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Abstract
Estimating the causal effects of health policy interventions is crucial for pol-
icymaking but is challenging when using real‐world administrative health care
data due to a lack of methodological guidance. To help fill this gap, we con-
ducted a plasmode simulation using such data from a recent policy initiative
launched in a deprived urban area in Germany. Our aim was to evaluate and
compare the following methods for estimating causal effects: propensity score
matching, inverse probability of treatment weighting, and entropy balancing,
all combined with difference‐in‐differences analysis, augmented inverse
probability weighting, and targeted maximum likelihood estimation. Addi-
tionally, we estimated nuisance parameters using regression models and an
ensemble learner called superlearner. We focused on treatment effects related
to the number of physician visits, total health care cost, and hospitalization.
While each approach has its strengths and weaknesses, our results demon-
strate that the superlearner generally worked well for handling nuisance terms
in large covariate sets when combined with doubly robust estimation methods
to estimate the causal contrast of interest. In contrast, regression‐based
nuisance parameter estimation worked best in small covariate sets when
combined with singly robust methods.

K E Y W O R D S
administrative health care data, best practice, causal inference, simulation

1 | INTRODUCTION

Evaluating health policy interventions is crucial for optimizing their effectiveness and efficiency, as well as for iden-
tifying and mitigating any unintended health and economic consequences that may arise (Husereau et al., 2022; Luyten
et al., 2022). Such evaluations also play a broader role in ensuring the efficient allocation of scarce resources and
informing future policymaking (Clarke et al., 2019). Estimating causal treatment effects is essential for achieving these
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goals (Crown, 2019). However, this often requires the use of administrative health care data, which presents several
methodological challenges, such as a lack of randomization, unobserved heterogeneity, and the presence of a wide
range of variables with complex and unknown dependencies. To address these challenges, various methods have been
developed, including propensity score techniques (Rosenbaum & Rubin, 1983), difference‐in‐differences (DiD) analysis
(Card & Krueger, 1993) and doubly robust semi‐parametric methods (Robins et al., 1994; van der Laan & Rubin, 2006).
However, despite continuous efforts to develop and refine these methods, our understanding of their performance in
estimating causal effects based on administrative health care data remains limited.

To address this deficit, Monte Carlo simulation studies have been conducted to evaluate and compare the perfor-
mance of different methods (Radice et al., 2012; Kreif et al., 2013; Kreif, Gruber, et al., 2016; O'Neill et al., 2016; Hwang
et al., 2017). For instance, Radice et al. (2012) compare propensity score methods and genetic matching; Kreif
et al. (2013) compare doubly robust methods to regression and propensity score methods; Kreif, Gruber, et al. (2016)
compare a targeted maximum likelihood estimation (TMLE) with bias‐corrected matching utilizing the superlearner for
estimating the propensity score and regression function; Hwang et al. (2017) compare a new approach for estimating
mean lifetime healthcare costs to a popular approach; and O'Neill et al. (2016) compare DiD estimation to the synthetic
control method, a regression approach, and matching. Many simulation studies, however, are characterized by rela-
tively simple confounding structures with few variables, leading to varying results depending on the data structure
modeled and the methods under consideration (Franklin et al., 2014). Because the optimal choice for an estimation
strategy depends on the research question, data features, population characteristics and method assumptions, simu-
lation results are only applicable to the specific simulation setting (Varga et al., 2023). Moreover, these studies cannot
accommodate the complexity and characteristics of real‐world administrative health care data. As a result, researchers
working with such data face a lack of guidance when it comes to selecting the most suitable method for their analysis.

Plasmode simulations have been proposed as an alternative to traditional simulations (Franklin et al., 2014;
Vaughan et al., 2009). In a plasmode simulation, the covariates from a real dataset are used without alteration, while the
values for the outcome variables are simulated based on the estimated associations between covariates and outcomes
from the original data, ensuring that the true effect size is known. The advantage of this approach is that it preserves the
high‐dimensional and complex covariate structure of the source data, providing a simulation environment that closely
resembles real‐world conditions (Ripollone et al., 2020). Some previous plasmode simulations comparing the perfor-
mance of various methods are either based on other settings, such as Sekhon & Grieve, 2012, whose simulation uses
data from randomized controlled trials (RCTs), or focus on specific parts of the estimation strategy, such as Jones
et al., 2015, who model health care costs only. Other plasmode simulations have compared the performance of various
methods using administrative health care data but have focused mainly on continuous normally distributed (e.g., Meng
& Huang, 2021) or binary outcomes (e.g., Franklin et al., 2014). Consequently, there remains a lack of guidance when it
comes to choosing the most appropriate method for estimating causal effects for outcomes with other distributions
commonly encountered in health economic evaluations, such as count data (e.g., the number of physician visits) and
non‐normally distributed continuous outcomes (e.g., expenditures) (Baxter et al., 2018).

To address this important research gap and provide practical suggestions for evaluating health policy interventions,
we conducted a simulation study using a plasmode dataset derived from real‐world administrative health care data. The
data originate from a policy initiative launched in 2017 to improve access to care, optimize the use of resources and
reduce costs in a deprived urban area in Germany. Using this dataset to simulate real‐world conditions, our study
evaluated and compared a range of methods for estimating causal effects across outcomes with different distributions.
Our aim in doing so was to identify which causal estimation methods performed best in settings similar to that in our
study. We focused on count data (number of physician visits), non‐normally distributed continuous data (total health
care costs), and binary data (indicator for hospitalization).

For our analysis, we selected five causal estimation methods that can be categorized into two groups. The first group
comprises three commonly used methods in the field of health economics, namely propensity score matching, inverse
probability of treatment weighting (IPW), and entropy balancing, all used in combination with a DiD framework. These
have been employed in the case of propensity score matching by researchers such as Schreyögg et al. (2011), Fu
et al. (2017), Strumpf et al. (2017), Somé et al. (2019), and Flawinne et al. (2023); in the case of IPW by researchers such
as Nasseh et al. (2017), Strumpf et al. (2017), Sarma et al. (2018), Urwin et al. (2021), and Bijwaard (2022); and in the
case of entropy balancing by Marcus (2013), Somé et al. (2019), Aranda et al. (2021), Bäuml et al. (2023), and Urwin
et al. (2023). The second group of approaches consists of the doubly robust methods known as augmented inverse
probability weighting (AIPW) and TMLE. These have been recommended in simulation studies, such as those con-
ducted by Schuler and Rose (2017), Naimi et al. (2021), and Zivich and Breskin (2021). We deployed various simulation
scenarios, which involved varying the set of covariates used for analysis and the approach employed for estimating the

2758 - RESS and WILD



nuisance parameters. In each scenario, we estimated average treatment effects on the treated (ATT) for count data and
continuous outcomes and odds ratios (OR) for binary outcomes. These estimands are widely used in the field and are
relevant to policymakers, underscoring the need for practical guidance in their use for evaluations. Lastly, we conclude
with some suggestions based on our findings that may be useful for designing estimation strategies when conducting
health economic evaluations based on administrative health care data.

The rest of this paper is organized as follows: Section 2 provides a brief introduction to the estimands of interest and
the estimators compared in this study. Section 3 describes the data used for the plasmode simulation, the simulation
approach employed and the specific scenarios that were simulated. Section 4 presents the results of the simulation,
highlighting the performance of the different methods. Lastly, Section 5 discusses the results and provides suggestions
that may be useful for researchers seeking to estimate treatment effects in causal analysis of administrative health care
data.

2 | METHODS

2.1 | Target parameters

We used the potential outcome framework by Rubin (1974) to define our causal estimands of interest. Let ðXi;Yi;ZiÞ
be the data of the ith subject in an independent and identically distributed dataset containing n subjects. Yi ∈ R, where
R denotes the set of real numbers, is the observed outcome, Zi ∈ f0; 1g is a binary indicator for the received treatment,
and Xi ∈ Rd denotes the d covariates of the ith subject. Furthermore, the potential outcomes for subject i, which
represent the outcomes that subject i would have under the control treatment and the treatment of interest, respec-
tively, given the same circumstances, are defined as ðYið0Þ;Yið1ÞÞ.

The average treatment effect (ATE) is then defined as

τATE ¼ E½Yið1Þ − Yið0Þ�;

the ATT as

τATT ¼ E½Yið1Þ − Yið0Þj Zi ¼ 1�

and the marginal causal OR for a binary outcome as

τOR ¼
E½Yið1Þ ¼ 1�

1 − E½Yið1Þ ¼ 1� =
E½Yið0Þ ¼ 1�

1 − E½Yið0Þ ¼ 1�
:

Note that the ATE and the OR measure the effect of the intervention for the whole population under consideration,
meaning they represent the effect if every subject were treated. In contrast, the ATT measures the effect on those who
were actually treated. Because the potential outcomes are subject to uncertainty and only one can be observed for each
subject (Pearl, 2009), certain methods and assumptions are necessary to overcome this fundamental problem of causal
inference (Holland, 1986).

2.2 | Propensity score: Matching and IPW

The propensity score, which we denote as eðXiÞ ¼ PðZi ¼ 1jXiÞ, is the probability of receiving the treatment of interest
given the observed covariates X . In the presence of unconfoundedness, as well as positivity and consistency assump-
tions, the propensity score can be used to control for confounding and calculate unbiased estimators of treatment ef-
fects. The assumptions are defined as follows:

� Conditional exchangeability/Unconfoundedness: fYið1Þ;Yið0Þg ⊥ ZijXi
� Positivity: 0 < PðZi ¼ 1jXiÞ < 1
� Consistency: Yi ¼ ð1 − ZiÞYið0Þ þ ZiYið1Þ.
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In addition to the identifying assumptions above, the propensity score model ê needs to be correctly specified. The
propensity score must be estimated based on the available data and can be referred to as a nuisance parameter because
it is not the primary parameter of interest. This estimation is commonly performed using logistic regression models,
although machine learning approaches can also be employed.

One method that uses the propensity score is known as matching. The fundamental concept of matching is to
identify subjects in the control group who closely resemble the treated subjects. In nearest neighbor matching (Caliendo
& Kopeinig, 2008), a distance is calculated between the propensity score of each treated and control subject, and,
subsequently, each treated subject is matched with the closest control subject. As a result, only a subset of subjects who
are similar with respect to their propensity scores are used for effect estimation. The expected outcomes are identi-
fied by

E½YiðzÞ� ¼
1
m

X

i:Zi¼z; i∈M
Yi;

where m is the number of matched subjects in each treatment group and M indexes the set of matched subjects.
Another common method based on the propensity score is IPW. In IPW, weights are assigned to subjects to

construct similar treatment and control populations. These weights are determined by the inverse of their propensity
scores wi ¼ Zi

eðXiÞ þ
1−Zi

1−eðXiÞ (Horvitz & Thompson, 1952; Robins et al., 2000). For estimating the ATT, the weight is
multiplied by eðXiÞ, resulting in treatment subjects having a weight of one and acting as the reference group (Morgan &
Todd, 2008). The expected outcomes are identified by

E½YiðzÞ� ¼
1
n
X

i:Zi¼z
wiYi:

2.3 | Entropy balancing

A generalization of the propensity score weighting method is entropy balancing (Hainmueller, 2012), which aims to
achieve covariate balance directly instead of relying on a single score such as the propensity score. Under uncon-
foundedness, positivity and consistency assumptions, this is done by adjusting the weights assigned to the control group
to satisfy a set of balancing conditions, while the subjects in the treated group are assigned a weight of one. The weights
for estimation of the ATT are computed by solving

ŵ¼ argmin
w

P

i:Zi¼0
wi logðwiÞ subject to

P

i:Zi¼0
wicjðXiÞ ¼ 1

n1

P

i:Zi¼1
cjðXiÞ for a set of functions cj; j ∈ f1;⋯; Jg and

P

i:Zi¼0
wi ¼ 1, wi ≥ 0; i¼ 1;…;n where n1 is the number of subjects in the treated group.

The expected outcomes are identified by

E½Yið0ÞjZi ¼ 1� ¼
X

i:Zi¼0
wiYi and E½Yið1ÞjZi ¼ 1� ¼

X

i:Zi¼1

1
n1
Yi:

2.4 | Difference‐in‐differences

The aforementioned methods are often used as preprocessing steps to improve covariate balance between the treatment
and control groups before estimating the treatment effect in the preprocessed data, such as in matched or weighted
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samples (Hainmueller, 2012). For longitudinal data, one commonly employed method is the DiD approach, which
compares the average change over time in the outcome for the treatment group to the average change over time for the
control group. This allows for selection on unobservables, assuming that the selection bias is additive and time‐
invariant, and that the parallel trend assumption holds (i.e., the two groups would have exhibited parallel trends in
the absence of treatment conditional on observed covariates):

� Conditional parallel trends: E½Yi;1ð0Þ − Yi;0ð0Þ
�
�Zi ¼ 1;X� ¼ E½Yi;1ð0Þ − Yi;0ð0Þ

�
�Zi ¼ 0;X�, where t = 0 before treatment

and t = 1 after treatment, let Yi;tð1Þ and Yi;tð0Þ be the respective outcomes for treatment and control subjects i at
time t.

As a consequence, the strong unconfoundedness assumption posed in the earlier sections is not required, while the
assumptions of positivity and consistency remain (Abadie, 2005).

The DiD estimates the ATE on the treated via the regression

Yi;t ¼ αþ βZit þ αi þ αt þ εi;t

where αi are individual fixed effects, αt are time fixed effects, and εi;t the additive time‐varying error term. τ̂DiD
ATT ¼ β̂

captures the difference in change between the intervention and control groups and therefore the effect of the inter-
vention. As a consequence, statistical assumptions of the linear regression model, such as linearity, additivity and model
correctness, are required. In terms of potential outcomes, the DiD estimator is given by

τDiD
ATT ¼ E

�
Yi;1ð1Þ − Yi;0ð1Þ

�
�Zi ¼ 1

�
− E
�
Yi;1ð0Þ − Yi;0ð0Þ

�
�Zi ¼ 1

�
:

The difference E½Yi;1ð0Þ − Yi;0ð0Þ
�
�Zi ¼ 1� is not observable and therefore E½Yi;1ð0Þ − Yi;0ð0Þ

�
�Zi ¼ 0� is used as the

counterfactual.

2.5 | AIPW and TMLE

AIPW (Robins et al., 1994) and TMLE (van der Laan & Rubin, 2006) are methods that combine the propensity score
model and the outcome model. These are considered doubly robust because their estimation is consistent if at least one
of the two models is correctly specified. Computing the AIPW and TMLE estimators requires the estimation of the
propensity score and the outcome model, which are referred to as nuisance parameters because they are not the pri-
mary parameters of interest. In addition to the identifying assumptions of unconfoundedness, positivity and consistency
(Baumann et al., 2021; Glynn & Quinn, 2010), statistical assumptions linked to the estimation of the nuisance pa-
rameters may be needed.

The nuisance parameters can be estimated using parametric models, such as regression, or non‐parametric models,
such as random forests. The nuisance parameters should be of high quality, meaning that the predictors are consistent
and have convergence rates of at least n−1=4, where n is the sample size. The convergence rate implies that the square
root of the mean squared error halves when the sample size is increased by a factor of 16; additionally, the predictors
should be computed in an out‐of‐sample manner (e.g., using V‐fold cross‐fitting), where the predictors for individual
observations are computed without including the observation itself (Chernozhukov et al., 2018). It should be noted that
non‐parametric approaches have slower convergence rates compared to parametric approaches. Therefore, when using
non‐parametric models, doubly robust estimators need to be employed (Naimi et al., 2021).

The AIPW estimator is a one‐step correction estimator based on g‐computation with a correction term based on the
propensity score. First, the outcome model mðZi;XiÞ¼ E½YijZi;Xi� for Zi ¼ 0 and Zi ¼ 1 and the propensity score model
eðXiÞ need to be estimated. Information on these models are then combined to calculate

τ̂AIPW
ATE ¼

1
n
X

i

�

m̂ð1;XiÞ − m̂ð0;XiÞ þ
ZiðYi − m̂ð1;XiÞÞ

êðXiÞ
−
ð1 − ZiÞðYi − m̂ð0;XiÞÞ

1 − êðXiÞ

�

RESS and WILD - 2761



and

τ̂AIPW
ATT ¼

1
n
X

i

 
Zin
P

jZj
ðYi − m̂ð0;XiÞÞ −

nð1 − ZiÞêðXiÞ
P

jZjð1 − êðXiÞ
Þ ðYi − m̂ð0;XiÞÞ

!

:

To use TMLE on continuous outcomes, these need to be transformed so that they are bounded within ð0; 1Þ (Gruber
& van der Laan, 2012; van der Laan & Rose, 2011). Similar to AIPW, the first step of TMLE requires estimating the
outcome model and the propensity score. The adjustment procedure, however, is slightly different from that in the
AIPW and includes a targeting step for the initial estimate of the expected outcome. During the targeting step, a
clever covariate HðZi;XiÞ ¼ Zi

êðXiÞ − 1−Zi
1−êðXiÞ and the fluctuation parameter ε̂ are calculated. The fluctuation parameter in-

dicates how to adapt the initial outcome estimates to incorporate information about the treatment model and is
computed by solving logitðYiÞ ¼ logitðm̂ðZi;XiÞÞ þ εHðZi;XiÞ: Finally, the initial outcome estimates are updated by
m̂∗ðZi;XiÞ¼ expitðlogitðm̂ðZi;XiÞÞ þ ε̂HðZi;XiÞÞ and the ATE is calculated as

τ̂TMLE
ATE ¼

1
n
X

i
½m̂∗ð1;XiÞ − m̂∗ð0;XiÞ�:

To estimate the ATT, a different clever covariate for the outcome model and an additional clever covariate for the
propensity score are needed. Moreover, an iterative procedure is necessary to update the propensity score and outcome
model. For further information see Chapter 8 in van der Laan and Rose (2011). AIPW and TMLE can also be used to
estimate target parameters such as the odds ratio, which is also a function of the two counterfactual probabilities
E½Yið0Þ� and E½Yið1Þ� (van der Laan & Rose, 2011; Zhong et al., 2021).

2.6 | Superlearner

As mentioned above, nuisance parameters can be estimated using regression or machine learning approaches. When
deciding whether to employ a machine learning approach, it is difficult to choose among the many algorithms available
—a problem that is solved by the superlearner, which combines multiple algorithms (van der Laan et al., 2007). The
superlearner is a weighted ensemble of multiple baselearners that can include both parametric and non‐parametric
approaches, offering protection against model misspecification (Naimi et al., 2021). It performs at least as well as the
best baselearner included in the ensemble (van der Laan et al., 2007) and can reduce bias and improve covariate balance
in the presence of model misspecification (Pirracchio et al., 2015). The estimation procedure using the superlearner
involves the following steps (Polley & van der Laan, 2010; van der Laan et al., 2007):

1. Choose a set of baselearners L ¼ fΨk : k ¼ 1;…;Kg and fit each baselearner on the entire dataset
D¼ fDi ¼ ðYi;XiÞ : i¼ 1;…; ng to form the ensemble of trained baselearners Ψ̂k. Each baselearner is trained on the
entire dataset according to its respective methodology. For example, when using regression models as baselearners,
this involves estimating their regression coefficients.

2. Split the data D into training and validation samples according to a V‐fold cross‐validation scheme, such that there
are V equal‐sized subsets. Let VðvÞ be the vth validation set and the remaining data TðvÞ ¼ DnVðvÞ be the corre-
sponding training dataset, v¼ 1; :::;V .

3. For the vth fold, fit each baselearner in L on TðvÞ and save the trained baselearners as Ψ̂k;TðvÞ.
4. Determine the weights α that minimize the cross‐validated risk of the candidate estimator

PK
k¼1αkΨ̂k as

α̂¼ argmin
α

1
V
XV

j¼1

1
jVðvÞj

X

i∈VðvÞ
L

 

Di;
XK

k¼1
αkΨ̂k;TðvÞ

!

where 0 ≤ αk ≤ 1 and
PK

k¼1αk ¼ 1 and loss function L. The goal of this step is to use, in the final estimator, the
baselearners that best predict the data.
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5. The final estimator is given by

Ψ̂ðXÞ ¼
XK

k¼1
α̂kΨ̂kðXÞ:

For a more detailed description see the step‐by‐step guide provided in Polley et al. (2021) and the visual guide in
Hoffman (2020).

3 | PLASMODE SIMULATION

In this section, we aim to answer our research question: Which of the five causal methods performs best when esti-
mating treatment effects using administrative health care data in various realistic scenarios with outcomes from
different distributions and varying sets of covariates, and how should the nuisance parameters be estimated in each
setting?

3.1 | Source data and plasmode dataset generation

In our plasmode simulation study, we constructed a data‐generating process based on real‐world administrative health
care data. Specifically, we used data from a policy initiative that was launched with the aim of improving access to care,
optimizing the use of resources and reducing costs in a deprived urban area in Germany in 2017 (Ress & Wild, 2023).
The data were provided by three statutory health insurers, covering the period from 2015 to 2019. The dataset
encompassed comprehensive information on health care utilization and costs, prescriptions, nursing care and the
demographic characteristics of n = 556,911 individuals across p = 3.508 covariates, with the intervention group con-
sisting of n1 = 49,348 individuals. See Appendix A for an overview.

To simplify the simulation task while still capturing the essential covariates, we employed the concept of the high‐
dimensional propensity score algorithm proposed by (Schneeweiss et al., 2009) and reduced the number of covariates by
keeping only the most important diagnoses (based on ICD codes), procedures and diagnostics (based on OPS codes),
and medications (based on ATC codes). Ultimately, this led us to select the 200 most important binary indicators for
these variables as determined by the importance measure of gradient boosting (Friedman, 2001). A list of these 200
variables can be found in Appendix B.

These were then used to supplement our 32 handpicked covariates, which comprised demographic characteristics,
information on participation in disease management and integrated care programs, incapacity to work and long‐term
care, utilization and costs of health services across different sectors, and additionally 31 binary indicators for the
Elixhauser comorbidity groups (Elixhauser et al., 1998) (see Appendix A).

We used these 263 covariates together with the treatment indicator to simulate values for the outcome variables
defined above while maintaining the associations between the covariates, and we generated new values for the outcome
variables with a chosen effect size. The procedure to perform the plasmode simulation was as follows:

1. Estimate the association between treatment, outcome and covariates.
2. Use the estimated coefficients to predict the outcomes but modify the treatment coefficient to the desired effect size.
3. Draw J subsets of size s by resampling‐with‐replacement and perform steps 4 and 5 for each of those subsets.
4. Introduce noise by sampling the outcomes from suitable distributions using the simulated values from step 3 as

expected values.
5. Analyze the simulated data.

We focused on three outcomes: (a) the number of outpatient physician visits (count data), (b) total health care cost
(non‐normally distributed continuous data), and (c) hospitalization (binary indicator). To estimate the association
between treatment, outcome and covariates, we used a negative binomial regression for the observed number of
outpatient physician visits as a function of treatment and covariates. To estimate the association between treatment,
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covariates and total cost, we used a generalized linear model with gamma family and log‐link. Finally, for hospitali-
zation we estimated a logistic model. The goodness‐of‐fit for our models was quantified using Nagelkerke R2

(Nagelkerke, 1991), yielding values of 0.380 for the outpatient physician visits, 0.167 for total cost and 0.199 for
hospitalization. In all regressions, we modeled the covariates representing cost measures using natural cubic
splines, which allowed us to model the non‐linear effects of continuous variables while avoiding distributional as-
sumptions (Perperoglou et al., 2019). We excluded interaction terms, maintaining only linear relationships in our
model. We set the treatment coefficients to model a 5% reduction in costs and utilization and estimated the treated
and untreated outcomes for each subject. Using these simulated counterfactual outcomes we calculated the true
annual effects for the entire population. Thus, the true effect for the number of outpatient visits is given by
τoutpatient
ATT ¼ −0:710, the effect for total costs by τcostATT ¼ −149:453 and the effect for hospitalization by τhospitalization

OR ¼ 0:95.
Next, we resampled J = 1000 subsets of size s = 5000 observations with replacement and drew the simulated number of
outpatient visits from the Poisson distribution, the simulated total cost from the Gamma distribution, and the simu-
lated binary indicator for hospitalization from the Bernoulli distribution using the previously estimated values as
expected values.

This resulted in J subsets of size s, each containing a treatment vector Z, a matrix of covariates X and a vector
containing the simulated outcome Y) for each target measure. The data‐generating mechanisms for X and Z were
unknown, and any existing associations were preserved because we used the observed data without alteration. How-
ever, we created the outcomes Y) in such a way that the data‐generating mechanism, including the effect sizes for the
treatment, was known. Here, the assumption of an independent and identically distributed dataset is probably not met
because the simulated dataset is based on real data, and thus real‐world conditions are simulated more realistically.

To simulate unobserved confounding, we dropped a subset of the confounders used to simulate the outcomes from
the data used for analysis and defined these as unobserved confounders (Franklin et al., 2014). We used four different
sets of covariates to vary both the level of unobserved confounding and the number of covariates used for analysis (see
Appendix C for the strength of the relationships between covariate sets and outcomes). All four sets of covariates
employed to control for confounding used our handpicked variables, and three of the four sets were enhanced by
additional sets of covariates, as follows:

1. Handpicked covariates only (32 covariates)
2. Handpicked covariates enhanced by the indicators for the Elixhauser comorbidity groups (63 covariates)
3. Handpicked covariates enhanced by the binary indicators for the 100 most important ATC, ICD and OPS codes

based on gradient boosting (132 covariates)
4. Handpicked covariates enhanced by all ICD codes among the 200 additional confounders used for simulation (204

covariates)

In the next step, we analyzed the data under different scenarios and obtained estimates of the treatment effect.
Subsequently, we computed and compared the properties of the different estimation methods, as would be the case in
ordinary simulation studies. We performed all computations using R version 4.1.2.

3.2 | Estimands

Our objective in this simulation study was to estimate the effect of exposure to the policy initiative (i.e., the treatment
effect) based on whether or not individuals resided in the initiative's target area (i.e., a binary treatment variable). By
comparing subjects who actually received the treatment with those who did not, the ATT represents an average effect
on those who received the treatment and indicates what would have happened if they had not been treated, and thus
may be the parameter of interest for policymakers (Heckman & Vytlacil, 2001; Wang et al., 2017). Moreover, the DiD
estimator is widely used to estimate causal effects in the field of health economics and its parameter of interest is the
ATT (Kreif, Grieve, et al., 2016). For these reasons, we estimated the ATT for the count data and continuous data
outcomes. For the binary outcome, we estimated the marginal causal OR, which is also widely used in the field. The
marginal causal odds ratio assesses the effect of a treatment across a population and thus is relevant to policymakers
who are interested in uniformly applied policy decisions (Loux et al., 2017; Persson & Waernbaum, 2013). It should be
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noted, however, that the use of the OR is generally discouraged due to problems of misinterpretation and comparability
across studies (Norton et al., 2024).

3.3 | Simulation scenarios

We estimated the nuisance parameters, namely the propensity score and the outcome model, using two different ap-
proaches. For a baseline and comparison, we used the most common strategy, which is parametric linear regression.
For the outcome models focusing on the number of outpatient physician visits and the total cost, we used OLS
regression, whereas for hospitalization we used logistic regression. To estimate the propensity score, we also used
logistic regression. In all models, we included only linear terms (no interactions). However, a problem when using
regression, especially in settings with many covariates, is the need to specify a parametric model. To address this, we
used the superlearner algorithm implemented in the SuperLearner package (Polley et al., 2021), which allowed us to
incorporate non‐parametric approaches. We included the following five algorithms as baselearners: generalized linear
model with penalized maximum likelihood (glmnet function) (Friedman et al., 2010), random forest (ranger function)
(Wright & Ziegler, 2017), gradient boosting (xgboost function) (Chen et al., 2015), support vector machines (svm
function) (Cortes & Vapnik, 1995; Karatzoglou et al., 2006), and multivariate adaptive regression splines (earth func-
tion) (Friedman, 1991). All functions were used with the default parameters at the time of writing. Further information
can be found in Appendix D. We used 10‐fold cross‐validation to estimate the baselearner weights, minimizing non‐
negative least squares normalized to one (van der Laan et al., 2007). We estimated the nuisance parameters out‐of‐
sample by applying a two‐fold cross‐fitting procedure to estimate the target parameters on separate datasets from
the nuisance models.

We then employed the five different causal methods described in the previous section to estimate causal treatment
effects: propensity score matching (and subsequent DiD analysis), IPW (and subsequent DiD analysis), entropy
balancing (and subsequent DiD analysis), AIPW and TMLE, see Table 1 for a summary. To estimate the ATT, we
combined propensity score matching, IPW and entropy balancing with DiD, whereas we estimated the odds ratio on the
matched/weighted samples directly. We matched on the propensity score using 1:3 nearest neighbor matching with the
MatchIt function (Stuart et al., 2011). For IPW, we used the corresponding weights to calculate the ATT and ATE
weights for the computation of OR (Pirracchio et al., 2012). For entropy balancing, we employed the ebalance function
(Hainmueller, 2012) and used the ATT weights to estimate both the ATT and the odds ratio (Amusa et al., 2019). The
DiD estimator was calculated using the built‐in R functions lm and glm. Lastly, we performed AIPW using the AIPW
function (Zhong et al., 2021) and TMLE using the tmle function (Gruber & van der Laan, 2012). Further information on
the settings used for estimation can be found in Appendix D. For variance and confidence interval (CI) estimation, we
used the defaults provided by the aforementioned functions.

3.4 | Performance measures

To assess the performance of the different causal estimation methods in the various scenarios described above, we
compared their estimates to the true treatment effect across the population, which was known due to the simulation
setup. We compared the performance with respect to bias, empirical standard error (SE) and 95% CI coverage. Bias is
measured as the mean difference between the estimated and true treatment effect, reflecting the expected error of an
estimation. As such, bias is a measure of the systematic deviance from the true effect and reflects the bias of the
estimator. The empirical SE reflects the dispersion of the estimated effects around their mean, providing a measure of
the precision of the estimator. Confidence interval coverage indicates the proportion of CIs that contain the true effect.
Coverage below the confidence level reflects bias or CIs that are systemically too narrow, whereas overcoverage reflects
CIs that are systemically too wide. Because the performance measures are themselves estimated, we report them with
their corresponding Monte Carlo Standard errors (MCSEs) to quantify uncertainty. Formulas for the calculated per-
formance measures and MCSEs can be found in Morris et al. (2019).
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4 | RESULTS

MCSEs across all performance measures and scenarios were acceptable and thus allowed us to draw conclusions about
the performance of the methods based on 1000 simulation iterations. All performance measures and their corre-
sponding MCSEs can be found in Appendix E.

4.1 | Number of outpatient visits

Figure 1 presents the results for the ATT on the count‐data outcome: the number of outpatient visits. First, we
compared the performance of each of the five causal estimation methods while using either regression models or the
superlearner to estimate the nuisance parameters. For IPWþDiD, AIPW and TMLE, we observed smaller bias and SE of
the treatment effect when using the superlearner. For matching, we found that using the superlearner instead of
regression models led to smaller bias, whereas the SE was larger. For entropy balancing, no nuisance parameters were

T A B L E 1 Overview of simulation scenarios, as well as target estimands, nuisance parameters, and assumptions for each scenario.

Estimation
method Outcome

Target
estimand

Nuisance
parameter(s)

Identifying
assumption(s) Statistical assumption(s)

MatchingþDiD Number of outpatient
visits, total health care
cost

ATT Propensity
score

Conditional parallel
trends, positivity,
consistency

Modeling assumptions of nuisance
parameter estimation method,
statistical assumptions of linear
regression model (e. g. linearity,
additivity, correct model specification)

Matching Binary indicator for
hospitalization

Marginal
OR

Propensity
score

Unconfoundedness,
positivity, consistency

Modeling assumptions of nuisance
parameter estimation method

IPWþDiD Number of outpatient
visits, total health care
cost

ATT Propensity
score

Conditional parallel
trends, positivity,
consistency

Modeling assumptions of nuisance
parameter estimation method,
statistical assumptions of linear
regression model (e. g. linearity,
additivity, correct model specification)

IPW Binary indicator for
hospitalization

Marginal
OR

Propensity
score

Unconfoundedness,
positivity, consistency

Modeling assumptions of nuisance
parameter estimation method

Entropy
balancingþDiD

Number of outpatient
visits, total health care
cost

ATT Conditional parallel
trends, positivity,
consistency

Statistical assumptions of linear
regression model (e. g. linearity,
additivity, correct model specification)

Entropy
balancing

Binary indicator for
hospitalization

Marginal
OR

Unconfoundedness,
positivity, consistency

AIPW Number of outpatient
visits, total health care
cost

ATT Propensity
score, outcome
model

Unconfoundedness,
positivity, consistency

Modeling assumptions of nuisance
parameter estimation method

AIPW Binary indicator for
hospitalization

Marginal
OR

Propensity
score, outcome
model

Unconfoundedness,
positivity, consistency

Modeling assumptions of nuisance
parameter estimation method

TMLE Number of outpatient
visits, total health care
cost

ATT Propensity
score, outcome
model

Unconfoundedness,
positivity, consistency

Modeling assumptions of nuisance
parameter estimation method

TMLE Binary indicator for
hospitalization

Marginal
OR

Propensity
score, outcome
model

Unconfoundedness,
positivity, consistency

Modeling assumptions of nuisance
parameter estimation method

Abbreviations: AIPW, augmented inverse probability weighting; Entropy balancing(þDiD), entropy balancing (with subsequent difference‐in‐differences
analysis); Matching(þDiD), propensity score matching (with subsequent difference‐in‐differences analysis); IPW(þDiD), inverse probability of treatment
weighting (with subsequent difference‐in‐differences analysis); TMLE, targeted maximum likelihood estimation.
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F I G U R E 1 Performance measures for the ATT on the number of outpatient visits (true treatment effect τoutpatient
ATT ¼ −0:710) for each

causal method depending on the approach used for nuisance parameter estimation and the covariates used to control for confounding. The
first panel shows the results for bias; the second panel the results for the empirical standard error; and the third panel the results for 95% CI
coverage in percent. aipw, augmented inverse probability weighting; CI, confidence interval; ebalanceþdid, entropy balancing with
subsequent difference‐in‐differences analysis; handpicked, handpicked covariates only (32 covariates); handpickedþelx, handpicked
covariates enhanced by the indicators for the Elixhauser comorbidity groups (63 covariates); handpickedþicd, handpicked covariates
enhanced by the ICD codes among the 200 additional confounders used for simulation (204 covariates); handpickedþ100important,
handpicked covariates enhanced by the binary indicators for the 100 most important ATC, ICD and OPS codes based on gradient boosting
(132 confounders); ipwþdid, inverse probability of treatment weighting with subsequent difference‐in‐differences analysis; matchingþdid,
propensity score matching with subsequent difference‐in‐differences analysis; tmle, targeted maximum likelihood estimation.
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estimated and thus performance measures were similar in both scenarios. Furthermore, the choice of the approach for
nuisance parameter estimation did not influence CI coverage for most causal methods. However, for TMLE, we
observed lower coverage when combined with the superlearner compared to regression. For AIPW CI coverage
increased when using the superlearner.

Second, we compared the performance of each causal estimation method depending on the covariate set used to
control for confounding. With regard to bias and CI coverage, there were no consistent relationships with the size of the
covariate set used. For all causal estimation methods combined with regression except for propensity score matching,
the SE increased considerably for the largest covariate set.

Overall, TMLE combined with the superlearner showed the smallest bias and SE. For TMLE and AIPW CI coverage
was generally poor and below 95% in all scenarios, whereas CI coverage for the other methods was always above 95%. In
some scenarios, other methods achieved the level of performance of TMLE in terms of bias and SE, such as propensity
score matchingþDiD with regression or IPWþDiD with the superlearner on big covariate sets, while exceeding the
performance of TMLE with regard to CI coverage.

4.2 | Total health care cost

Subsequently, we examined the ATT on the non‐normally distributed continuous outcome: total health care cost. The
results are presented in Figure 2. We compared the performance of the five causal estimation methods based on the
approach for estimating the nuisance parameters. For AIPW and TMLE, we observed smaller bias and SE when using
the superlearner instead of regression models. When using the superlearner instead of regression models, CI coverage
increased for AIPW and decreased for TMLE but remained below 95% in all scenarios. In the case of propensity score
matchingþDiD, we found that using the superlearner led to larger bias and SE. Regarding IPWþDiD, there was no clear
relationship between SE and the choice of the estimation approach for the nuisance parameters, whereas bias was
smaller when combined with the superlearner. Propensity score matchingþDiD and IPWþDiD showed similar per-
formance in terms of CI coverage regardless of whether regression models or the superlearner were used.

When comparing the performance of the five causal estimation methods with regard to the covariate set used to
control for confounding, we observed that using the superlearner for nuisance parameter estimation tended to result in
smaller bias and SE when controlling for larger covariate sets. Conversely, when using regression models, the opposite
trend was observed, with SE tending to increase or stay unchanged as the size of the covariate set increased for all
methods except propensity score matchingþDiD. With regard to bias, no consistent relationship between covariate set
size and performance was observed for methods used in combination with regression for nuisance parameter esti-
mation. The choice of the covariate set did not consistently affect CI coverage across the different causal estimation
methods.

Among the different methods, TMLE in combination with the superlearner demonstrated the smallest bias and SE
when performed on large covariate sets. However, for TMLE and AIPW, CI coverage was below the 95% threshold, with
especially low values seen for TMLE, where it ranged from 70.2% to 75.6%. In contrast, the CI coverage for propensity
score matchingþDiD, IPWþDiD and entropy balancingþDiD was greater than 95% in all scenarios, and performance
regarding bias and SE was only slightly worse in some scenarios compared to the TMLE/superlearner combination. It is
important to note that TMLE exhibited the worst performance among the five methods with regard to bias and SE when
combined with regression models for nuisance parameter estimation instead of the superlearner.

4.3 | Binary indicator for hospitalization

Lastly, we examined the OR for the binary outcome: hospitalization. The results are presented in Figure 3. The per-
formance of the different casual methods varied depending on the choice of approach taken to estimate the nuisance
parameters. When we used the superlearner instead of regression models, AIPW exhibited smaller bias and SE. The
same was observed for IPW and TMLE with regard to SE. However, for propensity score matching, the use of super-
learner led to larger bias and SE. For IPW CI coverage was comparable regardless of the choice between regression
models and the superlearner. For propensity score matching, AIPW and TMLE, CI coverage was lower when using the
superlearner.
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F I G U R E 2 Performance measures for the ATT on total health care cost (true treatment effect τcostATT ¼ −149:453) for each causal
estimation method depending on the approach used for nuisance parameter estimation and the covariates used to control for confounding.
The first panel shows the results for bias; the second panel the results for the empirical standard error; and the third panel the results for 95%
CI coverage in percent. aipw, augmented inverse probability weighting; CI, confidence interval; ebalanceþdid, entropy balancing with
subsequent difference‐in‐differences analysis; handpicked, handpicked covariates only (32 covariates); handpickedþelx, handpicked
covariates enhanced by the indicators for the Elixhauser comorbidity groups (63 covariates); handpickedþicd, handpicked covariates
enhanced by the ICD codes among the 200 additional confounders used for simulation (204 covariates); handpickedþ100important,
handpicked covariates enhanced by the binary indicators for the 100 most important ATC, ICD and OPS codes based on gradient boosting
(132 covariates); ipwþdid, inverse probability of treatment weighting with subsequent difference‐in‐differences analysis; matchingþdid,
propensity score matching with subsequent difference‐in‐differences analysis; tmle, targeted maximum likelihood estimation.
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F I G U R E 3 Performance measures for the odds ratios (OR) estimates of hospitalization (true treatment effect τhospitalization
OR ¼ 0:95) for

each causal estimation method depending on the approach used for nuisance parameter estimation and the covariates used to control for
confounding. The first panel shows the results for bias; the second panel the results for the empirical standard error; and the third panel the
results for 95% CI coverage in percent. aipw, augmented inverse probability weighting; CI, confidence interval; ebalance, entropy balancing;
handpicked, handpicked covariates only (32 covariates); handpickedþelx, handpicked covariates enhanced by the indicators for the
Elixhauser comorbidity groups (63 covariates); handpickedþicd, handpicked covariates enhanced by the ICD codes among the 200
additional confounders used for simulation (204 covariates); handpickedþ100important, handpicked covariates enhanced by the binary
indicators for the 100 most important ATC, ICD and OPS codes based on gradient boosting (132 covariates); ipw, inverse probability of
treatment weighting; matching, propensity score matching; tmle, targeted maximum likelihood estimation.
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Regarding the choice of the covariate set used to control for confounding, bias tended to be larger for larger covariate
sets for propensity score matching and IPW when combined with the superlearner, while performance did not vary
much for the other methods. When using regression models to estimate the nuisance parameters, the SE was larger for
larger covariate sets. However, when using the superlearner, there was no relationship between the size of the covariate
set and the SE. Moreover, CI coverage tended to be lower for larger covariate sets across all scenarios, and was especially
low for AIPW combined with regression for large covariate sets (23.1% and 2.5%).

Bias was smallest for entropy balancing, TMLE in combination with either regression models or the superlearner,
IPW in combination with regression, and AIPW in combination with the superlearner. However, AIPW combined with
regression models exhibited very large bias and SE. IPW combined with regression also showed large SE. On the other
hand, IPW combined with the superlearner, had the smallest SE among all methods. Confidence interval coverage was
below the 95% threshold for all methods except propensity score matching in combination with regression on the
covariate set containing handpicked variables and Elixhauser groups.

5 | DISCUSSION

5.1 | Review of findings

We conducted a plasmode simulation study based on real‐world administrative health care data, allowing us to evaluate
the performance of five causal effect estimation methods under conditions closer to real‐world conditions: propensity
score matching (and subsequent DiD analysis), IPW (and subsequent DiD analysis), entropy balancing (and subsequent
DiD analysis), AIPW and TMLE. We expanded upon previous plasmode simulation studies by focusing on count data
(number of physician visits), a non‐normally distributed continuous outcome (total health care costs), and a binary
outcome (indicator for hospitalization). We varied the set of covariates used for analysis and the approach used to
estimate the nuisance parameters.

Our simulation results indicate that using the superlearner instead of regression models to estimate the nuisance
parameters leads to less biased estimates with smaller SE for AIPW and TMLE across all outcomes, and, in most cases,
for IPW—with subsequent DiD analysis for estimating the ATT. The strong performance of doubly robust methods,
especially TMLE, in terms of bias has been observed in several previous simulation studies (Bahamyirou et al., 2019;
Meng & Huang, 2021; Naimi et al., 2021; Schuler & Rose, 2017; Zivich & Breskin, 2021) and aligns with the theoretical
properties of doubly robust approaches (van der Laan & Rubin, 2006). Zivich and Breskin (2021) found that AIPW and
TMLE, when combined with the superlearner, outperformed singly robust approaches using either the superlearner or
regression models for nuisance parameter estimation. They also found that AIPW and TMLE combined with the
superlearner outperformed singly robust approaches when combined with regression for nuisance parameter estima-
tion (Zivich & Breskin, 2021). Similarly, Naimi et al. (2021) observed that using the superlearner in scenarios where
nuisance parameter models are misspecified reduced bias for AIPW and TMLE. They further noted that while using the
superlearner with singly robust estimators can result in biased estimators, performance improves when the super-
learner is combined with doubly robust estimators (Naimi et al., 2021). This observation is both in line with theory
(Naimi et al., 2021) and our observations. However, an important consideration arises when using the superlearner in
conjunction with AIPW and TMLE: the coverage falls below the nominal level. This property, observed in our study, is
consistent with the results of previous studies (Meng & Huang, 2021; Naimi et al., 2021; Zivich & Breskin, 2021).

For propensity score matching and IPW, previous studies have reported mixed results with regard to the choice
between superlearner and regression for propensity score estimation, which was also observed in our study. Pirracchio
et al. (2015) found that propensity score estimation using logistic regression outperformed the superlearner when the
propensity score was either non‐linear or non‐additive. Conversely, if both conditions were met, the superlearner
performed better. However, Alam et al. (2019) did not identify a consistently dominant approach and concluded that the
superlearner was not superior to regression for estimating the propensity score when matching or IPW was subse-
quently performed. We found that CI coverage was similar regardless of the choice of approach for nuisance parameter
estimation for propensity score matching, IPW or entropy balancing and subsequent DiD analysis in the case of ATT
estimation.

When we compared the performance of the causal estimation methods with regard to the set of covariates used to
control for confounding, a distinction arose depending on the choice of approach for nuisance parameter estimation.
Using the superlearner tended to result in decreased bias when controlling for larger sets of covariates. In contrast,
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when regression was used to estimate nuisance parameters, controlling for larger covariate sets did not consistently
decrease bias. This observation aligns with other studies, which have found that covariate set size has no influence on
performance measures (Amusa et al., 2022; Schuler & Rose, 2017) or have observed reduced bias and SE for larger
covariate sets, suggesting that researchers should adjust for numerous variables (Karim et al., 2018; Pang et al., 2016).
However, findings by Ripollone et al. (2020) for propensity score matching and Wyss et al. (2018) for propensity score
matching, IPW and TMLW, suggest that bias increases with covariate set size. With regard to SE and CI coverage, we
observed no consistent patterns related to covariate set size across outcomes.

When evaluating estimation methods, it is important to recognize that different performance measures reflect
distinct properties of these methods and the relative importance of each measure can vary according to one's research
objectives. For instance, researchers may prioritize minimizing bias or maximizing precision based on the goals of their
study. It is also important to recognize that the methods we compare in this simulation study have different underlying
causal assumptions. For example, methods like AIPW and TMLE presuppose the absence of unobserved confounding.
In contrast, the DiD approach, while not requiring this assumption, does rely on the assumption of parallel trends.
Despite these differences, we chose to compare these and the other methods due to their frequent application in practice
and their endorsement in previous simulation studies. Our object in doing so was to offer practical guidance for applied
researchers selecting an estimation strategy in scenarios similar to that presented in our study.

Thus, to conclude with a summary of our results across the employed performance measures, we ranked each
method in terms of its performance with regard to bias, SE and CI coverage, and calculated their average ranks as a
possible summary indicator. The ranking can be found in Appendix F. This approach showed that matching (with
subsequent DiD analysis for ATT estimation) in combination with regression for nuisance parameter estimation per-
formed well for all outcomes, according to the average rankings. Furthermore, entropy balancing combined with
DiD analysis performed well for the outcome of total health care costs. Employing the superlearner for estimating
nuisance parameters, in combination with treatment effect estimation using IPW or matching (followed by DiD
analysis) or AIPW, performed well for estimating the treatment effect on the number of outpatient visits and total
health care costs.

5.2 | Limitations

Several important limitations need to be considered when interpreting our results. First, while the plasmode framework
captures the unknown and complex relationships among covariates, the outcome model in our study is still para-
metrically specified. The simulation process uses a relatively small number of covariates to generate outcomes, whereas
real observed outcomes may be influenced by a much larger set of measured and unmeasured confounders, leading to
increased complexity. However, it is worth noting that the associations with the included covariates may partially
reflect the influence of additional covariates. This is a natural limitation of simulation studies, which arises from the
challenge of generating a user‐specified true parameter while preserving the structure of real‐world data structure. As a
result, our simulation design may favor approaches that are more closely related to the underlying data‐generating
process (Meng & Huang, 2021). Second, the strength of our plasmode simulation lies in its use of realistic data, but
this also presents a challenge: the lack of knowledge about the underlying structure of these data. This also implies that
we cannot be certain whether the model assumptions are met. For example, in our application of doubly robust
methods, we rely on the relationships between covariates and treatment as they appear in the observed data, without
alteration. This mirrors real‐world applications of the method, where the accuracy of the treatment model is unknown
and thus we cannot know whether the method relies on its double robustness property. As a consequence, our results
primarily offer insights into performance in settings similar to those in our study, limiting generalizability to different
contexts (Strobl & Leisch, 2022). Third, although we simulated outcomes for three different distributions and
considered multiple levels of confounding, we were not able to test for other important features of the data‐generating
process, such as instrumental variables, varying treatment prevalence or missing data, nor did we use further data
sources to generate the plasmode dataset. Moreover, the findings of simulation studies are inherently limited by the
estimation strategies that are chosen. In our study, we did not, for example, consider different approaches for matching
on the propensity score or further approaches to nuisance parameter estimation, such as extensive baselearner sets for
the superlearner, nor did we perform hyperparameter tuning. Additionally, variations and extensions of the estimation
strategies compared in our simulation—for example, staggered DiD for settings in which subjects are treated during
different periods (Faghani Dermi & VanOmmeren, 2024; Wing et al., 2024)—may yield different results. However,
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expanding the set of estimation strategies would have substantially increased computation time, whereas our objective
was to provide applied researchers with initial guidance on choosing an estimation strategy in general. After choosing a
broad strategy based on our findings, applied researchers can further refine their approach based on the findings of
other simulation studies, such as comparing the performance of different propensity score methods (Franklin
et al., 2017).

5.3 | Conclusion

In our plasmode simulation study using real‐world administrative health care data, we evaluated and compared the
performance of five methods for estimating causal treatment effects. We found that TMLE combined with the super-
learner performed best in terms of bias and SE, but exhibited shortcomings in terms of CI coverage. When considering
all performance measures and outcomes, the combination of matching and subsequent DiD analysis in conjunction
with regression for nuisance parameter estimation performed best. For the individual outcomes and scenarios, other
approaches showed similar performance to that of the matching and regression combination.

Based on our findings, we observed the following general trends that researchers working with administrative
health care data may wish to consider when choosing strategies for estimating treatment effects in causal analysis:

1. When aiming to control for a large covariate set, consider using the superlearner to estimate nuisance parameters.
2. When employing the superlearner to estimate nuisance parameters, consider using doubly robust estimation ap-

proaches, such as AIPW and TMLE.
3. When faced with a small covariate set, consider using regression to estimate nuisance parameters.
4. When employing regression to estimate nuisance parameters, consider using singly robust estimation approaches,

such as propensity score matching or IPW.
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