence methods HaltonSOL   
and SobolSOL   achieve an average cost reduction below 0.5%. However, in test 
instances with a TBO of 4 and 40 scenarios, we observe 1.6% higher costs on aver-
age when switching from DSSOL   to SobolSOL . This is due to some test instances 
where SobolSOL  yields particular higher costs than DSSOL(up to 7%) while the costs 
in remaining test instances are quite similar. Considering the low cost savings when 
switching from DSSOL   to either SobolSOL   or HaltonSOL , our subsequent analysis 
will focus on the comparison between MPDSSOL  and DSSOL.

The higher the expected target �-SL, the higher the cost savings of the MPDSSOL  
compared to the DSSOL . On average, over 0.5 additional percentage points in 
expected costs can be saved if the expected target �-SL is increased from 90% to 
95% (from 1.2% average cost savings for � = 90 to 1.78% average cost savings for � 
= 95%). A similar effect can be observed for the coefficient of variation. However, 
an average of 1.9 percentage points in expected costs can be saved if the coefficient 
of variation increases from 0.1 to 0.3. The coefficient of variation is a measure of 
the level of uncertainty. The higher the uncertainty, the better MPDS performs. Con-
versely, the cost savings of MPDS compared to DS decrease with increasing TBO. 
This can be explained by noting that, with a low TBO, setups are made in nearly all 
periods and hence the influence of the proper production quantities is greater. Capac-
ity utilization, on the other hand, does not seem to have any particular influence on 
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the savings level. Finally, expected cost savings of 1% (0.83%) are achieved when 
switching from DSSOL  with 50 scenarios to MPDSSOL  with 50 (30) scenarios on a 
significance level of 1%. Here, we calculated the cost difference between DSSOL  and 
MPDSSOL  for each test instance and applied a one-sided test for the mean expected 
cost difference.

5.3 � Comparison of MPDS and PLA

In contrast to Helber et al. (2013), we increased the number of linearization points 
of PLASOLand altered the distribution of the linearization points. The reason for this 
is that the distribution of linearization points used by Helber et al. (2013) is nested 
around cumulative demand and results in a poor approximation quality for our test 
instances due to the higher difference between cumulative production and cumula-
tive demand (since the �-SL chosen allows fewer shortages than the �-SL). With 
these two modifications, PLA performs well and can be solved in an acceptable 
computation time.

Table 5   Expected SL fulfillment by the FO heuristic

#Scenarios MPDS DS

50 40 30 20 50 40 30 

SL0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SL0.1 3.6 4.2 2.1 1.6 0.0 0.5 0.0
SL0.5 55.7 52.1 47.4 36.5 17.2 16.1 10.9
SL1.0 89.6 86.5 78.1 59.9 32.8 33.3 26.6
SL2.0 100.0 100.0 99.5 94.8 60.9 52.6 46.9
SLP0 27.2 28.4 29.0 24.8 38.1 37.4 33.8
SLP0.1 53.5 53.1 50.1 41.9 47.2 45.1 40.0
SLP0.5 92.4 90.2 86.3 77.3 69.5 66.3 61.2
SLP1.0 99.3 99.0 97.9 92.5 82.4 79.9 73.8
SLP2.0 100.0 100.0 100.0 99.8 96.4 95.4 93.0

#Scenarios Sobol Halton

50 40 30 50 40 30 

SL0 0.0 0.0 0.0 0.0 0.0 0.0
SL0.1 1.0 0.0 0.0 0.0 0.0 0.0
SL0.5 28.6 20.3 17.2 21.9 19.3 13.0
SL1.0 44.8 46.9 33.9 40.1 35.9 31.8
SL2.0 72.4 69.8 57.3 70.3 63.5 52.6
SLP0 39.5 39.9 38.0 39.5 39.2 38.0
SLP0.1 52.0 50.4 46.6 49.8 48.5 44.5
SLP0.5 76.2 73.2 69.2 73.2 70.8 65.0
SLP1.0 87.7 86.3 81.1 85.9 82.9 78.2
SLP2.0 98.1 97.5 95.7 97.4 96.3 94.1
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Figure 3 shows the cost saving as a percentage of PLASOL   as a function of the 
number of equally distributed linearization points compared to the Helber et  al. 
(2013) method with ten linearization points.

For further analyses, we take either 75 or 100 linearization points for PLASOL   
and compare it with MPDSSOL   with 50 scenarios. While there is a single test 

Table 6   Exceeding of the 
expected target SL [in 
percentage points]

SL 90% 95% Avg.

#Scenarios 30 40 50 30 40 50

DSSOLover target 0.57 0.55 0.56 0.46 0.47 0.43 0.51

HaltonSOLover target 0.57 0.5 0.48 0.43 0.42 0.4 0.47

SobolSOLover target 0.52 0.51 0.43 0.41 0.37 0.36 0.43

MPDSSOLover target 0.04 0.04 0.04 0.02 0.02 0.01 0.03

Table 7   Average expected cost savings (positive numbers) after fine-tuning in percentages % when 
switching from the DSSOL  approach to HaltonSOL , SobolSOL  or MPDS

SOL  approach

Bold entries is a heading and the bolded values are its respective values

#Scenarios 30 40 50 50/30 30 40 50 50/30

SL 90% 95%
HaltonSOL 0.2% 0.1% −0.1% 0.0% −0.1% 0.1%

SobolSOL 0.2% −0.4% 0.2% 0.2% −0.3% 0.4%

MPDSSOL 1.3% 1.3% 1.3% 0.9% 2.0% 1.6% 1.7% 1.8%
CV 0.1 0.3
HaltonSOL 0.2% −0.2% −0.1% 0.0% 0.3% 0.1%

SobolSOL 0.3% −0.8% 0.2% 0.1% 0.1% 0.4%

MPDSSOL 0.8% 0.5% 0.5% 0.3% 2.6% 2.4% 2.4% 2.4%
Cap. util. 75% 90%
HaltonSOL 0.0% −0.1% 0.1% 0.2% 0.1% −0.1%

SobolSOL 0.1% −0.2% 0.3% 0.3% −0.5% 0.3%

MPDSSOL 1.5% 1.4% 1.5% 1.4% 2.0% 1.4% 1.5% 1.6%
TBO 1 2
HaltonSOL 0.1% 0.3% 0.2% −0.1% 0.1% 0.2%

SobolSOL 0.2% 0.5% 0.4% 0.1% 0.0% 0.3%

MPDSSOL 2.8% 2.7% 2.6% 2.6% 1.5% 1.6% 1.5% 1.5%
TBO 4
HaltonSOL 0.4% −0.4% −0.5%

SobolSOL 0.4% −1.6% 0.1%

MPDSSOL 0.9% −0.1% 0.4% 0.2%
#Scenarios 30 40 50 50/30 30 40 50 50/30
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instance that is invalid for MPDSSOL  with 50 scenarios, all test instances prove valid 
for PLASOL  with both 100 and 75 supporting points. Table 8 shows by how many 
percentage points PLASOL  (and MPDSSOL ) exceeds the expected target �-SL.

As with DSSOL , PLASOL   exceeds the target by more than the MPDSSOL  , on 
average. However, the difference is not as large for PLASOL . With more lineariza-
tion points, the excess decreases. This is primarily due to the backlogs in the PLA 
approach always being overestimated by the linearization. A higher number of lin-
earization points also leads to a better approximation of the backlogs. Table 9 shows 
the average expected cost savings as a percentage when switching from MPDSSOL   
with 50 scenarios in FO to PLASOL.

We average the test instances over the expected target SL, CV, Utilization, and 
TBO. The higher the expected target SL and the coefficient of variation, the smaller 
the cost savings from PLASOL  are when compared to MPDSSOL . Conversely, higher 
capacity utilization results in higher cost savings. Similarly, a higher TBO leads to 
considerable cost savings from PLASOL   when compared to MPDSSOL . However, 
with a TBO of 1, MPDSSOL  is cheaper, on average, than PLASOL . If the costs are dif-
ferentiated according to setup and expected holding costs, we observe that PLASOL  
has considerably lower setup costs than MPDS. Only with a TBO of 4 does PLASOL  
also have lower holding costs. Otherwise, MPDSSOL   has lower expected holding 
costs. The FO seems to find better setup patterns using S-CLSPPLAthan S-CLSPSCN
with MPDS. This also explains the increasing cost savings of the PLASOL   when 
capacity utilization increases. The capacity utilization has a major impact on the 
setup pattern in the FO. If we take the setup pattern of the PLASOL  with 100 (75) 
linearization points as input for the fine-tuning of MPDSSOL , MPDSSOL   is able to 
find policies that are on average 0.5% (0.7%) cheaper than PLASOL . In fact, there 
is only one test instance where PLASOL   with 100 linearization points finds a bet-
ter policy (0.06% better). Finally, expected cost savings of 1.5% (1.25%) can be 
achieved when switching from MPDSSOL   with 50 scenarios to PLASOLwith 100 
(75) supporting points on a significance level of 1%. Here, we calculated the cost 
difference between DSSOL  and MPDSSOL  for each test instance and applied a one-
sided t-test for the mean expected cost difference.

The average computation time for MPDSSOL  is 492 s for 50 scenarios. With 30 
scenarios, the average computation time is reduced to 279 s. The FO’s share of the 
total computation time is 67.9% (50.2%) for 50 (30) scenarios. PLASOL  has an aver-
age computation time of only 120 (84) seconds for 100 (75) linearization points. 
Thus, PLASOLclearly outperforms MPDSSOL  with respect to computation times.

6 � Conclusions and future research

In stochastic dynamic lot-sizing models, the representation of stochastic effects over 
multiple periods is crucial. Often, only a limited number of scenarios can be used 
to represent stochastic effects in a multi-period planning period. While the DS of 
Saliby (1990) already enormously improves the representation of stochastic effects, 
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Helber et al. (2013) showed that there is still a large gap in solution quality between 
an S-CLSP model based on scenarios and a model incorporating a piecewise lin-
earization of the first-order loss function (PLA). To further improve the quality of 
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Fig. 3   Cost saving of PLASOL  in [%] compared to the linearization method of Helber et al. (2013)

Table 8   Percentage points 
PLA

SOL  (and MPDS
SOL ) exceed 

the expected target �-SL

�-SL 90% 95%

PLA Sup. Points 100 75 100 75

ppt PLASOLover target 0.10 0.12 0.07 0.09

ppt MPDSSOLover target 0.04 0.01

Table 9   Average cost savings 
as a percentage when switching 
from the MPDS

SOL  to the 
PLA

SOL  approach

Bold entries is a heading and the bolded values are its respective val-
ues

#Linearisation points 100 75 100 75

SL 90% 95%
2.4% 2.3% 1.6% 1.3%

CV 0.1 0.3
2.5% 2.1% 1.6% 1.4%

Cap. util. 75% 90%
1.4% 1.1% 2.6% 2.5%

TBO 1 2 4
Setup costs 5.2% 6.2% 6.3% 6.1% 3.4% 3.8%
Holding costs −6.4% −8.0% −2.2% −2.2% 5.4% 4.9%
Total exp. costs −0.2% −0.8% 1.8% 1.7% 4.5% 4.5%
#Linearisation points 100 75 100 75 100 75
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solutions under the SAA approach, we propose two starting points. First, we have 
enhanced the solution algorithm for the SAA approach of Helber et  al. (2013) by 
using an additional improvement heuristic, which we call fine-tuning. Second, we 
have developed a scenario-generation approach, MPDS, that considers the convo-
lution of the periods’ demand distributions, resulting in an even better representa-
tion of the S-CLSP based on DS combined randomly with scenarios ( DSRN ). Our 
computational tests with a static S-CLSP with stochastic demand compare solutions 
obtained with the help of the SAA approach based either on scenarios created with 
DS, Halton, Sobol, or MPDS and finally with PLA for approximating stochastic 
effects. Essentially, the following results have been observed.

–	 As benchmarks, we also examined the well-known low-discrepancy sequences 
of Halton and Sobol. The average costs obtained with HaltonSOLand SobolSOLare 
between the average costs of DSSOLand MPDSSOL.

–	 In our test instances, we find that even with less than half of the scenarios, better 
SL achievements can be obtained with MPDS than with DSRN.

	   Furthermore, on average, 1% expected holding costs and setup costs can be 
saved by using a policy calculated based on MPDS scenarios instead of DSRN   
scenarios.

–	 Fine-tuning already enables the SAA approach based on scenarios created with 
the DSRN  to meet the SL requirements of all products. Without fine-tuning, there 
is no test instance in which all products meet the expected levels, and the per-
centage of products meeting the expected SL is on average 38.1%.

–	 The number of linearization points used is crucial for the PLA approach. In our 
test instances, the cost difference amounted to an average of 8% (when using 100 
linearization points instead of 10).

–	 Both the PLA and SAA with MPDS always meet the expected target SL.

While the PLA yields the lower costs setup pattern, the SAA approach with MPDS 
yields lower costs production quantities. On average, 1.5% expected inventory cost 
and setup cost can be saved if a PLA approach is chosen instead of an SAA approach 
with MPDS. Thus, the PLA approach still provides the best solutions in the chosen 
setting. This is due to the setup pattern found in the FO: If the setup pattern of the 
PLA is preset for the SAA approach with MPDS, MPDS achieves on average 0.5% 
lower costs. Thus, using MPDS, the weakness of SAA is the generation of poorer 
setup patterns in the FO.

Due to the flexibility of the SAA and the possibility to model a great number of 
SLs used in practice, we recommend using the SAA approach. Furthermore, MPDS 
should be used instead of DSRN   if convoluted distributions are important for the 
construction of the scenarios. Note that the MPDS approach is not limited to the 
field of stochastic lot-sizing.

Frequently, correlations between the demands of individual products are observed 
in business practice. As can easily be seen, the optimal solution for the S-CLSP con-
sidered here with uncorrelated demand also corresponds to an optimal solution with 
correlated demand if a static uncertainty strategy is followed. This conclusion fol-
lows from the following thought experiment.
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Let us assume, without loss of generality, that there are two products and that a 
procedure exists with which (demand) scenarios numbered s = 1,… , S have been 
generated for each product p = 1, 2 , which ideally represent the moments and the 
behavior of the observed demand distributions while at the same time reflect the 
desired correlation between the two products. Note that the correlation between the 
two products exists for any scenario numbered s (scenarios case A). If we now ran-
domly reassign the (demand) scenarios to different scenario numbers, the correla-
tion between (demand) scenarios of the same scenario number –in the ideal case– no 
longer exists (scenarios case B). What difference does it make if the S-CLSP consid-
ered here is given either the scenarios of case A or B as input?

First, one recognizes that interdependencies between the products only occur 
in the capacity constraints via the lot-size variables. However, since the prod-
ucts’ lot-sizes are scenario-independent, also the solution of the S-CLSP is 
independent of the chosen assignments of the (demand) scenarios to scenario 
numbers. Thus, case A and B lead to the same result, regardless of whether 
a correlation between the products was modeled or not. In other words, the 
S-CLSP considered here, will not profit from the portfolio effect in case of no 
correlation between products. This is a weakness of the model, which is associ-
ated with relatively high storage costs.

Another issue often observed in practice is serial correlation of demand. Here, 
we can expect scenarios that contain longer sequences of extreme period demands 
(e.g., of large period demands) than with uncorrelated demand. This should increase 
the risk of (larger) shortages which have to be considered in the scenario independ-
ent lot-size decisions und thus will make a difference in solutions of the S-CLSP 
considered here. To extend the scope of MPDS generating scenarios with both serial 
and cross correlations between products should be given priority in future research.

And there are other interesting fields of research. To date, DS (thus also MPDS) 
is limited to continuous probability distributions. An extension to also cover dis-
crete probability distributions seems most valuable due to their availability in prac-
tice. Finally, further decomposition strategies for the FO heuristic should be tested, 
beyond the product-by-product decomposition used here. This should yield better 
setup patterns as a basis for fine-tuning and thus result in improved solutions from 
the SAA approach overall.
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